

 BroadwaySQS

 v0.7.3

 Table of contents

 	Modules

 	BroadwaySQS.ExAwsClient

 	BroadwaySQS.Options

 	BroadwaySQS.Producer

 	BroadwaySQS.SQSClient

BroadwaySQS.ExAwsClient

Default SQS client used by BroadwaySQS.Producer to communicate with AWS
SQS service. This client uses the ExAws.SQS library and implements the
BroadwaySQS.SQSClient and Broadway.Acknowledger behaviours which define
callbacks for receiving and acknowledging messages.

BroadwaySQS.Options

Broadway Sqs Option definitions and custom validators.

 Anchor for this section

 Summary

 Functions

 definition()

 type_array_non_empty_string_or_all_atom(value, arg2)

 type_bounded_integer(value, list)

 type_list_limited_member_or_all_atom(value, arg2)

 type_non_empty_string(value, arg2)

 Anchor for this section

Functions

 Link to this function

 definition()

 View Source

 Link to this function

 type_array_non_empty_string_or_all_atom(value, arg2)

 View Source

 Link to this function

 type_bounded_integer(value, list)

 View Source

 Link to this function

 type_list_limited_member_or_all_atom(value, arg2)

 View Source

 Link to this function

 type_non_empty_string(value, arg2)

 View Source

BroadwaySQS.Producer

A GenStage producer that continuously polls messages from a SQS queue and
acknowledge them after being successfully processed.
By default this producer uses BroadwaySQS.ExAwsClient to talk to SQS but
you can provide your client by implementing the BroadwaySQS.SQSClient
behaviour.
For a quick getting started on using Broadway with Amazon SQS, please see
the Amazon SQS Guide.
Options
Aside from :receive_interval and :sqs_client which are generic and apply to all
producers (regardless of the client implementation), all other options are specific to
the BroadwaySQS.ExAwsClient, which is the default client.
	:queue_url - Required. The url for the SQS queue. Note this does not have to be a
regional endpoint. For example, https://sqs.amazonaws.com/0000000000/my_queue.

	:sqs_client - A module that implements the BroadwaySQS.SQSClient
behaviour. This module is responsible for fetching and acknowledging the
messages. Pay attention that all options passed to the producer will be forwarded
to the client. The default value is BroadwaySQS.ExAwsClient.

	:receive_interval - The duration (in milliseconds) for which the producer
waits before making a request for more messages. The default value is 5000.

	:on_success - configures the acking behaviour for successful messages. See the
"Acknowledgments" section below for all the possible values. The default value is :ack.

	:on_failure - configures the acking behaviour for failed messages. See the
"Acknowledgments" section below for all the possible values. The default value is :noop.

	:config - A set of options that overrides the default ExAws configuration
options. The most commonly used options are: :access_key_id, :secret_access_key,
:scheme, :region and :port. For a complete list of configuration options and
their default values, please see the ExAws documentation. The default value is [].

	:max_number_of_messages - The maximum number of messages to be fetched
per request. This value must be between 1 and 10, which is the maximum number
allowed by AWS. The default value is 10.

	:wait_time_seconds - The duration (in seconds) for which the call waits
for a message to arrive in the queue before returning. This value must be
between 0 and 20, which is the maximum number allowed by AWS. For more
information see "WaitTimeSeconds" on the Amazon SQS documentation.

	:visibility_timeout - The time period (in seconds) that a message will
remain invisible to other consumers whilst still on the queue and not acknowledged.
This is passed to SQS when the message (or messages) are read.
This value must be between 0 and 43200 (12 hours).

	:attribute_names - A list containing the names of attributes that should be
attached to the response and appended to the metadata
field of the message. You can also use :all instead of
a list if you want to retrieve all attributes. Supported
values are:
	:sender_id
	:sent_timestamp
	:approximate_receive_count
	:approximate_first_receive_timestamp
	:sequence_number
	:message_deduplication_id
	:message_group_id
	:aws_trace_header

	:message_attribute_names - A list containing the names of custom message attributes
that should be attached to the response and appended to the metadata field of the
message. Wildcards [".*"] and prefixes ["bar.*"] will retrieve multiple fields.
You can also use :all instead of the list if you want to retrieve all attributes.

Acknowledgments
You can use the :on_success and :on_failure options to control how messages are
acked on SQS. You can set these options when starting the SQS producer or change them
for each message through Broadway.Message.configure_ack/2. By default, successful
messages are acked (:ack) and failed messages are not (:noop).
The possible values for :on_success and :on_failure are:
	:ack - acknowledge the message. SQS will delete the message from the queue
and will not redeliver it to any other consumer.

	:noop - do not acknowledge the message. SQS will eventually redeliver the message
or remove it based on the "Visibility Timeout" and "Max Receive Count"
configurations. For more information, see:
	"Visibility Timeout" page on Amazon SQS
	"Dead Letter Queue" page on Amazon SQS

Batching
Even if you are not interested in working with Broadway batches via the
handle_batch/3 callback, we recommend all Broadway pipelines with SQS
producers to define a default batcher with batch_size set to 10, so
messages can be acknowledged in batches, which improves the performance
and reduce the costs of integrating with SQS.
Example
Broadway.start_link(MyBroadway,
 name: MyBroadway,
 producer: [
 module: {BroadwaySQS.Producer,
 queue_url: "https://sqs.amazonaws.com/0000000000/my_queue",
 config: [
 access_key_id: "YOUR_AWS_ACCESS_KEY_ID",
 secret_access_key: "YOUR_AWS_SECRET_ACCESS_KEY",
 region: "us-east-2"
]
 }
],
 processors: [
 default: []
],
 batchers: [
 default: [
 batch_size: 10,
 batch_timeout: 2000
]
]
)
The above configuration will set up a producer that continuously receives
messages from "my_queue" and sends them downstream.
Retrieving Metadata
By default the following information is added to the metadata field in the
%Message{} struct:
	message_id - The message id received when the message was sent to the queue
	receipt_handle - The receipt handle
	md5_of_body - An MD5 digest of the message body

You can access any of that information directly while processing the message:
def handle_message(_, message, _) do
 receipt = %{
 id: message.metadata.message_id,
 receipt_handle: message.metadata.receipt_handle
 }

 # Do something with the receipt
end
If you want to retrieve attributes or message_attributes, you need to
configure the :attributes_names and :message_attributes_names options
accordingly, otherwise, attributes will not be attached to the response and
will not be available in the metadata field
producer: [
 module: {BroadwaySQS.Producer,
 queue_url: "https://sqs.amazonaws.com/0000000000/my_queue",
 # Define which attributes/message_attributes you want to be attached
 attribute_names: [:approximate_receive_count],
 message_attribute_names: ["SomeAttribute"]
 }
]
and then in handle_message:
def handle_message(_, message, _) do
 approximate_receive_count = message.metadata.attributes["approximate_receive_count"]
 some_attribute = message.metadata.message_attributes["SomeAttribute"]

 # Do something with the attributes
end
For more information on the :attributes_names and :message_attributes_names
options, see "AttributeName.N" and "MessageAttributeName.N" on the ReceiveMessage documentation
Telemetry
This library exposes the following Telemetry events:
	[:broadway_sqs, :receive_messages, :start] - Dispatched before receiving
messages from SQS (BroadwaySQS.SQSClient.receive_messages/2)
	measurement: %{time: System.monotonic_time}
	metadata: %{name: atom, demand: integer}

	[:broadway_sqs, :receive_messages, :stop] - Dispatched after messages have
been received from SQS and "wrapped".
	measurement: %{duration: native_time}

	metadata:
%{
 name: atom,
 messages: [Broadway.Message.t],
 demand: integer
}

	[:broadway_sqs, :receive_messages, :exception] - Dispatched after a failure
while receiving messages from SQS.
	measurement: %{duration: native_time}

	metadata:
%{
 name: atom,
 demand: integer,
 kind: kind,
 reason: reason,
 stacktrace: stacktrace
}

BroadwaySQS.SQSClient behaviour

A generic behaviour to implement SQS Clients for BroadwaySQS.Producer.
This module defines callbacks to normalize options and receive message
from a SQS queue. Modules that implement this behaviour should be passed
as the :sqs_client option from BroadwaySQS.Producer.

 Anchor for this section

 Summary

 Types

 messages()

 Callbacks

 init(opts)

 receive_messages(demand, opts)

 Anchor for this section

Types

 Link to this type

 messages()

 View Source

 @type messages() :: [Broadway.Message.t()]

 Anchor for this section

Callbacks

 Link to this callback

 init(opts)

 View Source

 @callback init(opts :: any()) ::
 {:ok, normalized_opts :: any()} | {:error, reason :: binary()}

 Link to this callback

 receive_messages(demand, opts)

 View Source

 @callback receive_messages(demand :: pos_integer(), opts :: any()) :: messages()

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

