

 bio_ex_sequence

 v0.1.1

 Table of contents

 	Modules

 	Bio.BaseSequence

 	Bio.Polymer

 	Bio.Sequence

 	Bio.Sequence.MonomerName

 	Bio.Sequence.Dna

 	Bio.Sequence.DnaDoubleStrand

 	Bio.Sequence.DnaStrand

 	Bio.Sequence.Rna

 	Bio.Sequence.RnaDoubleStrand

 	Bio.Sequence.RnaStrand

 	Bio.Sequence.AminoAcid

 	Bio.Sequence.Alphabets

 	Bio.Sequence.Alphabets.AminoAcid

 	Bio.Sequence.Alphabets.Dna

 	Bio.Sequence.Alphabets.Rna

 	Bio.Convertible

 	Bio.Sequential

 	Bio.Enum

 	Bio.Polymeric

 	Bio.AcidHelper

 	Mix Tasks

 	mix bio.random.dna

Bio.BaseSequence

Implementations of the basic sequence functionality.
Calling use Bio.BaseSequence will generate a simple struct in the calling
module, as well as the implementation for the Enumerable protocol.
Because the Enum module makes certain assumptions about the data that it is
given, we cannot trust that the functions therein will always behave how it
makes the most sense. As an example, there is no way to ensure that
Enum.slide/3 returns anything other than a list. I believe that it makes
sense for it to return the enumerable type, so you would get e.g. a
Bio.Sequence.DnaStrand back.
With that said, many of the Enum module's functions shouldn't make
assumptions. This is largely idiosynctratic, and so instead of trying to
ham-fist the Enum functions to work, I just wrapped them up with Bio.Enum.
The implementations in Bio.Enum rely on the Enum functions to work, but
they go the extra mile in terms of returning things that seem to make the most
sense. See the documentation of Bio.Enum for more on that.
This module will also cause new/2 to be defined. This function takes a
sequence as well as the keywords :label and :length. For more examples of
using new/2 see Bio.Sequence.AminoAcid, Bio.Sequence.DnaStrand, or
Bio.Sequence.RnaStrand.

Bio.Polymer

Deals with conversions between polymers.
The sequences that this will work with must define an implementation for the
Bio.Polymeric protocol. This is then used with the definition of
the to/1 callbacks for the Bio.Convertible behaviour. These will
be given the kmer enumeration that they define with that function.
This module wraps the logic of accessing a given polymer's defined
conversions. The primary idea is that I wanted to expose the ability to
provide a non-default conversion without losing the semantics of a simple
default when it's present.
To put that in more concrete terms, I wanted this to be viable:
iex>dna = DnaStrand.new("ttagccgt", label: "a label")
...>Bio.Polymer.convert(dna, RnaStrand)
{:ok, %RnaStrand{sequence: "uuagccgu", length: 8, label: "a label"}}
But, and this is the important part, other conversions are not well defined by
defaults. For example:
iex>amino = AminoAcid.new("maktg")
...>Bio.Polymer.convert(amino, DnaStrand)
{:error, :undef_conversion}
The :undef_conversion indicates that there is no viable default
implementation of the conversion between these polymers. It does not
indicate that there is none. Obviously one can convert from an amino acid to
some DNA strand. However, because this would imply making a selection from
the available codons, that is left to the logic of whatever application is
doing so.
The way that you would do that is straight forward, you would define a
conversion module and pass it to the convert/3 function as the keyword
argument :conversion. For example, if we wanted to defined a mapping that
converted into a compressed DNA representation, we could do:
iex>defmodule CompressedAminoConversion do
...> use Bio.Convertible do
...> def to(DnaStrand), do: {:ok, &compressed/2, 1}
...> end
...>
...> def compressed({:ok, knumerable, data}, _) do
...> data = data
...> |> Map.drop([:length])
...> |> Map.to_list()
...> knumerable
...> |> Enum.map(&to_codon/1)
...> |> Enum.join("")
...> |> DnaStrand.new(data)
...> end
...>
...> defp to_codon(aa) do
...> case aa do
...> "a" -> "gcn"
...> "r" -> "cgn"
...> "n" -> "aay"
...> "d" -> "gay"
...> "c" -> "tgy"
...> "e" -> "gar"
...> "q" -> "car"
...> "g" -> "ggn"
...> "h" -> "cay"
...> "i" -> "ath"
...> "l" -> "ctn"
...> "k" -> "aar"
...> "m" -> "atg"
...> "f" -> "tty"
...> "p" -> "ccn"
...> "s" -> "tcn"
...> "t" -> "acn"
...> "w" -> "tgg"
...> "y" -> "tay"
...> "v" -> "gtn"
...> end
...> end
...>end
...>amino = AminoAcid.new("maktg", label: "polypeptide-∂")
...>Bio.Polymer.convert(amino, DnaStrand, conversion: CompressedAminoConversion)
{:ok, %DnaStrand{sequence: "atggcnaaracnggn", length: 15, label: "polypeptide-∂"}}
This is made possible because of the simple implementation of the
Bio.Polymeric interface for the Bio.Sequence.AminoAcid. If
you want to define your own convertible polymer types, you can. It requires
defining the module and the implementation of convert/1. You can read the
Bio.Sequence.AminoAcid source for more clarity on the details.
This package attempts to define reasonable defaults for all the occasions
which it can. This includes converting DNA into RNA, and RNA to DNA. The
conversions from DNA/RNA to Amino Acid are done using standard codon tables.
The Conversion module idea is provided as an escape hatch for more particular
applications which may require bespoke logic. An example would be converting
Amino Acids into a DNA sequence, as above. There are likely more use cases
than I could possibly compile on my own, so I tried to come up with a way to
alleviate that pressure.

 Summary

 Functions

 convert(data, module, opts \\ [])

 Apply a conversion to a given datum.

 valid?(data, alphabet \\ nil)

 validate(data, alphabet \\ nil)

 Validate a given sequence struct according to its Bio.Polymeric implementation.

Functions

 Link to this function

 convert(data, module, opts \\ [])

 View Source

 @spec convert(struct(), module(), keyword()) ::
 {:ok, struct()} | {:error, :undef_conversion}

Apply a conversion to a given datum.
The convert/3 function is at the core of using the Bio.Polymer
module. By passing the function a struct and the module you wish to convert
to, you are hooking into the underlying implementation of the
Bio.Convertible for that module. This means that both the struct
you given as well as the module must have this implemented.
Examples
Given a struct and module with a known conversion:
iex>dna = DnaStrand.new("ttagccgt", label: "a label")
...>Bio.Polymer.convert(dna, RnaStrand)
{:ok, %RnaStrand{sequence: "uuagccgu", length: 8, label: "a label"}}
Given a struct and module with unknown conversions:
iex>amino = AminoAcid.new("maktg")
...>Bio.Polymer.convert(amino, DnaStrand)
{:error, :undef_conversion}
Given a struct that doesn't implement Bio.Sequential:
iex>Bio.Polymer.convert(%SomeModule{}, DnaStrand)
{:error, :no_converter}

 Link to this function

 valid?(data, alphabet \\ nil)

 View Source

 Link to this function

 validate(data, alphabet \\ nil)

 View Source

 @spec validate(
 struct(),
 String.t() | nil
) ::
 {:ok, struct()}
 | {:error, :no_alpha}
 | {:error, {atom(), String.t(), integer()}}
 | {:error, [{atom(), String.t(), integer()}]}

Validate a given sequence struct according to its Bio.Polymeric implementation.

Bio.Sequence

Bio.Sequence is the basic building block of the sequence types.
The core concept here is that a polymer is a sequence of elements encoded as a
binary. This is stored in the base %Bio.Sequence{} struct, which has both a
sequence and length field, and may carry a label and alphabet field as
well.
The struct is intentionally sparse on information since this is meant to
compose into larger data types. For example, the Bio.Sequence.DnaDoubleStrand struct,
which has two polymer Bio.Sequence.DnaStrands as the top_strand and
bottom_strand fields.
Because many of the sequence behaviors are shared, they are implemented by
Bio.BaseSequence and used in the modules that need them. This allows us to
ensure that there is a consistent implementation of the Enumerable protocol,
which in turn allows for common interaction patterns a la Python strings:
iex>"gmc" in Bio.Sequence.new("agmctbo")
true

iex>Bio.Sequence.new("agmctbo")
...>|> Enum.map(&(&1))
["a", "g", "m", "c", "t", "b", "o"]
My hope is that this alleviates some of the pain of coming from a language
where strings are slightly more complex objects.
Additionally, you should look at the Bio.Enum module for dealing with cases
where the Enum default implementation results in odd behavior. It also
implements certain behaviors like returning the same type for functions:
iex>Bio.Sequence.new("agmctbo")
...>|> Enum.slice(2, 2)
'mc'
vs
iex>alias Bio.Enum, as: Bnum
...>Bio.Sequence.new("agmctbo")
...>|> Bnum.slice(2, 2)
%Bio.Sequence{sequence: "mc", length: 2}

Bio.Sequence.MonomerName

Get the full name for a given monomer.
Example
iex>MonomerName.nucleic_acid("a")
"adenine"

iex>MonomerName.amino_acid("a")
"alanine"

 Summary

 Functions

 amino_acid(value)

 Mapping amino acids to their chemical names

 nucleic_acid(value)

 Mapping nucleotides to their chemical names

Functions

 Link to this function

 amino_acid(value)

 View Source

Mapping amino acids to their chemical names

 Example

iex>MonomerName.nucleic_acid("a")
"adenine"

 Link to this function

 nucleic_acid(value)

 View Source

Mapping nucleotides to their chemical names

 Example

iex>MonomerName.nucleic_acid("a")
"adenine"

Bio.Sequence.Dna

A module for working with DNA.
This module doesn't contain a representative struct, as with Bio.Sequence.Rna.
This is because there are multiple ways to interpret a string as DNA. Namely, it
can either be single or double stranded. This is why the
Bio.Sequence.DnaStrand and Bio.Sequence.DnaDoubleStrand modules exist.
However, this is the interface for dealing with things like complement/1 and
reverse_complement!/1.
Additionally, this module handles defining default conversions for the DNA
sequence types into RNA sequence types (Bio.Sequence.RnaStrand and
Bio.Sequence.RnaDoubleStrand). Conversions defined here are used by the
Bio.Sequence.DnaStrand and Bio.Sequence.DnaDoubleStrand modules.
The default conversions use conventional nucleotides and map them to their
relevant RNA nucleotides:
a -> a
t -> u
g -> g
c -> c
Casing is preserved, so mixed case sequences will not be altered.
Example
iex>DnaStrand.new("taTTg")
...>|> Bio.Polymer.convert(RnaStrand)
{:ok, %RnaStrand{sequence: "uaUUg", length: 5}}
This is guaranteed, so you may encode these with intention and assume that
they are preserved across conversions.

 Summary

 Types

 complementable()

 msg()

 Functions

 complement(sequence, opts \\ [])

 Provide the DNA complement to a sequence.

 reverse_complement!(sequence, opts \\ [])

 Provide the DNA reverse complement to a sequence.

Types

 Link to this type

 complementable()

 View Source

 @type complementable() :: struct() | String.t()

 Link to this type

 msg()

 View Source

 @type msg() :: atom()

Functions

 Link to this function

 complement(sequence, opts \\ [])

 View Source

Provide the DNA complement to a sequence.
Given a sequence that is either a binary or a Bio.Sequence.DnaStrand,
returns the DNA complement as defined by the standard nucleotide complements.
Examples
iex>Dna.complement("attgacgt")
{:ok, "taactgca"}

iex>DnaStrand.new("attgacgt")
...>|> Dna.complement()
{:ok, %DnaStrand{sequence: "taactgca", length: 8, alphabet: Bio.Sequence.Alphabets.Dna.common()}}

 Link to this function

 reverse_complement!(sequence, opts \\ [])

 View Source

Provide the DNA reverse complement to a sequence.
Given a sequence that is either a binary or a Bio.Sequence.DnaStrand,
returns the DNA reverse complement as defined by the standard nucleotide
complements.
Examples
iex>Dna.reverse_complement!("attgacgt")
"acgtcaat"

iex>DnaStrand.new("attgacgt")
...>|> Dna.reverse_complement!()
%DnaStrand{sequence: "acgtcaat", length: 8}

Bio.Sequence.DnaDoubleStrand

A representative struct for Double Stranded DNA polymers.

 Summary

 Functions

 new(top_strand, opts \\ [])

 Generate a new %Bio.Sequence.DnaDoubleStrand{} struct.

Functions

 Link to this function

 new(top_strand, opts \\ [])

 View Source

Generate a new %Bio.Sequence.DnaDoubleStrand{} struct.

 Options

label - This is a label applied to the top and bottom.
alphabet - This is the alphabet to use for the top and bottom strands,
defaults to the Bio.Sequence.Alphabets.Dna.iupac/0. This allows the most
general use of the new function in unknown scenarios.
complement_offset - Offset for the strands. Positive values are considered
offset to top, negative as offset to bottom. E.g. 5 would give 5 nt offset
on top, leading to a bottom strand overhand on the 5' side and a top strand
overhang on the 3' side.

Bio.Sequence.DnaStrand

A single DNA strand can be represented by the basic sequence which uses
Bio.BaseSequence .
Examples
iex>"tagc" in DnaStrand.new("ttagct")
true

iex>alias Bio.Enum, as: Bnum
...>DnaStrand.new("ttagct")
...>|> Bnum.map(&(&1))
%DnaStrand{sequence: "ttagct", length: 6}

iex>alias Bio.Enum, as: Bnum
...>DnaStrand.new("ttagct")
...>|> Bnum.slice(2, 2)
%DnaStrand{sequence: "ag", length: 2}

Bio.Sequence.Rna

A module for working with RNA.
This module doesn't contain a representative struct, as with Bio.Sequence.Dna.
This is because there are multiple ways to interpret a string as RNA. Namely, it
can either be single or double stranded. This is why the
Bio.Sequence.RnaStrand and Bio.Sequence.RnaDoubleStrand modules exist.
However, this is the interface for dealing with things like complement/1 and
reverse_complement/1.
Additionally, this module handles defining default conversions for the DNA
sequence types into RNA sequence types (Bio.Sequence.DnaStrand and
Bio.Sequence.DnaDoubleStrand). Conversions defined here are used by the
Bio.Sequence.RnaStrand and Bio.Sequence.RnaDoubleStrand modules.
The default conversions use conventional nucleotides and map them to their
relevant DNA nucleotides:
a -> a
u -> t
g -> g
c -> c
Casing is preserved, so mixed case sequences will not be altered.
Example
iex>RnaStrand.new("uaUUg")
...>|> Bio.Polymer.convert(DnaStrand)
{:ok, %DnaStrand{sequence: "taTTg", length: 5}}
This is guaranteed, so you may encode these with intention and assume that
they are preserved across conversions.

 Summary

 Types

 complementable()

 Functions

 complement(sequence, opts \\ [])

 Provide the RNA complement to a sequence.

 reverse_complement(sequence)

 Provide the RNA reverse complement to a sequence.

Types

 Link to this type

 complementable()

 View Source

 @type complementable() :: struct() | String.t()

Functions

 Link to this function

 complement(sequence, opts \\ [])

 View Source

 @spec complement(complementable(), keyword() | nil) ::
 {:ok, struct()} | {:error, Bio.AcidHelper.mismatch()}

Provide the RNA complement to a sequence.
Given a sequence that is either a binary or a Bio.Sequence.RnaStrand,
returns the RNA complement as defined by the standard nucleotide complements.
Examples
iex>Rna.complement("auugacgu")
{:ok, "uaacugca"}

iex>RnaStrand.new("auugacgu")
...>|> Rna.complement()
{:ok, %RnaStrand{sequence: "uaacugca", length: 8, alphabet: Alpha.common()}}

 Link to this function

 reverse_complement(sequence)

 View Source

 @spec reverse_complement(sequence :: complementable()) :: complementable()

Provide the RNA reverse complement to a sequence.
Given a sequence that is either a binary or a Bio.Sequence.RnaStrand,
returns the RNA reverse complement as defined by the standard nucleotide
complements.
Examples
iex>Rna.reverse_complement("auugacgu")
"acgucaau"

iex>RnaStrand.new("auugacgu")
...>|> Rna.reverse_complement()
%RnaStrand{sequence: "acgucaau", length: 8}

Bio.Sequence.RnaDoubleStrand

Bio.Sequence.RnaStrand

A single RNA strand can be represented by the basic sequence which implements
the Bio.Polymer behavior.
This module doesn't implement any validations, since those are not well
defined in every case. For example, it may be valid to contain ambiguous
nucleotides, or it may not. Since that depends on the use, this is left to
applications developers to write.
Examples
iex>"uagc" in RnaStrand.new("uuagcu")
true

iex>alias Bio.Enum, as: Bnum
...>RnaStrand.new("uuagcu")
...>|> Bnum.map(&(&1))
%RnaStrand{sequence: "uuagcu", length: 6}

iex>alias Bio.Enum, as: Bnum
...>RnaStrand.new("uuagcu")
...>|> Bnum.slice(2, 2)
%RnaStrand{sequence: "ag", length: 2}

Bio.Sequence.AminoAcid

Amino acids are modeled as simple sequences using Bio.BaseSequence.
Examples
iex>aa = AminoAcid.new("ymabagta")
...>"mabag" in aa
true

iex>alias Bio.Enum, as: Bnum
...>AminoAcid.new("ymabagta")
...>|>Bnum.map(&(&1))
%AminoAcid{sequence: "ymabagta", length: 8}

iex>alias Bio.Enum, as: Bnum
...>AminoAcid.new("ymabagta")
...>|>Bnum.slice(2, 2)
%AminoAcid{sequence: "ab", length: 2}
If you are interested in defining conversions of amino acids then look into
the Bio.Polymer module for how to deal with creating a Conversion module.
The simple Bio.Sequence.AminoAcid does define the Bio.Polymeric protocol,
which will allow you to define conversions from this to any type you may
desire.

Bio.Sequence.Alphabets

Alphabets relevant to the sequences, coding schemes are expressed in
essentially BNF.
Values and interpretations for the scheme were accessed from
here.
Also exposes the complementary elements for DNA/RNA allowing strands to be
complemented. These functions shouldn't be used directly, but look at
Bio.Sequence.Dna.complement/2 and Bio.Sequence.Rna.complement/1 for more
information.
Alphabets may be used in the declaration of Bio.BaseSequence structs to
define how they should be validated. In case one is not supplied, a default
may be preferred. See Bio.Sequence.Dna, Bio.Sequence.Rna,
Bio.Sequence.AminoAcid, and Bio.Polymer.valid?/2 for more information.
	Bio.Sequence.Dna
The DNA alphabets provided are:
	common - The standard bases ATGCatgc
	with_n - The standard alphabet, but with the ambiguous "any" character
Nn
	iupac - The IUPAC standard values ACGTRYSWKMBDHVNacgtryswkmbdhvn

	Bio.Sequence.Rna
	common - The standard bases ACGUacgu
	with_n - The standard alphabet, but with the ambiguous "any" character
Nn
	iupac - The IUPAC standard values ACGURYSWKMBDHVNacguryswkmbdhvn

	Bio.Sequence.AminoAcid
	common - The standad 20 amino acid codes ARNDCEQGHILKMFPSTWYVarndceqghilkmfpstwyv
	iupac - ABCDEFGHJIKLMNPQRSTVWXYZabcdefghjiklmnpqrstvwxyz

Coding Schemes
Deoxyribonucleic Acid codes
A ::= Adenine
C ::= Cytosine
G ::= Guanine
T ::= Thymine

R ::= A | G
Y ::= C | T
S ::= G | C
W ::= A | T
K ::= G | T
M ::= A | C

B ::= S | T (¬A)
D ::= R | T (¬C)
H ::= M | T (¬G)
V ::= M | G (¬T)
N ::= ANY
Ribonucleic Acid codes
A ::= Adenine
C ::= Cytosine
G ::= Guanine
U ::= Uracil

R ::= A | G
Y ::= C | U
S ::= G | C
W ::= A | U
K ::= G | U
M ::= A | C

B ::= S | U (¬A)
D ::= R | U (¬C)
H ::= M | U (¬G)
V ::= M | G (¬U)
N ::= ANY
Amino Acid codes
A ::= Alanine
C ::= Cysteine
D ::= Aspartic Acid
E ::= Glutamic Acid
F ::= Phenylalanine
G ::= Glycine
H ::= Histidine
I ::= Isoleucine
K ::= Lysine
L ::= Leucine
M ::= Methionine
N ::= Asparagine
P ::= Proline
Q ::= Glutamine
R ::= Arginine
S ::= Serine
T ::= Threonine
V ::= Valine
W ::= Tryptophan
Y ::= Tyrosine

B ::= D | N
Z ::= Q | E
J ::= I | L
X ::= ANY

Bio.Sequence.Alphabets.AminoAcid

Amino Acid Alphabets

 Summary

 Functions

 common()

 ARNDCEQGHILKMFPSTWYVarndceqghilkmfpstwyv

 iupac()

 ABCDEFGHJIKLMNPQRSTVWXYZabcdefghJiklmnpqrstvwxyz

Functions

 Link to this function

 common()

 View Source

 @spec common() :: String.t()

ARNDCEQGHILKMFPSTWYVarndceqghilkmfpstwyv

 Link to this function

 iupac()

 View Source

 @spec iupac() :: String.t()

ABCDEFGHJIKLMNPQRSTVWXYZabcdefghJiklmnpqrstvwxyz

Bio.Sequence.Alphabets.Dna

DNA Alphabets

 Summary

 Functions

 common()

 ATGCatgc

 complement(base, alpha)

 Complements a given character according to the supplied alphabet.

 iupac()

 ACGTRYSWKMBDHVNacgtryswkmbdhvn

 with_n()

 ACGTNacgtn

Functions

 Link to this function

 common()

 View Source

 @spec common() :: String.t()

ATGCatgc

 Link to this function

 complement(base, alpha)

 View Source

 @spec complement(String.t(), String.t()) ::
 {:error, {:unknown_code, String.t(), String.t()}} | {:ok, String.t()}

Complements a given character according to the supplied alphabet.
Alphabet must be one of the valid Bio.Sequence.Alphabets.Dna options.

 Link to this function

 iupac()

 View Source

 @spec iupac() :: String.t()

ACGTRYSWKMBDHVNacgtryswkmbdhvn

 Link to this function

 with_n()

 View Source

 @spec with_n() :: String.t()

ACGTNacgtn

Bio.Sequence.Alphabets.Rna

RNA Alphabets

 Summary

 Functions

 common()

 ACGUacgu

 complement(base, alpha)

 Complements a given character according to the supplied alphabet.

 iupac()

 ACGURYSWKMBDHVNZacguryswkmbdhvnz

 with_n()

 ACGUNacgun

Functions

 Link to this function

 common()

 View Source

 @spec common() :: String.t()

ACGUacgu

 Link to this function

 complement(base, alpha)

 View Source

 @spec complement(String.t(), String.t()) ::
 {:error, {:unknown_code, String.t(), String.t()}} | {:ok, String.t()}

Complements a given character according to the supplied alphabet.
Alphabet must be one of the valid Bio.Sequence.Alphabets.Rna options.

 Link to this function

 iupac()

 View Source

 @spec iupac() :: String.t()

ACGURYSWKMBDHVNZacguryswkmbdhvnz

 Link to this function

 with_n()

 View Source

 @spec with_n() :: String.t()

ACGUNacgun

Bio.Convertible behaviour

Defines behavior for modules to act as a converter between sequences.
The core of this base module is to provide the default to/1 function. This
will return the error tuple for undefined conversions. This alleviates the
need of the user defined module to provide this implementation, and eliminates
the possibility of the function to/1 raising due to no matching clauses.
To use this as a base for your converter you use the module and pass a block
for defining the user-side to/1 calls. For example:
defmodule SomeConversion do
 use Bio.Convertible do
 def to(SomeModule), do: {:ok, &your_kmer_converter/2, 6}

 defp your_kmer_converter({:ok, kmers, data}, module) do
 # conversion logic
 end
 end
end
This defines the k-wise converter that will be used by
Bio.Polymer.convert/3.
The function you define for the actual conversion will be given an :ok tuple
with the kmers and any additional data defined for the struct that you're
converting. How this data is partitioned is managed by the Bio.Polymeric
definition.
As an example, the Bio.Sequence.DnaStrand struct simply drops the sequence
key, retaining all other keys as the data given to the fn/2 you define.
This allows you to retain any relevant information for a newly created struct.
If you wanted to define your own sequence, this then requires that you also
implement the Bio.Polymeric interface. So if you were to implement
SomeSequence, you would do the following:
defmodule SomeSequence do
 @behaviour Bio.Sequential

 @impl Bio.Sequential
 def converter, do: SomeConversion

 # implementation of other callbacks
end
The Bio.Sequential behavior ensures that we implement the converter/0
function which is called from the Bio.Polymer module. This in turn
constructs the basic converter mechanic, and now you would implement
Bio.Polymeric:
defimpl Bio.Polymeric, for: SomeSequence do
 def kmers(seq, k) do
 # your logic for splitting the polymer into k sized kmers
 end

 def valid?(seq, alpha) do
 # your logic checking if the polymer is valid
 end

 def validate(seq, alpha) do
 # your logic for validating the polymer
 end
end
Now you can simply call:
SomeSequence.new("some data")
|> Bio.Polymer.convert(SomeModule)
The Bio.Polymer.convert/3 function now handles calling your conversion
method your_kmer_converter. This will be called with the kmers generated by
Bio.Polymeric's implementation of kmers/2, which will be passed a value of
k=6, as defined in the conversion callback.
This is perhaps overly complex, but here are the design goals:
	Allow a user to define a conversion from one type to another, regardless of
if that type is internal.
	Allow that definition to leverage existing protocols for e.g. kmers.
	Allow a dead simple interface for working with internal components when
extensions aren't needed.

A lot of complexity was pulled in to hit these targets, and I think that the
goal is achieved. A user who doesn't need their own types can simply work with
the Bio.Sequence types using the Bio.Polymer interface.
However, if they want to define e.g. a converter between
Bio.Sequence.RnaStrand and Bio.Sequence.AminoAcid, they can simply define
a module for that conversion and pass it to the Bio.Polymer.convert/3
function.
The complexity only arises to the user when they need their own sequences.
Hopefully they'd have appreciated the necessity of the complexity before then.

 Summary

 Callbacks

 to(thing)

 Defines the converter's k-wise conversion function

Callbacks

 Link to this callback

 to(thing)

 View Source

 @callback to(thing :: module()) ::
 {:ok, (term() -> term()), integer()} | {:error, :undef_conversion}

Defines the converter's k-wise conversion function
This is called within the Bio.Polymer.convert/3 function to acquire the
k-wise conversion function for sequence to another.

Bio.Sequential behaviour

How a "sequence" ought to comport itself.
The Bio.Sequential behaviour is used to define the expected
functions exposed by "sequences". In general, sequences are basically a
replacement for the enumerable qualities of strings in some other languages.
Because that requires defining a protocol, and that requires a struct, it
makes a lot of sense to have an easy to use initializer. Thus, the new/2
method. The opts defined will depend on the type of sequence you're
creating, and so the typing is left rather general here. These should be
refined for any concrete implementation.
Because most sequences can be transcoded into other sequences (e.g. DNA ->
Amino Acid), we also want to define a getter for the module that handles
that conversion. This is why the converter/0 function exists. It should
return a module that implements the Bio.Convertible behaviour.
Together with the Bio.Polymeric protocol, the Bio.Convertible behaviour
and Bio.Polymer module create a robust conversion mechanic that can be
hooked into by user defined types. For further reading on that, look at the
Bio.Polymer module docs.
The final callback, fasta_line/1, exists because this is a bioinformatics
library. Sequences are pretty much always going to be written out to a fasta
file, or some similar context. Defining this as a callback means that we can
make it easier for your types to be given directly to the Bio.IO.Fasta
module for writing. Eventually, I'd probably like to come up with a more
general dump style mechanic. But this'll do for the pre-alpha.

 Summary

 Callbacks

 converter()

 Returns the module which implements to/1 functions for type conversion.

 fasta_line(given)

 Given a struct, returns the String.t() line for a FASTA file

 new(base, opts)

 Builds a new struct for the implementing type.

Callbacks

 Link to this callback

 converter()

 View Source

 @callback converter() :: converter :: module()

Returns the module which implements to/1 functions for type conversion.
This returns the module, which is then used from within
Bio.Polymer.convert/3 to acquire the correct conversion function
for a given type.
Your code shouldn't need to call this. It exists to interface with the
Bio.Polymer module's functions.

 Link to this callback

 fasta_line(given)

 View Source

 @callback fasta_line(given :: struct()) :: line :: String.t()

Given a struct, returns the String.t() line for a FASTA file
This will be called from within Bio.IO.Fasta.write/3

 Link to this callback

 new(base, opts)

 View Source

 @callback new(base :: term(), opts :: keyword()) :: struct :: term()

Builds a new struct for the implementing type.
This is provided as:
	A simple way to initialize various types.
	A place to perform pre-computations/optimizations in the future.

The default implementation for example does a pre-computation of the length of
the sequence, which is stored on the base type. This in turn allows the
Enumerable interface to be implemented efficiently.

Bio.Enum

Implements a wrapper around the Enum module's public interface.
The semantics of the Enum module don't always match up with what I would think
is best for certain cases. The best example of this is the slide/3 function.
Because of the Enum implementation, there is no way to coerce the return
value back into a struct. So for example, given a Bio.Sequence.DnaStrand it
would return a list of graphemes. This is not what I want users to expect.
That said, there are other functions that do behave well. Or at the very
least, their semantics seem meaningfully useful. So in order to preserve the
maximum utility, I wrap the module.
The expectation should be as follows:
Enum functions will return bare data.
Bio.Enum functions will return the closest thing to the struct as is
reasonable.
There are cases where it doesn't make much sense to return more than is
required. For example, the Bio.Enum.at/2 function will return a binary
grapheme. I have a hard time imagining a case where the user would want a
struct with a sequence of a single character instead of the character itself.
Contrast that with the Enum.at/2 function, which will return a raw char.

 Summary

 Types

 acc()

 default()

 element()

 index()

 t()

 Functions

 at(enumerable, index)

 at(enumerable, index, default)

 chunk_every(enumerable, count)

 chunk_every(enumerable, count, step)

 chunk_every(enumerable, count, step, options)

 chunk_while(enumerable, acc, chunk_fun, after_fun)

 map(enumerable, func)

 reverse(enumerable)

 reverse(enumerable, tail)

 slice(enumerable, index_range)

 slice(enumerable, start_index, amount)

Types

 Link to this type

 acc()

 View Source

 @type acc() :: any()

 Link to this type

 default()

 View Source

 @type default() :: any()

 Link to this type

 element()

 View Source

 @type element() :: any()

 Link to this type

 index()

 View Source

 @type index() :: integer()

 Link to this type

 t()

 View Source

 @type t() :: Enumerable.t()

Functions

 Link to this function

 at(enumerable, index)

 View Source

 Link to this function

 at(enumerable, index, default)

 View Source

 Link to this function

 chunk_every(enumerable, count)

 View Source

 Link to this function

 chunk_every(enumerable, count, step)

 View Source

 Link to this function

 chunk_every(enumerable, count, step, options)

 View Source

 Link to this function

 chunk_while(enumerable, acc, chunk_fun, after_fun)

 View Source

 Link to this function

 map(enumerable, func)

 View Source

 Link to this function

 reverse(enumerable)

 View Source

 Link to this function

 reverse(enumerable, tail)

 View Source

 Link to this function

 slice(enumerable, index_range)

 View Source

 Link to this function

 slice(enumerable, start_index, amount)

 View Source

Bio.Polymeric protocol

Define Polymeric interface of a sequence type.
The Bio.Polymeric protocol allows us to define implementations
of a kmers/2 function. This is part of the approach to translating different
polymers according to the nature of actual biological or chemical processes.
The idea is that defining how a sequence is sub-divided into k-mers for
enumeration is something that must occur for specific conversions. However,
it's also something that you would not necessarily want to have to do every
single time you applied the conversion.
Essentially, each structural definition of a sequence will have some
meaningful way of splitting it into a Kmer enumeration. This is used in all
forms of computation, largely though, in conversions. For example, DNA -> RNA
conversions require element-wise (k=1) conversion functions. Whereas, RNA ->
Amino Acid requires codon-wise (k=3).
In order to preserve the standard interface defined by Bio.Polymer
and Bio.Polymer.convert/3, we define this as a protocol.
For a valid return, the consideration should be:
	The enumerable returned (Enum.t()) should contain the information
required to perform a conversion. Examples can be found in the
Bio.Sequence.DnaStrand and Bio.Sequence.DnaDoubleStrand modules. There,
you'll see that for a simple sequence, it makes sense to simple iterate the
grouped chunks. Whereas the double stranded sequence returns a list of tuples
of chunks.
	The map() should contain relevant data for the re-capitulation of a
struct. So if you're converting a DnaStrand, you should consider passing
back out the label field. This allows the conversion function to attach it
to the newly constructed type.

The error mode for various sequences will vary, but generally the idea of
mismatching the sequence length to the k value will hold. For the build in
Bio.Sequence.DnaStrand, this is merely the even division. For the
Bio.Sequence.DnaDoubleStrand it's more complicated. That type assumes that
you want to see pairs of aggregated values (top/bottom), but they may be
offset. So you can't just look at if the values are empty.
Instead, it looks to see if there can be complete aggregates, even if they're
paired with empty space.
Keep these considerations in mind implementing your own Polymeric types.
In addition to the enumeration of the elements, this also makes sense as the
location for defining validity. That is, there are two further methods
valid?/2 and validate/2.
These make the assumption that a relevant alphabet is defined for the
polymer. For example, IUPAC DNA
Codes.
Your implementation of valid?/2 and validate/2 should prefer the alphabet
given to them. This will be respected by the Bio.Polymer.valid?/2 and
Bio.Polymer.validate/2 function. Essentially, when used, these will always
prefer the given value, but will default back to the value attached to the
type if it is defined.
Example
iex>alias Bio.Sequence.Alphabets.Dna, as: Alpha
...>Bio.Sequence.DnaStrand.new("atgcnn", alphabet: Alpha.common())
...>|> Bio.Polymer.valid?()
false

iex>alias Bio.Sequence.Alphabets.Dna, as: Alpha
...>Bio.Sequence.DnaStrand.new("atgcnn", alphabet: Alpha.common())
...>|> Bio.Polymer.valid?(Alpha.with_n())
true
Note
In case neither is defined, the validate/2 function will return an error
tuple, where the valid? will simply return false.

The validate/2 function behaves similarly, but it should return a new struct
with the valid? key set.
Example
iex>alias Bio.Sequence.Alphabets.Dna, as: Alpha
...>Bio.Sequence.DnaStrand.new("atgcnn", alphabet: Alpha.common())
...>|> Bio.Polymer.validate()
{
 :error,
 [{:mismatch_alpha, "n", 4}, {:mismatch_alpha, "n", 5}]
}

iex>alias Bio.Sequence.Alphabets.Dna, as: Alpha
...>Bio.Sequence.DnaStrand.new("atgcnn", alphabet: Alpha.common())
...>|> Bio.Polymer.validate(Alpha.with_n())
{
 :ok,
 %Bio.Sequence.DnaStrand{
 sequence: "atgcnn",
 length: 6,
 alphabet: "ACGTNacgtn",
 valid?: true
 }
}
Note
The applied alphabet is the one that is returned in the struct. This ensures
that you are correctly tracking what a type is valid for. So be careful
about assumptions.

 Summary

 Types

 t()

 Functions

 kmers(given, k)

 Split a polymer into chunks of k size

 valid?(given, alphabet)

 Determine if the content of a polymer matches an alphabet

 validate(given, alphabet \\ nil)

 Validate if the content of a polymer matches an alphabet, returning an updated
struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

Functions

 Link to this function

 kmers(given, k)

 View Source

 @spec kmers(
 struct(),
 integer()
) :: {:ok, Enum.t(), map()} | {:error, :seq_len_mismatch}

Split a polymer into chunks of k size

 Link to this function

 valid?(given, alphabet)

 View Source

 @spec valid?(
 struct(),
 String.t()
) :: true | false

Determine if the content of a polymer matches an alphabet

 Link to this function

 validate(given, alphabet \\ nil)

 View Source

 @spec validate(
 struct(),
 String.t() | nil
) ::
 {:ok, struct()}
 | {:error, {atom(), String.t(), integer()}}
 | {:error, [{atom(), String.t(), integer()}]}

Validate if the content of a polymer matches an alphabet, returning an updated
struct.
Depends on the struct implementing both an alphabet and valid? keys.

Bio.AcidHelper

Internal helper module for dealing with amino acids

 Summary

 Types

 alphabet()

 character()

 index()

 mismatch()

Types

 Link to this type

 alphabet()

 View Source

 @type alphabet() :: String.t()

 Link to this type

 character()

 View Source

 @type character() :: String.t()

 Link to this type

 index()

 View Source

 @type index() :: integer()

 Link to this type

 mismatch()

 View Source

 @type mismatch() :: [{:mismatch_alpha, character(), index(), alphabet()}]

mix bio.random.dna

Bio.Random.Dna will generate random sequences of DNA. Sequences are written to
a file with 1 per line, and are separated by a character.
Command line options
	--seed/-s - RNG seed (defaults to RNG default seeding)

	--algorithm/-a - RNG algorithm (defaults to exsss)

	--seq-count/-c - integer number of sequences to generate (required)

	--seq-size/-z - integer size of sequence to generate (required)

	--outfile/-f - output filename or path (default: random_sequences.txt)

Examples
$ mix bio.random.dna -s 0 -c 100 -z 50

This would write 100 sequences of 50 nucleotides to a file called
random_sequences.txt.
$ mix bio.random.dna -s 0 -c 100 -z 50 -f my_random_sequences.txt

This would write the same 100 sequences of 50 nucleotides to a file called
my_random_sequences.txt.

 Summary

 Functions

 run(options)

 Callback implementation for Mix.Task.run/1.

Functions

 Link to this function

 run(options)

 View Source

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

