

 Broadway

 v1.2.1

 Table of contents

 	Examples

 	Introduction

 	Amazon SQS

 	Apache Kafka

 	Google Cloud Pub/Sub

 	RabbitMQ

 	Custom Producers

 	Internals

 	Architecture

 	
 Modules

 	Broadway

 	Broadway.Application

 	Broadway.BatchInfo

 	Broadway.Message

 	Acknowledgement

 	Broadway.Acknowledger

 	Broadway.CallerAcknowledger

 	Broadway.NoopAcknowledger

 	Producers

 	Broadway.DummyProducer

 	Broadway.Producer

Introduction

Broadway is a library for building concurrent and multi-stage data ingestion and data processing pipelines with Elixir. Broadway pipelines are concurrent and robust, thanks to the Erlang VM and its actors. It features:
	Back-pressure
	Automatic acknowledgements at the end of the pipeline
	Batching
	Fault tolerance
	Graceful shutdown
	Built-in testing
	Custom failure handling
	Ordering and partitioning
	Rate-limiting
	Metrics

 Official Producers

Currently we officially support four Broadway producers:
	Amazon SQS: Source - Guide
	Apache Kafka: Source - Guide
	Google Cloud Pub/Sub: Source - Guide
	RabbitMQ: Source - Guide

The guides links above will help you get started with your adapter of choice. For API reference, you can check out the Broadway module.

 Non-official (Off-Broadway) Producers

For those interested in rolling their own Broadway Producers (which we actively encourage!), we recommend using the OffBroadway namespace, mirroring the Off-Broadway theaters. For example, if you want to publish your own integration with Amazon SQS, you can package it as off_broadway_sqs, which uses the OffBroadway.SQS namespace.
The following Off-Broadway libraries are available (feel free to send a PR adding your own in alphabetical order):
	off_broadway_amqp10: Guide
	off_broadway_elasticsearch: Guide
	off_broadway_kafka: Guide
	off_broadway_memory: Guide
	off_broadway_redis: Guide
	off_broadway_redis_stream: Guide
	off_broadway_splunk: Guide

Amazon SQS

Amazon Simple Queue Service (SQS) is a highly scalable distributed message
queuing service provided by Amazon.com. AWS SQS offers two types of message
queues:
	Standard
	Nearly unlimited throughput
	Best-effort ordering
	At-least-once delivery

	FIFO
	Limited number of transactions per second (TPS).
See Amazon SQS FIFO
developer guide for more information on limits.
	Order in which messages are sent/received is strictly preserved
	Exactly-once delivery

Broadway can work seamlessly with both, Standard and FIFO queues.

 Getting Started

In order to use Broadway with SQS, we need to:
	Create a SQS queue (or use an existing one)
	Configure our Elixir project to use Broadway
	Define your pipeline configuration
	Implement Broadway callbacks
	Run the Broadway pipeline
	Tuning the configuration (Optional)

 Create a SQS queue

Amazon provides a comprehensive Step-by-step Guide
on creating SQS queues. In case you don't have an AWS account and want to
test Broadway locally, use can easily install ElasticMQ,
which is a message queue system that offers a SQS-compatible query interface.

 Configure the project

In this guide we're going to use BroadwaySQS,
which is a Broadway SQS Connector provided by Dashbit.

 Starting a new project

If you plan to start a new project, just run:
$ mix new my_app --sup

The --sup flag instructs Elixir to generate an application with a supervision tree.

 Setting up dependencies

Add :broadway_sqs to the list of dependencies in mix.exs along the HTTP
client of your choice (defaults to :hackney):
def deps do
 [
 ...
 {:broadway_sqs, "~> 0.7"},
 {:hackney, "~> 1.9"},
]
end
Don't forget to check for the latest version of dependencies.

 Define the pipeline configuration

Broadway is a process-based behaviour and to define a Broadway
pipeline, we need to define three functions: start_link/1,
handle_message/3 and handle_batch/4. We will cover start_link/1
in this section and the handle_ callbacks in the next one.
Similar to other process-based behaviour, start_link/1 simply
delegates to Broadway.start_link/2, which should define the
producers, processors, and batchers in the Broadway pipeline.
Assuming we want to consume messages from a queue called
my_queue, the minimal configuration would be:
defmodule MyBroadway do
 use Broadway

 alias Broadway.Message

 def start_link(_opts) do
 Broadway.start_link(__MODULE__,
 name: __MODULE__,
 producer: [
 module: {BroadwaySQS.Producer,
 queue_url: "https://us-east-2.queue.amazonaws.com/100000000001/my_queue"}
],
 processors: [
 default: []
],
 batchers: [
 default: [
 batch_size: 10,
 batch_timeout: 2000
]
]
)
 end

 ...callbacks...
end
The above configuration also assumes that you have the AWS credentials
set up in your environment, for instance, by having the AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY environment variables set. If that's
not the case, you will need to pass that information to the client so it
can properly connect to the AWS servers. Here is how you can do it:
...
producer: [
 module:
 {BroadwaySQS.Producer,
 queue_url: "https://us-east-2.queue.amazonaws.com/100000000001/my_queue",
 config: [
 access_key_id: "YOUR_AWS_ACCESS_KEY_ID",
 secret_access_key: "YOUR_AWS_SECRET_ACCESS_KEY"
]}
]
...
For a full list of options for BroadwaySQS.Producer, please see
BroadwaySQS documentation.
For general information about setting up Broadway, see Broadway
module docs as well as Broadway.start_link/2.
Note: Even though batching is optional since Broadway v0.2, we recommend that all Amazon SQS
pipelines have at least a default batcher. This lets you control the exact batch
size and frequency that messages are acknowledged to Amazon SQS, often leading to
pipelines that are more cost and time efficient.

 Implement Broadway callbacks

In order to process incoming messages, we need to implement the
required callbacks. For the sake of simplicity, we're considering that
all messages received from the queue are just numbers:
defmodule MyBroadway do
 use Broadway

 alias Broadway.Message

 ...start_link...

 @impl true
 def handle_message(_, %Message{data: data} = message, _) do
 message
 |> Message.update_data(fn data -> data * data end)
 end

 @impl true
 def handle_batch(_, messages, _, _) do
 list = messages |> Enum.map(fn e -> e.data end)
 IO.inspect(list, label: "Got batch of finished jobs from processors, sending ACKs to SQS as a batch.")
 messages
 end
end
We are not doing anything fancy here, but it should be enough for our
purpose. First we update the message's data individually inside
handle_message/3 and then we print each batch inside handle_batch/4.
For more information, see Broadway.handle_message/3 and
Broadway.handle_batch/4.

 Run the Broadway pipeline

To run your Broadway pipeline, you just need to add as a child in
a supervision tree. Most applications have a supervision tree defined
at lib/my_app/application.ex. You can add Broadway as a child to a
supervisor as follows:
children = [
 {MyBroadway, []}
]

Supervisor.start_link(children, strategy: :one_for_one)
Now the Broadway pipeline should be started when your application starts.
Also, if your Broadway has any dependency (for example, it needs to talk
to the database), make sure that Broadway is listed after its dependencies
in the supervision tree.

 Tuning the configuration

Some of the configuration options available for Broadway come already with a
"reasonable" default value. However those values might not suit your
requirements. Depending on the number of messages you get, how much processing
they need and how much IO work is going to take place, you might need completely
different values to optimize the flow of your pipeline. The concurrency option
available for every set of producers, processors and batchers, among with
max_demand, batch_size, and batch_timeout can give you a great deal
of flexibility.
The concurrency option controls the concurrency level in each layer of
the pipeline.
See the notes on Producer concurrency
and Batcher concurrency
for details.
Here's an example on how you could tune them according to
your needs.
defmodule MyBroadway do
 use Broadway

 def start_link(_opts) do
 Broadway.start_link(__MODULE__,
 name: __MODULE__,
 producer: [
 ...
 concurrency: 10,
],
 processors: [
 default: [
 concurrency: 100,
 max_demand: 1,
]
],
 batchers: [
 default: [
 batch_size: 10,
 concurrency: 10,
]
]
)
 end

 ...callbacks...
end
In order to get a good set of configurations for your pipeline, it's
important to respect the limitations of the servers you're running,
as well as the limitations of the services you're providing/consuming
data to/from. Broadway comes with telemetry, so you can measure your
pipeline and help ensure your changes are effective.

Apache Kafka

Kafka is a distributed streaming platform that has three key capabilities:
	Publish and subscribe to streams of records
	Store streams of records in a fault-tolerant durable way
	Process streams of records as they occur

 Getting Started

In order to use Broadway with Kafka, we need to:
	Create a stream of records (or use an existing one)
	Configure your Elixir project to use Broadway
	Define your pipeline configuration
	Implement Broadway callbacks
	Run the Broadway pipeline

 Create a stream of records (or use an existing one)

In case you don't have Kafka installed yet, please follow the instructions on Kafka's
Quickstart for a clean installation. After
initializing Kafka, you can create a new stream by running:
$ kafka-topics --create --zookeeper localhost:2181 --partitions 3 --topic test

 Configure your Elixir project to use Broadway

This guide describes the steps necessary to integrate Broadway with Kafka using
BroadwayKafka,
which is a Broadway Kafka Connector provided by Dashbit.
BroadwayKafka can subscribe to one or more topics and process streams of records
using Kafka's Consumer API.
Each GenStage producer initialized by BroadwayKafka will be available as a consumer,
all registered using the same self-labeled consumer group. Each record published to a
topic/partition will be delivered to one consumer instance within each consumer group.
Bear in mind that a topic/partition can be assigned to any consumer instance that has
been subscribed using the same consumer group, i.e, any Broadway instance or application
running on any machine connected to the Kafka cluster.

 Starting a new project

Create a new project running:
$ mix new my_app --sup

The --sup flag instructs Elixir to generate an application with a supervision tree.

 Setting up dependencies

Add :broadway_kafka to the list of dependencies in mix.exs:
def deps do
 [
 ...
 {:broadway_kafka, "~> 0.3"}
]
end
Don't forget to check for the latest version of dependencies.

 Define the pipeline configuration

Broadway is a process-based behaviour and to define a Broadway pipeline,
we need to define three functions: start_link/1, handle_message/3
and optionally handle_batch/4. We will cover start_link/1 in this
section and the handle_ callbacks in the next one.
Similar to other process-based behaviours, start_link/1 simply
delegates to Broadway.start_link/2, which should define the
producers, processors, and batchers in the Broadway pipeline.
Assuming we want to consume messages from a topic called
test, one possible configuration would be:
defmodule MyBroadway do
 use Broadway

 alias Broadway.Message

 def start_link(_opts) do
 Broadway.start_link(__MODULE__,
 name: __MODULE__,
 producer: [
 module:
 {BroadwayKafka.Producer,
 [
 hosts: [localhost: 9092],
 group_id: "group_1",
 topics: ["test"]
]},
 concurrency: 1
],
 processors: [
 default: [
 concurrency: 10
]
],
 batchers: [
 default: [
 batch_size: 100,
 batch_timeout: 200,
 concurrency: 10
]
]
)
 end

 ...callbacks...
end
Note: Pipelines built on top of BroadwayKafka are automatically partitioned.
So even though there are multiple processes (stages), these processes will preserve
Kafka's ordering semantics when it comes to topics/partitions. Internally, this is
achieved by making sure all messages from the same topic/partition will always be
forwarded to the same processor and batch processor.

For a full list of options for BroadwayKafka.Producer, refer to the
official BroadwayKafka documentation.
For general information about setting up Broadway, see Broadway
module docs as well as Broadway.start_link/2.

 Implement Broadway callbacks

In order to process incoming messages, we need to implement the
required callbacks. For the sake of simplicity, we're considering that
all messages received from the topic are just numbers:
defmodule MyBroadway do
 use Broadway

 alias Broadway.Message

 ...start_link...

 @impl true
 def handle_message(_, message, _) do
 message
 |> Message.update_data(fn data -> {data, String.to_integer(data) * 2} end)
 end

 @impl true
 def handle_batch(_, messages, _, _) do
 list = messages |> Enum.map(fn e -> e.data end)
 IO.inspect(list, label: "Got batch")
 messages
 end
end
We are not doing anything fancy here, but it should be enough for our
purpose. First, we update the message's data individually inside
handle_message/3 and then we print each batch inside handle_batch/4.
For more information, see Broadway.handle_message/3 and
Broadway.handle_batch/4.
Note: Since Broadway v0.2, batching is optional. In case you don't need to
group messages as batches for further processing/publishing, you can remove
the :batchers configuration along with the handle_batch/4 callback.

 Run the Broadway pipeline

To run your Broadway pipeline, you just need to add as a child in
a supervision tree. Most applications have a supervision tree defined
at lib/my_app/application.ex. You can add Broadway as a child to a
supervisor as follows:
children = [
 {MyBroadway, []}
]

Supervisor.start_link(children, strategy: :one_for_one)
Now the Broadway pipeline should be started when your application starts.
Also, if your Broadway has any dependency (for example, it needs to talk
to the database), make sure that Broadway is listed after its dependencies
in the supervision tree.
You can now test your pipeline by entering an iex session:
$ iex -S mix

If everything went fine, you should see lots of info log messages like this
one coming from the :brod supervisors:
15:14:04.356 [info] [supervisor: {:local, :brod_sup}, started: [pid: #PID<0.251.0>, id: :test_client, mfargs: {:brod_client, :start_link, [[localhost: 9092], :test_client, []]}, restart_type: {:permanent, 10}, shutdown: 5000, child_type: :worker]]
Brod is the client that BroadwayKafka uses
under the hood to communicate with Kafka.

 Sending messages to Kafka

Finally, we can send some sample messages to Kafka using using :brod with the following snippet:
topic = "test"
client_id = :my_client
hosts = [localhost: 9092]

:ok = :brod.start_client(hosts, client_id, _client_config=[])
:ok = :brod.start_producer(client_id, topic, _producer_config = [])

Enum.each(1..1000, fn i ->
 partition = rem(i, 3)
 :ok = :brod.produce_sync(client_id, topic, partition, _key="", "#{i}")
end)
You should see the output showing the generated batches:
Got batch: [
 {"2", 4},
 {"5", 10},
 {"8", 16},
 {"11", 22},
 {"14", 28},
 ...
]
Got batch: [
 {"3", 6},
 {"6", 12},
 {"9", 18},
 {"12", 24},
 {"15", 30},
 ...
]

 Tuning the configuration

Some of the configuration options available for Broadway come already with a
"reasonable" default value. However, those values might not suit your
requirements. Depending on the number of records you get, how much processing
they need and how much IO work is going to take place, you might need completely
different values to optimize the flow of your pipeline. The concurrency option
available for every set of producers, processors and batchers, along with
batch_size and batch_timeout can give you a great deal of flexibility.
See the notes on Producer concurrency
and Batcher concurrency
for details.
By setting the concurrency option, you define the number of concurrent processes
that will be started by Broadway, allowing you to have full control over the
concurrency level in each layer of the pipeline. Keep in mind that since the
concurrency model provided by Kafka is based on partitioning, in order to take
full advantage of this model, you need to set the concurrency option for
your processors and batchers accordingly. Having less concurrency than topic/partitions
assigned will result in individual processors handling more than one partition,
decreasing the overall level of concurrency. Therefore, if you want to always be able
to process messages at maximum concurrency (assuming you have enough resources to do it),
you should increase the concurrency up front to make sure you have enough processors to
handle the extra records received from new partitions assigned.
Note: Even if you don't plan to add more partitions to a Kafka topic, your pipeline
can still receive more assignments than planned. For instance, if another consumer crashes,
the server will reassign all its topic/partition to other available consumers, including
any Broadway producer subscribed to the same topic.

There are other options that you may want to take a closer look when tuning your configuration.
The :max_bytes option, for instance, belongs to the :fetch_config group and defines the
maximum amount of data to be fetched at a time from a single partition. The default is
1048576 (1 MiB). Setting greater values can improve throughput at the cost of more
memory consumption. For more information and other fetch options, please refer to the
"Fetch config options" in the official BroadwayKafka
documentation.
Other two important options are :offset_commit_interval_seconds and :offset_commit_on_ack.
Both belong to the main configuration and they can make a huge impact on performance.
The :offset_commit_interval_seconds defines the time interval between two
OffsetCommitRequest messages. The default is 5s.
The :offset_commit_on_ack, when set to true, tells Broadway to send an
OffsetCommitRequest immediately after each acknowledgement, bypassing any
interval defined in :offset_commit_interval_seconds. Setting this option to
false can increase performance since any commit requests will start respecting
the :offset_commit_interval_seconds option. This will usually result in fewer
requests to be sent to the server. However, setting long commit intervals might
lead to a large number of duplicated records to be processed after a server
restart or connection loss. Since it is always possible that duplicate messages
will be received by consumers, make sure your logic is idempotent when consuming
records to avoid inconsistencies. Also, bear in mind that the negative
performance impact might be insignificant if you're using batchers since only
one commit request will be performed per batch. As a basic rule, always take
into account the values of batch_size and batch_timeout whenever you're
tuning :offset_commit_interval_seconds and :offset_commit_on_ack.

 Handling failed messages

broadway_kafka never stops the flow of the stream, i.e. it will always ack the messages
even when they fail. Unlike queue-based connectors, where you can mark a single message as failed.
In Kafka that's not possible due to its single offset per topic/partition ack strategy. If you
want to reprocess failed messages, you need to roll your own strategy. A possible way to do that
is to implement handle_failed/2 and send failed messages to a separated stream or queue for
later processing.

Google Cloud Pub/Sub

Cloud Pub/Sub is a fully-managed real-time messaging service provided by Google.

 Getting Started

In order to use Broadway with Cloud Pub/Sub you need to:
	Setup a Cloud Pub/Sub project
	Configure your Elixir project to use Broadway
	Define your pipeline configuration
	Implement Broadway callbacks
	Run the Broadway pipeline
	Tune the configuration (Optional)

If you are just getting familiar with Google Pub/Sub, refer to the documentation
to get started. Instead of testing against a live environment, you may also consider using the
emulator to simulate integrating with Cloud
Pub/Sub.
If you have an existing project, topic, subscription, and credentials, you can skip step
1 and jump to Configure the project
section.

 Setup Cloud Pub/Sub project

In this tutorial we'll use the gcloud command-line tool
to set everything up in Google Cloud. Alternatively, you can roughly follow this guide by using
Cloud Console.
To install gcloud follow the documentation. If you are
on macOS you may consider installing it with Homebrew:
$ brew install --cask google-cloud-sdk

Now, authenticate the CLI:
$ gcloud auth login

Then, create a new project:
$ gcloud projects create test-pubsub

A new topic:
$ gcloud pubsub topics create test-topic --project test-pubsub
Created topic [projects/test-pubsub/topics/test-topic].

Note: If you run this command immediately after creating a new Google Cloud project, you may receive an error indicating that your project's organization policy is still being provisioned. Just wait a couple minutes and try again.

And a new subscription:
$ gcloud pubsub subscriptions create test-subscription --project test-pubsub --topic test-topic
Created subscription [projects/test-pubsub/subscriptions/test-subscription].

We also need a service account, an IAM
policy, as well as API credentials in order to programmatically work with the service. First, let's
create the service account:
$ gcloud iam service-accounts create test-account --project test-pubsub
Created service account [test-account].

Then the policy. For simplicity we add the general role roles/editor, but make sure to
examine the available roles
and choose the one that best suits your use case:
$ gcloud projects add-iam-policy-binding test-pubsub \
 --member serviceAccount:test-account@test-pubsub.iam.gserviceaccount.com \
 --role roles/editor
Updated IAM policy for project [test-pubsub].
(...)

And now the credentials:
$ gcloud iam service-accounts keys create credentials.json --iam-account=test-account@test-pubsub.iam.gserviceaccount.com
created key [xxx] of type [json] as [key] for [test-account@test-pubsub.iam.gserviceaccount.com]

This command generated a credentials.json file which will be useful later. Note, the IAM account
pattern is <account>@<project>.iam.gserviceaccount.com. Run gcloud iam service-accounts list --project test-pubsub
to see all service accounts associated with the given project.
Finally, we need to enable Pub/Sub for our project:
$ gcloud services enable pubsub --project test-pubsub
Operation "operations/xxx" finished successfully.

 Configure the project

In this guide we're going to use BroadwayCloudPubSub,
which is a Broadway Cloud Pub/Sub Connector provided by Dashbit.

 Starting a new project

If you plan to start a new project, just run:
$ mix new my_app --sup

The --sup flag instructs Elixir to generate an application with a supervision tree.

 Setting up dependencies

Add :broadway_cloud_pub_sub to the list of dependencies in mix.exs, along with the Google
Cloud authentication library of your choice (defaults to :goth):
defp deps() do
 [
 ...
 {:broadway_cloud_pub_sub, "~> 0.7"},
 {:goth, "~> 1.0"}
]
end
Don't forget to check for the latest version of dependencies.

 Define the pipeline configuration

Broadway is a process-based behaviour and to define a Broadway pipeline, we need to define three
functions: start_link/1, handle_message/3 and handle_batch/4. We will cover start_link/1
in this section and the handle_ callbacks in the next one.
Similar to other process-based behaviour, start_link/1 simply delegates to
Broadway.start_link/2, which should define the producers, processors, and batchers in the
Broadway pipeline. Assuming we want to consume messages from the test-subscription, the minimal
configuration would be:
defmodule MyBroadway do
 use Broadway

 alias Broadway.Message

 def start_link(_opts) do
 Broadway.start_link(__MODULE__,
 name: __MODULE__,
 producer: [
 module:
 {BroadwayCloudPubSub.Producer,
 subscription: "projects/test-pubsub/subscriptions/test-subscription"}
],
 processors: [
 default: []
],
 batchers: [
 default: [
 batch_size: 10,
 batch_timeout: 2_000
]
]
)
 end

 ...callbacks...
end
For a full list of options for BroadwayCloudPubSub.Producer, please see the
documentation.
For general information about setting up Broadway, see Broadway module docs as well as
Broadway.start_link/2.
Note: Even though batching is optional since Broadway v0.2, we recommend all Cloud Pub/Sub
pipelines to have at least a default batcher, as that allows you to control the exact batch
size and frequency that messages are acknowledged to Cloud Pub/Sub, which often leads to
pipelines that are more cost and time efficient.

 Implement Broadway callbacks

In order to process incoming messages, we need to implement the required callbacks. For the sake
of simplicity, we're considering that all messages received from the queue are strings and our
processor calls String.upcase/1 on them:
defmodule MyBroadway do
 use Broadway

 alias Broadway.Message

 ...start_link...

 def handle_message(_, %Message{data: data} = message, _) do
 message
 |> Message.update_data(fn data -> String.upcase(data) end)
 end

 def handle_batch(_, messages, _, _) do
 list = messages |> Enum.map(fn e -> e.data end)
 IO.inspect(list, label: "Got batch of finished jobs from processors, sending ACKs to Pub/Sub as a batch.")
 messages
 end
end
We are not doing anything fancy here, but it should be enough for our purpose. First we update the
message's data individually inside handle_message/3 and then we print each batch inside
handle_batch/4.
For more information, see Broadway.handle_message/3 and Broadway.handle_batch/4.

 Run the Broadway pipeline

To run your Broadway pipeline, you need to add it as a child in a supervision tree. Most
applications have a supervision tree defined at lib/my_app/application.ex. You can add Broadway
as a child to a supervisor as follows:
children = [
 {MyBroadway, []}
]

Supervisor.start_link(children, strategy: :one_for_one)
The final step is to configure credentials. You can set the following environment variable:
export GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json
See Goth documentation for alternative ways of authenticating
with the API.
Now the Broadway pipeline should be started when your application starts. Also, if your Broadway
pipeline has any dependency (for example, it needs to talk to the database), make sure that
it is listed after its dependencies in the supervision tree.
If you followed the previous section about setting the project with gcloud, you can now test the
the pipeline. In one terminal tab start the application:
$ iex -S mix

And in another tab, send a couple of test messages to Pub/Sub:
$ gcloud pubsub topics publish projects/test-pubsub/topics/test-topic --message "test 1"
messageIds:
- '651428033718119'

gcloud pubsub topics publish projects/test-pubsub/topics/test-topic --message "test 2"
messageIds:
- '651427034966696'

Now, In the first tab, you should see output similar to:
Got batch of finished jobs from processors, sending ACKs to Pub/Sub as a batch.: ["TEST 1", "TEST 2"]

 Tuning the configuration

Some of the configuration options available for Broadway come already with a
"reasonable" default value. However those values might not suit your
requirements. Depending on the number of messages you get, how much processing
they need and how much IO work is going to take place, you might need completely
different values to optimize the flow of your pipeline. The concurrency option
available for every set of producers, processors and batchers, among with
max_demand, batch_size, and batch_timeout can give you a great deal
of flexibility.
The concurrency option controls the concurrency level in each layer of
the pipeline.
See the notes on Producer concurrency
and Batcher concurrency
for details.
Here's an example on how you could tune them according to
your needs.
defmodule MyBroadway do
 use Broadway

 def start_link(_opts) do
 Broadway.start_link(__MODULE__,
 name: __MODULE__,
 producer: [
 ...
 concurrency: 10,
],
 processors: [
 default: [
 concurrency: 100,
 max_demand: 1,
]
],
 batchers: [
 default: [
 batch_size: 10,
 concurrency: 10,
]
]
)
 end

 ...callbacks...
end
In order to get a good set of configurations for your pipeline, it's
important to respect the limitations of the servers you're running,
as well as the limitations of the services you're providing/consuming
data to/from. Broadway comes with telemetry, so you can measure your
pipeline and help ensure your changes are effective.

RabbitMQ

RabbitMQ is an open source message broker designed to be highly scalable and
distributed. It supports multiple protocols including the Advanced Message
Queuing Protocol (AMQP).

 Getting Started

In order to use Broadway with RabbitMQ, we need to:
	Create a queue (or use an existing one)
	Configure our Elixir project to use Broadway
	Define your pipeline configuration
	Implement Broadway callbacks
	Run the Broadway pipeline
	Tuning the configuration (Optional)

In case you want to work with an existing queue, you can skip step 1
and jump to Configure the project.
Note: BroadwayRabbitMQ does not automatically create any queue. If you
configure a pipeline with a non-existent queue, the producers will crash,
bringing down the pipeline.

 Create a queue

RabbitMQ runs on many operating systems. Please see
Downloading and Installing RabbitMQ for
further information. Also, make sure you have the
Management plugin enabled, which ships
with the command line tool, rabbitmqadmin.
After successfully installing RabbitMQ, you can declare a new queue with the
following command:
$ rabbitmqadmin declare queue name=my_queue durable=true

You can list all declared queues to see our the one we've just created:
$ rabbitmqctl list_queues
Timeout: 60.0 seconds ...
Listing queues for vhost / ...
name messages
my_queue 0

 Configure the project

In this guide, we're going to use BroadwayRabbitMQ,
which is a Broadway RabbitMQ Connector provided by Dashbit.

 Starting a new project

If you're creating a new project, run:
$ mix new my_app --sup

The --sup flag instructs Elixir to generate an application with a supervision tree.

 Setting up dependencies

Add :broadway_rabbitmq to the list of dependencies in mix.exs:
def deps do
 [
 ...
 {:broadway_rabbitmq, "~> 0.7"},
]
end
Don't forget to check for the latest version of dependencies.

 Define the pipeline configuration

Broadway is a process-based behaviour and to define a Broadway pipeline,
we need to define three functions: start_link/1, handle_message/3
and optionally handle_batch/4. We will cover start_link/1 in this
section and the handle_ callbacks in the next one.
Similar to other process-based behaviours, start_link/1 simply
delegates to Broadway.start_link/2, which should define the
producers, processors, and batchers in the Broadway pipeline.
Assuming we want to consume messages from a queue called
my_queue, one possible configuration would be:
defmodule MyBroadway do
 use Broadway

 alias Broadway.Message

 def start_link(_opts) do
 Broadway.start_link(__MODULE__,
 name: MyBroadway,
 producer: [
 module: {BroadwayRabbitMQ.Producer,
 queue: "my_queue",
 qos: [
 prefetch_count: 50,
]
 },
 concurrency: 1
],
 processors: [
 default: [
 concurrency: 50
]
],
 batchers: [
 default: [
 batch_size: 10,
 batch_timeout: 1500,
 concurrency: 5
]
]
)
 end

 ...callbacks...
end
If you're consuming data from an existing broker that requires authorization,
you'll need to provide your credentials using the connection option:
...
producer: [
 module: {BroadwayRabbitMQ.Producer,
 queue: "my_queue",
 connection: [
 username: "user",
 password: "password",
]
 ...
 }
]
...
For the full list of connection options, please see
AMQP.Connection.open/1
For general information about setting up Broadway, see Broadway
module docs as well as Broadway.start_link/2.

 Implement Broadway callbacks

In order to process incoming messages, we need to implement the
required callbacks. For the sake of simplicity, we're considering that
all messages received from the queue are just numbers:
defmodule MyBroadway do
 use Broadway

 alias Broadway.Message

 ...start_link...

 @impl true
 def handle_message(_, message, _) do
 message
 |> Message.update_data(fn data -> {data, String.to_integer(data) * 2} end)
 end

 @impl true
 def handle_batch(_, messages, _, _) do
 list = messages |> Enum.map(fn e -> e.data end)
 IO.inspect(list, label: "Got batch")
 messages
 end
end
We are not doing anything fancy here, but it should be enough for our
purpose. First, we update the message's data individually inside
handle_message/3 and then we print each batch inside handle_batch/4.
For more information, see Broadway.handle_message/3 and
Broadway.handle_batch/4.
Note: Since Broadway v0.2, batching is optional. In case you don't need to
group messages as batches for further processing/publishing, you can remove
the :batchers configuration along with the handle_batch/4 callback. This
is perfectly fine for RabbitMQ, where messages are acknowledged individually
and never as a batch.

 Run the Broadway pipeline

To run your Broadway pipeline, you just need to add as a child in
a supervision tree. Most applications have a supervision tree defined
at lib/my_app/application.ex. You can add Broadway as a child to a
supervisor as follows:
children = [
 {MyBroadway, []}
]

Supervisor.start_link(children, strategy: :one_for_one)
Now the Broadway pipeline should be started when your application starts.
Also, if your Broadway has any dependency (for example, it needs to talk
to the database), make sure that Broadway is listed after its dependencies
in the supervision tree.
You can now test your pipeline by entering an iex session:
$ iex -S mix

If everything went fine, you should see lots of info log messages from the amqp
supervisors. If you think that's too verbose and want to do something
about it, please take a look at the "Log related to amqp supervisors are too verbose"
subsection in the amqp's Troubleshooting
documentation.
Finally, let's generate some sample messages to be consumed by Broadway with the
following code:
{:ok, connection} = AMQP.Connection.open
{:ok, channel} = AMQP.Channel.open(connection)
AMQP.Queue.declare(channel, "my_queue", durable: true)

Enum.each(1..5000, fn i ->
 AMQP.Basic.publish(channel, "", "my_queue", "#{i}")
end)
AMQP.Connection.close(connection)
You should see the output showing the generated batches:
Got batch: [
 {"7", 14},
 {"5", 10},
 {"8", 16},
 {"98", 196},
 {"6", 12},
 {"97", 194},
 {"9", 18},
 {"99", 198},
 {"10", 20},
 {"100", 200}
]
Got batch: [
 {"29", 58},
 {"32", 64},
 ...
]

 Tuning the configuration

Some of the configuration options available for Broadway come already with a
"reasonable" default value. However, those values might not suit your
requirements. Depending on the number of messages you get, how much processing
they need and how much IO work is going to take place, you might need completely
different values to optimize the flow of your pipeline. The concurrency option
available for every set of producers, processors and batchers, among with
max_demand, batch_size, and batch_timeout can give you a great deal
of flexibility. The concurrency option controls the concurrency level in
each layer of the pipeline.
See the notes on Producer concurrency
and Batcher concurrency
for details.
Another important option to take into account is the :prefetch_count.
RabbitMQ will continually push new messages to Broadway as it receives them.
The :prefetch_count setting provides back-pressure by instructing RabbitMQ to limit the number of unacknowledged messages a consumer will have at a given moment.
See the "Back-pressure and :prefetch_count"
section of the BroadwayRabbitMQ documentation for details.
In order to get a good set of configurations for your pipeline, it's
important to respect the limitations of the servers you're running,
as well as the limitations of the services you're providing/consuming
data to/from. Broadway comes with telemetry, so you can measure your
pipeline and help ensure your changes are effective.

Custom Producers

If you want to use Broadway but there is no existing Broadway producer
for the technology of your choice, you can integrate any existing GenStage
producer into the pipeline with relative ease.

 Example

In general, producers must generate %Broadway.Message{} structs in order
to be processed by Broadway. In case you need to use an existing GenStage
producer and you don't want to change its original implementation,
you'll have to set the producer's :transformer option to translate the
generated events into Broadway messages.
In the following example the producer is a regular GenStage, i.e., it
produces plain events that cannot be processed by Broadway directly:
defmodule Counter do
 use GenStage

 def start_link(number) do
 GenStage.start_link(Counter, number)
 end

 def init(counter) do
 {:producer, counter}
 end

 def handle_demand(demand, counter) when demand > 0 do
 events = Enum.to_list(counter..counter+demand-1)
 {:noreply, events, counter + demand}
 end
end
By using a transformer, you can tell Broadway to transform all events
generated by the producer into proper Broadway messages:
defmodule MyBroadway do
 use Broadway

 alias Broadway.Message

 def start_link(_opts) do
 Broadway.start_link(__MODULE__,
 name: __MODULE__,
 producer: [
 module: {Counter, 1},
 transformer: {__MODULE__, :transform, []}
],
 processors: [
 default: [concurrency: 10]
],
 batchers: [
 default: [concurrency: 2, batch_size: 5],
]
)
 end

 ...callbacks...

 def transform(event, _opts) do
 %Message{
 data: event,
 acknowledger: {__MODULE__, :ack_id, :ack_data}
 }
 end

 def ack(:ack_id, successful, failed) do
 # Write ack code here
 end
end
Notice that you need to pass two options to the producer:
	:module - a tuple representing the GenStage producer as {mod, arg}.
Where mod is module that implements the GenStage behaviour and arg
the argument that will be given to the init callback of the GenStage.
It is very important to note that Broadway will not call the
child_spec/1 or start_link/1 function of the producer. That's
because Broadway wraps the producer to augment it with extra features.

	:transformer - a module-function-args tuple that will be invoked
inside the producer, for every producer message, that should create
a Broadway.Message struct with the data and acknowledger fields.

See the Broadway.Acknowledger module for more information on defining
and setting up acknowledgements.

Architecture

Broadway's architecture is built on top of GenStage. That means we structure
our processing units as independent stages that are responsible for one
individual task in the pipeline. By implementing the Broadway behaviour,
we define a GenServer process that wraps a Supervisor to manage and
own our pipeline.

 The pipeline model

 [producers] <- pulls data from SQS, RabbitMQ, etc.
 |
 | (demand dispatcher)
 |
 handle_message/3 and ----------> [processors]
 prepare_messages/2 run here / \
 / \ (partition dispatcher)
 / \
 [batcher] [batcher] <- one for each batcher key
 | |
 | | (demand dispatcher)
 | |
handle_batch/4 runs here -> [batch processor][batch processor]

 Internal stages

	Broadway.Producer - A wrapper around the actual producer defined by
the user. It serves as the source of the pipeline.
	Broadway.Processor - This is where messages are processed, e.g. do
calculations, convert data into a custom json format etc. Here is where
the code from handle_message/3 runs.
	Broadway.Batcher - Creates batches of messages based on the
batcher's key. One batcher for each key will be created.
	Broadway.BatchProcessor - This is where the code from handle_batch/4 runs.

 The supervision tree

Broadway was designed to always go back to a working state in case
of failures thanks to the use of supervisors. Our supervision tree
is designed as follows:
 [Broadway GenServer]
 |
 |
 |
 [Broadway Pipeline Supervisor]
 / / (:rest_for_one) \ \
 / | | \
 / | | \
 / | | \
 / | | \
 / | | \
 [ProducerSupervisor] [ProcessorSupervisor] [BatchersSupervisor] [Terminator]
 (:one_for_one) (:one_for_all) (:one_for_one)
 / \ / \ / \
 / \ / \ / \
 / \ / \ / \
 / \ / \ / \
[Producer_1] ... [Processor_1] ... [BatcherSupervisor_1] ...
 (:rest_for_one)
 / \
 / \
 / \
 [Batcher] [BatchProcessorSupervisor]
 (:one_for_all)
 / \
 / \
 / \
 [BatchProcessor_1] ...
Both ProcessorSupervisor and BatchProcessorSupervisor are set with
max_restarts to 0. The idea is that if any process fails, we want
to restart the rest of the tree. Since Broadway callbacks are
stateless, we can handle errors and provide reports without crashing
processes. This means that the supervision tree will only shutdown
in case of unforeseen errors in Broadway's implementation.
The only exception are the producers, which contain external code
and are expected to fail. If a producer crashes, it will be restarted
by its supervisor without cascading failures until its max restarts
is reached. Broadway automatically handles those failures by making
processors automatically resubscribe to producers in case of crashes.

 Graceful shutdowns

The cascading failures aspect also provides safe semantics for graceful
shutdown. We know that either all processes are running OR they are all
being shutdown. Therefore, to gracefully shutdown the supervision tree,
a terminator process is activated, which starts the following steps:
	It notifies the first layer of processors that they should not
resubscribe to producers once they exit

	It tells all producers to no longer accept demand, flush all
current events, and then shutdown

	It then monitors and waits for a confirmation message from batch
processors. At this point, the terminator is effectively blocking
the supervisor until all events have been processed

This triggers a cascade effect where processors notice all of its producers
have been cancelled, causing them to flush their own events and cancels the
stages downstream, and so on and so on. This happens until batch processors
notice all of their producers have been cancelled, effectively notifying the
terminator to shutdown, allowing the outer most supervisor to go on and fully
terminate all stages, which at this point have flushed all events.

Broadway behaviour

Broadway is a concurrent, multi-stage tool for building
data ingestion and data processing pipelines.
It allows developers to consume data efficiently from different
sources, such as Amazon SQS, Apache Kafka, Google Cloud PubSub,
RabbitMQ and others.

 Built-in features

	Back-pressure - by relying on GenStage, we only get the amount
of events necessary from upstream sources, never flooding the
pipeline.

	Automatic acknowledgements - Broadway automatically acknowledges
messages at the end of the pipeline or in case of errors.

	Batching - Broadway provides built-in batching, allowing you to
group messages either by size and/or by time. This is important
in systems such as Amazon SQS, where batching is the most efficient
way to consume messages, both in terms of time and cost.

	Fault tolerance - Broadway pipelines are carefully designed to manage
failures. Producers are isolated from the rest of the pipeline and
automatically resubscribe to your data source in case of crashes.
At the same time, all of your Broadway callbacks are stateless, which
allows Broadway to handle any errors locally. This provides a stable
foundation that play well with your producers, regardless if their
delivery guarantees are at least once, at most once, or exactly once.

	Graceful shutdown - Broadway integrates with the VM to provide graceful
shutdown. By starting Broadway as part of your supervision tree, it will
guarantee all events are flushed once the VM shuts down.

	Built-in testing - Broadway ships with a built-in test API, making it
easy to push test messages through the pipeline and making sure the
event was properly processed.

	Custom failure handling - Broadway provides a handle_failed/2 callback
where developers can outline custom code to handle errors. For example,
if they want to move messages to another queue for further processing.

	Dynamic batching - Broadway allows developers to batch messages based on
custom criteria. For example, if your pipeline needs to build
batches based on the user_id, email address, etc, it can be done
by calling Broadway.Message.put_batch_key/2.

	Ordering and Partitioning - Broadway allows developers to partition
messages across workers, guaranteeing messages within the same partition
are processed in order. For example, if you want to guarantee all events
tied to a given user_id are processed in order and not concurrently,
you can set the :partition_by option. See "Ordering and partitioning".

	Rate limiting - Broadway allows developers to rate limit all producers in
a single node by a given number of messages in a time period, allowing
developers to easily work sources or sinks that cannot cope with a high
number of requests. See the :rate_limiting option for producers in
start_link/2.

	Metrics - Broadway uses the :telemetry library for instrumentation,
see "Telemetry" section below for more information.

 The Broadway behaviour

In order to use Broadway, you need to:
	Define your pipeline configuration
	Define a module implementing the Broadway behaviour

 Example

Broadway is a process-based behaviour, and you begin by
defining a module that invokes use Broadway. Processes
defined by these modules will often be started by a
supervisor, and so a start_link/1 function is frequently
also defined but not strictly necessary.
defmodule MyBroadway do
 use Broadway

 def start_link(_opts) do
 Broadway.start_link(MyBroadway,
 name: MyBroadwayExample,
 producer: [
 module: {Counter, []},
 concurrency: 1
],
 processors: [
 default: [concurrency: 2]
]
)
 end

 ...callbacks...
end
Then add your Broadway pipeline to your supervision tree
(usually in lib/my_app/application.ex):
children = [
 {MyBroadway, []}
]

Supervisor.start_link(children, strategy: :one_for_one)
Adding your pipeline to your supervision tree in this way
calls the default child_spec/1 function that is generated
when use Broadway is invoked. If you would like to customize
the child spec passed to the supervisor, you can override the
child_spec/1 function in your module or explicitly pass a
child spec to the supervisor when adding it to your supervision tree.
The configuration above defines a pipeline with:
	One producer
	Two processors

Here is how this pipeline would be represented:
 [producer_1]
 / \
 / \
 / \
 / \
 [processor_1] [processor_2] <- process each message
After the pipeline is defined, you need to implement the handle_message/3
callback which will be invoked by processors for each message.
handle_message/3 receives every message as a Broadway.Message
struct and it must return an updated message.

 Batching

Depending on the scenario, you may want to group processed messages as
batches before publishing your data. This is common and especially
important when working with services like AWS S3 and SQS that provide a
specific API for sending and retrieving batches. This can drastically
increase throughput and consequently improve the overall performance of
your pipeline.
To create batches, define the :batchers configuration option:
defmodule MyBroadway do
 use Broadway

 def start_link(_opts) do
 Broadway.start_link(MyBroadway,
 name: MyBroadwayExample,
 producer: [
 module: {Counter, []},
 concurrency: 1
],
 processors: [
 default: [concurrency: 2]
],
 batchers: [
 sqs: [concurrency: 2, batch_size: 10],
 s3: [concurrency: 1, batch_size: 10]
]
)
 end

 # ...callbacks...
end
The configuration above defines a pipeline with:
	One producer
	Two processors
	One batcher named :sqs with two batch processors
	One batcher named :s3 with one batch processor

Here is how this pipeline would be represented:
 [producer_1]
 / \
 / \
 / \
 / \
 [processor_1] [processor_2] <- process each message
 /\ /\
 / \ / \
 / \ / \
 / x \
 / / \ \
 / / \ \
 / / \ \
 [batcher_sqs] [batcher_s3]
 /\ \
 / \ \
 / \ \
 / \ \
 [batch_sqs_1] [batch_sqs_2] [batch_s3_1] <- process each batch
Additionally, you have to define the handle_batch/4 callback,
which batch processors invoke for each batch. You can then
call Broadway.Message.put_batcher/2 inside handle_message/3 to
control which batcher the message should go to.
The batcher receives processed messages and creates batches
specified by the batch_size and batch_timeout configuration. The
goal is to create a batch with at most batch_size entries within
batch_timeout milliseconds. Each message goes into a particular batch,
controlled by calling Broadway.Message.put_batch_key/2 in
handle_message/3. Once a batch is created in the batcher, it is sent
to a separate process (the batch processor) that will call handle_batch/4,
passing the batcher, the batch itself (a list of messages), a Broadway.BatchInfo
struct, and the Broadway context.
For example, imagine your producer generates integers as data.
You want to route the odd integers to SQS and the even ones to
S3. Your pipeline would look like this:
defmodule MyBroadway do
 use Broadway
 import Integer

 alias Broadway.Message

 # ...start_link...

 @impl true
 def handle_message(_, %Message{data: data} = message, _) when is_odd(data) do
 message
 |> Message.update_data(&process_data/1)
 |> Message.put_batcher(:sqs)
 end

 def handle_message(_, %Message{data: data} = message, _) when is_even(data) do
 message
 |> Message.update_data(&process_data/1)
 |> Message.put_batcher(:s3)
 end

 defp process_data(data) do
 # Do some calculations, generate a JSON representation, etc.
 end

 @impl true
 def handle_batch(:sqs, messages, _batch_info, _context) do
 # Send batch of successful messages as ACKs to SQS
 # This tells SQS that this list of messages were successfully processed
 end

 def handle_batch(:s3, messages, _batch_info, _context) do
 # Send batch of messages to S3
 end
end
See the callbacks documentation for more information on the
arguments given to each callback and their expected return types.

 The default batcher

Once you define the :batchers configuration key for your Broadway pipeline,
then all messages get batched. By default, unless you call
Broadway.Message.put_batcher/2, messages have their batcher set to the
:default batcher. If you don't define configuration for it, Broadway is going
to raise an error.
For example, imagine you want to batch "special" messages and handle them differently
then all other messages. You can configure your pipeline like this:
defmodule MyBroadway do
 use Broadway

 def start_link(_opts) do
 Broadway.start_link(MyBroadway,
 name: MyBroadwayExample,
 producer: [
 module: {Counter, []},
 concurrency: 1
],
 processors: [
 default: [concurrency: 2]
],
 batchers: [
 special: [concurrency: 2, batch_size: 10],
 default: [concurrency: 1, batch_size: 10]
]
)
 end

 def handle_message(_, message, _) do
 if special?(message) do
 message
 |> Broadway.Message.put_batcher(:special)
 else
 message
 end
 end

 def handle_batch(:special, messages, _batch_info, _context) do
 # Handle special batch
 end

 def handle_batch(:default, messages, _batch_info, _context) do
 # Handle all other messages in batches
 end
Now you are ready to get started. See the start_link/2 function
for a complete reference on the arguments and options allowed.
Also makes sure to check out GUIDES in the documentation sidebar
for more examples, how tos and more.

 Acknowledgements and failures

At the end of the pipeline, messages are automatically acknowledged.
If there are no batchers, the acknowledgement will be done by processors.
The number of messages acknowledged, assuming the pipeline is running
at full scale, will be max_demand - min_demand. Since the default values
are 10 and 5 respectively, we will be acknowledging in groups of 5.
If there are batchers, the acknowledgement is done by the batchers,
using the batch_size.
In case of failures, Broadway does its best to keep the failures
contained and avoid losing messages. The failed message or batch is
acknowledged as failed immediately. For every failure, a log report
is also emitted. If your Broadway module also defines the
handle_failed/2 callback, that callback will be invoked with
all the failed messages before they get acknowledged.
Note however, that Broadway does not provide any sort of retries
out of the box. This is left completely as a responsibility of the
producer. For instance, if you are using Amazon SQS, the default
behaviour is to retry unacknowledged messages after a user-defined
timeout. If you don't want unacknowledged messages to be retried,
is your responsibility to configure a dead-letter queue as target
for those messages.

 Producer concurrency

Setting producer concurrency is a tradeoff between latency and internal
queueing.
For efficiency, you should generally limit the amount of internal queueing.
Whenever additional messages are sitting in a busy processor's mailbox, they
can't be delivered to another processor which may be available or become
available first.
One possible cause of internal queueing is multiple producers. This is because
each processor's demand will be sent to all producers. For example, if a
processor demands 2 messages and there are 2 producers, each producer
will try to produce 2 messages (for example, by pulling from a queue or
whatever the specific producer does) and give them to the processor. So the
processor may receive max_demand * <producer concurrency> messages.
Setting producer concurrency: 1 will reduce internal queueing. This is
likely a good choice for producers which take minimal time to produce a
message, such as BroadwayRabbitMQ, which receives messages as they are
pushed by RabbitMQ and can specify how many to prefetch.
On the other hand, when using a producer such as BroadwaySQS which must
make a network round trip to fetch from an external source, it may be better
to use multiple producers and accept some internal queueing to avoid having
fetch messages whenever there is new demand.
Measure your system to decide which setting is most appropriate.
Adding another single-producer pipeline, or another node running the
pipeline, are other ways you may consider to increase throughput.

 Batcher concurrency

If a batcher's concurrency is greater than 1, Broadway will use as few of
the batcher processes as possible at any given moment, attempting to satisfy
the batch_size of one batcher process within the batch_timeout before
sending messages to another.

 Testing

Many producers receive data from external systems and hitting the network
is usually undesirable when running the tests.
For testing purposes, we recommend developers to use Broadway.DummyProducer.
This producer does not produce any messages by itself and instead the
test_message/3 and test_batch/3 functions should be used to publish
messages.
With test_message/3, you can push a message into the pipeline and receive
a process message when the pipeline acknowledges the data you have pushed
has been processed.
Let's see an example. Imagine the following Broadway module:
defmodule MyBroadway do
 use Broadway

 def start_link() do
 producer_module = Application.fetch_env!(:my_app, :producer_module)
 producer_options = Application.get_env(:my_app, :producer_options, [])

 Broadway.start_link(__MODULE__,
 name: __MODULE__,
 producer: [
 module: {producer_module, producer_options}
],
 processors: [
 default: []
],
 batchers: [
 default: [batch_size: 10]
]
)
 end

 @impl true
 def handle_message(_processor, message, _context) do
 message
 end

 @impl true
 def handle_batch(_batcher, messages, _batch_info, _context) do
 messages
 end
end
Now in config/test.exs you could do:
config :my_app,
 producer_module: Broadway.DummyProducer,
 producer_options: [] # change if required for your dev/prod producer
And we can test it like this:
defmodule MyBroadwayTest do
 use ExUnit.Case, async: true

 test "test message" do
 ref = Broadway.test_message(MyBroadway, 1)
 assert_receive {:ack, ^ref, [%{data: 1}], []}
 end
end
Note that at the end we received a message in the format of:
{:ack, ^ref, successful_messages, failure_messages}
You can use the acknowledgment to guarantee the message has been
processed and therefore any side-effect from the pipeline should be
visible.
When using test_message/3, the message will be delivered as soon as
possible, without waiting for the pipeline batch_size to be reached
or without waiting for batch_timeout. This behaviour is useful to test
and verify single messages, without imposing high timeouts to our test
suites.
In case you want to test multiple messages, then you need to use
test_batch/3. test_batch/3 will respect the batching configuration,
which most likely means you need to increase your test timeouts:
test "batch messages" do
 ref = Broadway.test_batch(MyBroadway, [1, 2, 3])
 assert_receive {:ack, ^ref, [%{data: 1}, %{data: 2}, %{data: 3}], []}, 1000
end
However, keep in mind that, generally speaking, there is no guarantee
the messages will arrive in the same order that you have sent them,
especially for large batches, as Broadway will process large batches
concurrently and order will be lost.
If you want to send more than one test message at once, then we recommend
setting the :batch_mode to :bulk, especially if you want to assert how
the code will behave with large batches. Otherwise the batcher will flush
messages as soon as possible and in small batches.
However, keep in mind that, regardless of the :batch_mode you cannot
rely on ordering, as Broadway pipelines are inherently concurrent. For
example, if you send those messages:
test "multiple batch messages" do
 ref = Broadway.test_batch(MyBroadway, [1, 2, 3, 4, 5, 6, 7], batch_mode: :bulk)
 assert_receive {:ack, ^ref, [%{data: 1}], []}, 1000
end

 Testing with Ecto

If you are using Ecto in your Broadway processors and you want
to run your tests concurrently, you need to tell Broadway to
use the Ecto SQL Sandbox during tests. This can be done in two
steps.
First, when you call test_messages/3 in your tests, include
the :ecto_sandbox process in the message metadata:
Broadway.test_message(MyApp.Pipeline, message, metadata: %{ecto_sandbox: self()})
Now we can use Broadway telemetry callbacks to fetch the sandbox
process and enable it inside the processor. Add to your
test/test_helper.exs:
defmodule BroadwayEctoSandbox do
 def attach(repo) do
 events = [
 [:broadway, :processor, :start],
 [:broadway, :batch_processor, :start],
]

 :telemetry.attach_many({__MODULE__, repo}, events, &__MODULE__.handle_event/4, %{repo: repo})
 end

 def handle_event(_event_name, _event_measurement, %{messages: messages}, %{repo: repo}) do
 with [%Broadway.Message{metadata: %{ecto_sandbox: pid}} | _] <- messages do
 Ecto.Adapters.SQL.Sandbox.allow(repo, pid, self())
 end

 :ok
 end
end

BroadwayEctoSandbox.attach(MyApp.Repo)
And now you should have concurrent Broadway tests that talk to the database.

 Ordering and partitioning

By default, Broadway processes all messages and batches concurrently,
which means ordering is not guaranteed. Some producers may impose some
ordering (for instance, Apache Kafka), but if the ordering comes from a
business requirement, you will have to impose the ordering yourself.
This can be done with the :partition_by option, which enforces that
messages with a given property are always forwarded to the same stage.
In order to provide partitioning throughout the whole pipeline, just
set :partition_by at the root of your configuration:
defmodule MyBroadway do
 use Broadway

 def start_link(_opts) do
 Broadway.start_link(__MODULE__,
 name: __MODULE__,
 producer: [
 module: {Counter, []},
 concurrency: 1
],
 processors: [
 default: [concurrency: 2]
],
 batchers: [
 sqs: [concurrency: 2, batch_size: 10],
 s3: [concurrency: 1, batch_size: 10]
],
 partition_by: &partition/1
)
 end

 defp partition(msg) do
 msg.data.user_id
 end
In the example above, we are partitioning the pipeline by user_id.
This means any message with the same user_id will be handled by
the same processor and batch processor.
The partition function must return a non-negative integer,
starting at zero, which is routed to a stage by using the remainder
option.
If the data you want to partition by is not an integer, you can
explicitly hash it by calling :erlang.phash2/1. However, note
that hash does not guarantee an equal distribution of events
across partitions. So some partitions may be more overloaded than
others, slowing down the whole pipeline.
In the example above, we have set the same partition for all
processors and batchers. You can also specify the :partition_by
function for each "processor" and "batcher" individually.
Even partitions
Broadway partitions assume an even distribution of partitions.
This means that, if one partition is slow, it will slow down
all order partitions. This implies two things:
	Using :partition_by with a high level of concurrency can
actually be detrimental to performance. For example, if
concurrency is set to 100, you need all 100 processors to
make progress at the same time.

	Avoid using :partition_by with a low value of min_demand.
For example, setting max_demand to 1 (which implies min_demand
of 0), means that each processor will receive a single message
and only receive further messages once all processors complete.

When partitioning, the default values for concurrency (which is
equal to the number of cores) and max_demand (which is equal to
10), are good starting points.
Error semantics
Beware of the error semantics when using partitioning.
If you require messages to be processed in order and a message
fails, the partition will continue processing messages, which
may be undesired. If your producer supports retrying, the
failed message may be retried later, out of its original order.
Those issues happen regardless of Broadway and solutions to said
problems almost always need to be addressed outside of Broadway too.

 Configuration storage

Broadway stores configuration globally in a configurable storage method.
Broadway comes with two configuration storage options:
	:persistent_term (the default)
	:ets

 Persistent term

This is the most efficient option for static Broadway pipeline definitions,
as this option never deletes the Broadway configuration from storage. It's based
on :persistent_term.
config :broadway, config_storage: :persistent_term
The speed of storing and updating using :persistent_term is proportional
to the number of already-created terms in the storage. If you are creating
several Broadway pipelines dynamically, that may affect the persistent term
storage performance. Furthermore, even if you are restarting the same pipeline
but you are using different parameters each time, that will require a global
garbage collection pass to update the :persistent_term configuration.
If you are starting Broadway pipelines dynamically, you must use the :ets
storage.

 ETS

An ETS-backed configuration storage, useful if Broadway pipelines are
started dynamically. To use this configuration storage option, configure the
:broadway application in :your configuration
For example, in config/config.exs:
config :broadway, config_storage: :ets
Using :ets as the config storage will allow for a dynamic number of Broadway server
configurations to be stored and fetched without the associated performance trade-offs
that :persistent_term has.

 Telemetry

Broadway currently exposes following Telemetry events:
	[:broadway, :topology, :init] - Dispatched when the topology for
a Broadway pipeline is initialized. The config key in the metadata
contains the configuration options that were provided to
Broadway.start_link/2.
	Measurement: %{system_time: integer}
	Metadata: %{supervisor_pid: pid, config: keyword}

	[:broadway, :processor, :start] - Dispatched by a Broadway processor
before the optional prepare_messages/2
	Measurement: %{system_time: integer}

	Metadata:
%{
 topology_name: atom,
 name: atom,
 processor_key: atom,
 index: non_neg_integer,
 messages: [Broadway.Message.t],
 telemetry_span_context: reference,
 producer: {atom, list}
}

	[:broadway, :processor, :stop] - Dispatched by a Broadway processor
after prepare_messages/2 and after all handle_message/3 callback
has been invoked for all individual messages
	Measurement: %{duration: native_time}

	Metadata:
%{
 topology_name: atom,
 name: atom,
 processor_key: atom,
 index: non_neg_integer,
 successful_messages_to_ack: [Broadway.Message.t],
 successful_messages_to_forward: [Broadway.Message.t],
 failed_messages: [Broadway.Message.t],
 telemetry_span_context: reference,
 producer: {atom, list}
}

	[:broadway, :processor, :message, :start] - Dispatched by a Broadway processor
before your handle_message/3 callback is invoked
	Measurement: %{system_time: integer}

	Metadata:
%{
 processor_key: atom,
 topology_name: atom,
 name: atom,
 index: non_neg_integer,
 message: Broadway.Message.t,
 telemetry_span_context: reference
}

	[:broadway, :processor, :message, :stop] - Dispatched by a Broadway processor
after your handle_message/3 callback has returned
	Measurement: %{duration: native_time}

	Metadata:
%{
 processor_key: atom,
 topology_name: atom,
 name: atom,
 index: non_neg_integer,
 message: Broadway.Message.t,
 telemetry_span_context: reference
}

	[:broadway, :processor, :message, :exception] - Dispatched by a Broadway processor
if your handle_message/3 callback encounters an exception
	Measurement: %{duration: native_time}

	Metadata:
%{
 processor_key: atom,
 topology_name: atom,
 name: atom,
 index: non_neg_integer,
 message: Broadway.Message.t,
 kind: kind,
 reason: reason,
 stacktrace: stacktrace,
 telemetry_span_context: reference
}

	[:broadway, :batch_processor, :start] - Dispatched by a Broadway batch processor
before your handle_batch/4 callback is invoked
	Measurement: %{system_time: integer}

	Metadata:
%{
 topology_name: atom,
 name: atom,
 index: non_neg_integer,
 messages: [Broadway.Message.t],
 batch_info: Broadway.BatchInfo.t,
 telemetry_span_context: reference,
 producer: {atom, list}
}

	[:broadway, :batch_processor, :stop] - Dispatched by a Broadway batch
processor after your handle_batch/4 callback has returned
	Measurement: %{duration: native_time}

	Metadata:
%{
 topology_name: atom,
 name: atom,
 index: non_neg_integer,
 successful_messages: [Broadway.Message.t],
 failed_messages: [Broadway.Message.t],
 batch_info: Broadway.BatchInfo.t,
 telemetry_span_context: reference,
 producer: {atom, list}
}

	[:broadway, :batcher, :start] - Dispatched by a Broadway batcher before
handling events
	Measurement: %{system_time: integer}

	Metadata:
%{
 topology_name: atom,
 name: atom,
 batcher_key: atom,
 messages: [Broadway.Message.t],
 telemetry_span_context: reference
}

	[:broadway, :batcher, :stop] - Dispatched by a Broadway batcher after
handling events
	Measurement: %{duration: native_time}
	Metadata:

 %{
 topology_name: atom,
 name: atom,
 batcher_key: atom,
 telemetry_span_context: reference
 }

Most of the events follow the :telemetry.span/3 convention for measurements.
This means that "start" events have a :system_time representing the start of
that event using System.system_time/0. The "stop" or "exception" events
have the duration value, which is the difference in monotonic time between
the start and stop events.

 Summary

 Types

 name()

 on_start()

 Returned by start_link/2.

 Callbacks

 format_discarded(discarded, state)

 Invoked when items are discarded from the buffer.

 handle_batch(batcher, messages, batch_info, context)

 Invoked to handle generated batches.

 handle_failed(messages, context)

 Invoked for failed messages (if defined).

 handle_message(processor, message, context)

 Invoked to handle/process individual messages sent from a producer.

 prepare_messages(messages, context)

 Invoked for preparing messages before handling (if defined).

 process_name(broadway_name, base_name)

 Invoked to get the process name of this Broadway pipeline.

 Functions

 all_running()

 Returns all running Broadway names.

 get_rate_limiting(broadway)

 Gets the current values used for the producer rate limiting of the given pipeline.

 producer_names(broadway)

 Returns the names of producers.

 push_messages(broadway, messages)

 Sends a list of Broadway.Messages to the Broadway pipeline.

 start_link(module, opts)

 Starts a Broadway process linked to the current process.

 stop(broadway, reason \\ :normal, timeout \\ :infinity)

 Synchronously stops the Broadway pipeline with the given reason.

 test_batch(broadway, batch_data, opts \\ [])

 Sends a list of data as a batch of messages to the Broadway pipeline.

 test_message(broadway, data, opts \\ [])

 Sends a test message through the Broadway pipeline.

 topology(broadway)

 Returns the topology details for a pipeline.

 update_rate_limiting(broadway, opts)

 Updates the producer rate limiting of the given pipeline at runtime.

 Types

 name()

 @type name() :: atom() | {:via, module(), term()}

 on_start()

 @type on_start() ::
 {:ok, pid()} | :ignore | {:error, {:already_started, pid()} | term()}

Returned by start_link/2.

 Callbacks

 format_discarded(discarded, state)

 (since 1.2.0)

 (optional)

 @callback format_discarded(discarded :: non_neg_integer(), state :: term()) :: boolean()

Invoked when items are discarded from the buffer.
If this callback returns true, the default log message is emitted.
See GenStage.format_discarded/2.
Allows controlling or customization of the log message emitted.

 handle_batch(batcher, messages, batch_info, context)

 (optional)

 @callback handle_batch(
 batcher :: atom(),
 messages :: [Broadway.Message.t()],
 batch_info :: Broadway.BatchInfo.t(),
 context :: term()
) :: [Broadway.Message.t()]

Invoked to handle generated batches.
It expects:
	batcher is the key that defined the batcher. This value can be
set in the handle_message/3 callback using Broadway.Message.put_batcher/2.
	messages is the list of Broadway.Message structs in the incoming batch.
	batch_info is a Broadway.BatchInfo struct containing extra information
about the incoming batch.
	context is the user defined data structure passed to start_link/2.

It must return an updated list of messages. All messages received must be returned,
otherwise an error will be logged. All messages after this step will be acknowledged
according to their status.
In case of errors in this callback, the error will be logged and the whole
batch will be failed. This callback also traps exits, so failures due to broken
links between processes do not automatically cascade.
For more information on batching, see the "Batching" section in the Broadway
documentation.

 handle_failed(messages, context)

 (since 0.5.0)

 (optional)

 @callback handle_failed(messages :: [Broadway.Message.t()], context :: term()) :: [
 Broadway.Message.t()
]

Invoked for failed messages (if defined).
It expects:
	messages is the list of messages that failed. If a message is failed in
handle_message/3, this will be a list with a single message in it. If
some messages are failed in handle_batch/4, this will be the list of
failed messages.

	context is the user-defined data structure passed to start_link/2.

This callback must return the same messages given to it, possibly updated.
For example, you could update the message data or use Broadway.Message.configure_ack/2
in a centralized place to configure how to ack the message based on the failure
reason.
This callback is optional. If present, it's called before the messages
are acknowledged according to the producer. This gives you a chance to do something
with the message before it's acknowledged, such as storing it in an external
persistence layer or similar.
This callback is also invoked if handle_message/3 or handle_batch/4
crash or raise an error. If this callback crashes or raises an error,
the messages are failed internally by Broadway to avoid crashing the process.

 handle_message(processor, message, context)

 @callback handle_message(
 processor :: atom(),
 message :: Broadway.Message.t(),
 context :: term()
) ::
 Broadway.Message.t()

Invoked to handle/process individual messages sent from a producer.
It receives:
	processor is the key that defined the processor.
	message is the Broadway.Message struct to be processed.
	context is the user defined data structure passed to start_link/2.

And it must return the (potentially) updated Broadway.Message struct.
This is the place to do any kind of processing with the incoming message,
e.g., transform the data into another data structure, call specific business
logic to do calculations. Basically, any CPU bounded task that runs against
a single message should be processed here.
In order to update the data after processing, use the
Broadway.Message.update_data/2 function. This way the new message can be
properly forwarded and handled by the batcher:
@impl true
def handle_message(_, message, _) do
 message
 |> update_data(&do_calculation_and_returns_the_new_data/1)
end
In case more than one batcher have been defined in the configuration,
you need to specify which of them the resulting message will be forwarded
to. You can do this by calling put_batcher/2 and returning the new
updated message:
@impl true
def handle_message(_, message, _) do
 # Do whatever you need with the data
 ...

 message
 |> put_batcher(:s3)
end
Any message that has not been explicitly failed will be forwarded to the next
step in the pipeline. If there are no extra steps, it will be automatically
acknowledged.
In case of errors in this callback, the error will be logged and that particular
message will be immediately acknowledged as failed, not proceeding to the next
steps of the pipeline. This callback also traps exits, so failures due to broken
links between processes do not automatically cascade.

 prepare_messages(messages, context)

 (optional)

 @callback prepare_messages(messages :: [Broadway.Message.t()], context :: term()) :: [
 Broadway.Message.t()
]

Invoked for preparing messages before handling (if defined).
It expects:
	messages is a list of Broadway.Message structs to be processed.
	context is the user defined data structure passed to start_link/2.

This is the place to prepare and preload any information that will be used
by handle_message/3. For example, if you need to query the database,
instead of doing it once per message, you can do it on this callback as
a best-effort optimization.
The length of the list of messages received by this callback is often based
on the min_demand/max_demand configuration in the processor but ultimately
it depends on the producer and on the frequency data arrives. A pipeline that
receives messages rarely will most likely emit lists of length below the
min_demand value. Producers which are push-based, rather than pull-based,
such as BroadwayRabbitMQ.Producer, are more likely to send messages as they
arrive (which may skip batching altogether and always be single element lists).
In other words, this callback is simply a convenience for preparing messages,
it does not guarantee the messages will be accumulated to a certain length.
For effective batch processing, see handle_batch/4.
This callback must always return all messages it receives, as
handle_message/3 is still called individually for each message afterwards.
Failed Messages
Even if prepare_messages/2 fails some messages (Broadway.Message.failed/2),
the failed messages are still passed down to handle_message/3.
If your pipeline wants to avoid processing messages failed in prepare_messages/2,
it will have to pattern match on %Broadway.Message{status: {:failed, reason}}
in its handle_message/3 callback and act accordingly.

 process_name(broadway_name, base_name)

 (since 1.1.0)

 (optional)

 @callback process_name(broadway_name :: name(), base_name :: String.t()) :: name()

Invoked to get the process name of this Broadway pipeline.
broadway_name is the name given to start_link/2 in the :name option. base_name
is a string used by Broadway to identify different components of the pipeline
whose name needs to be registered (such as "batcher" or "processor").
The return value of this callback must be a process name that is valid for registration.
See the name registration rules in the documentation for GenServer.
This callback is optional. If not defined, the broadway_name given to start_link/2
must be an atom: the default implementation of this callback will fail otherwise.

 Examples

@impl Broadway
def process_name({:via, module, term}, base_name) do
 {:via, module, {term, base_name}}
end

 Functions

 all_running()

 (since 1.0.0)

 @spec all_running() :: [name()]

Returns all running Broadway names.
It's important to notice that no order is guaranteed.

 get_rate_limiting(broadway)

 (since 0.6.0)

 @spec get_rate_limiting(server :: name()) ::
 {:ok, rate_limiting_info} | {:error, :rate_limiting_not_enabled}
when rate_limiting_info: %{
 interval: non_neg_integer(),
 allowed_messages: non_neg_integer()
 }

Gets the current values used for the producer rate limiting of the given pipeline.
Returns {:ok, info} if rate limiting is enabled for the given pipeline or
{:error, reason} if the given pipeline doesn't have rate limiting enabled.
The returned info is a map with the following keys:
	:interval
	:allowed_messages

See the :rate_limiting options in the module documentation for more information.

 Examples

Broadway.get_rate_limiting(broadway)
#=> {:ok, %{allowed_messages: 2000, interval: 1000}}

 producer_names(broadway)

 (since 0.5.0)

 @spec producer_names(name()) :: [name()]

Returns the names of producers.

 Examples

iex> Broadway.producer_names(MyBroadway)
[MyBroadway.Producer_0, MyBroadway.Producer_1, ..., MyBroadway.Producer_7]

 push_messages(broadway, messages)

 @spec push_messages(broadway :: name(), messages :: [Broadway.Message.t()]) :: :ok

Sends a list of Broadway.Messages to the Broadway pipeline.
The producer is randomly chosen among all sets of producers/stages.
This is used to send out of band data to a Broadway pipeline.

 start_link(module, opts)

 @spec start_link(
 module(),
 keyword()
) :: on_start()

Starts a Broadway process linked to the current process.
	module is the module implementing the Broadway behaviour.

 Options

In order to set up how the pipeline created by Broadway should work,
you need to specify the blueprint of the pipeline. You can
do this by passing a set of options to start_link/2.
Each component of the pipeline has its own set of options.
The Broadway options are:
	:name - Required. Used for name registration. When an atom, all processes/stages
created will be named using this value as prefix.

	:shutdown (pos_integer/0) - Optional. The time in milliseconds given for Broadway to
gracefully shutdown without discarding events. The default value is 30000.

	:max_restarts (non_neg_integer/0) - The default value is 3.

	:max_seconds (pos_integer/0) - The default value is 5.

	:resubscribe_interval (non_neg_integer/0) - The interval in milliseconds that
processors wait until they resubscribe to a failed producers. The default value is 100.

	:context (term/0) - A user defined data structure that will be passed to handle_message/3 and handle_batch/4. The default value is :context_not_set.

	:producer (non-empty keyword/0) - Required. A keyword list of options. See "Producers options"
section below. Only a single producer is allowed.

	:processors (non-empty keyword/0) - Required. A keyword list of named processors where the key is an atom as identifier and
the value is another keyword list of options.
See "Processors options"
section below. Currently only a single processor is allowed.

	:batchers (keyword/0) - A keyword list of named batchers
where the key is an atom as identifier and the value is another
keyword list of options. See "Batchers options"
section below. The default value is [].

	:partition_by (function of arity 1) - A function that controls how data is
partitioned across all processors and batchers. It receives a
Broadway.Message and it must return a non-negative integer,
starting with zero, that will be mapped to one of the existing
processors. See "Ordering and Partitioning"
in the module docs for more information and known pitfalls.

	:spawn_opt (keyword/0) - Low-level options given when starting a
process. Applies to producers, processors, and batchers.
See erlang:spawn_opt/2 for more information.

	:hibernate_after (pos_integer/0) - If a process does not receive any message within this interval, it will hibernate,
compacting memory. Applies to producers, processors, and batchers.
Defaults to 15_000 (millisecond). The default value is 15000.

 Producers options

The producer options allow users to set up the producer.
The available options are:
	:module - Required. A tuple representing a GenStage producer.
The tuple format should be {mod, arg}, where mod is the module
that implements the GenStage behaviour and arg the argument that will
be passed to the init/1 callback of the producer. See Broadway.Producer
for more information.

	:concurrency (pos_integer/0) - The number of concurrent producers that
will be started by Broadway. Use this option to control the concurrency
level of each set of producers. The default value is 1.

	:transformer - A tuple representing a transformer that translates a produced GenStage event into a
%Broadway.Message{}. The tuple format should be {mod, fun, opts} and the function
should have the following spec (event :: term, opts :: term) :: Broadway.Message.t
This function must be used sparingly and exclusively to convert regular
messages into Broadway.Message. That's because a failure in the
:transformer callback will cause the whole producer to terminate,
possibly leaving unacknowledged messages along the way. The default value is nil.

	:spawn_opt (keyword/0) - Overrides the top-level :spawn_opt.

	:hibernate_after (pos_integer/0) - Overrides the top-level :hibernate_after.

	:rate_limiting (non-empty keyword/0) - A list of options to enable and configure rate limiting for producing.
If this option is present, rate limiting is enabled, otherwise it isn't.
Rate limiting refers to the rate at which producers will forward
messages to the rest of the pipeline. The rate limiting is applied to
and shared by all producers within the time limit.
The following options are supported:
	:allowed_messages (pos_integer/0) - Required. An integer that describes how many messages are allowed in the specified interval.

	:interval (pos_integer/0) - Required. An integer that describes the interval (in milliseconds)
during which the number of allowed messages is allowed.
If the producer produces more than allowed_messages
in interval, only allowed_messages will be published until
the end of interval, and then more messages will be published.

 Processors options

You don't need multiple processors
A common misconception is that, if your data requires multiple
transformations, each with a different concern, then you must
have several processors.
However, that's not quite true. Separation of concerns is modeled
by defining several modules and functions, not processors. Processors
are ultimately about moving data around and you should only do it
when necessary. Using processors for code organization purposes would
lead to inefficient pipelines.
	:concurrency (pos_integer/0) - The number of concurrent process that will
be started by Broadway. Use this option to control the concurrency level
of the processors. The default value is System.schedulers_online() * 2.

	:min_demand (non_neg_integer/0) - Set the minimum demand of all processors stages.

	:max_demand (non_neg_integer/0) - Set the maximum demand of all processors stages. The default value is 10.

	:partition_by (function of arity 1) - Overrides the top-level :partition_by.

	:spawn_opt (keyword/0) - Overrides the top-level :spawn_opt.

	:hibernate_after (pos_integer/0) - Overrides the top-level :hibernate_after.

 Batchers options

	:concurrency (pos_integer/0) - The number of concurrent batch processors
that will be started by Broadway. Use this option to control the
concurrency level. Note that this only sets the numbers of batch
processors for each batcher group, not the number of batchers.
The number of batchers will always be one for each batcher key
defined. The default value is 1.

	:batch_size - The size of the generated batches. Default value is 100. It is typically an
integer but it can also be tuple of {init_acc, fun}
where fun receives two arguments: a Broadway.Message and
an acc. The function must return either {:emit, acc} to indicate
all batched messages must be emitted or {:cont, acc} to continue
batching. init_acc is the initial accumulator used on the first call. You can
consider that setting the accumulator to an integer is the equivalent to custom
batching function of:
{batch_size,
 fn
 _message, 1 -> {:emit, batch_size}
 _message, count -> {:cont, count - 1}
 end}
The default value is 100.

	:max_demand (pos_integer/0) - Sets the maximum demand of batcher stages.
By default it is set to :batch_size, if :batch_size is an integer.
Must be set if the :batch_size is a function.

	:batch_timeout (pos_integer/0) - The time, in milliseconds, that the batcher waits before flushing
the list of messages. When this timeout is reached, a new batch
is generated and sent downstream, no matter if the :batch_size
has been reached or not. The default value is 1000.

	:partition_by (function of arity 1) - Optional. Overrides the top-level :partition_by.

	:spawn_opt (keyword/0) - Overrides the top-level :spawn_opt.

	:hibernate_after (pos_integer/0) - Overrides the top-level :hibernate_after.

 stop(broadway, reason \\ :normal, timeout \\ :infinity)

 (since 1.0.0)

Synchronously stops the Broadway pipeline with the given reason.
This function returns :ok if the pipeline terminates with the
given reason; if it terminates with another reason, the call exits.
This function keeps OTP semantics regarding error reporting.
If the reason is any other than :normal, :shutdown or
{:shutdown, _}, an error report is logged.

 test_batch(broadway, batch_data, opts \\ [])

 @spec test_batch(broadway :: name(), data :: [term()], opts :: Keyword.t()) ::
 reference()

Sends a list of data as a batch of messages to the Broadway pipeline.
This is a convenience used for testing. Each message is automatically
wrapped in a Broadway.Message with Broadway.CallerAcknowledger
configured to send a message back to the caller once all batches
have been fully processed.
If there are more messages in the batch than the pipeline batch_size
or if the messages in the batch take more time to process than
batch_timeout then the caller will receive multiple messages.
It returns a reference that can be used to identify the ack
messages.
See "Testing" section in module documentation
for more information.

 Options

	:metadata (term/0) - an enumerable of key-value pairs of additional fields to add to the
message. This can be used, for example, when testing BroadwayRabbitMQ.Producer. The default value is [].

	:acknowledger (function of arity 2) - a function that generates ack fields of the sent Broadway.Message.t().
This function receives the acknowledger data and the from field and
it must return the acknowledger tuple. The typespec of this function is:
data :: term(), from :: {pid(), term()} -> {module(), ack_ref :: term(), ack_data :: term()}

	:batch_mode - when set to :flush, the batch the message is in is immediately delivered. When set
to :bulk, batch is delivered when its size or timeout is reached. The default value is :bulk.

 Examples

For example, in your tests, you may do:
ref = Broadway.test_batch(broadway, [1, 2, 3])
assert_receive {:ack, ^ref, successful, failed}, 1000
assert length(successful) == 3
assert length(failed) == 0
Note that messages sent using this function will ignore demand and :transform
option specified in :producer option in Broadway.start_link/2.

 test_message(broadway, data, opts \\ [])

 @spec test_message(broadway :: name(), term(), opts :: Keyword.t()) :: reference()

Sends a test message through the Broadway pipeline.
This is a convenience used for testing. The given data
is automatically wrapped in a Broadway.Message with
Broadway.CallerAcknowledger configured to send a message
back to the caller once the message has been fully processed.
The message is set to be flushed immediately, without waiting
for the Broadway pipeline batch_size to be filled or the
batch_timeout to be triggered.
It returns a reference that can be used to identify the ack
messages.
See "Testing" section in module documentation
for more information.

 Options

	:metadata (term/0) - an enumerable of key-value pairs of additional fields to add to the
message. This can be used, for example, when testing BroadwayRabbitMQ.Producer. The default value is [].

	:acknowledger (function of arity 2) - a function that generates ack fields of the sent Broadway.Message.t().
This function receives the acknowledger data and the from field and
it must return the acknowledger tuple. The typespec of this function is:
data :: term(), from :: {pid(), term()} -> {module(), ack_ref :: term(), ack_data :: term()}

 Examples

For example, in your tests, you may do:
ref = Broadway.test_message(broadway, 1)
assert_receive {:ack, ^ref, [successful], []}
or if you want to override which acknowledger shall be called, you may do:
acknowledger = fn data, ack_ref -> {MyAck, ack_ref, :ok} end
Broadway.test_message(broadway, 1, acknowledger: acknowledger)
Note that messages sent using this function will ignore demand and :transform
option specified in :producer option in Broadway.start_link/2.

 topology(broadway)

 (since 1.0.0)

 @spec topology(broadway :: name()) :: [{key, [stage_info]}]
when key: :producers | :processors | :batchers,
 stage_info: %{
 :name => atom(),
 optional(:concurrency) => pos_integer(),
 optional(:batcher_name) => atom(),
 optional(:batcher_key) => atom(),
 optional(:processor_key) => atom()
 }

Returns the topology details for a pipeline.
The stages that have the :concurrency field in their info indicate a list of
processes running with that name prefix. Each process has :name as a
prefix plus _ and the index of 0..(concurrency - 1) as an atom. For example, a
producer named MyBroadway.Broadway.Producer with concurrency of 1
will only have a single process named MyBroadway.Broadway.Producer_0 in its
topology.
Single producer and processor
Broadway does not accept multiple producers neither
multiple processors, but we chose to keep in a list
for consistency and to ensure we're future proof.

 Examples

iex> Broadway.topology(MyBroadway)
[
 producers: [
 %{name: MyBroadway.Broadway.Producer, concurrency: 1}
],
 processors: [
 %{name: MyBroadway.Broadway.Processor_default, concurrency: 10, processor_key: :default}
],
 batchers: [
 %{
 batcher_name: MyBroadway.Broadway.Batcher_default,
 name: MyBroadway.Broadway.BatchProcessor_default,
 batcher_key: :default,
 concurrency: 5
 },
 %{
 batcher_name: MyBroadway.Broadway.Batcher_s3,
 name: MyBroadway.Broadway.BatchProcessor_s3,
 batcher_key: :s3,
 concurrency: 3
 }
]
]
In the example above, for instance, the processor process names would be
MyBroadway.Broadway.Processor_default_0, MyBroadway.Broadway.Processor_default_1,
and so on.

 update_rate_limiting(broadway, opts)

 (since 0.6.0)

 @spec update_rate_limiting(server :: name(), opts :: Keyword.t()) ::
 :ok | {:error, :rate_limiting_not_enabled}

Updates the producer rate limiting of the given pipeline at runtime.
Supports the following options (see the :rate_limiting options in the module
documentation for more information):
	:allowed_messages
	:interval
	:reset

Returns an {:error, reason} tuple if the given broadway pipeline doesn't
have rate limiting enabled.
The option :reset defaults to false. This means the rate limit will reset
to the new rate limit at the end of the current interval. When :reset is true,
the new rate limit takes effect immediately.

 Examples

Broadway.update_rate_limiting(broadway, allowed_messages: 100)

Broadway.Application

 Summary

 Functions

 start(type, args)

 Callback implementation for Application.start/2.

 Functions

 start(type, args)

Callback implementation for Application.start/2.

Broadway.BatchInfo

A struct used to hold information about a generated batch.
An instance of this struct containing the related info will
be passed to the Broadway.handle_batch/4 callback of the
module implementing the Broadway behaviour.
See the documentation for %Broadway.BatchInfo{}
for information on the fields.

 Summary

 Types

 t()

 The type for a batch info struct.

 Functions

 %Broadway.BatchInfo{}

 The batch info struct.

 Types

 t()

 @type t() :: %Broadway.BatchInfo{
 batch_key: term(),
 batcher: atom(),
 partition: non_neg_integer() | nil,
 size: pos_integer(),
 trigger: atom()
}

The type for a batch info struct.

 Functions

 %Broadway.BatchInfo{}

 (struct)

The batch info struct.
The fields are:
	:batcher - is the key that defined the batcher. This value can
be set in the Broadway.handle_message/3 callback using
Broadway.Message.put_batcher/2.

	:batch_key - identifies the batch key for this batch.
See Broadway.Message.put_batch_key/2.

	:partition - the partition, if present.

	:size - the number of messages in the batch.

	:trigger - the trigger that generated the batch, like :timeout
or :flush.

Broadway.Message

This struct holds all information about a message.
A message is first created by the producers. It is then
sent downstream and gets updated multiple times, either
by a module implementing the Broadway behaviour
through the Broadway.handle_message/3 callback
or internally by one of the built-in stages of Broadway.
Instead of modifying the struct directly, you should use the functions
provided by this module to manipulate messages. However, if you are implementing
a Broadway.Producer of your own, see t/0 to see what fields you should set.

 Summary

 Types

 acknowledger()

 The acknowledger of the message.

 t()

 The Broadway message struct.

 Functions

 ack_immediately(message_or_messages)

 Immediately acknowledges the given message or list of messages.

 configure_ack(message, options)

 Configures the acknowledger of this message.

 failed(message, reason)

 Mark a message as failed.

 put_batch_key(message, batch_key)

 Defines the message batch key.

 put_batch_mode(message, mode)

 Sets the batching mode for the message.

 put_batcher(message, batcher)

 Defines the target batcher which the message should be forwarded to.

 put_data(message, data)

 Stores the given data in the message.

 update_data(message, fun)

 Updates the data in the message.

 Types

 acknowledger()

 (since 1.1.0)

 @type acknowledger() :: {module(), ack_ref :: term(), data :: term()}

The acknowledger of the message.
This tuple contains:
	A module implementing the Broadway.Acknowledger behaviour.

	An ack reference that is passed to the Broadway.Acknowledger.ack/3
callback. See Broadway.Acknowledger.ack/3 for more information.

	An arbitrary term that is passed to the optional
Broadway.Acknowledger.configure/3 callback.

 t()

 @type t() :: %Broadway.Message{
 acknowledger: acknowledger(),
 batch_key: term(),
 batch_mode: :bulk | :flush,
 batcher: atom(),
 data: term(),
 metadata: %{optional(atom()) => term()},
 status:
 :ok
 | {:failed, reason :: term()}
 | {:throw | :error | :exit, term(), Exception.stacktrace()}
}

The Broadway message struct.
Most of these fields are manipulated by Broadway itself. You can
read the :metadata field, and you can use the functions in this
module to update most of the other fields. If you are implementing
your own producer, see the Broadway.Producer documentation
for more information on how to create and manipulate message structs.

 Functions

 ack_immediately(message_or_messages)

 (since 0.5.0)

 @spec ack_immediately(message :: t()) :: t()

 @spec ack_immediately(messages :: [t(), ...]) :: [t(), ...]

Immediately acknowledges the given message or list of messages.
This function can be used to acknowledge a message (or list of messages)
immediately without waiting for the rest of the pipeline.
Acknowledging a message sets that message's acknowledger to a no-op
acknowledger so that it's safe to ack at the end of the pipeline.
Returns the updated acked message if a message is passed in,
or the updated list of acked messages if a list of messages is passed in.

 configure_ack(message, options)

 (since 0.5.0)

 @spec configure_ack(message :: t(), options :: keyword()) :: t()

Configures the acknowledger of this message.
This function calls the Broadway.Acknowledger.configure/3 callback to
change the configuration of the acknowledger for the given message.
This function can only be called if the acknowledger implements the configure/3
callback. If it doesn't, an error is raised.

 failed(message, reason)

 @spec failed(message :: t(), reason :: term()) :: t()

Mark a message as failed.
Failed messages are sent directly to the related acknowledger at the end
of this step and therefore they're not forwarded to the next step in the
pipeline.
Failing a message does not emit any log but it does trigger the
Broadway.handle_failed/2 callback.

 put_batch_key(message, batch_key)

 @spec put_batch_key(message :: t(), batch_key :: term()) :: t()

Defines the message batch key.
The batch key identifies the batch the message belongs to, within
a given batcher. Each batcher then groups batches with the same
batch_key, with size of at most batch_size within period
batch_timeout. Both batch_size and batch_timeout are managed
per batch key, so a batcher is capable of grouping multiple batch
keys at the same time, regardless of the concurrency level.
If a given batcher has multiple batch processors (concurrency > 1),
all messages with the same batch key are routed to the same processor.
So different batch keys may run concurrently but the same batch key
is always run serially and in the same batcher processor.

 put_batch_mode(message, mode)

 @spec put_batch_mode(message :: t(), mode :: :bulk | :flush) :: t()

Sets the batching mode for the message.
When the mode is :bulk, the batch that the message is in is delivered after
the batch size or batch timeout is reached.
When the mode is :flush, the batch that the message is in is delivered
immediately after processing. Note it doesn't mean the batch contains only a single element
but rather that all messages received from the processor are delivered without waiting.
The default mode for messages is :bulk.

 put_batcher(message, batcher)

 @spec put_batcher(message :: t(), batcher :: atom()) :: t()

Defines the target batcher which the message should be forwarded to.

 put_data(message, data)

 (since 1.0.0)

 @spec put_data(message :: t(), term()) :: t()

Stores the given data in the message.
This function is usually used inside the Broadway.handle_message/3 implementation
to replace data with new processed data.

 update_data(message, fun)

 @spec update_data(message :: t(), fun :: (term() -> term())) :: t()

Updates the data in the message.
This function is usually used inside the Broadway.handle_message/3 implementation
to update data with new processed data.

Broadway.Acknowledger behaviour

A behaviour used to acknowledge that the received messages
were successfully processed or failed.
When implementing a new connector for Broadway, you should
implement this behaviour and consider how the technology
you're working with handles message acknowledgement.
The ack/3 callback must be implemented in order to notify
the origin of the data that a message can be safely removed
after been successfully processed and published. In case of
failed messages or messages without acknowledgement, depending
on the technology chosen, the messages can be either moved back
in the queue or, alternatively, moved to a dead-letter queue.

 Summary

 Callbacks

 ack(ack_ref, successful, failed)

 Invoked to acknowledge successful and failed messages.

 configure(ack_ref, ack_data, options)

 Configures the acknowledger with new options.

 Callbacks

 ack(ack_ref, successful, failed)

 @callback ack(
 ack_ref :: term(),
 successful :: [Broadway.Message.t()],
 failed :: [Broadway.Message.t()]
) ::
 :ok

Invoked to acknowledge successful and failed messages.
	ack_ref is a term that uniquely identifies how messages
should be grouped and sent for acknowledgement. Imagine
you have a scenario where messages are coming from
different producers. Broadway will use this information
to correctly identify the acknowledger and pass it among
with the messages so you can properly communicate with
the source of the data for acknowledgement. ack_ref is
part of Broadway.Message.acknowledger/0.

	successful is the list of messages that were
successfully processed and published.

	failed is the list of messages that, for some reason,
could not be processed or published.

 configure(ack_ref, ack_data, options)

 (optional)

 @callback configure(ack_ref :: term(), ack_data :: term(), options :: keyword()) ::
 {:ok, new_ack_data :: term()}

Configures the acknowledger with new options.
Every acknowledger can decide how to incorporate the given options into its
ack_data. The ack_data is the current acknowledger's data. The return value
of this function is {:ok, new_ack_data} where new_ack_data is the updated
data for the acknowledger.
Note that options are different for every acknowledger, as the acknowledger
is what specifies what are the supported options. Check the documentation for the
acknowledger you're using to see the supported options.
ack_ref and ack_data are part of Broadway.Message.acknowledger/0.

Broadway.CallerAcknowledger

A simple acknowledger that sends a message back to a caller.
If you want to use this acknowledger in messages produced by your
Broadway.Producer, you can get its configuration by calling
the init/0 function. For example, you can use it in
Broadway.test_message/3:
some_ref = make_ref()

Broadway.test_message(
 MyPipeline,
 "some data",
 acknowledger: Broadway.CallerAcknowledger.init({self(), some_ref}, :ignored)
)
The first parameter is a tuple with the PID to receive the messages
and a unique identifier (usually a reference). Such unique identifier
is then included in the messages sent to the PID. The second parameter,
which is per message, is ignored.
It sends a message in the format:
{:ack, ref, successful_messages, failed_messages}
If Broadway.Message.configure_ack/2 is called on a message that
uses this acknowledger, then the following message is sent:
{:configure, ref, options}

 Summary

 Functions

 init(pid_and_ref, ignored_term)

 Returns the acknowledger metadata.

 Functions

 init(pid_and_ref, ignored_term)

 @spec init(
 {pid(), ref :: term()},
 ignored_term :: term()
) :: Broadway.Message.acknowledger()

Returns the acknowledger metadata.
See the module documentation.

Broadway.NoopAcknowledger

An acknowledger that does nothing.
If you want to use this acknowledger in messages produced by your
Broadway.Producer, you can get its configuration by calling
the init/0 function. For example, you can use it in
Broadway.test_message/3:
Broadway.test_message(MyPipeline, "some data", acknowledger: Broadway.NoopAcknowledger.init())
Broadway sets this acknowledger automatically on messages that have been acked
via Broadway.Message.ack_immediately/1.

 Summary

 Functions

 init()

 Returns the acknowledger metadata.

 Functions

 init()

 @spec init() :: Broadway.Message.acknowledger()

Returns the acknowledger metadata.

Broadway.DummyProducer

A producer that does nothing, used mostly for testing.
See "Testing" section in Broadway module documentation for more information.

Broadway.Producer behaviour

A Broadway producer is a GenStage producer that emits
Broadway.Message structs as events.
The Broadway.Producer is declared in a Broadway topology
via the :module option (see Broadway.start_link/2):
producer: [
 module: {MyProducer, options}
]
Once declared, MyProducer is expected to implement and
behave as a GenStage producer. When Broadway starts,
the GenStage.init/1 callback will be invoked directly with the
given options.

 Injected Broadway configuration

If options is a keyword list, Broadway injects a :broadway option
into such keyword list. This option contains the configuration for the
complete Broadway topology (see Broadway.start_link/2. For example,
you can use options[:broadway][:name] to uniquely identify the topology.
The :broadway configuration also has an :index key. This
is the index of the producer in its supervision tree (starting
from 0). This allows a features such having even producers
connect to some server while odd producers connect to another.
If options is any other term, it is passed as is to the GenStage.init/1
callback. All other functions behave precisely as in GenStage
with the requirements that all emitted events must be Broadway.Message
structs.

 Optional callbacks

A Broadway.Producer can implement two optional Broadway callbacks,
prepare_for_start/2 and prepare_for_draining/1, which are useful
for booting up and shutting down Broadway topologies respectively.

 Producing Broadway messages

You should generally modify Broadway.Message structs by using the functions
in the Broadway.Message module. However, if you are implementing your
own producer, you can manipulate some of the struct's fields directly.
These fields are:
	:data (required) - the data of the message. Even though the function
Broadway.Message.put_data/2 exists, when creating a %Broadway.Message{}
struct from scratch you will have to pass in the :data field directly.

	:acknowledger (required) - the acknowledger of the message, of type
Broadway.Message.acknowledger/0.

	:metadata (optional) - metadata about the message that your producer
can attach to the message. This is useful when you want to add some metadata
to messages, and document it for users to use in their pipelines.

For example, a producer could create a message by doing something like this:
%Broadway.Message{
 data: "some data here",
 acknowledger: Broadway.NoopAcknowledger.init()
}

 Summary

 Callbacks

 prepare_for_draining(state)

 Invoked by the terminator right before Broadway starts draining in-flight
messages during shutdown.

 prepare_for_start(module, options)

 Invoked once by Broadway during Broadway.start_link/2.

 Callbacks

 prepare_for_draining(state)

 (optional)

 @callback prepare_for_draining(state :: any()) ::
 {:noreply, [event], new_state}
 | {:noreply, [event], new_state, :hibernate}
 | {:stop, reason :: term(), new_state}
when new_state: term(), event: term()

Invoked by the terminator right before Broadway starts draining in-flight
messages during shutdown.
This callback should be implemented by producers that need to do additional
work before shutting down. That includes active producers like RabbitMQ that
must ask the data provider to stop sending messages. It will be invoked for
each producer stage.
state is the current state of the producer.

 prepare_for_start(module, options)

 (since 0.5.0)

 (optional)

 @callback prepare_for_start(module :: atom(), options :: keyword()) ::
 {[child_spec], updated_options :: keyword()}
when child_spec: :supervisor.child_spec() | {module(), any()} | module()

Invoked once by Broadway during Broadway.start_link/2.
The goal of this callback is to manipulate the general topology options,
if necessary at all, and introduce any new child specs that will be
started before the producers supervisor in Broadway's supervision tree.
Broadway's supervision tree is a rest_for_one supervisor (see the documentation
for Supervisor), which means that if the children returned from this callback
crash they will bring down the rest of the pipeline before being restarted.
This callback is guaranteed to be invoked inside the Broadway main process.
module is the Broadway module passed as the first argument to
Broadway.start_link/2. options is all of Broadway topology options passed
as the second argument to Broadway.start_link/2.
The return value of this callback is a tuple {child_specs, options}. child_specs
is the list of child specs to be started under Broadway's supervision tree.
updated_options is a potentially-updated list of Broadway options
that will be used instead of the ones passed to Broadway.start_link/2. This can be
used to modify the characteristics of the Broadway topology to accommodated
for the children started here.

 Examples

defmodule MyProducer do
 @behaviour Broadway.Producer

 # other callbacks...

 @impl true
 def prepare_for_start(_module, broadway_options) do
 children = [
 {DynamicSupervisor, strategy: :one_for_one, name: MyApp.DynamicSupervisor}
]

 {children, broadway_options}
 end
end

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

