

 bookk

 v0.1.3

 [image: Logo]

 Table of contents

 	Bookk

 	LICENSE

 	Modules

 	Bookk.Account

 	Bookk.AccountClass

 	Bookk.AccountHead

 	Bookk.ChartOfAccounts

 	Bookk.InterledgerEntry

 	Bookk.JournalEntry

 	Bookk.Ledger

 	Bookk.NaiveState

 	Bookk.Notation

 	Bookk.Operation

 	Bookk.UnbalancedError

Bookk

Bookk is a simple library that provides building blocks for operating journal entries and manipulating double-entry bookkeeping accounting ledgers.
See full documentation at hexdocs.
This library aims to decrease the friction between domain specialists (mainly accountants) and developers by providing a DSL that enables developers to write code for journal entries with a syntax that's familiar to specialists. That way, it should be easy for specialists to review code for journal entries and, likewise, it whould be easy for developers to implement journal entries based on instructions provided by specialists.
def to_interledger_entry(%Deposit{} = tx) do
 journalize! using: ACME.ChartOfAccounts do
 on ledger(:acme) do
 debit account(:cash), tx.amount
 credit account({:unspent_cash, {:user, tx.user_id}}), tx.amount
 end

 on ledger({:user, tx.user_id}) do
 debit account(:cash), tx.amount
 credit account(:deposits), tx.amount
 end
 end
end
(A journal entry from a deposit operation affecting two ledgers written with
Bookk's DSL)
Persisting state, such as accounts balances and log of transactions per accounts is considered off scope for this library at the moment — and honestly, might never becomes part of its scope — but you can still do it own your own. An example of how to persist state using Ecto is provided in section Examples at Persist State using Ecto.
Visit page API Reference for a brief introduction to double-entry bookkeeping concepts implemented by this library.

 Installation

The package can be installed by adding bookk to your list of dependencies in mix.exs:
def deps do
 [
 {:bookk, "~> 0.1.0"}
]
end

 Examples

Warning
The snipets in this section are meant to be taken as a pseudocode, they haven't been tested yet.

 Chart of Accounts

defmodule ACME.ChartOfAccounts do
 @behaviour Bookk.ChartOfAccounts

 alias Bookk.AccountClass, as: C
 alias Bookk.AccountHead, as: H

 # some of the most common account classes
 @classes %{
 A: %C{id: "A", parent_id: nil, natural_balance: :debit, name: "Assets"},
 CA: %C{id: "CA", parent_id: "A", natural_balance: :debit, name: "Current Assets"},
 AR: %C{id: "AR", parent_id: "A", natural_balance: :debit, name: "Accounts Receivables"},
 E: %C{id: "E", parent_id: nil, natural_balance: :debit, name: "Expenses"},
 OE: %C{id: "OE", parent_id: nil, natural_balance: :credit, name: "Owner's Equity"},
 L: %C{id: "L", parent_id: nil, natural_balance: :credit, name: "Liabilities"},
 AP: %C{id: "AP", parent_id: "L", natural_balance: :credit, name: "Accounts Payables"},
 I: %C{id: "I", parent_id: nil, natural_balance: :credit, name: "Income"},
 G: %C{id: "G", parent_id: "I", natural_balance: :credit, name: "Gains"},
 R: %C{id: "R", parent_id: "I", natural_balance: :credit, name: "Revenue"}
 }

 @impl Bookk.ChartOfAccounts
 def ledger(:acme), do: "acme"
 def ledger({:user, <<id::binary>>}), do: "user(#{id})"

 @impl Bookk.ChartOfAccounts
 def account(:cash), do: %H{name: "cash/CA", class: @classes.CA}
 def account(:deposits), do: %H{name: "deposits/OE", class: @classes.OE}
 def account({:unspent_cash, {:user, <<id::binary>>}}), do: %H{name: "unspent-cash:user(#{id})/L", class: @classes.L}
 def account({:deposit_expenses, <<provider::binary>>}), do: %H{name: "deposit-expenses:#{provider}/E", class: @classes.E}

 @doc false
 def account_id(ledger_name, %H{} = account_head), do: ledger_name <> ":" <> account_head.name
end

 (DSL) Interledger Entry

Here's demonstrated how to journalize (create a journal entry template, if you may) for an specific accounting transaction. Examples are using ACME.ChartOfAccounts from the previous section.
When user deposits balance (using a single ledger):
import Bookk.Notation, only: [journalize!: 2]

interledger_entry =
 journalize! using: ACME.ChartOfAccounts do
 on ledger(:acme) do
 debit account(:cash), deposited_amount
 credit account({:unspent_cash, {:user, user_id}}), deposited_amount
 end
 end

updated_state =
 Bookk.NaiveState.empty()
 |> Bookk.NaiveState.post(interledger_entry)
When user deposited balance (using multiple ledgers):
import Bookk.Notation, only: [journalize!: 2]

interledger_entry =
 journalize! using: ACME.ChartOfAccounts do
 on ledger(:acme) do
 debit account(:cash), deposited_amount
 credit account({:unspent_cash, {:user, user_id}}), deposited_amount
 end

 on ledger({:user, user_id}) do
 debit account(:cash), deposited_amount
 credit account(:deposits), deposited_amount
 end
 end

updated_state =
 Bookk.NaiveState.empty()
 |> Bookk.NaiveState.post(interledger_entry)

 Persist state using Ecto

This section demostrantes how state can be persisted to a database using Ecto instead of posting (apply side-effects) to the in-memory structs provided by the library (such as Bookk.Ledger and Bookk.NaiveState).
First, we'll need two models.
	 Account, which holds the account's balance:
defmodule Account do
 use Ecto.Schema

 import Ecto.Changeset

 @primary_key false
 schema "accounts" do
 field :id, :string, primary_key: true
 field :ledger_id, :string
 field :balance, :integer
 field :created_at, :utc_datetime_usec
 field :updated_at, :utc_datetime_usec
 end

 @doc false
 @spec changeset(t, map) :: Ecto.Changeset.t()

 def changeset(account \\ %__MODULE__{}, %{} = fields) do
 account
 |> cast(fields, [:id, :ledger_id, :balance, :created_at, :udpated_at])
 |> validate_required([:id, :ledger_id, :balance, :created_at, :udpated_at])
 end
end

	 AccountTransaction, which serves as a log of changes to an accounts:
defmodule AccountTransaction do
 use Ecto.Schema

 import Ecto.Changeset

 @primary_key false
 schema "accounts_transactions" do
 field :account_id, :string, primary_key: true
 field :transaction_id, Ecto.UUID, primary_key: true
 field :delta_amount, :integer
 field :balance_after, :integer
 field :created_at, :utc_datetime_usec
 end

 @doc false
 @spec changeset(t, map) :: Ecto.Changeset.t()

 def changeset(account_transfer \\ %__MODULE__{}, %{} = fields) do
 account_transfer
 |> cast(fields, [:account_id, :transaction_id, :delta_amount, :balance, :created_at])
 |> validate_required([:account_id, :transaction_id, :delta_amount, :balance, :created_at])
 end
end

We'll also have a Transactionable protocol that specifies what functions are
expected from structs that describe side effects to our accounting system:
defprotocol Transactionable do
 @moduledoc false

 @typedoc false
 @type t :: %{
 required(__struct__) => atom,
 required(:id) => String.t(),
 optional(atom) => any
 }

 @doc false
 @spec to_interledger_entry(t) :: Bookk.InterledgerEntry.t()

 def to_interledger_entry(tx)
end
Now we have a DepositTransaction describing that a user deposited balance into
their account — note that it implements Transactionable protocol:
defmodule DepositTransaction do
 @moduledoc false

 @typedoc false
 @type t :: %DepositTransaction{
 id: String.t(),
 user_id: String.t(),
 amount: pos_integer
 }

 defstruct [:id, :user_id, :amount]
end

defimpl Transactionable, for: DepositTransaction do
 use Bookk.Notation

 @impl Transactionable
 def to_interledger_entry(tx) do
 journalize! using: ACME.ChartOfAccounts do
 on ledger(:acme) do
 debit account(:cash), tx.amount
 credit account({:unspent_cash, {:user, tx.user_id}})
 end

 on ledger({:user, tx.user_id}) do
 debit account(:cash), tx.amount
 credit account(:deposits), tx.amount
 end
 end
 end
end
And finally, we have our Accounting module that knows how to take a Transactionable struct and persist its side-effects to the database using Ecto:
defmodule Accounting do
 @moduledoc false

 @doc false
 @spec transact(Transactionable.t()) :: {:ok, Ecto.Multi.t()} | {:error, term}

 def transact(tx) do
 interledger_entry = Transactionable.to_interledger_entry(tx)
 now = DateTime.utc_now()

 multis =
 for {ledger_name, journal_entry} <- Bookk.InterledgerEntry.to_journal_entries(interledger_entry),
 op <- Bookk.JournalEntry.to_operations(journal_entry),
 do: op_to_multi(op, leder_name, tx.id, now)

 multis
 |> Enum.reduce(Ecto.Multi.new(), &Ecto.Multi.append(&2, &1))
 |> ACME.Repo.transaction()
 end

 defp op_to_multi(%Bookk.Operation{} = op, ledger_name, tx_id, now) do
 # we need uniq names for each multi operation, there will be 2 of them for
 # ↓ each `Bookk.Operation`
 multi_a_name = Ecto.UUID.generate()
 multi_b_name = Ecto.UUID.generate()

 # the amount by which the account's balance should change (either a
 # positive or negative integer — in cents or the smallest fraction of the
 # ↓ currency you're using)
 delta_amount = Bookk.Operations.to_delta_amount(op)
 account_id = ACME.ChartOfAccounts.account_id(ledger_name, op.account_head)

 account_changeset =
 Account.changeset(%{
 id: account_id,
 ledger_id: ledger_name,
 balance: delta_amount,
 created_at: now,
 updated_at: now
 })

 Ecto.Multi.new()
 # ↓ upserts the account
 |> Ecto.Multi.insert(multi_a_name, account_changeset, [
 conflict_target: :id,
 on_conflict: [
 inc: [balance: delta_amount],
 set: [updated_at: now]
],
 returning: [:balance]
])
 # creates the log entry recording the amount by which the account's
 # ↓ balance changed in this accounting transaction
 |> Ecto.Multi.insert(multi_b_name, fn %{^multi_a_name => updated_accocunt} ->
 AccountTransaction.changeset(%{
 account_id: account_id,
 transaction_id: tx_id,
 delta_amount: delta_amount,
 balance_after: updated_account.balance,
 created_at: now
 })
 end)
 end
end

LICENSE

MIT License

Copyright (c) 2023 Rafael Willians

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Bookk.Account

An Account is pretty much like a bucked. It has a single purpose:
holding a measurable amount of something, in this case it's
currency.

 Related

	Bookk.AccountHead;
	Bookk.Operation;
	Bookk.Ledger.

 Summary

 Types

 t()

 The struct that represents the state of an account.

 Functions

 new(head, balance \\ 0)

 Creates a new account from a Bookk.AccountHead.

 post(account, op)

 Calculates de delta amount for the operation then adds it the account's
balance. See Bookk.Operation.to_delta_amount/1 for more information on
delta amount.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Bookk.Account{balance: integer(), head: Bookk.AccountHead.t()}

The struct that represents the state of an account.

 Fields

An account is composed of:
	head: the Bookk.AccountHead that identifies the account;
	balance: the amount of currency held by the account, in cents or
the smallest fraction supported by the currency you're using.

 Functions

 Link to this function

 new(head, balance \\ 0)

 View Source

 @spec new(Bookk.AccountHead.t(), balance :: pos_integer()) :: t()

Creates a new account from a Bookk.AccountHead.

 Examples

If no initial balance is provided in the second argument, then balance will be
set to zero:
iex> head = fixture_account_head(:cash)
iex> Bookk.Account.new(head)
%Bookk.Account{
 head: fixture_account_head(:cash),
 balance: 0
}
If an initial balance is provided in the second argument, then balance will be
set to it:
iex> head = fixture_account_head(:cash)
iex> Bookk.Account.new(head, 50_00)
%Bookk.Account{
 head: fixture_account_head(:cash),
 balance: 50_00
}

 Link to this function

 post(account, op)

 View Source

 @spec post(t(), Bookk.Operation.t()) :: t()

Calculates de delta amount for the operation then adds it the account's
balance. See Bookk.Operation.to_delta_amount/1 for more information on
delta amount.

 Examples

iex> class = %Bookk.AccountClass{natural_balance: :debit}
iex> head = %Bookk.AccountHead{class: class}
iex> account = Bookk.Account.new(head)
iex>
iex> op = debit(head, 25_00)
iex>
iex> Bookk.Account.post(account, op)
%Bookk.Account{
 head: %Bookk.AccountHead{class: %Bookk.AccountClass{natural_balance: :debit}},
 balance: 25_00
}
The account's head must match the head in the operation, otherwise an error is
raised:
iex> head_a = %Bookk.AccountHead{name: "a"}
iex> head_b = %Bookk.AccountHead{name: "b"}
iex>
iex> account = Bookk.Account.new(head_a)
iex> op = debit(head_b, 25_00)
iex>
iex> Bookk.Account.post(account, op)
** (FunctionClauseError) no function clause matching in Bookk.Account.post/2

Bookk.AccountClass

An account class has properties that are inherited by accounts and
serves as a way of grouping account's balances.

 Common classes

Here are some of the most common used classes for reference:
	id	parent id	natural balance	name
	A		:debit	Assets
	CA	A	:debit	Current Assets
	AR	A	:debit	Accounts Receivables
	Ac		:credit	Contra Assets
	AD	Ac	:credit	Accumulated Depreciation
	E		:debit	Expenses
	OE		:credit	Owner's Equity
	L		:credit	Liabilities
	AP	L	:credit	Accounts Payables
	I		:credit	Income
	G	I	:credit	Gains
	R	I	:credit	Revenue

 Related

	Bookk.AccountHead;
	Bookk.Account.

 Summary

 Types

 t()

 The struct that describes an account class.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Bookk.AccountClass{
 id: String.t(),
 name: String.t(),
 natural_balance: :credit | :debit,
 parent_id: String.t() | nil
}

The struct that describes an account class.

 Fields

An account class in composed of:
	id: it's recomended that, instead of using it with an
arbitrary value, you assign it to the class' name abbreviation;
	parent_id: If the class is a subclass, then parent_id
should be set to the parent class' abbreviation. For example,
Current Assets is a subclass of Assets, therefore its parent_id
should be set to "A" (where "A" is the abbreviation of
Assets);
	name: The human readable name of the account class;
	natural_balance (either :debit or :credit): specifies
the direction in which accounts of this class grows their balance.
For example, Assets accounts grows their balances with :debit
operations.

See section Common classes for examples of
classes.

Bookk.AccountHead

An Account head is a struct contained all the values necessary to
either fetch or create a Bookk.Account from/into a Bookk.Ledger.

 Related

	Bookk.AccountClass;
	Bookk.Account;
	Bookk.Ledger;
	Bookk.Operations.

 Summary

 Types

 t()

 The struct that describes an account head.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Bookk.AccountHead{
 class: Bookk.AccountClass.t(),
 meta: map(),
 name: String.t()
}

The struct that describes an account head.

 Fields

An account head is composed of:
	name: the accounts name (unique within a ledger);
	class: a Bookk.AccountClass struct that describes the class to
which the account belongs;
	meta: a map of metadata for whatever information you find useful
to hold there for when you need to fetch, create or "hydrate" a
persisted account.

Bookk.ChartOfAccounts behaviour

A Chart of Accounts (abbrv.: CoA) is a mapping of all the accounts
and all the ledgers that can exist in your system. But instead of
hard-coding them, you define patterns for accounts and ledgers
supported by your application using functions and pattern matching.
For example, if your application allows ledgers to have an account
for exampenses from paying salary to an employee, you could define a
function with a signature the like the one below:
def account({:salary, {:employee, employee_id}})
And if your application, following the previous example, allows for
every employee to have their own ledger, you could define a function
with a signature like the one below:
def ledger({:employee, employee_id})

 Related

	Bookk.Notation;
	Bookk.AccountClass;
	Bookk.AccountHead.

 Summary

 Callbacks

 account(term)

 This function maps all possible patterns of accounts that your
application supports. It's recomended to use pattern matching and
let it crash in the event of a mismatch.

 ledger(term)

 This function maps all possible patterns of ledger names your
application supports. It's recomended to use pattern matching and
let it crash in the event of a mismatch.

 Callbacks

 Link to this callback

 account(term)

 View Source

 @callback account(term()) :: Bookk.AccountHead.t()

This function maps all possible patterns of accounts that your
application supports. It's recomended to use pattern matching and
let it crash in the event of a mismatch.

 Examples

def account(:cash), do: %Bookk.AccountHead{...}
def account(:deposits), do: %Bookk.AccountHead{...}
def account({:payables, {:user, id}}), do: %Bookk.AccountHead{...}
def account({:receivables, {:user, id}}), do: %Bookk.AccountHead{...}

 Link to this callback

 ledger(term)

 View Source

 @callback ledger(term()) :: String.t()

This function maps all possible patterns of ledger names your
application supports. It's recomended to use pattern matching and
let it crash in the event of a mismatch.

 Example

def ledger(:acme), do: "acme"
def ledger({:user, <<id::binary-size(36)>>}), do: "user(#{id})"

Bookk.InterledgerEntry

An interledger entry is a collection of journal entries affecting
multiple ledgers that must be transacted under the same accounting
transaction. It's somewhat analogous to an Ecto.Multi holding
multiple operations or a git commit that affect multiple files.

 Related

	Bookk.Notation;
	Bookk.NaiveState;
	Bookk.JournalEntry.

 Summary

 Types

 t()

 The struct that represents an interledger entry.

 Functions

 balanced?(interledger_entry)

 Checks whether the interledger entry is balanced. It is balance if
all of its journal entries are balanced.

 empty?(interledger_entry)

 Checks whether an interledger entry is empty. It is empty when it
has now journal entries or when all its journal entries are empty.

 reverse(entry)

 Produces a new interledger entry that is equaly opposite of the
given interledger entry, meaning its capable of reverting all the
changes that the given entry causes.

 to_journal_entries(interledger)

 Given an interledger entry, it returns all its journal entries in
the form of a list of tuples where the first element is the ledger's
name and the second element is a list of journal entries that are
meant to be posted to such ledger.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Bookk.InterledgerEntry{
 entries_by_ledger: %{
 required(ledger_name :: String.t()) => Bookk.JournalEntry.t()
 }
}

The struct that represents an interledger entry.

 Fields

An interledger entry is composed of:
	entries_by_ledger: the map of journal entries that are included
in the interledger entry, grouped by the name of the ledger
against which they should be posted.

 Functions

 Link to this function

 balanced?(interledger_entry)

 View Source

 @spec balanced?(t()) :: boolean()

Checks whether the interledger entry is balanced. It is balance if
all of its journal entries are balanced.

 Examples

Balanced entry:
iex> interledger = %Bookk.InterledgerEntry{
iex> entries_by_ledger: %{
iex> "acme" => [
iex> %Bookk.JournalEntry{
iex> operations: [
iex> fixture_account_head(:cash) |> debit(30_00),
iex> fixture_account_head(:deposits) |> credit(30_00)
iex>]
iex> }
iex>]
iex> }
iex> }
iex>
iex> Bookk.InterledgerEntry.balanced?(interledger)
true
Unbalanced entry:
iex> interledger = %Bookk.InterledgerEntry{
iex> entries_by_ledger: %{
iex> "acme" => [
iex> %Bookk.JournalEntry{
iex> operations: [
iex> fixture_account_head(:cash) |> debit(30_00),
iex>]
iex> }
iex>]
iex> }
iex> }
iex>
iex> Bookk.InterledgerEntry.balanced?(interledger)
false

 Link to this function

 empty?(interledger_entry)

 View Source

 @spec empty?(t()) :: boolean()

Checks whether an interledger entry is empty. It is empty when it
has now journal entries or when all its journal entries are empty.
See Bookk.JournalEntry.empty?/1 to learn more about empty journal
entries.

 Examples

Is empty when there's no entries:
iex> Bookk.InterledgerEntry.empty?(%Bookk.InterledgerEntry{})
true
Is empty when all entries are empty:
iex> interledger = %Bookk.InterledgerEntry{
iex> entries_by_ledger: %{
iex> "acme" => [
iex> %Bookk.JournalEntry{
iex> operations: [%Bookk.Operation{amount: 0}]
iex> }
iex>]
iex> }
iex> }
iex>
iex> Bookk.InterledgerEntry.empty?(interledger)
true
Is not empty when at least one entry isn't empty:
iex> interledger = %Bookk.InterledgerEntry{
iex> entries_by_ledger: %{
iex> "acme" => [
iex> %Bookk.JournalEntry{
iex> operations: [
iex> %Bookk.Operation{amount: 0},
iex> %Bookk.Operation{amount: 1},
iex>]
iex> }
iex>]
iex> }
iex> }
iex>
iex> Bookk.InterledgerEntry.empty?(interledger)
false

 Link to this function

 reverse(entry)

 View Source

 @spec reverse(t()) :: t()

Produces a new interledger entry that is equaly opposite of the
given interledger entry, meaning its capable of reverting all the
changes that the given entry causes.

 Examples

Reverses all of its journal entries:
iex> interledger = %Bookk.InterledgerEntry{
iex> entries_by_ledger: %{
iex> "acme" => [
iex> %Bookk.JournalEntry{
iex> operations: [
iex> fixture_account_head(:cash) |> debit(10_00),
iex> fixture_account_head(:deposits) |> credit(10_00)
iex>]
iex> }
iex>]
iex> }
iex> }
iex>
iex> Bookk.InterledgerEntry.reverse(interledger)
%Bookk.InterledgerEntry{
 entries_by_ledger: %{
 "acme" => [
 %Bookk.JournalEntry{
 operations: [
 fixture_account_head(:deposits) |> debit(10_00),
 fixture_account_head(:cash) |> credit(10_00)
]
 }
]
 }
}

 Link to this function

 to_journal_entries(interledger)

 View Source

 @spec to_journal_entries(t()) :: [{ledger_name :: String.t(), Bookk.JournalEntry.t()}]

Given an interledger entry, it returns all its journal entries in
the form of a list of tuples where the first element is the ledger's
name and the second element is a list of journal entries that are
meant to be posted to such ledger.

 Examples

Returns a list of tuple where the first element is the ledger name
and the second element is a journal entry:
iex> user_id = "b13a81cf-ff78-414d-b5b2-042e9ecf2082"
iex> cash = fixture_account_head(:cash)
iex> deposits = fixture_account_head(:deposits)
iex> unspent_cash = fixture_account_head({:unspent_cash, {:user, user_id}})
iex>
iex> interledger = %Bookk.InterledgerEntry{
iex> entries_by_ledger: %{
iex> "acme" => [
iex> Bookk.JournalEntry.new([
iex> debit(cash, 50_00),
iex> credit(unspent_cash, 50_00)
iex>])
iex>],
iex> "user(b13a81cf-ff78-414d-b5b2-042e9ecf2082)" => [
iex> Bookk.JournalEntry.new([
iex> debit(cash, 50_00),
iex> credit(deposits, 50_00)
iex>])
iex>]
iex> }
iex> }
iex>
iex> Bookk.InterledgerEntry.to_journal_entries(interledger)
[
 {"acme", Bookk.JournalEntry.new([
 debit(fixture_account_head(:cash), 50_00),
 credit(fixture_account_head({:unspent_cash, {:user, "b13a81cf-ff78-414d-b5b2-042e9ecf2082"}}), 50_00)
])},
 {"user(b13a81cf-ff78-414d-b5b2-042e9ecf2082)", Bookk.JournalEntry.new([
 debit(fixture_account_head(:cash), 50_00),
 credit(fixture_account_head(:deposits), 50_00)
])}
]

Bookk.JournalEntry

A Journal Entry is a set of operations that must be transacted under
the same accounting transaction. Those operations describe a change
in balance for an account. Operations are analogous to git commits,
they represent a diff on a account's balance.

 Related

	Bookk.Ledger;
	Bookk.Operation;
	Bookk.AccountHead.

 Summary

 Types

 t()

 The struct that describe a Journal Entry.

 Functions

 balanced?(journal_entry)

 Checks whether a journal entry is balanced. It is considered balance
when the sum of its debit operations is equal the sum of its credit
operations.

 empty?(journal_entry)

 Checks whether a journal entry is empty.

 new(ops)

 Creates a new journal entry from a set of operations.

 reverse(entry)

 Creates a new journal entry that reverses all effects from the given
journal entry.

 to_operations(journal_entry)

 Returns the list of operations inside a journal entry.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Bookk.JournalEntry{operations: [Bookk.Operation.t()]}

The struct that describe a Journal Entry.

 Fields

	operations: the list of operations included in the journal entry.

 Functions

 Link to this function

 balanced?(journal_entry)

 View Source

 @spec balanced?(t()) :: boolean()

Checks whether a journal entry is balanced. It is considered balance
when the sum of its debit operations is equal the sum of its credit
operations.

 Examples

Is balanced when the sum of debits is equal the sum of credits:
iex> journal_entry = %Bookk.JournalEntry{
iex> operations: [
iex> fixture_account_head(:cash) |> debit(10_00),
iex> fixture_account_head(:deposits) |> credit(10_00)
iex>]
iex> }
iex>
iex> Bookk.JournalEntry.balanced?(journal_entry)
true

iex> journal_entry = %Bookk.JournalEntry{
iex> operations: [
iex> fixture_account_head(:cash) |> debit(10_00),
iex> fixture_account_head(:deposits) |> credit(7_00),
iex> fixture_account_head(:deposits) |> credit(3_00),
iex>]
iex> }
iex>
iex> Bookk.JournalEntry.balanced?(journal_entry)
true
Is unbalanced when the sum of debits isn't equal the sum of credits:
iex> journal_entry = %Bookk.JournalEntry{
iex> operations: [
iex> fixture_account_head(:cash) |> debit(10_00)
iex>]
iex> }
iex>
iex> Bookk.JournalEntry.balanced?(journal_entry)
false

 Link to this function

 empty?(journal_entry)

 View Source

 @spec empty?(t()) :: boolean()

Checks whether a journal entry is empty.

 Examples

Is empty when the journal entry has no operations:
iex> Bookk.JournalEntry.empty?(%Bookk.JournalEntry{})
true
Is empty when all operations in the journal entry are empty:
iex> journal_entry = %Bookk.JournalEntry{
iex> operations: [
iex> %Bookk.Operation{amount: 0}
iex>]
iex> }
iex>
iex> Bookk.JournalEntry.empty?(journal_entry)
true
Is not empty when at least one operation in the journal entry isn't
empty:
iex> journal_entry = %Bookk.JournalEntry{
iex> operations: [
iex> %Bookk.Operation{amount: 10_00}
iex>]
iex> }
iex>
iex> Bookk.JournalEntry.empty?(journal_entry)
false

 Link to this function

 new(ops)

 View Source

 @spec new([Bookk.Operation.t()]) :: t()

Creates a new journal entry from a set of operations.

 Examples

If there're multiple operations touching the same account, they will
be merged into a single operation:
iex> cash = fixture_account_head(:cash)
iex> deposits = fixture_account_head(:deposits)
iex>
iex> Bookk.JournalEntry.new([
iex> debit(cash, 80_00),
iex> debit(cash, 20_00),
iex> credit(deposits, 100_00)
iex>])
%Bookk.JournalEntry{
 operations: [
 fixture_account_head(:cash) |> debit(100_00),
 fixture_account_head(:deposits) |> credit(100_00)
]
}

 Link to this function

 reverse(entry)

 View Source

 @spec reverse(t()) :: t()

Creates a new journal entry that reverses all effects from the given
journal entry.

 Examples

Reverses all operations in the journal entry:
iex> journal_entry = %Bookk.JournalEntry{
iex> operations: [
iex> fixture_account_head(:cash) |> debit(10_00),
iex> fixture_account_head(:deposits) |> credit(10_00)
iex>]
iex> }
iex>
iex> Bookk.JournalEntry.reverse(journal_entry)
%Bookk.JournalEntry{
 operations: [
 fixture_account_head(:deposits) |> debit(10_00),
 fixture_account_head(:cash) |> credit(10_00)
]
}

 Link to this function

 to_operations(journal_entry)

 View Source

 @spec to_operations(t()) :: [Bookk.Operation.t()]

Returns the list of operations inside a journal entry.

 Examples

Returns the journal entry's list of operations:
iex> Bookk.JournalEntry.new([
iex> debit(fixture_account_head(:cash), 50_00),
iex> credit(fixture_account_head(:deposits), 50_00)
iex>])
iex> |> Bookk.JournalEntry.to_operations()
[
 debit(fixture_account_head(:cash), 50_00),
 credit(fixture_account_head(:deposits), 50_00)
]

Bookk.Ledger

A ledger is a book that holds accounts. Traditionally, ledgers would
also hold the journal entries that changed the accounts but, in this
library, persisting those journal entries is considered off scope.
You may persist state the way the best fits your needs.

 Related

	Bookk.Account;
	Bookk.JournalEntry.

 Summary

 Types

 t()

 The struct that represents a ledger.

 Functions

 balanced?(ledger)

 Checks whether the ledger is balanced.

 get_account(ledger, head)

 Get an account from the ledger by its Bookk.AccountHead. If the
account doesn't exist yet, then an account will be returned with
empty state.

 new(name, accounts \\ [])

 Creates a new Bookk.Ledger from its name and, optionally, a list
of Bookk.Account.

 post(ledger, journal_entry)

 Posts a Bookk.JournalEntry to a ledger. This means that the
balance change described in each operation of the journal entry will
be applied to their respective accounts of the ledger. If there's a
change to an account that doesn't exist yet, then the account is
first created.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Bookk.Ledger{
 accounts_by_name: %{required(name :: String.t()) => Bookk.Account.t()},
 name: String.t()
}

The struct that represents a ledger.

 Fields

	name: the name of the ledger;
	accounts_by_name: a map of the accounts known by the ledger,
grouped by their name.

 Functions

 Link to this function

 balanced?(ledger)

 View Source

 @spec balanced?(t()) :: boolean()

Checks whether the ledger is balanced.
A ledger is considered balance when the some of balance from its
debit accounts is equal the sum of balance from its credit accounts.
You know if an account is a "debit account" or a "credit account" by
the natural balance of its class.
See Bookk.AccountClass for more information on natural balance.

 Examples

Is balanced when the ledger is empty:
iex> Bookk.Ledger.new("acme")
iex> |> Bookk.Ledger.balanced?()
true
Is balanced when the sum of debit accounts balances is equal the sum
of credit accounts balances:
iex> ledger = Bookk.Ledger.new("acme")
iex> cash = fixture_account_head(:cash)
iex> deposits = fixture_account_head(:deposits)
iex>
iex> journal_entry = %Bookk.JournalEntry{
iex> operations: [
iex> debit(cash, 50_00),
iex> credit(deposits, 50_00)
iex>]
iex> }
iex>
iex> Bookk.Ledger.post(ledger, journal_entry)
iex> |> Bookk.Ledger.balanced?()
true
Is unbalanced when the sum of debit accounts balances isn't equal
the sum of credit accounts balances:
iex> ledger = Bookk.Ledger.new("acme")
iex> cash = fixture_account_head(:cash)
iex>
iex> journal_entry = %Bookk.JournalEntry{
iex> operations: [
iex> debit(cash, 50_00)
iex>]
iex> }
iex>
iex> Bookk.Ledger.post(ledger, journal_entry)
iex> |> Bookk.Ledger.balanced?()
false

 Link to this function

 get_account(ledger, head)

 View Source

 @spec get_account(t(), Bookk.AccountHead.t()) :: Bookk.Account.t()

Get an account from the ledger by its Bookk.AccountHead. If the
account doesn't exist yet, then an account will be returned with
empty state.

 Examples

Returns the account when it exists in the ledger:
iex> ledger = %Bookk.Ledger{
iex> name: "acme",
iex> accounts_by_name: %{
iex> "cash/CA" => %Bookk.Account{
iex> head: fixture_account_head(:cash),
iex> balance: 25_00
iex> }
iex> }
iex> }
iex>
iex> Bookk.Ledger.get_account(ledger, fixture_account_head(:cash))
%Bookk.Account{
 head: fixture_account_head(:cash),
 balance: 25_00
}
Returns an empty account when the it doesn't exist in the ledger:
iex> Bookk.Ledger.new("acme")
iex> |> Bookk.Ledger.get_account(fixture_account_head(:cash))
%Bookk.Account{
 head: fixture_account_head(:cash),
 balance: 0
}

 Link to this function

 new(name, accounts \\ [])

 View Source

 @spec new(name :: String.t(), [Bookk.Account.t()]) :: t()

Creates a new Bookk.Ledger from its name and, optionally, a list
of Bookk.Account.

 Link to this function

 post(ledger, journal_entry)

 View Source

 @spec post(t(), Bookk.JournalEntry.t()) :: t()

Posts a Bookk.JournalEntry to a ledger. This means that the
balance change described in each operation of the journal entry will
be applied to their respective accounts of the ledger. If there's a
change to an account that doesn't exist yet, then the account is
first created.

 Examples

When account doesn't exist then it gets created:
iex> ledger = Bookk.Ledger.new("acme")
iex>
iex> cash = fixture_account_head(:cash)
iex> deposits = fixture_account_head(:deposits)
iex>
iex> journal_entry = %Bookk.JournalEntry{
iex> operations: [
iex> debit(cash, 50_00),
iex> credit(deposits, 50_00)
iex>]
iex> }
iex>
iex> updated_ledger = Bookk.Ledger.post(ledger, journal_entry)
iex>
iex> %Bookk.Account{balance: 50_00} = Bookk.Ledger.get_account(updated_ledger, cash)
iex> %Bookk.Account{balance: 50_00} = Bookk.Ledger.get_account(updated_ledger, deposits)
When account exists then it gets updated:
iex> ledger = Bookk.Ledger.new("acme")
iex>
iex> cash = fixture_account_head(:cash)
iex> deposits = fixture_account_head(:deposits)
iex>
iex> journal_entry = %Bookk.JournalEntry{
iex> operations: [
iex> debit(cash, 50_00),
iex> credit(deposits, 50_00)
iex>]
iex> }
iex>
iex> updated_ledger =
iex> ledger
iex> |> Bookk.Ledger.post(journal_entry)
iex> |> Bookk.Ledger.post(journal_entry) # post twice
iex>
iex> %Bookk.Account{balance: 100_00} = Bookk.Ledger.get_account(updated_ledger, cash)
iex> %Bookk.Account{balance: 100_00} = Bookk.Ledger.get_account(updated_ledger, deposits)

Bookk.NaiveState

A state struct that holds multiple ledgers. It's considered "naive"
because it doesn't hold any information regarding the journal
entries that put the state into its current value.

 Related

	Bookk.Notation;
	Bookk.InterledgerEntry;
	Bookk.Ledger.

 Summary

 Types

 t()

 The struct representing a naive state.

 Functions

 empty()

 Produces a empty naive state.

 get_ledger(naive_state, arg)

 Get's a ledger from the state by its name. If the ledger doesn't
exist in the state yet, then a new empty ledger will be returned.

 new(ledgers)

 Produces a new state struct from a set of ledgers.

 post(state, entry)

 Posts a Bookk.InterledgerEntry to the state, appling changes in
balance to multiple accounts accross multiple ledgers.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Bookk.NaiveState{
 ledgers_by_name: %{required(name :: String.t()) => Bookk.Ledger.t()}
}

The struct representing a naive state.

 Fields

	ledgers_by_name: the ledgers known by the state, grouped by
their name.

 Functions

 Link to this function

 empty()

 View Source

 @spec empty() :: t()

Produces a empty naive state.

 Link to this function

 get_ledger(naive_state, arg)

 View Source

 @spec get_ledger(t(), String.t()) :: Bookk.Ledger.t()

Get's a ledger from the state by its name. If the ledger doesn't
exist in the state yet, then a new empty ledger will be returned.

 Examples

Returns an empty ledger when requested ledger doesn't exist in
state:
iex> Bookk.NaiveState.get_ledger(%Bookk.NaiveState{}, "acme")
%Bookk.Ledger{name: "acme"}
Returns the ledger when it exists in state:
iex> state = %Bookk.NaiveState{
iex> ledgers_by_name: %{
iex> "foo" => %Bookk.Ledger{
iex> accounts_by_name: %{
iex> "cash" => %Bookk.Account{}
iex> }
iex> }
iex> }
iex> }
iex>
iex> Bookk.NaiveState.get_ledger(state, "foo")
%Bookk.Ledger{
 accounts_by_name: %{
 "cash" => %Bookk.Account{}
 }
}

 Link to this function

 new(ledgers)

 View Source

 @spec new([Bookk.Ledger.t()]) :: t()

Produces a new state struct from a set of ledgers.

 Link to this function

 post(state, entry)

 View Source

 @spec post(t(), Bookk.InterledgerEntry.t()) :: t()

Posts a Bookk.InterledgerEntry to the state, appling changes in
balance to multiple accounts accross multiple ledgers.

 Examples

iex> import Bookk.Notation, only: [journalize!: 2]
iex>
iex> user_id = "123"
iex> deposited_amount = 500_00
iex>
iex> journal_entry =
iex> journalize! using: TestChartOfAccounts do
iex> on ledger(:acme) do
iex> debit account(:cash), deposited_amount
iex> credit account({:unspent_cash, {:user, user_id}}), deposited_amount
iex> end
iex>
iex> on ledger({:user, user_id}) do
iex> debit account(:cash), deposited_amount
iex> credit account(:deposits), deposited_amount
iex> end
iex> end
iex>
iex> Bookk.NaiveState.empty()
iex> |> Bookk.NaiveState.post(journal_entry)
%Bookk.NaiveState{
 ledgers_by_name: %{
 "acme" => %Bookk.Ledger{
 name: "acme",
 accounts_by_name: %{
 fixture_account_head(:cash).name => %Bookk.Account{
 head: fixture_account_head(:cash),
 balance: 500_00
 },
 fixture_account_head({:unspent_cash, {:user, "123"}}).name => %Bookk.Account{
 head: fixture_account_head({:unspent_cash, {:user, "123"}}),
 balance: 500_00
 }
 }
 },
 "user(123)" => %Bookk.Ledger{
 name: "user(123)",
 accounts_by_name: %{
 fixture_account_head(:cash).name => %Bookk.Account{
 head: fixture_account_head(:cash),
 balance: 500_00
 },
 fixture_account_head(:deposits).name => %Bookk.Account{
 head: fixture_account_head(:deposits),
 balance: 500_00
 }
 }
 }
 }
}

Bookk.Notation

DSL notation for describing an interledger entries
(Bookk.InterledgerEntry).

 Related

	Bookk.ChartOfAccounts;
	Bookk.InterledgerEntry;
	Bookk.NaiveState.

 Summary

 Functions

 journalize(list1, list2)

 DSL notation for describing an interledger entries
(Bookk.InterledgerEntry).

 journalize!(list1, list2)

 Same as journalize/2 but it raises an error if the resulting
interledger journal entry is unbalanced.

 Functions

 Link to this macro

 journalize(list1, list2)

 View Source

 (macro)

DSL notation for describing an interledger entries
(Bookk.InterledgerEntry).

 Examples

Returns a balanced interledger journal entry:
iex> import Bookk.Notation, only: [journalize: 2]
iex>
iex> %Bookk.InterledgerEntry{} = journal_entry =
iex> journalize using: TestChartOfAccounts do
iex> on ledger(:acme) do
iex> debit account(:cash), 150_00
iex> credit account(:deposits), 150_00
iex> end
iex> end
iex>
iex> assert not Bookk.InterledgerEntry.empty?(journal_entry)
iex> assert Bookk.InterledgerEntry.balanced?(journal_entry)
Returns an unbalanced interledger journal entry:
iex> import Bookk.Notation, only: [journalize: 2]
iex>
iex> %Bookk.InterledgerEntry{} = journal_entry =
iex> journalize using: TestChartOfAccounts do
iex> on ledger(:acme) do
iex> debit account(:cash), 150_00
iex> credit account(:deposits), 50_00
iex> end
iex> end
iex>
iex> assert not Bookk.InterledgerEntry.empty?(journal_entry)
iex> assert not Bookk.InterledgerEntry.balanced?(journal_entry)

 Link to this macro

 journalize!(list1, list2)

 View Source

 (macro)

Same as journalize/2 but it raises an error if the resulting
interledger journal entry is unbalanced.

 Examples

Returns a balanced interledger journal entry:
iex> import Bookk.Notation, only: [journalize!: 2]
iex>
iex> %Bookk.InterledgerEntry{} = journal_entry =
iex> journalize! using: TestChartOfAccounts do
iex> on ledger(:acme) do
iex> debit account(:cash), 150_00
iex> credit account(:deposits), 150_00
iex> end
iex> end
iex>
iex> assert not Bookk.InterledgerEntry.empty?(journal_entry)
iex> assert Bookk.InterledgerEntry.balanced?(journal_entry)
Raises an error when an unbalanced interledger journal entry is
produced:
iex> import Bookk.Notation, only: [journalize!: 2]
iex>
iex> journalize! using: TestChartOfAccounts do
iex> on ledger(:acme) do
iex> debit account(:cash), 150_00
iex> credit account(:deposits), 50_00
iex> end
iex> end
** (Bookk.UnbalancedError) `journalize!/2` produced an unbalanced journal entry

Bookk.Operation

An operation describe a change in balance on a single account
(Bookk.Account).

 Related

	Bookk.JournalEntry;
	Bookk.AccountHead;
	Bookk.AccountClass.

 Summary

 Types

 t()

 The struct representing an operation.

 Functions

 credit(head, amount)

 Creates a credit operation from a Bookk.AccountHead and an amount.

 debit(head, amount)

 Creates a debit operation given a Bookk.AccountHead and an amount.

 empty?(operation)

 Checks whether an operation is empty. It is considered empty when
its amount is zero, meaning no changes to the account's balance.

 merge(list)

 Same as {Bookk.Operation.merge/2} but it takes a non-empty list of
operations, all to the same account (same account_head).

 merge(a, b)

 Combines two operation against the same account into one operation.

 new(atom, head, amount)

 Creates a new operation. Same as credit/2 and debit/2 but the
operation's direction is provided as an atom argument.

 reverse(entry)

 Produces a opposite operation from the given operation. The opposite
operation is capable of reverting the effect of the given operation
when posted to an account.

 to_delta_amount(op)

 Returns the operation's delta amount, which is the real number
(positive or negative integer) by which the account's balance will
be changed.

 uniq(ops)

 Takes a set of operations and returns a set of uniq operations per
account. The operations that affect the same account will be merged.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Bookk.Operation{
 account_head: Bookk.AccountHead.t(),
 amount: pos_integer(),
 direction: :credit | :debit
}

The struct representing an operation.

 Fields

	direction (either :debit or :credit): by itself it means
nothing -- it's just a lable -- but, once combined with the
account's natural balance (account_head.class.natural_balance),
then we're able to tell if the operation will result in an
addition or a subtraction of balance;
	account_head: a Bookk.AccountHead struct used to either
update or create the affected account in the ledger where the
operation was posted;
	amount: the [positive] amount by which the account's balance
will be changed. Whether the change will be an addition or a
subtraction, that depends on direction and the account class'
natural balance.

 Functions

 Link to this function

 credit(head, amount)

 View Source

 @spec credit(Bookk.AccountHead.t(), amount :: integer()) :: t()

Creates a credit operation from a Bookk.AccountHead and an amount.

 Examples

Crediting a positive amount produces a credit operation:
iex> head = fixture_account_head(:cash)
iex> Bookk.Operation.credit(head, 25_00)
%Bookk.Operation{
 direction: :credit,
 account_head: fixture_account_head(:cash),
 amount: 25_00
}
Crediting a negative amount produces a debit operation:
iex> head = fixture_account_head(:cash)
iex> Bookk.Operation.credit(head, -25_00)
%Bookk.Operation{
 direction: :debit,
 account_head: fixture_account_head(:cash),
 amount: 25_00
}

 Link to this function

 debit(head, amount)

 View Source

 @spec debit(Bookk.AccountHead.t(), amount :: integer()) :: t()

Creates a debit operation given a Bookk.AccountHead and an amount.

 Examples

Debiting a positive amount produces a debit operation:
iex> head = fixture_account_head(:cash)
iex> Bookk.Operation.debit(head, 25_00)
%Bookk.Operation{
 direction: :debit,
 account_head: fixture_account_head(:cash),
 amount: 25_00
}
Debiting a negative amount produces a credit operation:
iex> head = fixture_account_head(:cash)
iex> Bookk.Operation.debit(head, -25_00)
%Bookk.Operation{
 direction: :credit,
 account_head: fixture_account_head(:cash),
 amount: 25_00
}

 Link to this function

 empty?(operation)

 View Source

 @spec empty?(t()) :: boolean()

Checks whether an operation is empty. It is considered empty when
its amount is zero, meaning no changes to the account's balance.

 Examples

Is empty when amount is zero:
iex> Bookk.Operation.empty?(%Bookk.Operation{amount: 0})
true
Is not empty when amount is different than zero:
iex> Bookk.Operation.empty?(%Bookk.Operation{amount: 1})
false

 Link to this function

 merge(list)

 View Source

 @spec merge([t(), ...]) :: t()

Same as {Bookk.Operation.merge/2} but it takes a non-empty list of
operations, all to the same account (same account_head).

 Examples

iex> head = fixture_account_head(:cash)
iex>
iex> a = debit(head, 100_00)
iex> b = debit(head, 200_00)
iex> c = debit(head, 300_00)
iex>
iex> Bookk.Operation.merge([a, b, c])
%Bookk.Operation{
 direction: :debit,
 account_head: fixture_account_head(:cash),
 amount: 600_00
}
If an empty list is provided, then an error will be raised:
iex> Bookk.Operation.merge([])
** (FunctionClauseError) no function clause matching in Bookk.Operation.merge/1

 Link to this function

 merge(a, b)

 View Source

 @spec merge(t(), t()) :: t()

Combines two operation against the same account into one operation.

 Examples

When the two operations have the same direction, the resulting
operation has the same direction and the sum of the two amounts as
its amount:
iex> head = fixture_account_head(:cash)
iex>
iex> a = debit(head, 70_00)
iex> b = debit(head, 30_00)
iex>
iex> Bookk.Operation.merge(a, b)
%Bookk.Operation{
 direction: :debit,
 account_head: fixture_account_head(:cash),
 amount: 100_00
}
When the two operations have different direction, the account's
natural balance will define the resulting direction. As for the
resulting amount, the operation that matches the natural balance
direction will have its amount subtracted by the other operation's
amount:
iex> head = fixture_account_head(:cash)
iex>
iex> a = debit(head, 70_00)
iex> b = credit(head, 30_00)
iex>
iex> Bookk.Operation.merge(a, b)
%Bookk.Operation{
 direction: :debit,
 account_head: fixture_account_head(:cash),
 amount: 40_00
}
If the resulting balance is a negative number, then the resulting
direction will be switched and the amount will be transformed into a
positive number:
iex> head = fixture_account_head(:cash)
iex>
iex> a = credit(head, 70_00)
iex> b = debit(head, 30_00)
iex>
iex> Bookk.Operation.merge(a, b)
%Bookk.Operation{
 direction: :credit,
 account_head: fixture_account_head(:cash),
 amount: 40_00
}
If the operations' account heads aren't the same in both operations,
then an error will be raised:
iex> a = debit(fixture_account_head(:cash), 10_00)
iex> b = credit(fixture_account_head(:deposits), 10_00)
iex>
iex> Bookk.Operation.merge(a, b)
** (FunctionClauseError) no function clause matching in Bookk.Operation.merge/2

 Link to this function

 new(atom, head, amount)

 View Source

 @spec new(direction :: :credit | :debit, Bookk.AccountHead.t(), integer()) :: t()

Creates a new operation. Same as credit/2 and debit/2 but the
operation's direction is provided as an atom argument.

 Link to this function

 reverse(entry)

 View Source

 @spec reverse(t()) :: t()

Produces a opposite operation from the given operation. The opposite
operation is capable of reverting the effect of the given operation
when posted to an account.

 Examples

A credit operation becomes a debit operation:
iex> entry = %Bookk.Operation{direction: :credit, amount: 10_00}
iex> Bookk.Operation.reverse(entry)
%Bookk.Operation{direction: :debit, amount: 10_00}
A debit operation becomes a credit operation:
iex> entry = %Bookk.Operation{direction: :debit, amount: 10_00}
iex> Bookk.Operation.reverse(entry)
%Bookk.Operation{direction: :credit, amount: 10_00}

 Link to this function

 to_delta_amount(op)

 View Source

 @spec to_delta_amount(t()) :: integer()

Returns the operation's delta amount, which is the real number
(positive or negative integer) by which the account's balance will
be changed.
A negative integer is return in case the account should be
subtracted, making this value safe to always be used with an
addition operation against the account's balance.

 Examples

Debiting an account which has a debit natural balance produces a
positive number:
iex> head = %Bookk.AccountHead{
iex> class: %Bookk.AccountClass{natural_balance: :debit}
iex> }
iex>
iex> debit(head, 100_00)
iex> |> Bookk.Operation.to_delta_amount()
100_00
Debiting an account which has a credit natural balance produces a
negative number:
iex> head = %Bookk.AccountHead{
iex> class: %Bookk.AccountClass{natural_balance: :debit}
iex> }
iex>
iex> credit(head, 100_00)
iex> |> Bookk.Operation.to_delta_amount()
-100_00
Crediting an account which has a credit natural balance produces a
positive number:
iex> head = %Bookk.AccountHead{
iex> class: %Bookk.AccountClass{natural_balance: :credit}
iex> }
iex>
iex> credit(head, 100_00)
iex> |> Bookk.Operation.to_delta_amount()
100_00
Debiting an account which has a credit natural balance produces a
negative number:
iex> head = %Bookk.AccountHead{
iex> class: %Bookk.AccountClass{natural_balance: :credit}
iex> }
iex>
iex> debit(head, 100_00)
iex> |> Bookk.Operation.to_delta_amount()
-100_00

 Link to this function

 uniq(ops)

 View Source

 @spec uniq([t()]) :: [t()]

Takes a set of operations and returns a set of uniq operations per
account. The operations that affect the same account will be merged.
See merge/1 and merge/2 for more information on merging
operations.

 Examples

When there's more than one operation touching the same account,
those operations are merged together so that the resulting list
contains one a single operation thouching each account:
iex> cash = fixture_account_head(:cash)
iex> deposits = fixture_account_head(:deposits)
iex>
iex> a = debit(cash, 40_00)
iex> b = debit(cash, 60_00)
iex> c = credit(deposits, 100_00)
iex>
iex> Bookk.Operation.uniq([a, b, c])
[
 fixture_account_head(:cash) |> debit(100_00),
 fixture_account_head(:deposits) |> credit(100_00)
]
When all operations are unique, the list is returned as is:
iex> cash = fixture_account_head(:cash)
iex> deposits = fixture_account_head(:deposits)
iex>
iex> a = debit(cash, 100_00)
iex> b = credit(deposits, 100_00)
iex>
iex> Bookk.Operation.uniq([a, b])
[
 fixture_account_head(:cash) |> debit(100_00),
 fixture_account_head(:deposits) |> credit(100_00)
]
When an empty list is given, the result will also be an empty list:
iex> Bookk.Operation.uniq([])
[]

Bookk.UnbalancedError exception

An error representing that something (a journal entry, a ledger, a
state...) isn't balanced.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

