

 bitwise_ip

 v1.1.0

 Table of contents

 	Modules

 	BitwiseIp

 	BitwiseIp.Block

 	BitwiseIp.Blocks

 	BitwiseIp.Mask

BitwiseIp

A struct representing an IP address encoded as an integer.
The Internet Protocol
defines computer network addresses using fixed-width integers, which are
efficient for both transmission and the implementation of logic using bitwise
operations. IPv4 uses 32-bit integers,
providing a space of 4,294,967,296 unique addresses. Due to the growing size
of the internet, IPv6 uses 128-bit
integers to provide an absurdly large address space.
These integers, however, are hard for humans to read. Therefore, we've
adopted customary notations that are a little easier to digest. IPv4 uses a
dotted octet notation, where each of the four bytes are written in decimal
notation and separated by ., as in 127.0.0.1. IPv6 is similar, but uses
hexadecimal notation on each of eight hextets separated by :, as in
a:1:b:2:c:3:d:4.
As such, representations for IP addresses in modern software have drifted
away from fixed-width integers. :inet represents IP addresses as tuples
like {127, 0, 0, 1} for IPv4 and {0xA, 1, 0xB, 2, 0xC, 3, 0xD, 4} for
IPv6. These are less efficient in both the space to store the addresses and
the time it takes to perform various operations. For example, whereas
comparing two 32-bit IPv4 addresses is typically one machine instruction,
comparing two tuples involves memory indirection for the tuple layout and 4
separate integer comparisons. This could be even worse if you represent IPs
as strings in their human-readable format.
The difference is probably negligible for your application. In fact, Elixir &
Erlang don't have great support for fixed-width integer representations (see
t/0 for details). But in the interest of getting back to basics,
BitwiseIp provides the missing interface for manipulating IP addresses as
the integers they were designed to be. This makes certain logic much easier
to express and improves micro-benchmarks compared to tuple-based libraries
(for whatever that's worth). The most useful functionality is in
BitwiseIp.Block, which represents a
CIDR block.
However, BitwiseIp is the fundamental structure that BitwiseIp.Block is
built on.

 Summary

 Types

 t()

 An integer-encoded IP address.

 v4()

 An IPv4 address.

 v6()

 An IPv6 address.

 Functions

 decode(bitwise_ip)

 Decodes a bitwise IP into an :inet-style tuple.

 encode(inet)

 Encodes an :inet-style tuple as a bitwise IP.

 parse(address)

 Parses a string into a bitwise IP.

 parse!(address)

 An error-raising variant of parse/1.

 Types

 Link to this type

 t()

 View Source

 @type t() :: v4() | v6()

An integer-encoded IP address.
This type takes on two different shapes depending on the IP protocol. The
supported protocols are IPv4 and IPv6.
Normally, the distinction would be down to the number of bits in a
fixed-width integer representation. However, the Erlang VM doesn't support
fixed-width integers, so there's no way to tell IPv4 addresses apart from
IPv6 addresses using just a number. Therefore, this type is a struct with two
fields:
	:proto - the protocol, either :v4 or :v6
	:addr - the integer encoding of the address

But again, the VM does not support fixed-width integers for the :addr. In
the Erlang runtime system, the smallest unit of memory is a word: 4 bytes
on a 32-bit architecture, 8 bytes on a 64-bit architecture. Data is stored
using tagged pointers, where one word has 4 bits reserved as a tag
enumerating type information. One pattern of 4 bits says "I'm a float",
another pattern says "I'm an integer", and so on. When the data is small
enough to fit in the remaining bits of the word (28 bits or 60 bits,
depending on the architecture), it is stored as an immediate value.
Otherwise, it is boxed and the word instead contains a pointer to a section
of memory on the heap, which can basically be arbitrarily large. Read more in
A staged tag scheme for
Erlang by
Mikael Pettersson.
What this means for us is that :addr may or may not spill onto the heap. On
a 32-bit machine, only IP addresses in the range of 0 to 2^28 fit as
immediate values. This covers most of the IPv4 range, but only a small
portion of the IPv6 range. 64-bit machines have 60 bits to play with, which
would comfortably fit any IPv4 address, but still requires boxing of IPv6
addresses. According to the Erlang efficiency
guide, large integers
are stored across at least 3 words. What's more, because we have to
distinguish between integers using the struct with the :proto field, each
IP address requires an additional map allocation, which carries some
overhead.
So this isn't going to be a maximally compact representation of an IP
address. Such a thing isn't really possible on the Erlang VM. However,
storing the bulk of it as a single integer still lets us perform efficient
bitwise operations with less overhead than, say, :inet-style tuples of
multiple integers.

 Link to this type

 v4()

 View Source

 @type v4() :: %BitwiseIp{addr: integer(), proto: :v4}

An IPv4 address.
The :addr is an unsigned integer between 0 and 2^32 - 1. See t/0 for
discussion about the in-memory representation.

 Link to this type

 v6()

 View Source

 @type v6() :: %BitwiseIp{addr: integer(), proto: :v6}

An IPv6 address.
The :addr is an unsigned integer between 0 and 2^128 - 1. See t/0 for
discussion about the in-memory representation.

 Functions

 Link to this function

 decode(bitwise_ip)

 View Source

 @spec decode(v4()) :: :inet.ip4_address()

 @spec decode(v6()) :: :inet.ip6_address()

Decodes a bitwise IP into an :inet-style tuple.
The Erlang standard library represents IP addresses as tuples of integers: 4
octet values for IPv4, 8 hextet values for IPv6. This function decodes the
single number from a BitwiseIp struct into its constituent parts. This can
be undone with encode/1.
Beware of redundant usage in performance-critical paths. Because of the
overhead in decoding the integer, excessive translation back & forth between
the formats may outweigh any benefits gained from other operations on the
single-integer representation.

 Examples

iex> BitwiseIp.decode(%BitwiseIp{proto: :v4, addr: 2130706433})
{127, 0, 0, 1}

iex> BitwiseIp.decode(%BitwiseIp{proto: :v6, addr: 1})
{0, 0, 0, 0, 0, 0, 0, 1}

 Link to this function

 encode(inet)

 View Source

 @spec encode(:inet.ip4_address()) :: v4()

 @spec encode(:inet.ip6_address()) :: v6()

Encodes an :inet-style tuple as a bitwise IP.
The Erlang standard library represents IP addresses as tuples of integers: 4
octet values for IPv4, 8 hextet values for IPv6. This function encodes the
separate values as a single number, which gets wrapped into a BitwiseIp
struct. This can be undone with decode/1.
Beware of redundant usage in performance-critical paths. Because of the
overhead in encoding the integer, excessive translation back & forth between
the formats may outweigh any benefits gained from other operations on the
single-integer representation.

 Examples

iex> BitwiseIp.encode({127, 0, 0, 1})
%BitwiseIp{proto: :v4, addr: 2130706433}

iex> BitwiseIp.encode({0, 0, 0, 0, 0, 0, 0, 1})
%BitwiseIp{proto: :v6, addr: 1}

 Link to this function

 parse(address)

 View Source

 @spec parse(String.t()) :: {:ok, t()} | {:error, String.t()}

Parses a string into a bitwise IP.
This function parses IPv4 and IPv6 strings in their respective notations and
produces an encoded BitwiseIp struct. This is done in an error-safe way by
returning a tagged tuple. To raise an error, use parse!/1 instead.
BitwiseIp implements the String.Chars protocol, so parsing can be undone
using to_string/1.

 Examples

iex> BitwiseIp.parse("127.0.0.1")
{:ok, %BitwiseIp{proto: :v4, addr: 2130706433}}

iex> BitwiseIp.parse("::1")
{:ok, %BitwiseIp{proto: :v6, addr: 1}}

iex> BitwiseIp.parse("not an ip")
{:error, "Invalid IP address \"not an ip\""}

iex> BitwiseIp.parse("192.168.0.1") |> elem(1) |> to_string()
"192.168.0.1"

iex> BitwiseIp.parse("fc00::") |> elem(1) |> to_string()
"fc00::"

 Link to this function

 parse!(address)

 View Source

 @spec parse!(String.t()) :: t()

An error-raising variant of parse/1.
This function parses IPv4 and IPv6 strings in their respective notations and
produces an encoded BitwiseIp struct. If the string is invalid, it raises
an ArgumentError.
BitwiseIp implements the String.Chars protocol, so parsing can be undone
using to_string/1.

 Examples

iex> BitwiseIp.parse!("127.0.0.1")
%BitwiseIp{proto: :v4, addr: 2130706433}

iex> BitwiseIp.parse!("::1")
%BitwiseIp{proto: :v6, addr: 1}

iex> BitwiseIp.parse!("not an ip")
** (ArgumentError) Invalid IP address "not an ip"

iex> BitwiseIp.parse!("192.168.0.1") |> to_string()
"192.168.0.1"

iex> BitwiseIp.parse!("fc00::") |> to_string()
"fc00::"

BitwiseIp.Block

A struct representing a range of bitwise IP addresses.
Since 1993, classless inter-domain routing
(CIDR) has
been the basis for allocating blocks of IP addresses and efficiently routing
between them.
If you think about the standard human-readable notation for IP addresses, a
CIDR block is essentially a pattern with "wildcards" at the end. For example,
1.2.3.x would contain the 256 different IPv4 addresses ranging from
1.2.3.0 through 1.2.3.255. The CIDR representation would use the starting
address 1.2.3.0 plus a bitmask where the first three bytes (the
non-wildcards) are all ones. In IPv4 notation, the mask would be
255.255.255.0. But rather than use wildcards, CIDR blocks have their own
notation consisting of the starting address, a slash (/), and a prefix
length - the number of leading ones in the mask. So the 1.2.3.x block would
actually be written as 1.2.3.0/24.
As the basis for modern IP routing, these blocks are commonly used as virtual
collections. The CIDR representation allows us to efficiently test an
incoming IP address for membership in the block by bitwise AND-ing the mask
with the incoming address and comparing the result to the block's starting
address. The size of the block can also be computed in constant time using
bitwise arithmetic on the mask. For example, from the /24 IPv4 mask we
could infer there are 2^8 = 256 addresses in the range corresponding to the
remaining 8 least significant bits.
Using this foundation, BitwiseIp.Block is able to implement the
Enumerable protocol with BitwiseIp structs as members. This allows you to
manipulate blocks as generic collections without actually allocating an
entire list:
iex> :rand.seed(:exs1024, {0, 0, 0})
iex> BitwiseIp.Block.parse!("1.2.3.0/24") |> Enum.random() |> to_string()
"1.2.3.115"

iex> BitwiseIp.Block.parse!("1.2.3.0/30") |> Enum.map(&to_string/1)
["1.2.3.0", "1.2.3.1", "1.2.3.2", "1.2.3.3"]
Note that, while CIDR blocks are efficient on their own, they're locked into
this very specific prefix representation. For example, you couldn't represent
the range 1.2.3.10 through 1.2.3.20 with a single block, since the binary
representation isn't amenable to a single prefix. This means you typically
have to manipulate multiple blocks at a time. To ensure lists of blocks are
handled efficiently, use the BitwiseIp.Blocks module.

 Summary

 Types

 t()

 A bitwise IP address block.

 v4()

 An IPv4 block.

 v6()

 An IPv6 block.

 Functions

 member?(block, bitwise_ip)

 Efficiently checks if a bitwise IP is within a block.

 parse(cidr)

 Parses a bitwise IP block from a string in CIDR notation.

 parse!(cidr)

 An error-raising variant of parse/1.

 size(block)

 Computes the number of addresses contained in a block.

 subnet?(block1, block2)

 Efficiently checks if block2 is a subset of block1.

 Types

 Link to this type

 t()

 View Source

 @type t() :: v4() | v6()

A bitwise IP address block.
The block consists of all IP addresses that share the same prefix. To
represent this, we use a struct with the following fields:
	:proto - the protocol, either :v4 or :v6
	:addr - the integer encoding of the network prefix
	:mask - the integer encoding of the subnet mask

Logically, this type is a combination of BitwiseIp.t/0 and an integer
encoded by BitwiseIp.Mask.encode/2. However, rather than hold onto a
literal BitwiseIp struct, the :proto and :addr fields are inlined. This
proves to be more efficient for pattern matching than using a nested struct.
The network prefix's least significant bits are all assumed to be zero,
effectively making it the starting address of the block. That way, we can
avoid performing repetitive bitwise AND operations between the prefix &
mask in functions such as member?/2.

 Link to this type

 v4()

 View Source

 @type v4() :: %BitwiseIp.Block{addr: integer(), mask: integer(), proto: :v4}

An IPv4 block.
The :proto and :addr are the same as in BitwiseIp.v4/0. The mask is a
32-bit unsigned integer where some number of leading bits are one and the
rest are zero. See t/0 for more details.

 Link to this type

 v6()

 View Source

 @type v6() :: %BitwiseIp.Block{addr: integer(), mask: integer(), proto: :v6}

An IPv6 block.
The :proto and :addr are the same as in BitwiseIp.v6/0. The mask is a
128-bit unsigned integer where some number of leading bits are one and the
rest are zero. See t/0 for more details.

 Functions

 Link to this function

 member?(block, bitwise_ip)

 View Source

 @spec member?(t(), BitwiseIp.t()) :: boolean()

Efficiently checks if a bitwise IP is within a block.
In effect, we're testing if the given IP address has the same prefix as the
block. This involves a single bitwise AND and an integer comparison. We
extract the prefix from the IP by applying the block's bitmask, then check if
it's equal to the block's starting address. If the block and the IP have
different protocols, this function will return false.
Because BitwiseIp.Block implements the Enumerable protocol, you may also
use in/2 to test for membership.

 Examples

iex> BitwiseIp.Block.parse!("192.168.0.0/16")
...> |> BitwiseIp.Block.member?(BitwiseIp.parse!("192.168.10.1"))
true

iex> BitwiseIp.Block.parse!("192.168.0.0/16")
...> |> BitwiseIp.Block.member?(BitwiseIp.parse!("172.16.0.1"))
false

iex> BitwiseIp.parse!("d:e:a:d:b:e:e:f") in BitwiseIp.Block.parse!("d::/16")
true

iex> BitwiseIp.parse!("127.0.0.1") in BitwiseIp.Block.parse!("::/0")
false

 Link to this function

 parse(cidr)

 View Source

 @spec parse(String.t()) :: {:ok, t()} | {:error, String.t()}

Parses a bitwise IP block from a string in CIDR notation.
This function parses strings in CIDR
notation,
where an IP address is followed by a prefix length composed of a slash (/)
and a decimal number of leading bits in the subnet mask. The prefix length is
optional. If missing, it defaults to the full width of the IP address: 32
bits for IPv4, 128 for IPv6.
The constituent parts are parsed using BitwiseIp.parse/1 and
BitwiseIp.Mask.parse/2. The address has the mask applied before
constructing the BitwiseIp.Block struct, thereby discarding any lower bits.
This parsing is done in an error-safe way by returning a tagged tuple. To
raise an error, use parse!/1 instead.
BitwiseIp.Block implements the String.Chars protocol, so parsing can be
undone using to_string/1.

 Examples

iex> BitwiseIp.Block.parse("192.168.0.0/16")
{:ok, %BitwiseIp.Block{proto: :v4, addr: 3232235520, mask: 4294901760}}

iex> BitwiseIp.Block.parse("fc00::/8")
{:ok, %BitwiseIp.Block{proto: :v6, addr: 334965454937798799971759379190646833152, mask: 338953138925153547590470800371487866880}}

iex> BitwiseIp.Block.parse("256.0.0.0/8")
{:error, "Invalid IP address \"256.0.0.0\" in CIDR \"256.0.0.0/8\""}

iex> BitwiseIp.Block.parse("dead::beef/129")
{:error, "Invalid IPv6 mask \"129\" in CIDR \"dead::beef/129\""}

iex> BitwiseIp.Block.parse("192.168.0.0/8") |> elem(1) |> to_string()
"192.0.0.0/8"

iex> BitwiseIp.Block.parse("::") |> elem(1) |> to_string()
"::/128"

 Link to this function

 parse!(cidr)

 View Source

 @spec parse!(String.t()) :: t()

An error-raising variant of parse/1.
This function parses strings in CIDR
notation,
where an IP address is followed by a prefix length composed of a slash (/)
and a decimal number of leading bits in the subnet mask. The prefix length is
optional. If missing, it defaults to the full width of the IP address: 32
bits for IPv4, 128 for IPv6.
The constituent parts are parsed using BitwiseIp.parse/1 and
BitwiseIp.Mask.parse/2. The address has the mask applied before
constructing the BitwiseIp.Block struct, thereby discarding any lower bits.
If the string is invalid, this function raises an ArgumentError.
BitwiseIp.Block implements the String.Chars protocol, so parsing can be
undone using to_string/1.

 Examples

iex> BitwiseIp.Block.parse!("192.168.0.0/16")
%BitwiseIp.Block{proto: :v4, addr: 3232235520, mask: 4294901760}

iex> BitwiseIp.Block.parse!("fc00::/8")
%BitwiseIp.Block{proto: :v6, addr: 334965454937798799971759379190646833152, mask: 338953138925153547590470800371487866880}

iex> BitwiseIp.Block.parse!("256.0.0.0/8")
** (ArgumentError) Invalid IP address "256.0.0.0" in CIDR "256.0.0.0/8"

iex> BitwiseIp.Block.parse!("dead::beef/129")
** (ArgumentError) Invalid IPv6 mask "129" in CIDR "dead::beef/129"

iex> BitwiseIp.Block.parse!("192.168.0.0/8") |> to_string()
"192.0.0.0/8"

iex> BitwiseIp.Block.parse!("::") |> to_string()
"::/128"

 Link to this function

 size(block)

 View Source

 @spec size(t()) :: integer()

Computes the number of addresses contained in a block.
This value is wholly determined by the :mask field. Taking the bitwise
complement of the mask gives us an unsigned integer where all the lower bits
are ones. Since these are the bits that are covered by the block, we can
interpret this as the number of possible values, minus one for the zeroth
address.
For example, the IPv4 prefix /29 leaves 3 bits to represent different
addresses in the block. So that's 2^3 = 8 possible addresses. To get there
from the mask 0b11111111111111111111111111111000, we take its complement
and get 0b00000000000000000000000000000111, which represents the integer
2^3 - 1 = 7. We add 1 and get the 8 possible addresses.
Because of the limited number of possible masks, we might want to implement
this as a static lookup using pattern matched function clauses, thereby
avoiding binary manipulation altogether. However, benchmarks indicate that
pattern matching against structs is much slower than the required bitwise
math. So, we negate the mask and add 1 to the resulting integer at run time.

 Examples

iex> BitwiseIp.Block.parse!("1.2.3.4/32") |> BitwiseIp.Block.size()
1
iex> BitwiseIp.Block.parse!("1.2.3.4/31") |> BitwiseIp.Block.size()
2
iex> BitwiseIp.Block.parse!("1.2.3.4/30") |> BitwiseIp.Block.size()
4
iex> BitwiseIp.Block.parse!("1.2.3.4/29") |> BitwiseIp.Block.size()
8

iex> BitwiseIp.Block.parse!("::/124") |> BitwiseIp.Block.size()
16
iex> BitwiseIp.Block.parse!("::/123") |> BitwiseIp.Block.size()
32
iex> BitwiseIp.Block.parse!("::/122") |> BitwiseIp.Block.size()
64
iex> BitwiseIp.Block.parse!("::/121") |> BitwiseIp.Block.size()
128

 Link to this function

 subnet?(block1, block2)

 View Source

 @spec subnet?(t(), t()) :: boolean()

Efficiently checks if block2 is a subset of block1.
Thanks to BitwiseIp.Mask, we encode masks as integers. So if mask A is less
than mask B, that means A had fewer leading bits, meaning the block will
contain more addresses than the block for B. Therefore, as a prerequisite,
we first check that block1's mask is <= block2's mask. If not, then
there's no chance that block2 could be wholly contained in block1.
Then, if block1's range is wide enough, we can test an arbitrary IP from
block2 for membership in block1. Its inclusion would imply that
everything else in block2 is also included, since block1 is wider. We
have a suitable address to test in the form of the :addr field from
block2. The membership check involves the same bitwise AND + integer
comparison as member?/2.
If the blocks don't have matching protocols, this function returns false.

 Examples

iex> BitwiseIp.Block.parse!("1.0.0.0/8")
...> |> BitwiseIp.Block.subnet?(BitwiseIp.Block.parse!("1.2.0.0/16"))
true

iex> BitwiseIp.Block.parse!("1.2.0.0/16")
...> |> BitwiseIp.Block.subnet?(BitwiseIp.Block.parse!("1.0.0.0/8"))
false

iex> BitwiseIp.Block.parse!("1.2.0.0/16")
...> |> BitwiseIp.Block.subnet?(BitwiseIp.Block.parse!("1.2.0.0/16"))
true

iex> BitwiseIp.Block.parse!("1.2.0.0/16")
...> |> BitwiseIp.Block.subnet?(BitwiseIp.Block.parse!("2.3.0.0/16"))
false

BitwiseIp.Blocks

Functions for handling lists of bitwise IP blocks.
Because the BitwiseIp.Block representation relies on a binary prefix, it's
not possible to express certain ranges with a single block. For instance, the
range of addresses between 192.168.12.0 and 192.168.16.255 might make
intuitive sense, but the binary representation of the third byte presents a
challenge:
	12 = 0b00001100
	13 = 0b00001101
	14 = 0b00001110
	15 = 0b00001111
	16 = 0b00010000

Notice that 12-15 share the prefix 0b000011xx, so those addresses could
be covered by the CIDR block 192.168.12.0/22. (The prefix length is 22 for
the 16 bits of 192.168. plus the 6 most significant bits of the third
byte.) But that would not cover the 192.168.16.x addresses:
iex> BitwiseIp.Block.parse!("192.168.12.0/22")
...> |> Enum.take_every(256)
...> |> Enum.map(&to_string/1)
["192.168.12.0", "192.168.13.0", "192.168.14.0", "192.168.15.0"]
All this is to say that there are general limitations to the expressiveness
of a single CIDR range, so it's natural that most applications will deal with
a collection of blocks at a time - conceptually, a list of lists of IP
addresses.
Whereas bitwise IP blocks have a straightforward binary representation, a
list of blocks is somewhat more unwieldy. This module provides utility
functions that make handling these lists more ergonomic. In particular, the
member?/2 function helps you avoid a common performance pitfall.

 Summary

 Types

 t()

 A list of bitwise IP blocks.

 Functions

 member?(blocks, ip)

 Efficiently checks if an IP address is a member of any of the blocks.

 optimize(blocks)

 Computes an equivalent list of blocks optimal for member?/2.

 parse(cidrs)

 Parses a list of strings into bitwise IP blocks.

 parse!(cidrs)

 An error-raising variant of parse/1.

 Types

 Link to this type

 t()

 View Source

 @type t() :: [BitwiseIp.Block.t()]

A list of bitwise IP blocks.
The BitwiseIp.Blocks module operates over lists of BitwiseIp.Block
structs. This itself does not warrant a separate struct with any extra
indirection, so we just use lists directly.

 Functions

 Link to this function

 member?(blocks, ip)

 View Source

 @spec member?(t(), BitwiseIp.t()) :: boolean()

 @spec member?(t(), :inet.ip_address()) :: boolean()

Efficiently checks if an IP address is a member of any of the blocks.
Libraries will generally handle IP addresses encoded as :inet-style tuples
of integers. Therefore, in order to use BitwiseIp.Block.member?/2, you'll
first need to use BitwiseIp.encode/1 to convert the tuple into an
integer-encoded struct.
A common mistake when handling a list of blocks is to do the bitwise IP
encoding repeatedly within a loop:
This is a mistake!
ip = {127, 0, 0, 1}
Enum.any?(blocks, &BitwiseIp.Block.member?(&1, BitwiseIp.encode(ip)))
The problem with the above is that the return value of BitwiseIp.encode(ip)
doesn't change as we iterate through the list. The cost of redundantly
encoding the same IP address over & over is often enough to outweigh any
performance gains from using the bitwise membership checks.
This function helps enforce a pattern where the encoding is only done once
(essentially performing loop-invariant code
motion). That is,
it's akin to saying:
ip = {127, 0, 0, 1}
encoded = BitwiseIp.encode(ip) # this is only done once
Enum.any?(blocks, &BitwiseIp.Block.member?(&1, encoded))
This function also accepts an already-encoded BitwiseIp struct as an
argument, in which case no extra encoding needs to be performed. This is
useful for cases where you need to perform even more loop-invariant code
motion, such as when you're handling two separate lists. In such a case, you
should use a pattern like:
make sure to only encode the IP once
ip = {127, 0, 0, 1}
encoded = BitwiseIp.encode(ip)

BitwiseIp.Blocks.member?(blocks1, encoded) # check the first list
BitwiseIp.Blocks.member?(blocks2, encoded) # check the second list

 Examples

iex> ["1.2.0.0/16", "3.4.0.0/16", "5.6.0.0/16"]
...> |> Enum.map(&BitwiseIp.Block.parse!/1)
...> |> BitwiseIp.Blocks.member?({1, 2, 3, 4})
true

iex> ["1.2.0.0/16", "3.4.0.0/16", "5.6.0.0/16"]
...> |> Enum.map(&BitwiseIp.Block.parse!/1)
...> |> BitwiseIp.Blocks.member?({7, 8, 9, 10})
false

iex> ["1.2.0.0/16", "3.4.0.0/16", "5.6.0.0/16"]
...> |> Enum.map(&BitwiseIp.Block.parse!/1)
...> |> BitwiseIp.Blocks.member?(BitwiseIp.encode({1, 2, 3, 4}))
true

iex> ["1.2.0.0/16", "3.4.0.0/16", "5.6.0.0/16"]
...> |> Enum.map(&BitwiseIp.Block.parse!/1)
...> |> BitwiseIp.Blocks.member?(BitwiseIp.encode({7, 8, 9, 10}))
false

 Link to this function

 optimize(blocks)

 View Source

 @spec optimize(t()) :: t()

Computes an equivalent list of blocks optimal for member?/2.
While an individual BitwiseIp.Block.member?/2 call is already efficient,
the performance of member?/2 is sensitive to a couple of factors:
	The size of the list matters, since a smaller list requires fewer
individual checks.

	The order of the elements in the list matters, since member?/2 will exit
early as soon as any individual check returns true.

To optimize for the size of the list, this function recursively merges any
two blocks where one is a subset of the other. This is tested using
BitwiseIp.Block.subnet?/2. For example, 1.2.0.0/16 is a subset of
1.0.0.0/8, so instead of calling BitwiseIp.Block.member?/2 on both of
them, we can simply check the larger range of the two - in this case,
1.0.0.0/8.
The order can be optimized by placing larger blocks earlier in the list.
Assuming an even distribution of IP addresses, it's more likely for an
address to fall inside of a block that covers a wider range. Thus, we can
sort by the integer-encoded mask: a smaller mask means a shorter network
prefix, which means there are more addresses possible (see
BitwiseIp.Block.size/1 for more on computing the size of a block from its
mask).
This optimization is kind of a parlor trick cribbed from the
cider library. Except in pathological cases,
the run time cost of performing the optimization is likely larger than any
performance gained by using the new list. As such, if you're going to use
this function at all, it's only really appropriate to call at compile time,
which means your original list of blocks has to be available statically.

 Examples

iex> ["1.2.3.4", "1.2.3.0/24", "1.2.0.0/16", "1.0.0.0/8"]
...> |> BitwiseIp.Blocks.parse!()
...> |> BitwiseIp.Blocks.optimize()
...> |> Enum.map(&to_string/1)
["1.0.0.0/8"]

iex> ["1.2.0.0/16", "3.0.0.0/8"]
...> |> BitwiseIp.Blocks.parse!()
...> |> BitwiseIp.Blocks.optimize()
...> |> Enum.map(&to_string/1)
["3.0.0.0/8", "1.2.0.0/16"]

iex> ["1.2.0.0/16", "3.4.5.0/24", "1.0.0.0/8", "3.4.0.0/16"]
...> |> BitwiseIp.Blocks.parse!()
...> |> BitwiseIp.Blocks.optimize()
...> |> Enum.map(&to_string/1)
["1.0.0.0/8", "3.4.0.0/16"]

 Link to this function

 parse(cidrs)

 View Source

 @spec parse([String.t()]) :: t()

Parses a list of strings into bitwise IP blocks.
This function takes a list of strings in CIDR notation and parses them into
bitwise IP blocks using BitwiseIp.Block.parse/1. If a string is invalid,
its value is discarded from the resulting list. If you want to raise an error
instead, use parse!/1.

 Examples

iex> BitwiseIp.Blocks.parse(["3.14.0.0/16", "dead::beef"])
...> |> Enum.map(&to_string/1)
["3.14.0.0/16", "dead::beef/128"]

iex> BitwiseIp.Blocks.parse(["3.14/16", "invalid", "dead::cow"])
[]

iex> BitwiseIp.Blocks.parse(["3.14.0.0/16", "invalid", "dead::beef"])
...> |> Enum.map(&to_string/1)
["3.14.0.0/16", "dead::beef/128"]

 Link to this function

 parse!(cidrs)

 View Source

 @spec parse!([String.t()]) :: t()

An error-raising variant of parse/1.
This function takes a list of strings in CIDR notation and parses them into
bitwise IP blocks using BitwiseIp.Block.parse!/1. If any of the strings are
invalid, the whole list fails to parse and the error is propagated. If you
want to discard invalid elements instead, use parse/1.

 Examples

iex> BitwiseIp.Blocks.parse!(["3.14.0.0/16", "dead::beef"])
...> |> Enum.map(&to_string/1)
["3.14.0.0/16", "dead::beef/128"]

iex> BitwiseIp.Blocks.parse!(["3.14/16", "invalid", "dead::cow"])
** (ArgumentError) Invalid IP address "3.14" in CIDR "3.14/16"

iex> BitwiseIp.Blocks.parse!(["3.14.0.0/16", "invalid", "dead::beef"])
** (ArgumentError) Invalid IP address "invalid" in CIDR "invalid"

BitwiseIp.Mask

Functions for handling CIDR prefix lengths as bitmasks.
These functions are used internally by BitwiseIp.Block to parse CIDR
notation. For example, the IPv4 CIDR prefix length /12 corresponds to an
unsigned 32-bit integer of 12 ones followed by 20 zeroes:
0b11111111111100000000000000000000. This mask is used in a bitwise AND
with an integer-encoded IPv4 address to extract the first 12 bits.
In IPv6, the same prefix is an unsigned 128-bit integer of 12 ones followed
by 116 zeroes. Because Elixir's integers don't have a fixed width, we must
distinguish between IPv4 and IPv6 in the function signatures, similar to the
:proto tag in the BitwiseIp.t/0 struct.
Since there's a limited domain & range for these functions, they're all
compiled directly into function clauses to perform static lookups. There is
no work done at run time to convert strings, perform bitwise math, or
anything other than the tacit function dispatch.

 Summary

 Functions

 decode(protocol, mask)

 Decodes a bitmask into an integer prefix length.

 encode(protocol, prefix)

 Encodes an integer prefix length as a bitmask.

 parse(protocol, prefix)

 Parses a string prefix length into a bitmask.

 parse!(protocol, prefix)

 An error-raising variant of parse/2.

 Functions

 Link to this function

 decode(protocol, mask)

 View Source

 @spec decode(:v4, integer()) :: 0..32

 @spec decode(:v6, integer()) :: 0..128

Decodes a bitmask into an integer prefix length.
Given the protocol (either :v4 or :v6) and a valid bitmask for that
protocol, this function looks up the number of leading ones used by the
bitmask. The function is only defined on valid IPv4 and IPv6 bitmasks. To
undo this conversion, use encode/2.

 Examples

iex> BitwiseIp.Mask.decode(:v4, 0b11111111111100000000000000000000)
12

iex> BitwiseIp.Mask.decode(:v6, 0b11111111111100)
12

iex> BitwiseIp.Mask.decode(:v4, 0b11111111111100000000000000000001)
** (FunctionClauseError) no function clause matching in BitwiseIp.Mask.decode/2

iex> BitwiseIp.Mask.decode(:v6, 0b0101)
** (FunctionClauseError) no function clause matching in BitwiseIp.Mask.decode/2

 Link to this function

 encode(protocol, prefix)

 View Source

 @spec encode(:v4, 0..32) :: integer()

 @spec encode(:v6, 0..128) :: integer()

Encodes an integer prefix length as a bitmask.
Given the protocol (either :v4 or :v6) and the number of leading ones in
the prefix, this function looks up the corresponding bitmask. The function is
only defined on valid prefix lengths: between 0 and 32 for IPv4 and between 0
and 128 for IPv6. To undo this conversion, use decode/2.

 Examples

iex> BitwiseIp.Mask.encode(:v4, 12)
4293918720

iex> BitwiseIp.Mask.encode(:v6, 12)
340199290171201906221318119490500689920

iex> BitwiseIp.Mask.encode(:v4, 128)
** (FunctionClauseError) no function clause matching in BitwiseIp.Mask.encode/2

iex> BitwiseIp.Mask.encode(:v6, -12)
** (FunctionClauseError) no function clause matching in BitwiseIp.Mask.encode/2

 Link to this function

 parse(protocol, prefix)

 View Source

 @spec parse(:v4, String.t()) :: {:ok, integer()} | {:error, String.t()}

 @spec parse(:v6, String.t()) :: {:ok, integer()} | {:error, String.t()}

Parses a string prefix length into a bitmask.
Given the protocol (either :v4 or :v6) and the string representation of a
prefix length (without the leading slash), this function looks up the
corresponding bitmask. This is done in an error-safe way by returning a
tagged tuple. To raise an error, use parse!/2 instead.

 Examples

iex> BitwiseIp.Mask.parse(:v4, "12")
{:ok, 4293918720}

iex> BitwiseIp.Mask.parse(:v6, "12")
{:ok, 340199290171201906221318119490500689920}

iex> BitwiseIp.Mask.parse(:v4, "128")
{:error, "Invalid IPv4 mask \"128\""}

iex> BitwiseIp.Mask.parse(:v6, "not a mask")
{:error, "Invalid IPv6 mask \"not a mask\""}

 Link to this function

 parse!(protocol, prefix)

 View Source

 @spec parse!(:v4, String.t()) :: integer()

 @spec parse!(:v6, String.t()) :: integer()

An error-raising variant of parse/2.
Given the protocol (either :v4 or :v6) and the string representation of a
prefix length (without the leading slash), this function looks up the
corresponding bitmask. If the string cannot be parsed, it raises an
ArgumentError.

 Examples

iex> BitwiseIp.Mask.parse!(:v4, "12")
4293918720

iex> BitwiseIp.Mask.parse!(:v6, "12")
340199290171201906221318119490500689920

iex> BitwiseIp.Mask.parse!(:v4, "128")
** (ArgumentError) Invalid IPv4 mask "128"

iex> BitwiseIp.Mask.parse!(:v6, "not a mask")
** (ArgumentError) Invalid IPv6 mask "not a mask"

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

