

 Braintrust

 v0.1.0

 Table of contents

 	Braintrust

 	Changelog

 	
 Modules

 	Braintrust

 	Braintrust.Client

 	Braintrust.Config

 	Braintrust.Dataset

 	Braintrust.Error

 	Braintrust.Experiment

 	Braintrust.Function

 	Braintrust.Log

 	Braintrust.Pagination

 	Braintrust.Project

 	Braintrust.Prompt

 	Braintrust.Span

 Braintrust

An unofficial Elixir client for the Braintrust AI evaluation and observability platform.
Braintrust is an end-to-end platform for evaluating, monitoring, and improving AI applications. This Hex package provides Elixir/Phoenix applications with access to Braintrust's REST API for managing projects, experiments, datasets, logs, and prompts.
Installation
Add braintrust to your list of dependencies in mix.exs:
def deps do
 [
 {:braintrust, "~> 0.1"}
]
end
Configuration
Set your API key via environment variable:
export BRAINTRUST_API_KEY="sk-your-api-key"

Or configure in your application:
config/config.exs
config :braintrust, api_key: System.get_env("BRAINTRUST_API_KEY")

Or at runtime
Braintrust.configure(api_key: "sk-xxx")
API keys can be created at braintrust.dev/app/settings.
Usage
Projects
List all projects
{:ok, projects} = Braintrust.Project.list()

Create a project
{:ok, project} = Braintrust.Project.create(%{name: "my-project"})

Get a project by ID
{:ok, project} = Braintrust.Project.get(project_id)

Update a project
{:ok, project} = Braintrust.Project.update(project_id, %{name: "updated-name"})

Delete a project (soft delete)
{:ok, project} = Braintrust.Project.delete(project_id)

Stream through projects lazily (memory efficient)
Braintrust.Project.stream(limit: 50)
|> Stream.take(100)
|> Enum.to_list()
Logging Traces
Log production traces for observability:
Log with raw maps
{:ok, _} = Braintrust.Log.insert(project_id, [
 %{
 input: %{messages: [%{role: "user", content: "Hello"}]},
 output: "Hi there!",
 scores: %{quality: 0.9},
 metadata: %{model: "gpt-4", environment: "production"},
 metrics: %{latency_ms: 250, input_tokens: 50, output_tokens: 25}
 }
])

Or use Span structs for better type safety
spans = [
 %Braintrust.Span{
 input: %{messages: [%{role: "user", content: "Hello"}]},
 output: "Hi there!",
 scores: %{quality: 0.9},
 metadata: %{model: "gpt-4"},
 metrics: %{latency_ms: 250}
 }
]
{:ok, _} = Braintrust.Log.insert(project_id, spans)
Experiments
Run evaluations and track results:
Create an experiment
{:ok, experiment} = Braintrust.Experiment.create(%{
 project_id: "proj_123",
 name: "gpt4-baseline"
})

Insert evaluation events
{:ok, _} = Braintrust.Experiment.insert(experiment.id, [
 %{
 input: %{messages: [%{role: "user", content: "What is 2+2?"}]},
 output: "4",
 expected: "4",
 scores: %{accuracy: 1.0},
 metadata: %{model: "gpt-4"}
 }
])

Get experiment summary
{:ok, summary} = Braintrust.Experiment.summarize(experiment.id)

Stream through all events
Braintrust.Experiment.fetch_stream(experiment.id)
|> Stream.each(&process_event/1)
|> Stream.run()

Add feedback to events
{:ok, _} = Braintrust.Experiment.feedback(experiment.id, [
 %{id: "event_123", scores: %{human_rating: 0.9}, comment: "Good response"}
])
Datasets
Manage test data for evaluations:
Create a dataset
{:ok, dataset} = Braintrust.Dataset.create(%{
 project_id: "proj_123",
 name: "test-cases",
 description: "Q&A evaluation test cases"
})

Insert test records
{:ok, _} = Braintrust.Dataset.insert(dataset.id, [
 %{input: %{question: "What is 2+2?"}, expected: "4"},
 %{input: %{question: "What is 3+3?"}, expected: "6", metadata: %{category: "math"}}
])

Fetch dataset records
{:ok, result} = Braintrust.Dataset.fetch(dataset.id, limit: 100)

Stream through all records
Braintrust.Dataset.fetch_stream(dataset.id)
|> Stream.each(&process_record/1)
|> Stream.run()

Add feedback to records
{:ok, _} = Braintrust.Dataset.feedback(dataset.id, [
 %{id: "record_123", scores: %{quality: 0.95}, comment: "Excellent test case"}
])

Get dataset summary
{:ok, summary} = Braintrust.Dataset.summarize(dataset.id)
Prompts
Version-controlled prompt management with template variables:
Create a prompt
{:ok, prompt} = Braintrust.Prompt.create(%{
 project_id: "proj_123",
 name: "customer-support",
 slug: "customer-support-v1",
 model: "gpt-4",
 messages: [
 %{role: "system", content: "You are a helpful customer support agent."},
 %{role: "user", content: "{{user_input}}"}
]
})

List prompts
{:ok, prompts} = Braintrust.Prompt.list(project_id: "proj_123")

Get a prompt by ID
{:ok, prompt} = Braintrust.Prompt.get(prompt_id)

Get a specific version
{:ok, prompt} = Braintrust.Prompt.get(prompt_id, version: "v2")

Update a prompt (creates new version)
{:ok, prompt} = Braintrust.Prompt.update(prompt_id, %{
 messages: [
 %{role: "system", content: "Updated system prompt."},
 %{role: "user", content: "{{user_input}}"}
]
})

Stream through prompts lazily
Braintrust.Prompt.stream(project_id: "proj_123")
|> Stream.take(50)
|> Enum.to_list()
Functions
Manage tools, scorers, and callable functions:
List all functions
{:ok, functions} = Braintrust.Function.list()

List scorers for a specific project
{:ok, scorers} = Braintrust.Function.list(
 project_id: "proj_123",
 function_type: "scorer"
)

Create a code-based scorer
{:ok, scorer} = Braintrust.Function.create(%{
 project_id: "proj_123",
 name: "relevance-scorer",
 slug: "relevance-scorer-v1",
 function_type: "scorer",
 function_data: %{
 type: "code",
 data: %{
 runtime: "node",
 code: "export default async function({ input, output, expected }) {
 // Scoring logic here
 return { score: 0.9 };
 }"
 }
 }
})

Get a function by ID
{:ok, func} = Braintrust.Function.get(function_id)

Get a specific version
{:ok, func} = Braintrust.Function.get(function_id, version: "v2")

Update a function
{:ok, func} = Braintrust.Function.update(function_id, %{
 description: "Updated relevance scorer with better accuracy"
})

Stream through functions
Braintrust.Function.stream(function_type: "tool")
|> Stream.take(50)
|> Enum.to_list()
Error Handling
All API functions return {:ok, result} or {:error, %Braintrust.Error{}}:
case Braintrust.Project.get(project_id) do
 {:ok, project} ->
 handle_project(project)

 {:error, %Braintrust.Error{type: :not_found}} ->
 handle_not_found()

 {:error, %Braintrust.Error{type: :rate_limit, retry_after: ms}} ->
 Process.sleep(ms)
 retry()

 {:error, %Braintrust.Error{type: :authentication}} ->
 handle_auth_error()

 {:error, %Braintrust.Error{} = error} ->
 Logger.error("API error: #{error.message}")
 handle_error(error)
end
Features
	Projects - Manage AI projects containing experiments, datasets, and logs
	Experiments - Run evaluations and compare results across runs
	Datasets - Version-controlled test data with support for pinning evaluations to specific versions
	Logging/Tracing - Production observability with span-based tracing
	Prompts - Version-controlled prompt management with template variables and versioning
	Functions - Access to tools, scorers, and callable functions
	Automatic Retry - Exponential backoff for rate limits and transient errors
	Pagination Streams - Lazy iteration over paginated results

API Coverage
	Resource	Endpoint	Status
	Projects	/v1/project	✅ Implemented
	Experiments	/v1/experiment	✅ Implemented
	Datasets	/v1/dataset	✅ Implemented
	Logs	/v1/project_logs	✅ Implemented
	Prompts	/v1/prompt	✅ Implemented
	Functions	/v1/function	✅ Implemented
	BTQL	/btql	🚧 Planned

Resources
	Braintrust Documentation
	API Reference
	OpenAPI Specification

License
MIT

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
0.1.0 - 2025-01-10
Added
	Cursor-based pagination with Stream support (#9)
	Braintrust.Pagination module for lazy and eager pagination
	Client.get_stream/3 for streaming paginated API results
	Client.get_all/3 for eager loading of all paginated results
	Duplicate filtering support via :unique_by option
	Braintrust.Project resource module with full CRUD operations (#11)
	Project.list/1 for listing all projects with filtering options
	Project.stream/1 for memory-efficient lazy pagination through projects
	Project.get/2 for retrieving a project by ID
	Project.create/2 for creating new projects (idempotent)
	Project.update/3 for updating project properties
	Project.delete/2 for soft-deleting projects
	DateTime parsing for created_at and deleted_at fields
	Comprehensive test suite with 15 tests covering all operations
	Braintrust.Experiment module with full CRUD operations (#13)	Experiment.list/1, Experiment.stream/1 - List experiments with pagination
	Experiment.get/2 - Get experiment by ID
	Experiment.create/2 - Create new experiment
	Experiment.update/3 - Update experiment
	Experiment.delete/2 - Delete experiment (soft delete)

	Experiment-specific operations (#13)	Experiment.insert/3 - Insert evaluation events
	Experiment.fetch/3, Experiment.fetch_stream/3 - Fetch events with pagination
	Experiment.feedback/3 - Add scores and comments to events
	Experiment.summarize/2 - Get aggregated experiment metrics

	Internal Resource helper module to eliminate code duplication between resource modules
	Shared test helpers for pagination testing
	Braintrust.Dataset module with full CRUD operations (#14)	Dataset.list/1, Dataset.stream/1 - List datasets with pagination
	Dataset.get/2 - Get dataset by ID
	Dataset.create/2 - Create new dataset (idempotent)
	Dataset.update/3 - Update dataset
	Dataset.delete/2 - Delete dataset (soft delete)

	Dataset-specific operations (#14)	Dataset.insert/3 - Insert test records with versioning
	Dataset.fetch/3, Dataset.fetch_stream/3 - Fetch records with pagination
	Dataset.feedback/3 - Add scores and comments to records
	Dataset.summarize/2 - Get dataset summary statistics

	24 comprehensive tests for Dataset module
	dataset_name filter support in Resource module
	Refactored test helpers (empty_events_stub/1, error_on_first_page_stub/1) to eliminate code duplication
	Braintrust.Span struct for representing traces in Braintrust (#15)	Core fields: id, span_id, root_span_id, span_parents for DAG trace structure
	Data fields: input, output, expected, error
	Scoring fields: scores (normalized 0-1), metrics (raw numbers)
	Metadata fields: metadata, tags, created_at
	Span.to_map/1 for converting to API-ready maps (removes nil values)

	Braintrust.Log module for production observability (#15)	Log.insert/3 - Insert production logs/traces (write-only API)
	Accepts both raw maps and %Braintrust.Span{} structs
	Supports batching multiple events in a single request
	OpenAI message format recommended for best UI integration

	Enhanced Experiment.insert/3 to accept %Braintrust.Span{} structs (#15)
	Enhanced Dataset.insert/3 to accept %Braintrust.Span{} structs (#15)
	23 comprehensive tests for Span and Log modules
	4 additional tests for Span support in Experiment and Dataset modules
	Braintrust.Prompt module with full CRUD operations (#16)	Prompt.list/1, Prompt.stream/1 - List prompts with pagination
	Prompt.get/2 - Get prompt by ID with version/xact_id support
	Prompt.create/2 - Create new prompt (idempotent)
	Prompt.update/3 - Update prompt (creates new version)
	Prompt.delete/2 - Delete prompt (soft delete)

	Version-controlled prompt management with template variables (#16)
	Support for OpenAI-compatible message format with {{variable}} syntax
	prompt_name and slug filter parameters in Resource module
	21 comprehensive tests for Prompt module
	Braintrust.Function module with full CRUD operations (#17)	Function.list/1, Function.stream/1 - List functions with pagination and filtering
	Function.get/2 - Get function by ID with version/xact_id support
	Function.create/2 - Create new function (idempotent)
	Function.update/3 - Update function (may create new version)
	Function.delete/2 - Delete function (soft delete)

	Support for tools, scorers, and prompt-type functions (#17)
	Polymorphic function_data field for different function implementations
	function_name and function_type filter parameters in Resource module
	21 comprehensive tests for Function module

Changed
	Updated README to reflect Projects API as implemented
	Increased coverage requirement from 80% to 90%
	Updated module documentation to remove "(coming soon)" from Project resource
	Updated README with Experiments examples and API coverage table
	Refactored Project and Experiment modules to use shared Resource helpers
	Updated README with Datasets examples and marked as implemented in API coverage table
	Updated main Braintrust module documentation to reflect Dataset availability
	Updated README with Logs examples and marked as implemented in API coverage table
	Enhanced insert operations across Experiment and Dataset modules to accept Span structs while maintaining backward compatibility
	Updated README with comprehensive Prompts examples
	Updated main module documentation to reflect Prompt availability
	Marked Prompts as implemented in API coverage table
	Updated README with Functions examples and usage patterns
	Marked Functions as implemented in API coverage table
	Updated work-in-progress notice to reflect Functions availability

0.0.1 - 2025-01-07
Added
	Initial placeholder release to reserve package name on hex.pm
	Basic project structure

Braintrust

Unofficial Elixir SDK for the Braintrust AI evaluation and observability platform.
Installation
Add braintrust to your list of dependencies in mix.exs:
def deps do
 [
 {:braintrust, "~> 0.1.0"}
]
end
Configuration
Set your API key via environment variable:
export BRAINTRUST_API_KEY="sk-your-api-key"
Or configure in your application:
config/config.exs
config :braintrust,
 api_key: System.get_env("BRAINTRUST_API_KEY"),
 timeout: 30_000
Or configure at runtime:
Braintrust.configure(api_key: "sk-your-api-key")
Usage
See the individual resource modules for API operations:
	Braintrust.Project - Manage projects
	Braintrust.Experiment - Run evaluations and track results
	Braintrust.Dataset - Manage test datasets
	Braintrust.Log - Log production traces and spans
	Braintrust.Prompt - Version-controlled prompt management

Resources
	Braintrust Documentation
	API Reference
	GitHub Repository

 Summary

 Functions

 configure(opts)

 Configures the Braintrust SDK for the current process.

 Functions

 configure(opts)

 @spec configure(keyword()) :: :ok

Configures the Braintrust SDK for the current process.
Configuration set via this function takes precedence over application
config and environment variables, but is overridden by options passed
directly to API functions.
Options
	:api_key - API key for authentication (prefix: sk- or bt-st-)
	:base_url - Base URL for API (default: https://api.braintrust.dev)
	:timeout - Request timeout in milliseconds (default: 60000)
	:max_retries - Maximum retry attempts (default: 2)

Examples
iex> Braintrust.configure(api_key: "sk-test123")
:ok

iex> Braintrust.configure(api_key: "sk-test", timeout: 30_000, max_retries: 3)
:ok

Braintrust.Client

HTTP client for the Braintrust API.
This module handles all HTTP communication with the Braintrust API,
including authentication, JSON encoding/decoding, timeouts, and
automatic retry with exponential backoff.
Usage
The client is typically used internally by resource modules, but can
be used directly for custom API calls:
Create a client
client = Braintrust.Client.new(api_key: "sk-...")

Make requests
{:ok, body} = Braintrust.Client.get(client, "/v1/project")
{:ok, body} = Braintrust.Client.post(client, "/v1/project", %{name: "my-project"})
Retry Behavior
The client automatically retries requests that fail with:
	408 Request Timeout
	409 Conflict
	429 Rate Limit (respects Retry-After header)
	5xx Server Errors
	Connection/timeout errors

Default: 2 retries with exponential backoff (1s, 2s, 4s).

 Summary

 Types

 t()

 Functions

 delete(client, path, opts \\ [])

 Makes a DELETE request.

 get(client, path, opts \\ [])

 Makes a GET request.

 get_all(client, path, opts \\ [])

 Makes a paginated GET request, returning all items as a list.

 get_stream(client, path, opts \\ [])

 Makes a paginated GET request, returning a Stream of items.

 new(opts \\ [])

 Creates a new HTTP client.

 patch(client, path, body, opts \\ [])

 Makes a PATCH request.

 post(client, path, body, opts \\ [])

 Makes a POST request.

 Types

 t()

 @type t() :: Req.Request.t()

 Functions

 delete(client, path, opts \\ [])

 @spec delete(t(), String.t(), keyword()) ::
 {:ok, map()} | {:error, Braintrust.Error.t()}

Makes a DELETE request.
Examples
client = Braintrust.Client.new(api_key: "sk-test")
{:ok, _} = Braintrust.Client.delete(client, "/v1/project/123")

 get(client, path, opts \\ [])

 @spec get(t(), String.t(), keyword()) ::
 {:ok, map() | list()} | {:error, Braintrust.Error.t()}

Makes a GET request.
Examples
client = Braintrust.Client.new(api_key: "sk-test")
{:ok, projects} = Braintrust.Client.get(client, "/v1/project")

 get_all(client, path, opts \\ [])

 @spec get_all(t(), String.t(), keyword()) ::
 {:ok, [map()]} | {:error, Braintrust.Error.t()}

Makes a paginated GET request, returning all items as a list.
This is a convenience wrapper around Braintrust.Pagination.list/2.
For large datasets, prefer get_stream/3.
Options
Same as get_stream/3.
Examples
client = Braintrust.Client.new(api_key: "sk-test")
{:ok, projects} = Braintrust.Client.get_all(client, "/v1/project")

 get_stream(client, path, opts \\ [])

 @spec get_stream(t(), String.t(), keyword()) :: Enumerable.t()

Makes a paginated GET request, returning a Stream of items.
This is a convenience wrapper around Braintrust.Pagination.stream/2
for paginating through list endpoints.
Options
	:limit - Number of items per page (default: 100)
	:starting_after - Cursor to start pagination from
	:unique_by - Key for duplicate filtering
	:params - Additional query parameters

Examples
client = Braintrust.Client.new(api_key: "sk-test")

client
|> Braintrust.Client.get_stream("/v1/project", limit: 50)
|> Stream.take(100)
|> Enum.to_list()

 new(opts \\ [])

 @spec new(keyword()) :: t()

Creates a new HTTP client.
Options
All options from Braintrust.Config are supported:
	:api_key - API key for authentication
	:base_url - Base URL for API requests
	:timeout - Request timeout in milliseconds
	:max_retries - Maximum number of retry attempts

Examples
iex> client = Braintrust.Client.new(api_key: "sk-test123")
iex> is_struct(client, Req.Request)
true

 patch(client, path, body, opts \\ [])

 @spec patch(t(), String.t(), map(), keyword()) ::
 {:ok, map()} | {:error, Braintrust.Error.t()}

Makes a PATCH request.
Examples
client = Braintrust.Client.new(api_key: "sk-test")
{:ok, project} = Braintrust.Client.patch(client, "/v1/project/123", %{name: "new-name"})

 post(client, path, body, opts \\ [])

 @spec post(t(), String.t(), map(), keyword()) ::
 {:ok, map()} | {:error, Braintrust.Error.t()}

Makes a POST request.
Examples
client = Braintrust.Client.new(api_key: "sk-test")
{:ok, project} = Braintrust.Client.post(client, "/v1/project", %{name: "my-project"})

Braintrust.Config

Configuration management for the Braintrust SDK.
Configuration Sources (in order of precedence)
	Runtime options passed to functions
	Process dictionary (via Braintrust.configure/1)
	Application config (via config :braintrust, ...)
	Environment variables

Configuration Options
	Option	Type	Default	Description
	:api_key	string	BRAINTRUST_API_KEY env	API key for authentication
	:base_url	string	https://api.braintrust.dev	Base URL for API
	:timeout	integer	60_000	Request timeout in ms
	:max_retries	integer	2	Maximum retry attempts

Examples
Environment Variable
export BRAINTRUST_API_KEY="sk-your-api-key"
Application Config
config/config.exs
config :braintrust,
 api_key: System.get_env("BRAINTRUST_API_KEY"),
 timeout: 30_000
Runtime Config
Configure for current process
Braintrust.configure(api_key: "sk-...")

Or pass options directly to functions
Braintrust.Project.list(api_key: "sk-...")

 Summary

 Types

 config_key()

 config_value()

 Functions

 api_key!(opts \\ [])

 Gets the API key, raising if not configured.

 clear()

 Clears runtime configuration for the current process.

 configure(opts)

 Sets runtime configuration for the current process.

 get(key, opts \\ [])

 Gets a configuration value.

 valid_api_key?(arg1)

 Validates an API key format.

 Types

 config_key()

 @type config_key() :: :api_key | :base_url | :timeout | :max_retries

 config_value()

 @type config_value() :: String.t() | pos_integer()

 Functions

 api_key!(opts \\ [])

 @spec api_key!(keyword()) :: String.t()

Gets the API key, raising if not configured.
Examples
iex> Braintrust.Config.api_key!(api_key: "sk-test123")
"sk-test123"
Raises
	ArgumentError if no API key is configured

 clear()

 @spec clear() :: :ok

Clears runtime configuration for the current process.
Examples
iex> Braintrust.Config.configure(api_key: "sk-test")
:ok
iex> Braintrust.Config.clear()
:ok
iex> Braintrust.Config.get(:api_key)
nil

 configure(opts)

 @spec configure(keyword()) :: :ok

Sets runtime configuration for the current process.
Configuration set this way takes precedence over application config
and environment variables, but is overridden by options passed
directly to functions.
Examples
iex> Braintrust.Config.configure(api_key: "sk-test", timeout: 30_000)
:ok
iex> Braintrust.Config.get(:api_key)
"sk-test"
iex> Braintrust.Config.get(:timeout)
30000

 get(key, opts \\ [])

 @spec get(
 config_key(),
 keyword()
) :: config_value() | nil

Gets a configuration value.
Looks up configuration in order:
	Runtime options (if provided)
	Process dictionary
	Application config
	Environment variable (for :api_key only)
	Default value

Examples
iex> Braintrust.Config.get(:base_url)
"https://api.braintrust.dev"

iex> Braintrust.Config.get(:timeout)
60000

iex> Braintrust.Config.get(:base_url, base_url: "https://custom.api.com")
"https://custom.api.com"

 valid_api_key?(arg1)

 @spec valid_api_key?(String.t() | nil) :: boolean()

Validates an API key format.
Braintrust API keys use two prefixes:
	sk- for user API keys
	bt-st- for service tokens

Examples
iex> Braintrust.Config.valid_api_key?("sk-abc123")
true

iex> Braintrust.Config.valid_api_key?("bt-st-xyz789")
true

iex> Braintrust.Config.valid_api_key?("invalid-key")
false

iex> Braintrust.Config.valid_api_key?(nil)
false

Braintrust.Dataset

Manage Braintrust datasets.
Datasets are containers for test data used in AI evaluations. Each dataset
stores input/expected pairs that can be used to evaluate AI model performance.
Examples
List all datasets
{:ok, datasets} = Braintrust.Dataset.list()

List datasets for a specific project
{:ok, datasets} = Braintrust.Dataset.list(project_id: "proj_123")

Create a dataset
{:ok, dataset} = Braintrust.Dataset.create(%{
 project_id: "proj_123",
 name: "test-cases"
})

Get a dataset by ID
{:ok, dataset} = Braintrust.Dataset.get("ds_123")

Insert records
{:ok, result} = Braintrust.Dataset.insert("ds_123", [
 %{input: %{question: "What is 2+2?"}, expected: "4"}
])

Delete a dataset
{:ok, dataset} = Braintrust.Dataset.delete("ds_123")
Pagination
The list/1 function supports cursor-based pagination:
Get all datasets as a list
{:ok, datasets} = Braintrust.Dataset.list()

Stream through datasets lazily
Braintrust.Dataset.stream()
|> Stream.take(100)
|> Enum.to_list()
Versioning
Every insert, update, and delete operation is versioned via _xact_id.
Use the fetch/3 function with a :version parameter to retrieve records
at a specific dataset version for reproducible evaluations.

 Summary

 Types

 t()

 Functions

 create(params, opts \\ [])

 Creates a new dataset.

 delete(dataset_id, opts \\ [])

 Deletes a dataset.

 feedback(dataset_id, feedback, opts \\ [])

 Logs feedback on dataset records.

 fetch(dataset_id, params \\ [], opts \\ [])

 Fetches dataset records.

 fetch_stream(dataset_id, params \\ [], opts \\ [])

 Returns a Stream that lazily paginates through dataset records.

 get(dataset_id, opts \\ [])

 Gets a dataset by ID.

 insert(dataset_id, records, opts \\ [])

 Inserts dataset records.

 list(opts \\ [])

 Lists all datasets.

 stream(opts \\ [])

 Returns a Stream that lazily paginates through all datasets.

 summarize(dataset_id, opts \\ [])

 Gets a summary of dataset contents.

 update(dataset_id, params, opts \\ [])

 Updates a dataset.

 Types

 t()

 @type t() :: %Braintrust.Dataset{
 created_at: DateTime.t() | nil,
 deleted_at: DateTime.t() | nil,
 description: String.t() | nil,
 id: String.t(),
 metadata: map() | nil,
 name: String.t(),
 project_id: String.t(),
 user_id: String.t() | nil
}

 Functions

 create(params, opts \\ [])

 @spec create(
 map(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Creates a new dataset.
If a dataset with the same name already exists within the project,
returns the existing dataset unmodified (idempotent behavior).
Parameters
	:project_id - Project ID (required)
	:name - Dataset name (required for idempotent creation)
	:description - Dataset description (optional)
	:metadata - Custom metadata map (optional)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, dataset} = Braintrust.Dataset.create(%{
...> project_id: "proj_123",
...> name: "test-cases"
...> })
iex> dataset.name
"test-cases"

With description
iex> {:ok, dataset} = Braintrust.Dataset.create(%{
...> project_id: "proj_123",
...> name: "evaluation-data",
...> description: "Test cases for Q&A evaluation"
...> })

 delete(dataset_id, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Deletes a dataset.
This is a soft delete - the dataset's deleted_at field will be set.
Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, dataset} = Braintrust.Dataset.delete("ds_123")
iex> dataset.deleted_at != nil
true

 feedback(dataset_id, feedback, opts \\ [])

 @spec feedback(String.t(), [map()], keyword()) ::
 {:ok, map()} | {:error, Braintrust.Error.t()}

Logs feedback on dataset records.
Use this to add scores, comments, or corrections to existing records
after they've been inserted.
Parameters
	feedback - List of feedback maps, each containing:	:id - Record ID to attach feedback to (required)
	:scores - Map of score names to values (0-1 range)
	:expected - Expected output (correction)
	:comment - Text comment
	:metadata - Additional metadata
	:source - Feedback source (e.g., "app", "human", "api")

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, result} = Braintrust.Dataset.feedback("ds_123", [
...> %{
...> id: "record_456",
...> scores: %{quality: 0.9},
...> comment: "High quality test case"
...> }
...>])

 fetch(dataset_id, params \\ [], opts \\ [])

 @spec fetch(String.t(), keyword(), keyword()) ::
 {:ok, map()} | {:error, Braintrust.Error.t()}

Fetches dataset records.
Returns a single page of records. For iterating through all records,
use fetch_stream/3.
Parameters
	:limit - Number of records to return (default: 100)
	:cursor - Pagination cursor from previous response
	:max_xact_id - Maximum transaction ID to fetch up to
	:max_root_span_id - Maximum root span ID to fetch up to
	:filters - List of filter objects for querying records
	:version - Dataset version to fetch (specific transaction ID)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, result} = Braintrust.Dataset.fetch("ds_123", limit: 50)
iex> is_list(result["events"])
true

 fetch_stream(dataset_id, params \\ [], opts \\ [])

 @spec fetch_stream(String.t(), keyword(), keyword()) :: Enumerable.t()

Returns a Stream that lazily paginates through dataset records.
This is memory-efficient for large result sets as it only fetches
pages as items are consumed.
Parameters
Same as fetch/3.
Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
Stream through all records
Braintrust.Dataset.fetch_stream("ds_123")
|> Stream.each(&process_record/1)
|> Stream.run()

Take first 100 records
Braintrust.Dataset.fetch_stream("ds_123", limit: 50)
|> Stream.take(100)
|> Enum.to_list()

 get(dataset_id, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Gets a dataset by ID.
Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, dataset} = Braintrust.Dataset.get("ds_123")
iex> dataset.name
"test-cases"

 insert(dataset_id, records, opts \\ [])

 @spec insert(String.t(), [map() | Braintrust.Span.t()], keyword()) ::
 {:ok, map()} | {:error, Braintrust.Error.t()}

Inserts dataset records.
Records represent test cases with input data and optional expected outputs.
Every insert is versioned via _xact_id for reproducibility.
Parameters
	records - List of record maps or %Braintrust.Span{} structs, each containing:	:input - Input data to recreate the example (required)
	:expected - Expected output for scoring (optional)
	:metadata - Custom metadata map (optional)
	:id - Unique record ID (optional, auto-generated if not provided)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
With raw maps
iex> {:ok, result} = Braintrust.Dataset.insert("ds_123", [
...> %{
...> input: %{question: "What is 2+2?"},
...> expected: "4"
...> },
...> %{
...> input: %{question: "What is the capital of France?"},
...> expected: "Paris",
...> metadata: %{category: "geography"}
...> }
...>])

With Span structs
iex> spans = [%Braintrust.Span{input: %{q: "test"}, expected: "answer"}]
iex> {:ok, result} = Braintrust.Dataset.insert("ds_123", spans)

 list(opts \\ [])

 @spec list(keyword()) :: {:ok, [t()]} | {:error, Braintrust.Error.t()}

Lists all datasets.
Returns all datasets as a list. For large result sets, consider using
stream/1 for memory-efficient lazy loading.
Options
	:limit - Number of results per page (default: 100)
	:starting_after - Cursor for pagination
	:project_id - Filter by project ID
	:dataset_name - Filter by dataset name
	:org_name - Filter by organization name
	:ids - Filter by specific dataset IDs (list of strings)
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, datasets} = Braintrust.Dataset.list(limit: 10)
iex> is_list(datasets)
true

 stream(opts \\ [])

 @spec stream(keyword()) :: Enumerable.t()

Returns a Stream that lazily paginates through all datasets.
This is memory-efficient for large result sets as it only fetches
pages as items are consumed.
Options
Same as list/1.
Examples
Take first 50 datasets
Braintrust.Dataset.stream(limit: 25)
|> Stream.take(50)
|> Enum.to_list()

Process all datasets without loading all into memory
Braintrust.Dataset.stream()
|> Stream.each(&process_dataset/1)
|> Stream.run()

 summarize(dataset_id, opts \\ [])

 @spec summarize(
 String.t(),
 keyword()
) :: {:ok, map()} | {:error, Braintrust.Error.t()}

Gets a summary of dataset contents.
Returns aggregated statistics about the dataset.
Parameters
	:summarize_data - Whether to include data summaries (default: true)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, summary} = Braintrust.Dataset.summarize("ds_123")
iex> is_binary(summary["project_name"])
true

 update(dataset_id, params, opts \\ [])

 @spec update(String.t(), map(), keyword()) ::
 {:ok, t()} | {:error, Braintrust.Error.t()}

Updates a dataset.
Uses PATCH semantics - only provided fields are updated. Object fields
like metadata support deep merge.
Parameters
	:name - New dataset name
	:description - New description
	:metadata - Metadata to merge (deep merge for nested objects)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, dataset} = Braintrust.Dataset.update("ds_123", %{
...> description: "Updated description"
...> })
iex> dataset.description
"Updated description"

Braintrust.Error

Error struct for Braintrust API errors.
All API functions return {:error, %Braintrust.Error{}} on failure,
allowing pattern matching on the :type field.
Error Types
	Type	HTTP Status	Retryable?	Description
	:bad_request	400	No	Invalid request parameters
	:authentication	401	No	Missing or invalid API key
	:permission_denied	403	No	Insufficient permissions
	:not_found	404	No	Resource not found
	:conflict	409	Yes	Conflict error
	:unprocessable_entity	422	No	Validation error
	:rate_limit	429	Yes	Rate limit exceeded
	:server_error	5xx	Yes	Server error
	:timeout	N/A	Yes	Request timeout
	:connection	N/A	Yes	Network/connection error

Examples
case Braintrust.Project.get("invalid-id") do
 {:ok, project} ->
 handle_project(project)

 {:error, %Braintrust.Error{type: :not_found}} ->
 handle_not_found()

 {:error, %Braintrust.Error{type: :rate_limit, retry_after: ms}} ->
 Process.sleep(ms)
 retry()

 {:error, %Braintrust.Error{} = error} ->
 Logger.error("API error: #{error.message}")
end

 Summary

 Types

 error_type()

 t()

 Functions

 new(type, message, opts \\ [])

 Creates a new error struct.

 retryable?(error)

 Returns whether the error is retryable.

 type_from_status(status)

 Converts an HTTP status code to an error type.

 Types

 error_type()

 @type error_type() ::
 :bad_request
 | :authentication
 | :permission_denied
 | :not_found
 | :conflict
 | :unprocessable_entity
 | :rate_limit
 | :server_error
 | :timeout
 | :connection

 t()

 @type t() :: %Braintrust.Error{
 code: String.t() | nil,
 message: String.t(),
 retry_after: pos_integer() | nil,
 status: pos_integer() | nil,
 type: error_type()
}

 Functions

 new(type, message, opts \\ [])

 @spec new(error_type(), String.t(), keyword()) :: t()

Creates a new error struct.
Examples
iex> error = Braintrust.Error.new(:not_found, "Project not found")
iex> error.type
:not_found
iex> error.message
"Project not found"

iex> error = Braintrust.Error.new(:rate_limit, "Too many requests", retry_after: 5000)
iex> error.retry_after
5000

 retryable?(error)

 @spec retryable?(t()) :: boolean()

Returns whether the error is retryable.
Retryable errors are those that may succeed on retry:
	:conflict - Temporary conflict
	:rate_limit - Rate limit will reset
	:server_error - Server may recover
	:timeout - Network may recover
	:connection - Connection may be restored

Examples
iex> error = Braintrust.Error.new(:rate_limit, "Too many requests")
iex> Braintrust.Error.retryable?(error)
true

iex> error = Braintrust.Error.new(:not_found, "Resource not found")
iex> Braintrust.Error.retryable?(error)
false

 type_from_status(status)

 @spec type_from_status(pos_integer()) :: error_type()

Converts an HTTP status code to an error type.
Examples
iex> Braintrust.Error.type_from_status(404)
:not_found

iex> Braintrust.Error.type_from_status(500)
:server_error

iex> Braintrust.Error.type_from_status(503)
:server_error

Braintrust.Experiment

Manage Braintrust experiments.
Experiments are containers for evaluation runs that track AI model performance
against datasets and scoring functions.
Examples
List all experiments
{:ok, experiments} = Braintrust.Experiment.list()

List experiments for a specific project
{:ok, experiments} = Braintrust.Experiment.list(project_id: "proj_123")

Create an experiment
{:ok, experiment} = Braintrust.Experiment.create(%{
 project_id: "proj_123",
 name: "baseline-v1"
})

Get an experiment by ID
{:ok, experiment} = Braintrust.Experiment.get("exp_123")

Update an experiment
{:ok, experiment} = Braintrust.Experiment.update("exp_123", %{
 description: "Updated description"
})

Delete an experiment
{:ok, experiment} = Braintrust.Experiment.delete("exp_123")
Pagination
The list/1 function supports cursor-based pagination:
Get all experiments as a list
{:ok, experiments} = Braintrust.Experiment.list()

Stream through experiments lazily
Braintrust.Experiment.stream()
|> Stream.take(100)
|> Enum.to_list()

 Summary

 Types

 t()

 Functions

 create(params, opts \\ [])

 Creates a new experiment.

 delete(experiment_id, opts \\ [])

 Deletes an experiment.

 feedback(experiment_id, feedback, opts \\ [])

 Logs feedback on experiment events.

 fetch(experiment_id, params \\ [], opts \\ [])

 Fetches experiment events.

 fetch_stream(experiment_id, params \\ [], opts \\ [])

 Returns a Stream that lazily paginates through experiment events.

 get(experiment_id, opts \\ [])

 Gets an experiment by ID.

 insert(experiment_id, events, opts \\ [])

 Inserts experiment events.

 list(opts \\ [])

 Lists all experiments.

 stream(opts \\ [])

 Returns a Stream that lazily paginates through all experiments.

 summarize(experiment_id, opts \\ [])

 Gets a summary of experiment results.

 update(experiment_id, params, opts \\ [])

 Updates an experiment.

 Types

 t()

 @type t() :: %Braintrust.Experiment{
 base_exp_id: String.t() | nil,
 created_at: DateTime.t() | nil,
 dataset_id: String.t() | nil,
 dataset_version: String.t() | nil,
 deleted_at: DateTime.t() | nil,
 description: String.t() | nil,
 id: String.t(),
 metadata: map() | nil,
 name: String.t(),
 project_id: String.t(),
 public: boolean(),
 repo_info: map() | nil,
 user_id: String.t() | nil
}

 Functions

 create(params, opts \\ [])

 @spec create(
 map(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Creates a new experiment.
If an experiment with the same name already exists within the project,
returns the existing experiment unmodified (idempotent behavior).
Parameters
	:project_id - Project ID (required)
	:name - Experiment name (required for idempotent creation)
	:description - Experiment description (optional)
	:repo_info - Git repository info map (optional)
	:base_exp_id - Base experiment ID for comparisons (optional)
	:dataset_id - Linked dataset ID (optional)
	:dataset_version - Dataset version/transaction ID (optional)
	:public - Public visibility flag (optional)
	:metadata - Custom metadata map (optional)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, experiment} = Braintrust.Experiment.create(%{
...> project_id: "proj_123",
...> name: "baseline-v1"
...> })
iex> experiment.name
"baseline-v1"

With metadata and dataset
iex> {:ok, experiment} = Braintrust.Experiment.create(%{
...> project_id: "proj_123",
...> name: "eval-run-1",
...> dataset_id: "ds_456",
...> metadata: %{model: "gpt-4", temperature: 0.7}
...> })

 delete(experiment_id, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Deletes an experiment.
This is a soft delete - the experiment's deleted_at field will be set.
Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, experiment} = Braintrust.Experiment.delete("exp_123")
iex> experiment.deleted_at != nil
true

 feedback(experiment_id, feedback, opts \\ [])

 @spec feedback(String.t(), [map()], keyword()) ::
 {:ok, map()} | {:error, Braintrust.Error.t()}

Logs feedback on experiment events.
Use this to add scores, comments, or corrections to existing events
after they've been inserted.
Parameters
	feedback - List of feedback maps, each containing:	:id - Event ID to attach feedback to (required)
	:scores - Map of score names to values (0-1 range)
	:expected - Expected output (correction)
	:comment - Text comment
	:metadata - Additional metadata
	:source - Feedback source (e.g., "app", "human", "api")

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, result} = Braintrust.Experiment.feedback("exp_123", [
...> %{
...> id: "event_456",
...> scores: %{human_rating: 0.8},
...> comment: "Good response but could be more concise"
...> }
...>])

 fetch(experiment_id, params \\ [], opts \\ [])

 @spec fetch(String.t(), keyword(), keyword()) ::
 {:ok, map()} | {:error, Braintrust.Error.t()}

Fetches experiment events.
Returns a single page of events. For iterating through all events,
use fetch_stream/3.
Parameters
	:limit - Number of events to return (default: 100)
	:cursor - Pagination cursor from previous response
	:max_xact_id - Maximum transaction ID to fetch up to
	:max_root_span_id - Maximum root span ID to fetch up to
	:filters - List of filter objects for querying events
	:version - Dataset version to fetch (specific transaction ID)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, result} = Braintrust.Experiment.fetch("exp_123", limit: 50)
iex> is_list(result["events"])
true

 fetch_stream(experiment_id, params \\ [], opts \\ [])

 @spec fetch_stream(String.t(), keyword(), keyword()) :: Enumerable.t()

Returns a Stream that lazily paginates through experiment events.
This is memory-efficient for large result sets as it only fetches
pages as items are consumed.
Parameters
Same as fetch/3.
Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
Stream through all events
Braintrust.Experiment.fetch_stream("exp_123")
|> Stream.each(&process_event/1)
|> Stream.run()

Take first 100 events
Braintrust.Experiment.fetch_stream("exp_123", limit: 50)
|> Stream.take(100)
|> Enum.to_list()

 get(experiment_id, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Gets an experiment by ID.
Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, experiment} = Braintrust.Experiment.get("exp_123")
iex> experiment.name
"baseline-v1"

 insert(experiment_id, events, opts \\ [])

 @spec insert(String.t(), [map() | Braintrust.Span.t()], keyword()) ::
 {:ok, map()} | {:error, Braintrust.Error.t()}

Inserts experiment events.
Events are the core data structure for experiment results. Each event
represents a single evaluation with input, output, and optional scores.
Parameters
	events - List of event maps or %Braintrust.Span{} structs, each containing:	:id - Unique event ID (optional, auto-generated if not provided)
	:input - Input data (recommended: OpenAI message format)
	:output - Output/response from the task
	:expected - Expected output for scoring (optional)
	:scores - Map of score names to values (0-1 range)
	:metadata - Custom metadata map
	:metrics - Numeric metrics (e.g., latency_ms, token_count)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
With raw maps
iex> {:ok, result} = Braintrust.Experiment.insert("exp_123", [
...> %{
...> input: %{messages: [%{role: "user", content: "What is 2+2?"}]},
...> output: "4",
...> scores: %{accuracy: 1.0},
...> metadata: %{model: "gpt-4"}
...> }
...>])

With Span structs
iex> spans = [%Braintrust.Span{input: %{q: "test"}, output: "result"}]
iex> {:ok, result} = Braintrust.Experiment.insert("exp_123", spans)

 list(opts \\ [])

 @spec list(keyword()) :: {:ok, [t()]} | {:error, Braintrust.Error.t()}

Lists all experiments.
Returns all experiments as a list. For large result sets, consider using
stream/1 for memory-efficient lazy loading.
Options
	:limit - Number of results per page (default: 100)
	:starting_after - Cursor for pagination
	:project_id - Filter by project ID
	:experiment_name - Filter by experiment name
	:org_name - Filter by organization name
	:ids - Filter by specific experiment IDs (list of strings)
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, experiments} = Braintrust.Experiment.list(limit: 10)
iex> is_list(experiments)
true

 stream(opts \\ [])

 @spec stream(keyword()) :: Enumerable.t()

Returns a Stream that lazily paginates through all experiments.
This is memory-efficient for large result sets as it only fetches
pages as items are consumed.
Options
Same as list/1.
Examples
Take first 50 experiments
Braintrust.Experiment.stream(limit: 25)
|> Stream.take(50)
|> Enum.to_list()

Process all experiments without loading all into memory
Braintrust.Experiment.stream()
|> Stream.each(&process_experiment/1)
|> Stream.run()

 summarize(experiment_id, opts \\ [])

 @spec summarize(
 String.t(),
 keyword()
) :: {:ok, map()} | {:error, Braintrust.Error.t()}

Gets a summary of experiment results.
Returns aggregated metrics and scores for the experiment, optionally
compared against another experiment.
Parameters
	:summarize_scores - Whether to include score summaries (default: true)
	:comparison_experiment_id - Experiment ID to compare against

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, summary} = Braintrust.Experiment.summarize("exp_123")
iex> is_list(summary["scores"])
true

Compare against baseline
iex> {:ok, summary} = Braintrust.Experiment.summarize("exp_123",
...> comparison_experiment_id: "exp_baseline"
...>)

 update(experiment_id, params, opts \\ [])

 @spec update(String.t(), map(), keyword()) ::
 {:ok, t()} | {:error, Braintrust.Error.t()}

Updates an experiment.
Uses PATCH semantics - only provided fields are updated. Object fields
like metadata support deep merge.
Parameters
	:name - New experiment name
	:description - New description
	:metadata - Metadata to merge (deep merge for nested objects)
	:public - Update visibility

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, experiment} = Braintrust.Experiment.update("exp_123", %{
...> description: "Updated description"
...> })
iex> experiment.description
"Updated description"

Braintrust.Function

Manage Braintrust functions.
Functions are versatile components that can serve as:
	Tools: General purpose code invoked by LLMs for function calling
	Scorers: Functions for scoring LLM output quality (0-1 range)
	Prompts: Versioned prompt templates (also accessible via Braintrust.Prompt)

Examples
List all functions
{:ok, functions} = Braintrust.Function.list()

List scorers for a specific project
{:ok, scorers} = Braintrust.Function.list(
 project_id: "proj_xxx",
 function_type: "scorer"
)

Get a function by ID
{:ok, func} = Braintrust.Function.get("func_xxx")

Create a code-based scorer
{:ok, scorer} = Braintrust.Function.create(%{
 project_id: "proj_xxx",
 name: "relevance-scorer",
 slug: "relevance-scorer-v1",
 function_type: "scorer",
 function_data: %{
 type: "code",
 data: %{
 runtime: "node",
 code: "export default async function({ input, output, expected }) { ... }"
 }
 }
})

Update a function
{:ok, func} = Braintrust.Function.update("func_xxx", %{
 description: "Updated description"
})

Delete a function
{:ok, func} = Braintrust.Function.delete("func_xxx")
Function Types
	Type	Description	Use Case
	tool	General purpose code	Function calling, API integrations
	scorer	Quality scoring (0-1)	Evaluation metrics
	prompt	Versioned prompts	Also via Braintrust.Prompt

Scorer Subtypes
Scorers can be implemented in different ways:
	Code-based: TypeScript/Python scorers (fast, deterministic)
	LLM-as-a-judge: Uses LLM to evaluate output (nuanced, subjective)
	Pre-built autoevals: From autoevals library (ExactMatch, Levenshtein, etc.)

Pagination
The list/1 function supports cursor-based pagination:
Get all functions as a list
{:ok, functions} = Braintrust.Function.list()

Stream through functions lazily
Braintrust.Function.stream()
|> Stream.take(100)
|> Enum.to_list()

 Summary

 Types

 t()

 Functions

 create(params, opts \\ [])

 Creates a new function.

 delete(function_id, opts \\ [])

 Deletes a function.

 get(function_id, opts \\ [])

 Gets a function by ID.

 list(opts \\ [])

 Lists all functions.

 stream(opts \\ [])

 Returns a Stream that lazily paginates through all functions.

 update(function_id, params, opts \\ [])

 Updates a function.

 Types

 t()

 @type t() :: %Braintrust.Function{
 created_at: DateTime.t() | nil,
 deleted_at: DateTime.t() | nil,
 description: String.t() | nil,
 function_data: map() | nil,
 function_type: String.t() | nil,
 id: String.t(),
 metadata: map() | nil,
 name: String.t(),
 org_id: String.t() | nil,
 origin: map() | nil,
 project_id: String.t() | nil,
 slug: String.t() | nil,
 user_id: String.t() | nil
}

 Functions

 create(params, opts \\ [])

 @spec create(
 map(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Creates a new function.
If a function with the same name/slug already exists within the project,
returns the existing function unmodified (idempotent behavior).
Parameters
	:project_id - Project ID (required)
	:name - Function name (required)
	:slug - Unique identifier for stable references (optional)
	:description - Function description (optional)
	:function_type - Type: "tool", "scorer", or "prompt" (optional)
	:function_data - Function implementation data (optional)
	:origin - Source tracking information (optional)
	:metadata - Custom metadata map (optional)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
Create a code-based scorer
iex> {:ok, scorer} = Braintrust.Function.create(%{
...> project_id: "proj_123",
...> name: "relevance-scorer",
...> slug: "relevance-scorer-v1",
...> function_type: "scorer",
...> function_data: %{
...> type: "code",
...> data: %{runtime: "node", code: "..."}
...> }
...> })
iex> scorer.function_type
"scorer"

 delete(function_id, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Deletes a function.
This is a soft delete - the function's deleted_at field will be set.
Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, func} = Braintrust.Function.delete("func_123")
iex> func.deleted_at != nil
true

 get(function_id, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Gets a function by ID.
Options
	:version - Specific version identifier to retrieve
	:xact_id - Transaction ID for exact version
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, func} = Braintrust.Function.get("func_123")
iex> func.name
"my-scorer"

Get a specific version
iex> {:ok, func} = Braintrust.Function.get("func_123", version: "v2")

 list(opts \\ [])

 @spec list(keyword()) :: {:ok, [t()]} | {:error, Braintrust.Error.t()}

Lists all functions.
Returns all functions as a list. For large result sets, consider using
stream/1 for memory-efficient lazy loading.
Options
	:limit - Number of results per page (default: 100)
	:starting_after - Cursor for pagination
	:project_id - Filter by project ID
	:function_name - Filter by function name
	:function_type - Filter by type: "tool", "scorer", or "prompt"
	:slug - Filter by function slug
	:org_name - Filter by organization name
	:ids - Filter by specific function IDs (list of strings)
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, functions} = Braintrust.Function.list(limit: 10)
iex> is_list(functions)
true

 stream(opts \\ [])

 @spec stream(keyword()) :: Enumerable.t()

Returns a Stream that lazily paginates through all functions.
This is memory-efficient for large result sets as it only fetches
pages as items are consumed.
Options
Same as list/1.
Examples
Take first 50 functions
Braintrust.Function.stream(limit: 25)
|> Stream.take(50)
|> Enum.to_list()

Process all functions without loading all into memory
Braintrust.Function.stream()
|> Stream.each(&process_function/1)
|> Stream.run()

 update(function_id, params, opts \\ [])

 @spec update(String.t(), map(), keyword()) ::
 {:ok, t()} | {:error, Braintrust.Error.t()}

Updates a function.
Uses PATCH semantics - only provided fields are updated. Updating a function
may create a new version; previous versions remain accessible via version/xact_id.
Parameters
	:name - New function name
	:slug - New slug identifier
	:description - New description
	:function_type - New function type
	:function_data - Updated implementation data
	:metadata - Metadata to merge (deep merge for nested objects)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, func} = Braintrust.Function.update("func_123", %{
...> description: "Updated description"
...> })
iex> func.description
"Updated description"

Braintrust.Log

Log production traces to Braintrust for observability.
The Log module provides functionality to submit production logs and traces
for AI applications. Unlike other resources (Project, Experiment, Dataset),
the Log API is write-only - there are no list, get, or delete operations.
Overview
Production logging enables:
	Observability of AI interactions in production
	Quality monitoring via scores and metrics
	Debugging and analysis of real-world usage
	Performance tracking across deployments

Examples
Log a simple interaction
{:ok, result} = Braintrust.Log.insert("proj_123", [
 %{
 input: %{messages: [%{role: "user", content: "Hello"}]},
 output: "Hi there!",
 scores: %{quality: 0.9},
 metadata: %{model: "gpt-4", environment: "production"}
 }
])

Log with metrics
{:ok, result} = Braintrust.Log.insert("proj_123", [
 %{
 input: %{messages: [%{role: "user", content: "Summarize this"}]},
 output: "Here's a summary...",
 metrics: %{latency_ms: 250, input_tokens: 500, output_tokens: 100},
 tags: ["production", "summarization"]
 }
])

Using Span structs
spans = [
 %Braintrust.Span{
 input: %{messages: [%{role: "user", content: "test"}]},
 output: "response",
 scores: %{accuracy: 0.95}
 }
]
{:ok, result} = Braintrust.Log.insert("proj_123", spans)
Input Format
For best UI integration (including the "Try prompt" button), format input
as OpenAI message format:
%{
 messages: [
 %{role: "system", content: "You are helpful."},
 %{role: "user", content: "Hello!"}
]
}
Scores vs Metrics
	Scores: Values normalized to [0, 1] range (e.g., accuracy: 0.9)
	Metrics: Raw numbers that get summed during aggregation (e.g., latency_ms: 250)

Tags
Tags are string labels applied to top-level spans (traces). They should only
be set on the root span of a trace, not on subspans.
Batching
The insert/3 function accepts a list of events, enabling batch submission
for improved performance. Consider batching multiple spans in a single request
when logging high-volume production traffic.

 Summary

 Functions

 insert(project_id, events, opts \\ [])

 Inserts log events/spans for a project.

 Functions

 insert(project_id, events, opts \\ [])

 @spec insert(String.t(), [map() | Braintrust.Span.t()], keyword()) ::
 {:ok, map()} | {:error, Braintrust.Error.t()}

Inserts log events/spans for a project.
Parameters
	project_id - The project ID to log events to
	events - List of event maps or %Braintrust.Span{} structs, each containing:	:input - Input data (OpenAI message format recommended)
	:output - Output/response from the task
	:expected - Expected output for scoring (optional)
	:scores - Map of score names to values (0-1 range)
	:metadata - Custom metadata map (string keys, JSON-serializable values)
	:metrics - Numeric metrics (e.g., latency_ms, token_count)
	:tags - String tags (only on top-level spans)
	:error - Error information if applicable

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Returns
	{:ok, map()} - Success response with row IDs
	{:error, %Braintrust.Error{}} - Error response

Examples
Log with raw maps
iex> {:ok, result} = Braintrust.Log.insert("proj_123", [
...> %{
...> input: %{messages: [%{role: "user", content: "Hello"}]},
...> output: "Hi there!",
...> scores: %{quality: 0.9}
...> }
...>])

Log with Span structs
iex> spans = [%Braintrust.Span{input: %{q: "test"}, output: "result"}]
iex> {:ok, result} = Braintrust.Log.insert("proj_123", spans)

Log with metadata and metrics
iex> {:ok, result} = Braintrust.Log.insert("proj_123", [
...> %{
...> input: %{messages: [%{role: "user", content: "Summarize"}]},
...> output: "Summary...",
...> metadata: %{model: "gpt-4", environment: "production"},
...> metrics: %{latency_ms: 250, input_tokens: 100}
...> }
...>])

Braintrust.Pagination

Cursor-based pagination for Braintrust API list endpoints.
Provides both lazy Stream-based iteration and eager list functions
for paginating through API results.
Stream-based pagination (recommended for large datasets)
Uses Elixir Streams for memory-efficient, lazy evaluation:
Define a fetch function that calls the API
fetch_fn = fn opts ->
 Braintrust.Client.get(client, "/v1/project", params: opts)
end

Stream through results
Braintrust.Pagination.stream(fetch_fn, limit: 100)
|> Stream.take(500)
|> Enum.to_list()
Eager list (fetches all pages)
Braintrust.Pagination.list(fetch_fn, limit: 100)
Duplicate filtering
For fetch endpoints that may return duplicate items across pages:
Braintrust.Pagination.stream(fetch_fn, unique_by: :id)

 Summary

 Types

 fetch_fn()

 item()

 Functions

 list(fetch_fn, opts \\ [])

 Fetches all pages and returns a list of all items.

 stream(fetch_fn, opts \\ [])

 Creates a Stream that lazily paginates through API results.

 Types

 fetch_fn()

 @type fetch_fn() :: (keyword() -> {:ok, map()} | {:error, Braintrust.Error.t()})

 item()

 @type item() :: map()

 Functions

 list(fetch_fn, opts \\ [])

 @spec list(
 fetch_fn(),
 keyword()
) :: {:ok, [item()]} | {:error, Braintrust.Error.t()}

Fetches all pages and returns a list of all items.
This is a convenience function that eagerly consumes the entire
paginated result set. For large datasets, prefer stream/2.
Options
Same as stream/2.
Examples
iex> fetch_fn = fn _opts -> {:ok, %{"objects" => [%{"id" => "1"}]}} end
iex> Braintrust.Pagination.list(fetch_fn)
{:ok, [%{"id" => "1"}]}

 stream(fetch_fn, opts \\ [])

 @spec stream(
 fetch_fn(),
 keyword()
) :: Enumerable.t()

Creates a Stream that lazily paginates through API results.
The stream fetches pages on-demand as items are consumed,
making it memory-efficient for large result sets.
Options
	:limit - Number of items per page (default: 100)
	:starting_after - Cursor to start pagination from
	:unique_by - Key to use for duplicate filtering (e.g., :id)

Examples
iex> fetch_fn = fn opts -> {:ok, %{"objects" => [%{"id" => "1"}]}} end
iex> Braintrust.Pagination.stream(fetch_fn) |> Enum.take(1)
[%{"id" => "1"}]

Braintrust.Project

Manage Braintrust projects.
Projects are the foundational organizational unit in Braintrust - containers
for experiments, datasets, and logs.
Examples
List all projects
{:ok, projects} = Braintrust.Project.list()

Create a project
{:ok, project} = Braintrust.Project.create(%{name: "my-project"})

Get a project by ID
{:ok, project} = Braintrust.Project.get("proj_123")

Update a project
{:ok, project} = Braintrust.Project.update("proj_123", %{name: "new-name"})

Delete a project
{:ok, project} = Braintrust.Project.delete("proj_123")
Pagination
The list/1 function supports cursor-based pagination:
Get all projects as a list
{:ok, projects} = Braintrust.Project.list()

Stream through projects lazily
Braintrust.Project.stream()
|> Stream.take(100)
|> Enum.to_list()

 Summary

 Types

 t()

 Functions

 create(params, opts \\ [])

 Creates a new project.

 delete(project_id, opts \\ [])

 Deletes a project.

 get(project_id, opts \\ [])

 Gets a project by ID.

 list(opts \\ [])

 Lists all projects.

 stream(opts \\ [])

 Returns a Stream that lazily paginates through all projects.

 update(project_id, params, opts \\ [])

 Updates a project.

 Types

 t()

 @type t() :: %Braintrust.Project{
 created_at: DateTime.t() | nil,
 deleted_at: DateTime.t() | nil,
 id: String.t(),
 name: String.t(),
 org_id: String.t(),
 settings: map() | nil,
 user_id: String.t() | nil
}

 Functions

 create(params, opts \\ [])

 @spec create(
 map(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Creates a new project.
If a project with the same name already exists, returns the existing
project unmodified (idempotent behavior).
Parameters
	:name - Project name (required)
	:settings - Project settings map (optional)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, project} = Braintrust.Project.create(%{name: "my-project"})
iex> project.name
"my-project"

With settings
iex> {:ok, project} = Braintrust.Project.create(%{
...> name: "my-project",
...> settings: %{comparison_key: "input"}
...> })

 delete(project_id, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Deletes a project.
This is a soft delete - the project's deleted_at field will be set.
Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, project} = Braintrust.Project.delete("proj_123")
iex> project.deleted_at != nil
true

 get(project_id, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Gets a project by ID.
Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, project} = Braintrust.Project.get("proj_123")
iex> project.name
"my-project"

 list(opts \\ [])

 @spec list(keyword()) :: {:ok, [t()]} | {:error, Braintrust.Error.t()}

Lists all projects.
Returns all projects as a list. For large result sets, consider using
stream/1 for memory-efficient lazy loading.
Options
	:limit - Number of results per page (default: 100)
	:starting_after - Cursor for pagination
	:project_name - Filter by project name
	:org_name - Filter by organization name
	:ids - Filter by specific project IDs (list of strings)
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, projects} = Braintrust.Project.list(limit: 10)
iex> is_list(projects)
true

 stream(opts \\ [])

 @spec stream(keyword()) :: Enumerable.t()

Returns a Stream that lazily paginates through all projects.
This is memory-efficient for large result sets as it only fetches
pages as items are consumed.
Options
Same as list/1.
Examples
Take first 50 projects
Braintrust.Project.stream(limit: 25)
|> Stream.take(50)
|> Enum.to_list()

Process all projects without loading all into memory
Braintrust.Project.stream()
|> Stream.each(&process_project/1)
|> Stream.run()

 update(project_id, params, opts \\ [])

 @spec update(String.t(), map(), keyword()) ::
 {:ok, t()} | {:error, Braintrust.Error.t()}

Updates a project.
Uses PATCH semantics - only provided fields are updated. Object fields
like settings support deep merge.
Parameters
	:name - New project name
	:settings - Settings to merge (deep merge for nested objects)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, project} = Braintrust.Project.update("proj_123", %{name: "new-name"})
iex> project.name
"new-name"

Update settings (deep merge)
iex> {:ok, project} = Braintrust.Project.update("proj_123", %{
...> settings: %{comparison_key: "output"}
...> })

Braintrust.Prompt

Manage Braintrust prompts.
Prompts are version-controlled, evaluated artifacts that integrate with
Braintrust's evaluation infrastructure and staged deployment workflows.
Examples
List all prompts
{:ok, prompts} = Braintrust.Prompt.list()

List prompts for a specific project
{:ok, prompts} = Braintrust.Prompt.list(project_id: "proj_123")

Create a prompt
{:ok, prompt} = Braintrust.Prompt.create(%{
 project_id: "proj_123",
 name: "customer-support",
 slug: "customer-support-v1",
 model: "gpt-4",
 messages: [
 %{role: "system", content: "You are a helpful customer support agent."},
 %{role: "user", content: "{{user_input}}"}
]
})

Get a prompt by ID
{:ok, prompt} = Braintrust.Prompt.get("prompt_123")

Get a specific version
{:ok, prompt} = Braintrust.Prompt.get("prompt_123", version: "v2")

Update a prompt (creates new version)
{:ok, prompt} = Braintrust.Prompt.update("prompt_123", %{
 messages: [...]
})

Delete a prompt
{:ok, prompt} = Braintrust.Prompt.delete("prompt_123")
Pagination
The list/1 function supports cursor-based pagination:
Get all prompts as a list
{:ok, prompts} = Braintrust.Prompt.list()

Stream through prompts lazily
Braintrust.Prompt.stream()
|> Stream.take(100)
|> Enum.to_list()
Versioning
Prompts are versioned via _xact_id (transaction ID). Retrieve specific
versions using the :version or :xact_id options in get/2.
Template Variables
Message content supports {{variable}} syntax for template variables.
These are replaced at runtime when the prompt is used.

 Summary

 Types

 message()

 t()

 Functions

 create(params, opts \\ [])

 Creates a new prompt.

 delete(prompt_id, opts \\ [])

 Deletes a prompt.

 get(prompt_id, opts \\ [])

 Gets a prompt by ID.

 list(opts \\ [])

 Lists all prompts.

 stream(opts \\ [])

 Returns a Stream that lazily paginates through all prompts.

 update(prompt_id, params, opts \\ [])

 Updates a prompt.

 Types

 message()

 @type message() :: %{role: String.t(), content: String.t()}

 t()

 @type t() :: %Braintrust.Prompt{
 created_at: DateTime.t() | nil,
 deleted_at: DateTime.t() | nil,
 description: String.t() | nil,
 function_type: String.t() | nil,
 id: String.t(),
 messages: [message()] | nil,
 metadata: map() | nil,
 model: String.t() | nil,
 name: String.t(),
 org_id: String.t() | nil,
 project_id: String.t() | nil,
 slug: String.t() | nil,
 tool_choice: String.t() | map() | nil,
 tools: [map()] | nil,
 user_id: String.t() | nil
}

 Functions

 create(params, opts \\ [])

 @spec create(
 map(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Creates a new prompt.
If a prompt with the same name/slug already exists within the project,
returns the existing prompt unmodified (idempotent behavior).
Parameters
	:project_id - Project ID (required)
	:name - Prompt name (required)
	:slug - Unique identifier for stable references (optional)
	:description - Prompt description (optional)
	:model - Model to use (e.g., "gpt-4") (optional)
	:messages - List of message maps with :role and :content (optional)
	:tools - Tool/function definitions for function calling (optional)
	:tool_choice - Tool selection preference (optional)
	:metadata - Custom metadata map (optional)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, prompt} = Braintrust.Prompt.create(%{
...> project_id: "proj_123",
...> name: "my-prompt",
...> slug: "my-prompt-v1",
...> model: "gpt-4",
...> messages: [
...> %{role: "system", content: "You are helpful."},
...> %{role: "user", content: "{{query}}"}
...>]
...> })
iex> prompt.name
"my-prompt"

 delete(prompt_id, opts \\ [])

 @spec delete(
 String.t(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Deletes a prompt.
This is a soft delete - the prompt's deleted_at field will be set.
Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, prompt} = Braintrust.Prompt.delete("prompt_123")
iex> prompt.deleted_at != nil
true

 get(prompt_id, opts \\ [])

 @spec get(
 String.t(),
 keyword()
) :: {:ok, t()} | {:error, Braintrust.Error.t()}

Gets a prompt by ID.
Options
	:version - Specific version identifier to retrieve
	:xact_id - Transaction ID for exact version
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, prompt} = Braintrust.Prompt.get("prompt_123")
iex> prompt.name
"customer-support"

Get a specific version
iex> {:ok, prompt} = Braintrust.Prompt.get("prompt_123", version: "v2")

 list(opts \\ [])

 @spec list(keyword()) :: {:ok, [t()]} | {:error, Braintrust.Error.t()}

Lists all prompts.
Returns all prompts as a list. For large result sets, consider using
stream/1 for memory-efficient lazy loading.
Options
	:limit - Number of results per page (default: 100)
	:starting_after - Cursor for pagination
	:project_id - Filter by project ID
	:prompt_name - Filter by prompt name
	:slug - Filter by prompt slug
	:org_name - Filter by organization name
	:ids - Filter by specific prompt IDs (list of strings)
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, prompts} = Braintrust.Prompt.list(limit: 10)
iex> is_list(prompts)
true

 stream(opts \\ [])

 @spec stream(keyword()) :: Enumerable.t()

Returns a Stream that lazily paginates through all prompts.
This is memory-efficient for large result sets as it only fetches
pages as items are consumed.
Options
Same as list/1.
Examples
Take first 50 prompts
Braintrust.Prompt.stream(limit: 25)
|> Stream.take(50)
|> Enum.to_list()

Process all prompts without loading all into memory
Braintrust.Prompt.stream()
|> Stream.each(&process_prompt/1)
|> Stream.run()

 update(prompt_id, params, opts \\ [])

 @spec update(String.t(), map(), keyword()) ::
 {:ok, t()} | {:error, Braintrust.Error.t()}

Updates a prompt.
Uses PATCH semantics - only provided fields are updated. Updating a prompt
creates a new version; previous versions remain accessible via version/xact_id.
Parameters
	:name - New prompt name
	:slug - New slug identifier
	:description - New description
	:model - New model
	:messages - Updated message list
	:tools - Updated tool definitions
	:tool_choice - Updated tool choice
	:metadata - Metadata to merge (deep merge for nested objects)

Options
	:api_key - Override API key for this request
	:base_url - Override base URL for this request

Examples
iex> {:ok, prompt} = Braintrust.Prompt.update("prompt_123", %{
...> messages: [
...> %{role: "system", content: "Updated system prompt."},
...> %{role: "user", content: "{{query}}"}
...>]
...> })
iex> length(prompt.messages)
2

Braintrust.Span

Represents a span in a Braintrust trace.
Spans are the core data structure for logging AI interactions. They capture
input/output pairs, scores, metrics, and metadata for observability.
Structure
Traces in Braintrust form a directed acyclic graph (DAG) of spans:
	A trace corresponds to a single request/interaction
	A span is a unit of work within a trace (e.g., single LLM call, tool invocation)
	Each span can have multiple parents (supporting DAG structure)
	Most executions form a simple tree

Fields
Core Fields
	:id - Unique identifier for the span (UUID, auto-generated if not provided)
	:span_id - Span identifier for tracing (SDK-managed)
	:root_span_id - Root span of the trace (SDK-managed)
	:span_parents - Parent span IDs (SDK-managed, supports DAG structure)

Data Fields
	:input - Input data (OpenAI message format recommended for UI support)
	:output - Output/response from the task
	:expected - Expected output for scoring (optional)
	:error - Error information if applicable

Scoring Fields
	:scores - Score values normalized to 0-1 range, keyed by score name
	:metrics - Raw numeric values that get summed during aggregation

Metadata Fields
	:metadata - String keys with JSON-serializable values
	:tags - String tags (only on top-level spans/traces)
	:created_at - ISO 8601 timestamp

Input Format
For best UI integration, format input as OpenAI message format:
%Braintrust.Span{
 input: %{
 messages: [
 %{role: "system", content: "You are helpful."},
 %{role: "user", content: "Hello!"}
]
 },
 output: "Hi there!"
}
Scores vs Metrics
	Scores: Values normalized to [0, 1] range (e.g., accuracy, relevance)
	Metrics: Raw numbers that cannot be normalized (e.g., latency_ms, token_count)

Examples
Basic span
span = %Braintrust.Span{
 input: %{messages: [%{role: "user", content: "What is 2+2?"}]},
 output: "4",
 scores: %{accuracy: 1.0}
}

Span with metadata and metrics
span = %Braintrust.Span{
 input: %{messages: [%{role: "user", content: "Hello"}]},
 output: "Hi there!",
 scores: %{quality: 0.9, relevance: 0.85},
 metadata: %{model: "gpt-4", environment: "production"},
 metrics: %{latency_ms: 250, input_tokens: 50, output_tokens: 25}
}
Auto-Managed Fields
The following fields are typically managed by the SDK and should not be set manually:
	span_id, root_span_id, span_parents - Trace hierarchy
	project_id, experiment_id, dataset_id, log_id - Context IDs

 Summary

 Types

 t()

 Functions

 to_map(span)

 Converts a Span struct to a map suitable for API submission.

 Types

 t()

 @type t() :: %Braintrust.Span{
 created_at: DateTime.t() | String.t() | nil,
 error: String.t() | nil,
 expected: any(),
 id: String.t() | nil,
 input: map() | nil,
 metadata: map() | nil,
 metrics: map() | nil,
 output: any(),
 root_span_id: String.t() | nil,
 scores: map() | nil,
 span_id: String.t() | nil,
 span_parents: [String.t()] | nil,
 tags: [String.t()] | nil
}

 Functions

 to_map(span)

 @spec to_map(t()) :: map()

Converts a Span struct to a map suitable for API submission.
Removes nil values to avoid sending empty fields to the API.
Examples
iex> span = %Braintrust.Span{
...> input: %{query: "test"},
...> output: "result",
...> scores: %{quality: 0.9}
...> }
iex> map = Braintrust.Span.to_map(span)
iex> map[:input]
%{query: "test"}
iex> Map.has_key?(map, :id)
false

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

