

 brod

 v4.5.2

 Table of contents

 	Changelog

 	Overview

 	License

 	Elixir

 	Publisher Example

 	Consumer Example

 	Usage

 	Authentication

 	

 	Modules

 	brod

 	brod_cg_commits

 	brod_client

 	brod_consumer

 	brod_group_coordinator

 	brod_group_member

 	brod_group_subscriber

 	brod_group_subscriber_v2

 	brod_kafka_request

 	brod_producer

 	brod_supervisor3

 	brod_topic_subscriber

 	brod_transaction

 	brod_transaction_processor

Changelog

	4.5.2
	Pin kafka_protocol-4.3.2 (crc32cer-1.1.2).

	4.5.1
	Refine warning log for group_subscriber_v2 when corrdinator exits.
	Function brod_group_subscriber_v2:health_check/2 returns healthy | rebalancing | {error, [..]}.

	4.5.0
	Add brod_group_subscriber_v2:health_check/2 to check topic-partition consumer connectivity status.

	4.4.7
	Upgrade to kafka_protocol-4.3.0 for improved message encoding performance. See kafka_protocol changelog for details.
	Add a warning log when group coordinator 'EXIT' signal is received by group_subscriber_v2.

	4.4.6
	Upgrade to kafka_protocol-4.2.8 for dependency (crc32cer-1.0.4) to fix its link error.

	4.4.5
	Start supervisor process for the new increase partitions at do_get_metadata function.
	Upgrade to kafka_protocol-4.2.7 for fast dependency (crc32cer-1.0.3) build.

	4.4.4
	Fixed ListGroups API request for Kafka Protocol API version 3.

	4.4.3
	Modifybrod_client:get_metadata and brod_client:get_metadata_safe function for support multiple topics.

	4.4.2
	Expanded API version ranges to support Kafka 4.0.0join_group: {0,1} -> {0,6}
heartbeat: {0,0} -> {0,4}
leave_group: {0,0} -> {0,4}
describe_groups: {0,0} -> {0,5}
list_groups: {0,0} -> {0,3}
create_topics: {0,0} -> {0,4}
delete_topics: {0,0} -> {0,4}

	4.4.1
	Upgrade kafka_protocol from 4.2.3 to 4.2.5 for:	crc32c performance improvements on ARM.

	Replace self messaging in init with handle_continue

	4.4.0
	Support zstd compression.
	Upgrade kafka_protocol from 4.1.10 to 4.2.3 for:	logging improvements
	crc32c performance improvements on x86

	4.3.3
	Catch exit exception when group coordinator calls group member (owner) process.
	Add unknown_topic_cache_ttl option in client config.
	Doc improvements.

	4.3.2
	Upgrade kafka_protocol from 4.1.9 to 4.1.10 for partition leader discover/connect timeout fix.

	4.3.1
	Fixed brod_client:stop_consumer so that it doesn't crash the client process if an unknown consumer is given as argument.
	Previously, brod_group_subscriber_v2 could leave brod_consumer processes lingering even after its shutdown. Now, those processes are terminated.

	4.3.0
	Split brod-cli out to a separate project kafka4beam/brod-cli

	4.2.0
	Optimize consumer fetch latency.
Introduced the share_leader_conn consumer configuration option (default: false).
This setting allows users to opt for the previous behavior if preferred (set to true).

	4.1.1
	Upgrade kafka_protocol from version 4.1.5 to 4.1.9.

	4.1.0
	For v2 subscribers, pass offset ack_fun as a callback state init parameter.
This makes it possible for callback implementation to acknowledge offsets easier.
PR#591
	Type spec fix. PR#590
	Fix brod:fold/8 to avoid exception when a stable offset points to en empty batch.
PR#589

	4.0.0
	Remove snappyer from default dependency PR#547.
Starting from kafka_protocol-4.0, it no longer requires compression libraries as rebar dependencies.
Now brod-4.0 has it removed too.
For more compression options, see kafka_protocol/README

	3.19.1
	Made brod-cli to work on OTP 26. PR#582	--ssl option is now mandatory if TLS is to be used (previously it can be derived from --cacertfile option)
	TLS version defaults to 1.2, added --ssl-versions to support explictly setting TLS 1.3

	Support building on OTP 27 PR#585
Also fixed rebar.lock for dependency kafka_protocol-4.1.5
	Guard against crashes in brod_client:get_consumer/3 PR#587 (originally PR#581)

	3.19.0
	Forward unhandled messages in topic/group consumer processes to handle_info/2 callbacks
in order to support arbitrary message passing PR#580

	3.18.0
	Add transactional APIs. PR#549
	Fix unnecessary group coordinator restart due to hb_timeout exception. PR#578
	Changed supervisor3 progress log level from info to debug. PR#572
	Type spec fix. PR#571
	Remove unused macro. PR#575

	3.17.1
	Upgrade kafka_protocol from 4.1.3 to 4.1.5	Allow space after , in comma-separated bootstrapping host:port list
	Avoid badmatch exception when parsing SASL password file

	3.17.0
	Deleted supervisor3 as dependency, module is now moved to brod.git named brod_supervisor3.
	Upgrade snappyer version from 1.2.8 to 1.2.9.
	Upgrade kafka_protocol from 4.1.2 to 4.1.3.
	In rebar3.config move coveralls from plugins to project_plugins.

	3.16.8
	Upgrade supervisor3 from 1.1.11 to 1.1.12 to log supervisor status
at debug level instead of notice level.
	Add brod_group_subscriber_v2:get_workers function to help
monitor and check the health of a consumer group.

	3.16.7
	Upgrade kafka_protocol from 4.1.1 to 4.1.2 to allow handling
multiply nested wrapped secrets.

	3.16.6
	Upgrade kafka_protocol from 4.1.0 to 4.1.1 to support defining
SNI for bootstrap hosts without the need to set the verify_peer
config.

	3.16.5
	Improve the documentation
	Add brod:get_partitions_count_safe/2.
It is ensured not to auto-create topics in Kafka even
when Kafka has topic auto-creation configured.
	Treat offset = 0 commit record as earliest.
This is an issue introduced in 3.16.4 which supported subscriber
managed offset commits to be represented as {begin_offset, Offset}.
The issue is: 0 is altered by v2 group worker to -1.
Handled as offsets greater than 0, v2 group worker assums brod_topic_subscriber
would apply +1 to it, however -1 is actually interpreted as latest.
#531 fixes it
by replacing 0 with earliest.

	3.16.4
	Allow special begin_offset from consumer managed commits.
	Fix specs for brod_group_subscriber_v2.get_committed_offset
	Update kafka_protocol from 4.0.3 to 4.1.0. kafka_protocol 4.1.0 support a
different version of the auth plugin interface that also pass the
handshake version to the plugin. This is used by the SASL GSSAPI Kerberos
plugin brod_gssapi (https://github.com/kafka4beam/brod_gssapi) so that
the correct handshake protocol is used. The change is backwards compatible
as the old interface will be used if the plugin module does not have a
function with the name and arity that is required by the new interface.
See https://github.com/kafka4beam/kafka_protocol/pull/102 for details.

	3.16.3
	Fix specs for delete_topics.
	Ensure that partition worker process is alive before returning it.
	Update kafka_protocol from 4.0.1 to 4.0.3 in rebar.lock file.
	Make consumer 'isolation_level' configurable.

	3.16.2
	Update kafka_protocol from 4.0.1 to 4.0.3.
Prior to this change the actual time spent in establishing a
Kafka connection might be longer than desired due to the timeout
being used in SSL upgrade (if enabled), then API version query.
This has been fixed by turning the given timeout config
into a deadline, and the sub-steps will try to meet the deadline.
see more details here: https://github.com/kafka4beam/kafka_protocol/pull/92
	Catch timeout and other DOWN reasons when making gen_server call to
brod_client, brod_consumer and producer/consumer supervisor,
and return as Reason in {error, Reason}.
Previously only noproc reason is caught. (#492)
	Propagate connect_timeout config to kpro API functions as timeout arg
affected APIs: connect_group_coordinator, create_topics, delete_topics,
resolve_offset, fetch, fold, fetch_committed_offsets (#458)
	Fix bad field name in group describe request (#486)

	3.16.1
	Fix brod script in brod-cli in release.
	Support rebalance_timeout consumer group option

	3.16.0
	Update to kafka-protocol v4.0.1

	3.15.6
	Eliminate long-lived anonymous function closures

	3.15.5
	Fix exponential growth of brod_producer buffer

	3.15.4
	Avoid start_link for temp connection usages
affected APIs: fetch_committed_offsets, fetch, resolve_offset, create_topics, delete_topics

	3.15.3
	Try to commit acknowledged offsets when brod_group_subscriber_v2 terminates
	Fix process leak, close connection after offset is fetched in brod_utils:fetch_committed_offsets/3

	3.15.2
	Producer: Do not format producer buffer in gen_server state
	Consumer: Do not commit offsets when unknown_member_id error is received
	Logging: Changed from error_logger to logger macros
	Don't shut down brod_group_subscriber_v2 on previous generation worker termination
	Fix brod_group_subscriber_v2 crash on shutdown
	Use GitHub Actions instead of Travis CI
	Added Elixir example
	Rename DEFAULT_TIMEOUT macro in public brod.hrl to BROD_DEFAULT_TIMEOUT.

	3.15.0 (and 3.15.1, for some reason tagged on the same commit)
	Fix unknown types
	Build on OTP-23

	3.14.0
NOTE: This release changes internal states of brod worker processes
in a way that cannot by applied on a running system. brod application
and all brod workers should be shot down for the time of the upgrade.
	Introduced a new optional terminate/2 callback to
brod_topic_subscriber and brod_group_subscriber_v2 behaviors

	Introduced new API functions for starting topic subscribers:
brod_topic_subscriber:start_link/1 and brod:start_link_topic_subscriber/1
Old APIs
	brod:start_link_topic_subscriber/5,
	brod:start_link_topic_subscriber/6
	brod:start_link_topic_subscriber/7
	brod_topic_subscriber:start_link/6
	brod_topic_subscriber:start_link/7
	brod_topic_subscriber:start_link/8
are deprecated and will be removed in the next major release

	3.13.0
	Update supervisor3 dependency to 1.1.11
	brod_group_subscriber_v2 behavior handles worker crashes
	Makefile fix for hex publishing
	Reverse Changelog order
	Fix typos and dialyzer warnings

	3.12.0
	Enable passing custom timeout to resolve_offset

	3.11.0
	Improve compatibility with EventHub

	3.10.0
	Stop supporting erlang.mk
	Stop supporting rebar
	Update kafka_protocol dependency to 2.3.6
	Add new brod_group_coordinator:update_topics API

	3.9.5
	Bump kafka_protocol dependency to 2.3.3

	3.9.4
	Handle undefined fetcher in fold loop exception

	3.9.3
	Remove vsn-check dependency from default Makefile target
This enables using brod with erlang.mk + hex
	Bump kafka_protocol dependency to 2.3.2

	3.9.2
	Fix corrupted package published to hex

	3.9.1
	Receive pending acks after assignments_revoked is invoked

	3.9.0
	Updated kafka_protocol dependency to 2.3.1
	(Experimental) Added group_subscriber_v2 behavior
	Added API for topic deletion and creation

	3.8.1
	Handle the case when high_watermark < last_stable_offset in fetch resp

	3.8.0
	Bump to kafka_protocol 2.2.9 (allow atom() hostname)
	Add brod:fold/8. This API spawns a process to fetch-ahead while folding the previously
fetched batch. brod-cli's fetch command is updated to call this fold API for better
performance.
	Add callbacks to allow brod_client:stop_producer and brod_client:stop_consumer to remove
the stopped child references from the supervisor and clean up the client ets table to allow
later restart.
	Support scram SASL authentication in brod-cli
	Made possible to start-link or supervise brod_consumer in user apps, instead of always
under brod_client's brod_consumers_sup

	3.7.11
	Fix a bug when dropping aborted transactions for compacted topics

	3.7.10
	Compare begin_offset with last stable offset before advancing to next offset in case empty
batch is received. Prior to this version, fetch attempts on unstable messages (messages
belong to open transactions (transactions which are neither committed nor aborted),
may result in an empty message set, then brod_consumer or brod_utils:fetch jumps to
the next offset (if it is less than high-watermark offset).

	3.7.9
	Fix brod-cli escript include apps
	Fix brod-cli sub-record formatting crash
	Upgrade to kafka_protocol 2.2.8 to discard replica_not_available error code in metadata response
	Fix empty responses field in fetch response #323

	3.7.8
	Drop batches in aborted transactions (and all control batches)
also improve offset fast-forwarding when empty batches are received

	3.7.7
	Fix badrecord race: message-set is delivered to brod_group_subscriber after
unsubscribed from brod_consumer.

	3.7.6
	Fix produce message input type spec to make it backward compatible (bug introduced in 3.7.3)

	3.7.5
	Bump kafka_protocol version to 2.2.7
	Fix empty assignment handling. In case a group member has no partition assigned,
member_assignment data field in group sync response can either be null (kafka 0.10)
or a struct having empty topic_partitions (kafka 0.11 or later). The later case
was not handled properly in brod before this fix.

	3.7.4
	Add callback to make user_data in group join request

	3.7.3
	Bump kafka_protocol version to 2.2.3
	Discard stale async-ack messages to group subscriber

	3.7.2
	Pr #298: Subscriber now automatically reconnects to Kafka on topic rebalances where
the previous partition leader no longer holds the partition at all.
	Pr #299: Fix topic subscriber returning partition offsets from callback module's init.

	3.7.1
	Fix brod_topic_subscriber and brod_group_subscriber re-subscribe behaviour
to avoid fetching duplicated messages.
	Add 'random' and 'hash' partitioner for produce APIs
	Allow brod_group_subscrber:assign_partitions/3 to return an updated cb_state
	brod_client:get_connection is back
	Make it possible to run tests on both mac and linux
	Position group leader member at the head of members list when assigning partitions

	3.7.0
	Add brod_group_subscriber:ack/5 and brod_group_subscriber:commit/4 to let group subscribers
commit offsets asynchronously
	Pr #284: In compacted topics, Kafka may return a MessageSet which contains only
messages before the desired offset. Just keep reading forward in this case.
	Issue #285 brod_consumer no longer restart on leader_not_availble and not_leader_for_partition
error codes received in fetch response. It resets connection and rediscover leader after delay.

	3.6.2
	Allow brod_topic_subscriber to explicitly start consuming from partition offset 0 (by passing in
a committed offset of -1).

	3.6.1
	Make produce request version configurable as produce_req_vsn in brod:producer_config()
	Upgrade kafka_protocol to 2.1.2 to support alpine/busybox build

	3.6.0
	Moved 3 modules to kafka_protocol:	brod_sock -> kpro_connection
	brod_auth_backed -> kpro_auth_backend
	brod_kafka_requests -> kpro_sent_reqs

	#kafka_message.key and #kafka_message.value are now always binary()
(they were of spec undefined | binary() prior to this version).
i.e. empty bytes are now decoded as <<>> instead of undefined.
This may cause dialyzer check failures.
	brod_client no longer logs about metadata socket down, it had been confusing rather than being helpful
	There is no more cool-down delay for metadata socket re-establishment
	brod_group_coordinator default session timeout changed from 10 seconds to 30,
and heartbeat interval changed from 2 seconds to 5.
	Add brod:produce_cb/4 and brod:produce_cb/6 to support user defined callback as produce ack handler.
	Add brod:produce_no_ack/3 and brod:produce_no_ack/5.
	min_compression_batch_size is removed from producer config.
	Support magic v2 batch/message format (message headers).
	Use rebar3 as primary build tool for travis-ci, erlang.mk is still supported.
	Support SCRAM-SHA-256 and SCRAM-SHA-512 SASL authentication mechanisms.

	3.5.2
	Fix issue #263: Kafka 0.11 may send empty batch in fetch response when messages are deleted in
compacted topics.

	3.5.1
	Add extra_sock_opts client socket options.
It would be helpful for tuning the performance of tcp socket.

	3.5.0
	Add *_offset variants to produce APIs, returning the base offsets that were assigned by Kafka.
Producers need to be restarted when upgrading to this version.

	3.4.0
	Add prefetch_bytes consumer config. brod_consumer should stop fetch-ahead only when
both prefetch_count and prefetch_bytes limits are exceeded

	3.3.5
	Fix issue #252 -- Kafka 0.11 and 1.0 have more strict validations on compressed batch wrapper message.
Changed kafka_protocol 1.1.2 has the wrapper timestamp and offsets fixed.

	3.3.4
	Fix issue #247 -- revert the handling of offset = -1 in offset_fetch_response, bug introduced in 3.3.0
offset = -1 in offset_fetch_response is an indicator of 'no commit' should be ignored (not taken as 'latest')

	3.3.3
	Add a --no-api-vsn-query option for brod-cli to support kafka 0.9
	Bump kafka_protocol to 1.1.1 to fix relative offsets issue
so brod-cli can fetch compressed batches as expected,
also brod_consumer can start picking fetch request version
	Upgrade roundrobin group protocol to roundrobin_v2 to fix offset commit incompatiblility
with kafka spec and monitoring tools etc. see https://github.com/klarna/brod/issues/241 for details

	3.3.2
	Enhancements	Add sh script to wrap brod-cli escript for erts dir auto discover
	Detailed log for connection estabilishment failures

	Bug Fixes	Demonitor producer pid after sync_produce_request timeout

	3.3.1
	Fix brod-cli commits command redandunt socket usage.

	3.3.0
	New Features	Support offset_fetch_request version 1 - 2
	Provide APIs to reset committed offsets
	Support offset commit in brod-cli
	Improved group coordinator logging: 1) stop showing member ID, 2) show callback process.
	Cache queried version ranges per kafka host
	Brod-cli 'offset' command by default resolves offsets for all partitions if '--partition' option is 'all' or missing

	Enhancements	Brod rock with elvis with travis
	Travis run dialyzer check

	Bug Fixes	Fixed brod-cli offset_fetch_request version when working with kafka 0.10.1.x or earlier
	Make group coordinator restart on heartbeat timeout

	3.2.0
	New Features	Support produce_request version 0 - 2
	Support fetch_request version 0 - 3
	Support offsets_request version 0 - 1
	Support metadata_request version 0 - 2
	Support message create time by allowing Value to be [{Ts, Key, Value}] in brod:produce and brod:produce_sync APIs
	Bind all #kafka_message{} fields to variables so they can be used in brod-cli fetch command's --fmt expression

	Bug Fixes	Remove sasl application from dependent app list

	3.1.0
	New Features	New message type option for topic and group subscribers that specifies whether to
handle a Kafka message or message_set.

	3.0.0
	New Features	New API brod:connect_group_cordinator to establish a sockt towards group coordinator broker.
	New API brod:fetch_committed_offsets to fetch consumer group committed offsets.
	New API brod:list_groups, brod:list_all_groups and brod:describe_groups/3.
	Brod-cli new command groups to list / describe consumer groups.
	Brod-cli new command commits to list comsuer group committed offsets.

	Backward-incompatible changes	brod:get_offsets API replaced with brod:resolve_offset.
Reason: brod:get_offsets and brod_utils:fetch_offsets are very confusing,
because they look like fetching consumer group committed offsets.
Also, the return value has been changed from a list of offsets to a single offset.
	brod:get_metadata return value changed from #kpro_MetadataResponse{} record to kpro:struct().
	brod_utils:fetch/4 is removed, use make_fetch_fun/8 instead.
	--count option removed from brod-cli offset command,
The command now resolves only one (or maybe none) offset at a time.
	All type specs defined in brod.hrl are moved to exported types from brod.erl

	Backward-compatible changes	#kafka_message{} record is extended with new fields ts_type and ts.
	#kafka_message.crc changed from signed to unsigned integer.

	2.5.1
	Fix ignored commit history when committed offset is 0 (bug)

	2.5.0
	Pluggable SASL authentication backend (contributor: ElMaxo)
	Brod-cli support extra ebin to code path
	Fix group subscriber duplicated loopback messages (bug)
	SASL-PLAIN username password in text file
	Hide SASL-PLAIN password in an anonymous function in brod_client state

	2.4.1 Fixed brod-cli typo fix

	2.4.0 Added brod-cli

NOTICE

This product includes software developed by
Klarna Bank AB (publ)
Brod - Apache Kafka Client for Erlang/Elixir
[image: brod]
Brod is an Erlang implementation of the Apache Kafka protocol, providing support for both producers and consumers.
Why "brod"? http://en.wikipedia.org/wiki/Max_Brod

 Features

	Supports Apache Kafka v0.8+
	Robust producer implementation supporting in-flight requests and asynchronous acknowledgements
	Both consumer and producer handle leader re-election and other cluster disturbances internally
	Opens max 1 tcp connection to a broker per brod_client, one can create more clients if needed
	Producer: will start to batch automatically when number of unacknowledged (in flight) requests exceeds configurable maximum
	Producer: will try to re-send buffered messages on common errors like "Not a leader for partition", errors are resolved automatically by refreshing metadata
	Simple consumer: The poller, has a configurable "prefetch count" - it will continue sending fetch requests as long as total number of unprocessed messages (not message-sets) is less than "prefetch count"
	Group subscriber: Support for consumer groups with options to have Kafka as offset storage or a custom one
	Topic subscriber: Subscribe on messages from all or selected topic partitions without using consumer groups
	Pick latest supported version when sending requests to kafka.
	Direct APIs for message send/fetch and cluster inspection/management without having to start clients/producers/consumers.
	A escriptized command-line tool for message send/fetch and cluster inspection/management.
	Configurable compression library. No compression is supported by default for both producers and consumers.
For more compression options, see kafka_protocol/README

 Building and testing

	Min Erlang/OTP version 24
	CMake 4 which is required to build NIF for crc32cer

make compile
make test-env t # requires docker-compose in place

 Working With Kafka 0.9.x or Earlier

Make sure {query_api_versions, false} exists in client config.
This is because ApiVersionRequest was introduced in kafka 0.10,
sending such request to older version brokers will cause connection failure.
e.g. in sys.config:
[{brod,
 [{ clients
 , [{ brod_client_1 %% registered name
 , [{ endpoints, [{"localhost", 9092}]}
 , { query_api_versions, false} %% <---------- here
]}]}]}]

 Quick Demo

Assuming kafka is running at localhost:9092 and there is a topic named test-topic.
Start Erlang shell by make compile; erl -pa _build/default/lib/*/ebin, then paste lines below into shell:
rr(brod),
{ok, _} = application:ensure_all_started(brod),
KafkaBootstrapEndpoints = [{"localhost", 9092}],
Topic = <<"test-topic">>,
Partition = 0,
ok = brod:start_client(KafkaBootstrapEndpoints, client1),
ok = brod:start_producer(client1, Topic, _ProducerConfig = []),
{ok, FirstOffset} = brod:produce_sync_offset(client1, Topic, Partition, <<"key1">>, <<"value1">>),
ok = brod:produce_sync(client1, Topic, Partition, <<"key2">>, <<"value2">>),
SubscriberCallbackFun = fun(Partition, Msg, ShellPid = CallbackState) -> ShellPid ! Msg, {ok, ack, CallbackState} end,
Receive = fun() -> receive Msg -> Msg after 1000 -> timeout end end,
brod_topic_subscriber:start_link(client1, Topic, Partitions=[Partition],
 _ConsumerConfig=[{begin_offset, FirstOffset}],
 _CommittedOffsets=[], message, SubscriberCallbackFun,
 _CallbackState=self()),
AckCb = fun(Partition, BaseOffset) -> io:format(user, "\nProduced to partition ~p at base-offset ~p\n", [Partition, BaseOffset]) end,
ok = brod:produce_cb(client1, Topic, Partition, <<>>, [{<<"key3">>, <<"value3">>}], AckCb).
Receive().
Receive().
{ok, {_, [Msg]}} = brod:fetch(KafkaBootstrapEndpoints, Topic, Partition, FirstOffset + 2), Msg.
Example outputs:
#kafka_message{offset = 0,key = <<"key1">>,
 value = <<"value1">>,ts_type = create,ts = 1531995555085,
 headers = []}
#kafka_message{offset = 1,key = <<"key2">>,
 value = <<"value2">>,ts_type = create,ts = 1531995555107,
 headers = []}
Produced to partition 0 at base-offset 406
#kafka_message{offset = 2,key = <<"key3">>,
 value = <<"value3">>,ts_type = create,ts = 1531995555129,
 headers = []}

 Overview

Brod supervision (and process link) tree.
[image: brod supervision architecture]

 Clients

A brod_client in brod is a gen_server responsible for establishing and
maintaining tcp sockets connecting to kafka brokers.
It also manages per-topic-partition producer and consumer processes under
two-level supervision trees.
To use producers or consumers, you have to start at least one client that
will manage them.

 Compression

Brod does not dependent on any compression/decompression implementation by default.
To enable them, you must add the compression application as dependency in your project's rebar.config.
For example:
{deps, [
 {snappyer, "1.2.9"}
]}.

 Start clients by default

You may include client configs in sys.config have them started by default
(by application controller)
Example of configuration (for sys.config):
[{brod,
 [{ clients
 , [{ brod_client_1 %% registered name
 , [{ endpoints, [{"localhost", 9092}]}
 , { reconnect_cool_down_seconds, 10} %% socket error recovery
]
 }
]
 }
 %% start another client for another kafka cluster
 %% or if you think it's necessary to start another set of tcp connections
]
}]
Example of configuration in Elixir (for config/dev.exs or config/prod.exs, etc.):
config :brod,
 clients: [
 # :brod_client_1 is the registered name of the client
 brod_client_1: [
 endpoints: [{"localhost", 9092}],
 reconnect_cool_down_seconds: 10
]
]

 Start brod client on demand

You may also call brod:start_client/1,2,3 to start a client on demand,
which will be added to brod supervision tree.
ClientConfig = [{reconnect_cool_down_seconds, 10}],
ok = brod:start_client([{"localhost", 9092}], brod_client_1, ClientConfig).
Extra socket options
could be passed as {extra_sock_opts, ExtraSockOpts}, e.g.
ExtraSockOpts = [{sndbuf, 1024*1024}],
ok = brod:start_client([{"localhost", 9092}], brod_client_1, [{extra_sock_opts, ExtraSockOpts}]).

 Producers

A brod_producer is a gen_server that is responsible for producing messages to a given
partition of a given topic.
Producers may be started either manually or automatically in the moment you call brod:produce
but did not call brod:start_producer beforehand.

 Auto start producer with default producer config

Put below configs to client config in sys.config or app env if you start client statically:
{auto_start_producers, true}
{default_producer_config, []}
Or pass the {auto_start_producers, true} option to brod:start_client if you start the client
dynamically.

 Start a Producer on Demand

brod:start_producer(_Client = brod_client_1,
 _Topic = <<"brod-test-topic-1">>,
 _ProducerConfig = []).

 Supported Message Input Format

Brod supports below produce APIs:
	brod:produce: Async produce with ack message sent back to caller.
	brod:produce_cb: Async produce with a callback evaluated when ack is received.
	brod:produce_sync: Sync produce that returns ok.
	brod:produce_sync_offset: Sync produce that returns {ok, BaseOffset}.
	brod:produce_no_ack: Async produce without backpressure (use with care!).

The Value arg in these APIs can be:
	binary(): One single message
	{brod:msg_ts(), binary()}: One single message with its create-time timestamp
	#{ts => brod:msg_ts(), value => binary(), headers => [{_, _}]}:
One single message. If this map does not have a key field, the Key argument is used.
	[{K, V} | {T, K, V}]: A batch, where V could be a nested list of such representation.

	[#{key => K, value => V, ts => T, headers => [{_, _}]}]: A batch.

When Value is a batch, the Key argument is only used as partitioner input and all messages are written on the same partition.
All messages are unified into a batch format of below spec:
[#{key => K, value => V, ts => T, headers => [{_, _}]}].
ts field is dropped for kafka prior to version 0.10 (produce API version 0, magic version 0).
headers field is dropped for kafka prior to version 0.11 (produce API version 0-2, magic version 0-1).

 Synchronized Produce API

brod:produce_sync(_Client = brod_client_1,
 _Topic = <<"brod-test-topic-1">>,
 _Partition = 0,
 _Key = <<"some-key">>,
 _Value = <<"some-value">>).
Or block calling process until Kafka confirmed the message:
{ok, CallRef} =
 brod:produce(_Client = brod_client_1,
 _Topic = <<"brod-test-topic-1">>,
 _Partition = 0,
 _Key = <<"some-key">>,
 _Value = <<"some-value">>),
brod:sync_produce_request(CallRef).

 Produce One Message and Receive Its Offset in Kafka

Client = brod_client_1,
Topic = <<"brod-test-topic-1">>,
{ok, Offset} = brod:produce_sync_offset(Client, Topic, 0, <<>>, <<"value">>).

 Produce with Random Partitioner

Client = brod_client_1,
Topic = <<"brod-test-topic-1">>,
ok = brod:produce_sync(Client, Topic, random, Key, Value).

 Produce a Batch

brod:produce(_Client = brod_client_1,
 _Topic = <<"brod-test-topic-1">>,
 _Partition = MyPartitionerFun,
 _Key = KeyUsedForPartitioning,
 _Value = [#{key => "k1", value => "v1", headers => [{"foo", "bar"}]}
 , #{key => "k2", value => "v2"}
]).

 Handle Acks from Kafka as Messages

For async produce APIs brod:produce/3 and brod:produce/5,
the caller should expect a message of below pattern for each produce call.
#brod_produce_reply{ call_ref = CallRef %% returned from brod:produce
 , result = brod_produce_req_acked
 }
Add -include_lib("brod/include/brod.hrl"). to use the record.
In case the brod:produce caller is a process like gen_server which
receives ALL messages, the callers should keep the call references in its
looping state and match the replies against them when received.
Otherwise brod:sync_produce_request/1 can be used to block-wait for acks.
NOTE: If required_acks is set to none in producer config,
kafka will NOT ack the requests, and the reply message is sent back
to caller immediately after the message has been sent to the socket process.
NOTE: The replies are only strictly ordered per-partition.
i.e. if the caller is producing to two or more partitions,
it may receive replies ordered differently than in which order
brod:produce API was called.

 Handle Acks from Kafka in Callback Function

Async APIs brod:produce_cb/4 and brod:produce_cb/6 allow callers to
provided a callback function to handle acknowledgements from kafka.
In this case, the caller may want to monitor the producer process because
then they know that the callbacks will not be evaluated if the producer is 'DOWN',
and there is perhaps a need for retry.

 Consumers

Kafka consumers work in poll mode. In brod, brod_consumer is the poller,
which is constantly asking for more data from the kafka node which is a leader
for the given partition.
By subscribing to brod_consumer a process should receive the polled message
sets (not individual messages) into its mailbox.
In brod, we have so far implemented two different subscribers
(brod_topic_subscriber and brod_group_subscriber),
hopefully covered most of the common use cases.
For maximum flexibility, applications may implement their own
per-partition subscriber.
Below diagrams illustrate 3 examples of how subscriber processes may work
with brod_consumer.

 Partition subscriber

[image: partition subscriber architecture]
This gives the best flexibility as the per-partition subscribers work
directly with per-partition pollers (brod_consumers).
The messages are delivered to subscribers in message sets (batches),
not individual messages, (however the subscribers are allowed to
ack individual offsets).
Example:
ok = brod:start_client([{"localhost", 9092}], my_client). % one client per application is enough
ok = brod:start_consumer(my_client, <<"my_topic">>, []).

% Now in a separate process for each partition of my_topic call:
{ok, ConsumerPid} = brod:subscribe(my_client, self(), <<"my_topic">>, Partition, []).
% The process should now receive messages sets as regular messages

 Topic subscriber (brod_topic_subscriber)

[image: topic subscribe flow]
A topic subscriber provides the easiest way to receive and process messages from
ALL partitions of a given topic. See
brod_demo_cg_collector and
brod_demo_topic_subscriber for example.
Users may choose to implement the brod_topic_subscriber behaviour callbacks
in a module, or simply provide an anonymous callback function to have the
individual messages processed.

 Group subscriber (brod_group_subscriber)

[image: group subscriber flow]
Similar to topic subscriber, the brod_group_subscriber behaviour callbacks are
to be implemented to process individual messages. See
brod_demo_group_subscriber_koc and
brod_demo_group_subscriber_loc for
example.
A group subscriber is started by giving a set of topics, some
(maybe none, or maybe all) of the partitions in the topic set will be
assigned to it, then the subscriber should subscribe to ALL the assigned
partitions.
Users may also choose to implement the brod_group_member behaviour (callbacks
for brod_group_coordinator) for a different group subscriber (e.g. spawn
one subscriber per partition), see brucke
for example.
Example of group consumer which commits offsets to Kafka
-module(my_subscriber).
-include_lib("brod/include/brod.hrl"). %% needed for the #kafka_message record definition

-export([start/1]).
-export([init/2, handle_message/4]). %% callback api

%% brod_group_subscriber behaviour callback
init(_GroupId, _Arg) -> {ok, []}.

%% brod_group_subscriber behaviour callback
handle_message(_Topic, Partition, Message, State) ->
 #kafka_message{ offset = Offset
 , key = Key
 , value = Value
 } = Message,
 error_logger:info_msg("~p ~p: offset:~w key:~s value:~s\n",
 [self(), Partition, Offset, Key, Value]),
 {ok, ack, State}.

%% @doc The brod client identified ClientId should have been started
%% either by configured in sys.config and started as a part of brod application
%% or started by brod:start_client/3
%% @end
-spec start(brod:client_id()) -> {ok, pid()}.
start(ClientId) ->
 Topic = <<"brod-test-topic-1">>,
 %% commit offsets to kafka every 5 seconds
 GroupConfig = [{offset_commit_policy, commit_to_kafka_v2},
 {offset_commit_interval_seconds, 5}
],
 GroupId = <<"my-unique-group-id-shared-by-all-members">>,
 ConsumerConfig = [{begin_offset, earliest}],
 brod:start_link_group_subscriber(ClientId, GroupId, [Topic],
 GroupConfig, ConsumerConfig,
 _CallbackModule = ?MODULE,
 _CallbackInitArg = []).

 Authentication support

brod supports SASL PLAIN, SCRAM-SHA-256 and SCRAM-SHA-512 authentication mechanisms out of the box.
To use it, add {sasl, {Mechanism, Username, Password}} or {sasl, {Mechanism, File}} to client config.
Where Mechanism is plain | scram_sha_256 | scram_sha_512, and File is the path to a text file
which contains two lines, first line for username and second line for password
Also, brod has authentication plugins support with {sasl, {callback, Module, Opts}} in client config.
Authentication callback module should implement kpro_auth_backend behaviour.
Auth function spec:
auth(Host :: string(), Sock :: gen_tcp:socket() | ssl:sslsocket(),
 Mod :: gen_tcp | ssl, ClientId :: binary(),
 Timeout :: pos_integer(), SaslOpts :: term()) ->
 ok | {error, Reason :: term()}
If authentication is successful - callback function should return an atom ok, otherwise - error tuple with reason description.
For example, you can use brod_gssapi plugin for SASL GSSAPI authentication.
To use it - add it as dependency to your top level project that uses brod.
Then add {sasl, {callback, brod_gssapi, {gssapi, Keytab, Principal}}} to client config.
Keytab should be the keytab file path, and Principal should be a byte-list or binary string.
See also: https://github.com/klarna/brod/wiki/SASL-gssapi-(kerberos)-authentication

 Additional Auth plugins

	brod_oauth - OAuth Bearer support

 Other API to play with/inspect kafka

These functions open a connection to kafka cluster, send a request,
await response and then close the connection.
Hosts = [{"localhost", 9092}].
Topic = <<"topic">>.
Partition = 0.
Timeout = 1000.
TopicConfigs = [
 #{
 configs => [#{name => <<"cleanup.policy">>, value => "compact"}],
 num_partitions => 1,
 assignments => [],
 replication_factor => 1,
 name => Topic
 }
].
brod:get_metadata(Hosts).
brod:create_topics(Hosts, TopicConfigs, #{timeout => Timeout}).
brod:get_metadata(Hosts, [Topic]).
brod:resolve_offset(Hosts, Topic, Partition).
brod:delete_topics(Hosts, [Topic], Timeout).
Caution the above delete_topics can fail if you do not have delete.topic.enable set to true in your kafka config

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

Publisher Example

Info
There is also a more complete example here.
Ensure :brod is added to your deps on mix.exs
defp deps do
 [
 {:brod, "~> 3.10.0"}
]
end

 Client Configuration

To use producers, you have to start a client first.
You can do that by adding the following configuration (e.g. into config/dev.exs):
import Config

config :brod,
 clients: [
 kafka_client: [
 endpoints: [localhost: 9092],
 auto_start_producers: true,
 # The following :ssl and :sasl configs are not
 # required when running kafka locally unauthenticated
 ssl: true,
 sasl: {
 :plain,
 System.get_env("KAFKA_CLUSTER_API_KEY"),
 System.get_env("KAFKA_CLUSTER_API_SECRET")
 }
]
]
or by starting it dynamically with this snippet (you can also add SSL/SASL configuration if you want to):
:brod.start_client([localhost: 9092], :kafka_client, auto_start_producers: true)
Note: kafka_client can be any valid atom. And :endpoints accepts multiple host port tuples (e.g. endpoints: [{"192.168.0.2", 9092}, {"192.168.0.3", 9092}, ...]).
If you don't pass the auto_start_producers: true option, you also have to manually start producers before calling :brod.produce_sync/5 (and other produce functions).
For example like this: :brod.start_producer(:kafka_client, "my_topic", []).
See :brod.start_client/3 for a list of all available options.

 Publisher

To send a message with brod we can use the :brod.produce_sync/5 function
defmodule BrodExample.Publisher do
 def publish(topic, partition, key, message) do
 :brod.produce_sync(:kafka_client, topic, :hash, key, message)
 end
end
There are also other ways (functions) how to produce messages, you can find them in the overview and in the brod
module documentation.

 Using partition key

When providing :hash as the partition when calling :brod.produce_sync/5 is equivalent to the following:
{:ok, count} = :brod.get_partitions_count(:kafka_client, topic)
partition = rem(:erlang.phash2(key), count)
:brod.produce_sync(:kafka_client, topic, partition, key, message)
Internally brod will get the partition count, generate a hash for the key within the range of partitions,
and publish the message to the calculated hash. This is the same sticky routing that Kafka's ProducerRecord implements:
If no partition is specified but a key is present a partition will be chosen using a hash of the key. If neither key nor partition is present a partition will be assigned in a round-robin fashion.

Consumer Example

Info
There is also a more complete example here.
Ensure :brod is added to your deps on mix.exs
defp deps do
 [
 {:brod, "~> 3.10.0"}
]
end
Both examples require a brod client with name :kafka_client to be already started.
You can do that either statically by specifying it in the configuration (see an
example)
or dynamically
(e.g. by calling :brod.start_client([{"localhost", 9092}], :kafka_client)).

 Group Subscriber

Either the brod_group_subscriber_v2 or brod_group_subscriber behaviours can be used
to consume messages. The key difference is that the v2 subscriber runs a worker for each
partition in a separate Erlang process, allowing parallel message processing.
Here is an example of callback module that implements the brod_group_subscriber_v2 behaviour to consume messages.
defmodule BrodSample.GroupSubscriberV2 do
 @behaviour :brod_group_subscriber_v2

 def child_spec(_arg) do
 config = %{
 client: :kafka_client,
 group_id: "consumer_group_name",
 topics: ["streaming.events"],
 cb_module: __MODULE__,
 consumer_config: [{:begin_offset, :earliest}],
 init_data: [],
 message_type: :message_set,
 group_config: [
 offset_commit_policy: :commit_to_kafka_v2,
 offset_commit_interval_seconds: 5,
 rejoin_delay_seconds: 60,
 reconnect_cool_down_seconds: 60
]
 }

 %{
 id: __MODULE__,
 start: {:brod_group_subscriber_v2, :start_link, [config]},
 type: :worker,
 restart: :temporary,
 shutdown: 5000
 }
 end

 @impl :brod_group_subscriber_v2
 def init(_group_id, _init_data), do: {:ok, []}

 @impl :brod_group_subscriber_v2
 def handle_message(message, _state) do
 IO.inspect(message, label: "message")
 {:ok, :commit, []}
 end
end
The example module implements child_spec/1 so that our consumer can be started by a Supervisor. The restart policy is set to :temporary
because, in this case, if a message can not be processed, then there is no point in restarting. This might not always
be the case.
See :brod_group_subscriber_v2.start_link/1 for details on the configuration options.
See docs for more details about the required or optional callbacks.

 Partition Subscriber

A more low-level approach can be used when you want a more fine-grained control or when you have only a single partition.
defmodule BrodSample.PartitionSubscriber do
 use GenServer

 import Record, only: [defrecord: 2, extract: 2]

 defrecord :kafka_message, extract(:kafka_message, from_lib: "brod/include/brod.hrl")
 defrecord :kafka_message_set, extract(:kafka_message_set, from_lib: "brod/include/brod.hrl")
 defrecord :kafka_fetch_error, extract(:kafka_fetch_error, from_lib: "brod/include/brod.hrl")

 defmodule State do
 @enforce_keys [:consumer_pid]
 defstruct consumer_pid: nil
 end

 defmodule KafkaMessage do
 @enforce_keys [:offset, :key, :value, :ts]
 defstruct offset: nil, key: nil, value: nil, ts: nil
 end

 def start_link(topic, partition) do
 GenServer.start_link(__MODULE__, {topic, partition})
 end

 @impl true
 def init({topic, partition}) do
 # start the consumer(s)
 # if you have more than one partition, do it somewhere else once for all partitions
 # (e.g. in the parent process)
 :ok = :brod.start_consumer(:kafka_client, topic, begin_offset: :latest)

 {:ok, consumer_pid} = :brod.subscribe(:kafka_client, self(), topic, partition, [])
 # you may also want to handle error when subscribing
 # and to monitor the consumer pid (and resubscribe when the consumer crashes)

 {:ok, %State{consumer_pid: consumer_pid}}
 end

 @impl true
 def handle_info(
 {consumer_pid, kafka_message_set(messages: msgs)},
 %State{consumer_pid: consumer_pid} = state
) do
 for msg <- msgs do
 msg = kafka_message_to_struct(msg)

 # process the message...
 IO.inspect(msg)

 # and then acknowledge it
 :brod.consume_ack(consumer_pid, msg.offset)
 end

 {:noreply, state}
 end

 def handle_info({pid, kafka_fetch_error()} = error, %State{consumer_pid: pid} = state) do
 # you may want to handle the error differently
 {:stop, error, state}
 end

 defp kafka_message_to_struct(kafka_message(offset: offset, key: key, value: value, ts: ts)) do
 %KafkaMessage{
 offset: offset,
 key: key,
 value: value,
 ts: DateTime.from_unix!(ts, :millisecond)
 }
 end
end

Authentication

 SASL/PLAIN

 Erlang

[{brod,
 [{clients
 , [{kafka_client
 , [{ endpoints, [{"localhost", 9092}] }
 , { ssl, true}
 , { sasl, {plain, "GFRW5BSQHKEH0TSG", "GrL3CNTkLhsvtBr8srGn0VilMpgDb4lPD"}}
]
 }
]
 }
]
}]

 Elixir

import Config

config :brod,
 clients: [
 kafka_client: [
 endpoints: [
 localhost: 9092
],
 ssl: true,
 sasl: {
 :plain,
 System.get_env("KAFKA_USERNAME"),
 System.get_env("KAFKA_PASSWORD")
 }
]
]

 SSL Certificate Validation

Erlang's default configuration for SSL is verify_none
which means that certificates are accepted but not validated. brod passes SSL options to the kafka_protocol library
where they are used to create the SSL connection.
For more info see the Erlang Ecosystem Foundation's server certificate verification recommendations.

 Erlang

[{brod,
 [{clients
 , [{kafka_client
 , [{ endpoints, [{"localhost", 9092}] }
 , { ssl, [{ verify, verify_peer }
 , { cacertfile, "/etc/ssl/certs/ca-certificates.crt" }
 , { depth, 3 }
 , { customize_hostname_check,
 [{match_fun, public_key:pkix_verify_hostname_match_fun(https)}]}
 , {version, ['tlsv1.3', 'tlsv1.2']}
]}
 , { sasl, {plain, "GFRW5BSQHKEH0TSG", "GrL3CNTkLhsvtBr8srGn0VilMpgDb4lPD"}}
]
 }
]
 }
]
}]

 Elixir

import Config

config :brod,
 clients: [
 kafka_client: [
 endpoints: [
 localhost: 9092
],
 ssl: [
 verify: :verify_peer,
 cacertfile: "/etc/ssl/certs/ca-certificates.crt",
 depth: 3,
 customize_hostname_check: [
 match_fun: :public_key.pkix_verify_hostname_match_fun(:https)
],
],
 sasl: {
 :plain,
 System.get_env("KAFKA_USERNAME"),
 System.get_env("KAFKA_PASSWORD")
 }
]
]
The examples above are using /etc/ssl/certs/ca-certificates.crt which is the certificate authority that comes
with alpine linux. You will need to provide a path to a valid certificate authority
certificate or use certifi

brod

 Summary

 Types

 brod_cg_commits - brod v4.5.2

brod_cg_commits

This is a utility module to help force commit offsets to kafka.

 Summary

 Types

 brod_client - brod v4.5.2

brod_client

A brod_client in brod is a gen_server responsible for establishing and maintaining tcp sockets connecting to kafka brokers. It also manages per-topic-partition producer and consumer processes under two-level supervision trees.
You can start clients automatically at application startup or on demand. See the overview for examples.

 Summary

 Types

 brod_consumer - brod v4.5.2

brod_consumer

Kafka consumers work in poll mode. In brod, brod_consumer is the poller, which is constantly asking for more data from the kafka node which is a leader for the given partition.
By subscribing to brod_consumer a process should receive the polled message sets (not individual messages) into its mailbox. Shape of the message is documented at brod:subscribe/5.
Messages processed by the subscriber has to be acked by calling ack/2 (or brod:consume_ack/4) to notify the consumer that all messages before the acknowledged offsets are processed, hence more messages can be fetched and sent to the subscriber and the subscriber won't be overwhelmed by it.
Each consumer can have only one subscriber.
See the overview for some more information and examples.

 Summary

 Types

 brod_group_coordinator - brod v4.5.2

brod_group_coordinator

 Summary

 Types

 brod_group_member - brod v4.5.2

brod_group_member behaviour

Implement brod_group_member behaviour callbacks to allow a process to act as a group member without having to deal with Kafka group protocol details. A typical workflow:
1. Spawn a group coordinator by calling brod_group_coordinator:start_link/6.
2. Subscribe to partitions received in the assignments from assignments_received/4 callback.
3. Receive messages from the assigned partitions (delivered by the partition workers (the pollers) implemented in brod_consumer).
4. Unsubscribe from all previously subscribed partitions when assignments_revoked/1 is called.
For group members that commit offsets to Kafka, do:
1. Call brod_group_coordinator:ack/5. to acknowledge successful consumption of the messages. Group coordinator will commit the acknowledged offsets at configured interval.
2. Call brod_group_coordinator:commit_offsets/2 to force an immediate offset commit if necessary.
For group members that manage offsets locally, do:
1. Implement the get_committed_offsets/2 callback. This callback is evaluated every time when new assignments are received.

 Summary

 Callbacks

 brod_group_subscriber - brod v4.5.2

brod_group_subscriber behaviour

A group subscriber is a gen_server which subscribes to partition consumers (poller) and calls the user-defined callback functions for message processing.
An overview of what it does behind the scene:
	Start a consumer group coordinator to manage the consumer group states, see brod_group_coordinator:start_link/6
	Start (if not already started) topic-consumers (pollers) and subscribe to the partition workers when group assignment is received from the group leader, see brod:start_consumer/3
	Call CallbackModule:handle_message/4 when messages are received from the partition consumers.
	Send acknowledged offsets to group coordinator which will be committed to kafka periodically.

Callbacks are documented in the source code of this module.

 Summary

 Types

 brod_group_subscriber_v2 - brod v4.5.2

brod_group_subscriber_v2 behaviour

This module implements an improved version of brod_group_subscriber behavior. Key difference is that each partition worker runs in a separate Erlang process, allowing parallel message processing.
Callbacks are documented in the source code of this module.

 Summary

 Types

 brod_kafka_request - brod v4.5.2

brod_kafka_request

Helper functions for building request messages.

 Summary

 Types

 brod_producer - brod v4.5.2

brod_producer

A brod_producer is a gen_server that is responsible for producing messages to a given partition of a given topic.
See the overview for some more information and examples.

 Summary

 Types

 brod_supervisor3 - brod v4.5.2

brod_supervisor3 behaviour

 Summary

 Types

 brod_topic_subscriber - brod v4.5.2

brod_topic_subscriber behaviour

A topic subscriber is a gen_server which subscribes to all or a given set of partition consumers (pollers) of a given topic and calls the user-defined callback functions for message processing.
Callbacks are documented in the source code of this module.

 Summary

 Types

 brod_transaction - brod v4.5.2

brod_transaction

A brod_transaction is a process that orchestates a set of producers to store messages within a transaction, it also supports committing offsets in the same transaction.
Simple produce sample:
 {ok, Tx} = brod_transaction:new(Client, TxId, []),
 lists:foreach(fun(Partition) ->
 Key = rand(), Value = rand(),
 {ok, _Offset} =
 brod_transaction:produce(Tx,
 Topic,
 Partition,
 Key,
 Value),
 end, Partitions),
 brod_transaction:commit(Tx),
handle callback of a group subscriber using offset commit within a transaction:
 handle_message(Topic,
 Partition,
 #kafka_message{ offset = Offset
 , key = Key
 , value = Value},
 #{ client := Client
 , group_id := GroupId} = State) ->
 {ok, Tx} = brod_transaction:new(Client),
 {ok, _ProducedOffset} = brod_transaction:produce(Tx, ?TOPIC_OUTPUT, Partition, Key, Value),
 ok = brod_transaction:txn_add_offsets(Tx, GroupId, #{{Topic, Partition} => Offset}),
 ok = brod_transaction:commit(Tx)

 {ok, ack_no_commit, State}.

 Summary

 Types

 brod_transaction_processor - brod v4.5.2

brod_transaction_processor

brod_transaction_processor allows the execution of a function in the context of a transaction. It abstracts the usage of a group subscriber reading and writing using a transaction in each fetch cycle. For example, the following snippets are equivalent

function_that_does_something(Messages, ...) -> write_some_messages_into_some_topic(Messages, ...), write_some_other_messages_into_yet_another_topic(Messages, ...).
handle_message(Topic, Partition, Messages, State) -> {ok, Tx} = brod:transaction(...) % opens a transaction function_that_does_something(Messages, ...) % adds the writes to the transaction ok = brod:txn_add_offsets(...) % add offsets to the transsaction ok = btrod:commit(Tx) % commit {ok, ack_no_commit, State}

brod_transaction_processor:do(fun(Transaction, Messages) -> write_some_messages_into_some_topic(Messages, ...), write_some_other_messages_into_yet_another_topic(Messages, ...) end, ...)

 Summary

 Types

 OEBPS/dist/epub-LSJCIYTM.js
