

 brod

 v3.17.1

 Table of contents

 	Changelog

 	Overview

 	License

 	Elixir

 	Publisher Example

 	Consumer Example

 	Usage

 	Authentication

 	Modules

 	brod

 	brod_cg_commits

 	brod_client

 	brod_consumer

 	brod_group_coordinator

 	brod_group_member

 	brod_group_subscriber

 	brod_group_subscriber_v2

 	brod_kafka_request

 	brod_producer

 	brod_supervisor3

 	brod_topic_subscriber

Changelog

	3.17.1
	Upgrade kafka_protocol from 4.1.3 to 4.1.5	Allow space after , in comma-separated bootstrapping host:port list
	Avoid badmatch exception when parsing SASL password file

	3.17.0
	Deleted supervisor3 as dependency, module is now moved to brod.git named brod_supervisor3.
	Upgrade snappyer version from 1.2.8 to 1.2.9.
	Upgrade kafka_protocol from 4.1.2 to 4.1.3.
	In rebar3.config move coveralls from plugins to project_plugins.

	3.16.8
	Upgrade supervisor3 from 1.1.11 to 1.1.12 to log supervisor status
at debug level instead of notice level.
	Add brod_group_subscriber_v2:get_workers function to help
monitor and check the health of a consumer group.

	3.16.7
	Upgrade kafka_protocol from 4.1.1 to 4.1.2 to allow handling
multiply nested wrapped secrets.

	3.16.6
	Upgrade kafka_protocol from 4.1.0 to 4.1.1 to support defining
SNI for bootstrap hosts without the need to set the verify_peer
config.

	3.16.5
	Improve the documentation
	Add brod:get_partitions_count_safe/2.
It is ensured not to auto-create topics in Kafka even
when Kafka has topic auto-creation configured.
	Treat offset = 0 commit record as earliest.
This is an issue introduced in 3.16.4 which supported subscriber
managed offset commits to be represented as {begin_offset, Offset}.
The issue is: 0 is altered by v2 group worker to -1.
Handled as offsets greater than 0, v2 group worker assums brod_topic_subscriber
would apply +1 to it, however -1 is actually interpreted as latest.
#531 fixes it
by replacing 0 with earliest.

	3.16.4
	Allow special begin_offset from consumer managed commits.
	Fix specs for brod_group_subscriber_v2.get_committed_offset
	Update kafka_protocol from 4.0.3 to 4.1.0. kafka_protocol 4.1.0 support a
different version of the auth plugin interface that also pass the
handshake version to the plugin. This is used by the SASL GSSAPI Kerberos
plugin brod_gssapi (https://github.com/kafka4beam/brod_gssapi) so that
the correct handshake protocol is used. The change is backwards compatible
as the old interface will be used if the plugin module does not have a
function with the name and arity that is required by the new interface.
See https://github.com/kafka4beam/kafka_protocol/pull/102 for details.

	3.16.3
	Fix specs for delete_topics.
	Ensure that partition worker process is alive before returning it.
	Update kafka_protocol from 4.0.1 to 4.0.3 in rebar.lock file.
	Make consumer 'isolation_level' configurable.

	3.16.2
	Update kafka_protocol from 4.0.1 to 4.0.3.
Prior to this change the actual time spent in establishing a
Kafka connection might be longer than desired due to the timeout
being used in SSL upgrade (if enabled), then API version query.
This has been fixed by turning the given timeout config
into a deadline, and the sub-steps will try to meet the deadline.
see more details here: https://github.com/kafka4beam/kafka_protocol/pull/92
	Catch timeout and other DOWN reasons when making gen_server call to
brod_client, brod_consumer and producer/consumer supervisor,
and return as Reason in {error, Reason}.
Previously only noproc reason is caught. (#492)
	Propagate connect_timeout config to kpro API functions as timeout arg
affected APIs: connect_group_coordinator, create_topics, delete_topics,
resolve_offset, fetch, fold, fetch_committed_offsets (#458)
	Fix bad field name in group describe request (#486)

	3.16.1
	Fix brod script in brod-cli in release.
	Support rebalance_timeout consumer group option

	3.16.0
	Update to kafka-protocol v4.0.1

	3.15.6
	Eliminate long-lived anonymous function closures

	3.15.5
	Fix exponential growth of brod_producer buffer

	3.15.4
	Avoid start_link for temp connection usages
affected APIs: fetch_committed_offsets, fetch, resolve_offset, create_topics, delete_topics

	3.15.3
	Try to commit acknowledged offsets when brod_group_subscriber_v2 terminates
	Fix process leak, close connection after offset is fetched in brod_utils:fetch_committed_offsets/3

	3.15.2
	Producer: Do not format producer buffer in gen_server state
	Consumer: Do not commit offsets when unknown_member_id error is received
	Logging: Changed from error_logger to logger macros
	Don't shut down brod_group_subscriber_v2 on previous generation worker termination
	Fix brod_group_subscriber_v2 crash on shutdown
	Use GitHub Actions instead of Travis CI
	Added Elixir example
	Rename DEFAULT_TIMEOUT macro in public brod.hrl to BROD_DEFAULT_TIMEOUT.

	3.15.0 (and 3.15.1, for some reason tagged on the same commit)
	Fix unknown types
	Build on OTP-23

	3.14.0
NOTE: This release changes internal states of brod worker processes
in a way that cannot by applied on a running system. brod application
and all brod workers should be shot down for the time of the upgrade.
	Introduced a new optional terminate/2 callback to
brod_topic_subscriber and brod_group_subscriber_v2 behaviors

	Introduced new API functions for starting topic subscribers:
brod_topic_subscriber:start_link/1 and brod:start_link_topic_subscriber/1
Old APIs
	brod:start_link_topic_subscriber/5,
	brod:start_link_topic_subscriber/6
	brod:start_link_topic_subscriber/7
	brod_topic_subscriber:start_link/6
	brod_topic_subscriber:start_link/7
	brod_topic_subscriber:start_link/8
are deprecated and will be removed in the next major release

	3.13.0
	Update supervisor3 dependency to 1.1.11
	brod_group_subscriber_v2 behavior handles worker crashes
	Makefile fix for hex publishing
	Reverse Changelog order
	Fix typos and dialyzer warnings

	3.12.0
	Enable passing custom timeout to resolve_offset

	3.11.0
	Improve compatibility with EventHub

	3.10.0
	Stop supporting erlang.mk
	Stop supporting rebar
	Update kafka_protocol dependency to 2.3.6
	Add new brod_group_coordinator:update_topics API

	3.9.5
	Bump kafka_protocol dependency to 2.3.3

	3.9.4
	Handle undefined fetcher in fold loop exception

	3.9.3
	Remove vsn-check dependency from default Makefile target
This enables using brod with erlang.mk + hex
	Bump kafka_protocol dependency to 2.3.2

	3.9.2
	Fix corrupted package published to hex

	3.9.1
	Receive pending acks after assignments_revoked is invoked

	3.9.0
	Updated kafka_protocol dependency to 2.3.1
	(Experimental) Added group_subscriber_v2 behavior
	Added API for topic deletion and creation

	3.8.1
	Handle the case when high_watermark < last_stable_offset in fetch resp

	3.8.0
	Bump to kafka_protocol 2.2.9 (allow atom() hostname)
	Add brod:fold/8. This API spawns a process to fetch-ahead while folding the previously
fetched batch. brod-cli's fetch command is updated to call this fold API for better
performance.
	Add callbacks to allow brod_client:stop_producer and brod_client:stop_consumer to remove
the stopped child references from the supervisor and clean up the client ets table to allow
later restart.
	Support scram SASL authentication in brod-cli
	Made possible to start-link or supervise brod_consumer in user apps, instead of always
under brod_client's brod_consumers_sup

	3.7.11
	Fix a bug when dropping aborted transactions for compacted topics

	3.7.10
	Compare begin_offset with last stable offset before advancing to next offset in case empty
batch is received. Prior to this version, fetch attempts on unstable messages (messages
belong to open transactions (transactions which are neither committed nor aborted),
may result in an empty message set, then brod_consumer or brod_utils:fetch jumps to
the next offset (if it is less than high-watermark offset).

	3.7.9
	Fix brod-cli escript include apps
	Fix brod-cli sub-record formatting crash
	Upgrade to kafka_protocol 2.2.8 to discard replica_not_available error code in metadata response
	Fix empty responses field in fetch response #323

	3.7.8
	Drop batches in aborted transactions (and all control batches)
also improve offset fast-forwarding when empty batches are received

	3.7.7
	Fix badrecord race: message-set is delivered to brod_group_subscriber after
unsubscribed from brod_consumer.

	3.7.6
	Fix produce message input type spec to make it backward compatible (bug introduced in 3.7.3)

	3.7.5
	Bump kafka_protocol version to 2.2.7
	Fix empty assignment handling. In case a group member has no partition assigned,
member_assignment data field in group sync response can either be null (kafka 0.10)
or a struct having empty topic_partitions (kafka 0.11 or later). The later case
was not handled properly in brod before this fix.

	3.7.4
	Add callback to make user_data in group join request

	3.7.3
	Bump kafka_protocol version to 2.2.3
	Discard stale async-ack messages to group subscriber

	3.7.2
	Pr #298: Subscriber now automatically reconnects to Kafka on topic rebalances where
the previous partition leader no longer holds the partition at all.
	Pr #299: Fix topic subscriber returning partition offsets from callback module's init.

	3.7.1
	Fix brod_topic_subscriber and brod_group_subscriber re-subscribe behaviour
to avoid fetching duplicated messages.
	Add 'random' and 'hash' partitioner for produce APIs
	Allow brod_group_subscrber:assign_partitions/3 to return an updated cb_state
	brod_client:get_connection is back
	Make it possible to run tests on both mac and linux
	Position group leader member at the head of members list when assigning partitions

	3.7.0
	Add brod_group_subscriber:ack/5 and brod_group_subscriber:commit/4 to let group subscribers
commit offsets asynchronously
	Pr #284: In compacted topics, Kafka may return a MessageSet which contains only
messages before the desired offset. Just keep reading forward in this case.
	Issue #285 brod_consumer no longer restart on leader_not_availble and not_leader_for_partition
error codes received in fetch response. It resets connection and rediscover leader after delay.

	3.6.2
	Allow brod_topic_subscriber to explicitly start consuming from partition offset 0 (by passing in
a committed offset of -1).

	3.6.1
	Make produce request version configurable as produce_req_vsn in brod:producer_config()
	Upgrade kafka_protocol to 2.1.2 to support alpine/busybox build

	3.6.0
	Moved 3 modules to kafka_protocol:	brod_sock -> kpro_connection
	brod_auth_backed -> kpro_auth_backend
	brod_kafka_requests -> kpro_sent_reqs

	#kafka_message.key and #kafka_message.value are now always binary()
(they were of spec undefined | binary() prior to this version).
i.e. empty bytes are now decoded as <<>> instead of undefined.
This may cause dialyzer check failures.
	brod_client no longer logs about metadata socket down, it had been confusing rather than being helpful
	There is no more cool-down delay for metadata socket re-establishment
	brod_group_coordinator default session timeout changed from 10 seconds to 30,
and heartbeat interval changed from 2 seconds to 5.
	Add brod:produce_cb/4 and brod:produce_cb/6 to support user defined callback as produce ack handler.
	Add brod:produce_no_ack/3 and brod:produce_no_ack/5.
	min_compression_batch_size is removed from producer config.
	Support magic v2 batch/message format (message headers).
	Use rebar3 as primary build tool for travis-ci, erlang.mk is still supported.
	Support SCRAM-SHA-256 and SCRAM-SHA-512 SASL authentication mechanisms.

	3.5.2
	Fix issue #263: Kafka 0.11 may send empty batch in fetch response when messages are deleted in
compacted topics.

	3.5.1
	Add extra_sock_opts client socket options.
It would be helpful for tuning the performance of tcp socket.

	3.5.0
	Add *_offset variants to produce APIs, returning the base offsets that were assigned by Kafka.
Producers need to be restarted when upgrading to this version.

	3.4.0
	Add prefetch_bytes consumer config. brod_consumer should stop fetch-ahead only when
both prefetch_count and prefetch_bytes limits are exceeded

	3.3.5
	Fix issue #252 -- Kafka 0.11 and 1.0 have more strict validations on compressed batch wrapper message.
Changed kafka_protocol 1.1.2 has the wrapper timestamp and offsets fixed.

	3.3.4
	Fix issue #247 -- revert the handling of offset = -1 in offset_fetch_response, bug introduced in 3.3.0
offset = -1 in offset_fetch_response is an indicator of 'no commit' should be ignored (not taken as 'latest')

	3.3.3
	Add a --no-api-vsn-query option for brod-cli to support kafka 0.9
	Bump kafka_protocol to 1.1.1 to fix relative offsets issue
so brod-cli can fetch compressed batches as expected,
also brod_consumer can start picking fetch request version
	Upgrade roundrobin group protocol to roundrobin_v2 to fix offset commit incompatiblility
with kafka spec and monitoring tools etc. see https://github.com/klarna/brod/issues/241 for details

	3.3.2
	Enhancements	Add sh script to wrap brod-cli escript for erts dir auto discover
	Detailed log for connection estabilishment failures

	Bug Fixes	Demonitor producer pid after sync_produce_request timeout

	3.3.1
	Fix brod-cli commits command redandunt socket usage.

	3.3.0
	New Features	Support offset_fetch_request version 1 - 2
	Provide APIs to reset committed offsets
	Support offset commit in brod-cli
	Improved group coordinator logging: 1) stop showing member ID, 2) show callback process.
	Cache queried version ranges per kafka host
	Brod-cli 'offset' command by default resolves offsets for all partitions if '--partition' option is 'all' or missing

	Enhancements	Brod rock with elvis with travis
	Travis run dialyzer check

	Bug Fixes	Fixed brod-cli offset_fetch_request version when working with kafka 0.10.1.x or earlier
	Make group coordinator restart on heartbeat timeout

	3.2.0
	New Features	Support produce_request version 0 - 2
	Support fetch_request version 0 - 3
	Support offsets_request version 0 - 1
	Support metadata_request version 0 - 2
	Support message create time by allowing Value to be [{Ts, Key, Value}] in brod:produce and brod:produce_sync APIs
	Bind all #kafka_message{} fields to variables so they can be used in brod-cli fetch command's --fmt expression

	Bug Fixes	Remove sasl application from dependent app list

	3.1.0
	New Features	New message type option for topic and group subscribers that specifies whether to
handle a Kafka message or message_set.

	3.0.0
	New Features	New API brod:connect_group_cordinator to establish a sockt towards group coordinator broker.
	New API brod:fetch_committed_offsets to fetch consumer group committed offsets.
	New API brod:list_groups, brod:list_all_groups and brod:describe_groups/3.
	Brod-cli new command groups to list / describe consumer groups.
	Brod-cli new command commits to list comsuer group committed offsets.

	Backward-incompatible changes	brod:get_offsets API replaced with brod:resolve_offset.
Reason: brod:get_offsets and brod_utils:fetch_offsets are very confusing,
because they look like fetching consumer group committed offsets.
Also, the return value has been changed from a list of offsets to a single offset.
	brod:get_metadata return value changed from #kpro_MetadataResponse{} record to kpro:struct().
	brod_utils:fetch/4 is removed, use make_fetch_fun/8 instead.
	--count option removed from brod-cli offset command,
The command now resolves only one (or maybe none) offset at a time.
	All type specs defined in brod.hrl are moved to exported types from brod.erl

	Backward-compatible changes	#kafka_message{} record is extended with new fields ts_type and ts.
	#kafka_message.crc changed from signed to unsigned integer.

	2.5.1
	Fix ignored commit history when committed offset is 0 (bug)

	2.5.0
	Pluggable SASL authentication backend (contributor: ElMaxo)
	Brod-cli support extra ebin to code path
	Fix group subscriber duplicated loopback messages (bug)
	SASL-PLAIN username password in text file
	Hide SASL-PLAIN password in an anonymous function in brod_client state

	2.4.1 Fixed brod-cli typo fix

	2.4.0 Added brod-cli

NOTICE

This product includes software developed by
Klarna Bank AB (publ)
Brod - Apache Kafka Client for Erlang/Elixir
[image: brod]
Brod is an Erlang implementation of the Apache Kafka protocol, providing support for both producers and consumers.
Why "brod"? http://en.wikipedia.org/wiki/Max_Brod
Features
	Supports Apache Kafka v0.8+
	Robust producer implementation supporting in-flight requests and asynchronous acknowledgements
	Both consumer and producer handle leader re-election and other cluster disturbances internally
	Opens max 1 tcp connection to a broker per brod_client, one can create more clients if needed
	Producer: will start to batch automatically when number of unacknowledged (in flight) requests exceeds configurable maximum
	Producer: will try to re-send buffered messages on common errors like "Not a leader for partition", errors are resolved automatically by refreshing metadata
	Simple consumer: The poller, has a configurable "prefetch count" - it will continue sending fetch requests as long as total number of unprocessed messages (not message-sets) is less than "prefetch count"
	Group subscriber: Support for consumer groups with options to have Kafka as offset storage or a custom one
	Topic subscriber: Subscribe on messages from all or selected topic partitions without using consumer groups
	Pick latest supported version when sending requests to kafka.
	Direct APIs for message send/fetch and cluster inspection/management without having to start clients/producers/consumers.
	A escriptized command-line tool for message send/fetch and cluster inspection/management.
	Configurable compression library. snappy compression is supported by default.
For more compression options, see kafka_protocol/README

Building and testing
NOTE: Min Erlang/OTP version 22
make compile
make test-env t # requires docker-compose in place

Working With Kafka 0.9.x or Earlier
Make sure {query_api_versions, false} exists in client config.
This is because ApiVersionRequest was introduced in kafka 0.10,
sending such request to older version brokers will cause connection failure.
e.g. in sys.config:
[{brod,
 [{ clients
 , [{ brod_client_1 %% registered name
 , [{ endpoints, [{"localhost", 9092}]}
 , { query_api_versions, false} %% <---------- here
]}]}]}]
Quick Demo
Assuming kafka is running at localhost:9092 and there is a topic named test-topic.
Start Erlang shell by make compile; erl -pa _build/default/lib/*/ebin, then paste lines below into shell:
rr(brod),
{ok, _} = application:ensure_all_started(brod),
KafkaBootstrapEndpoints = [{"localhost", 9092}],
Topic = <<"test-topic">>,
Partition = 0,
ok = brod:start_client(KafkaBootstrapEndpoints, client1),
ok = brod:start_producer(client1, Topic, _ProducerConfig = []),
{ok, FirstOffset} = brod:produce_sync_offset(client1, Topic, Partition, <<"key1">>, <<"value1">>),
ok = brod:produce_sync(client1, Topic, Partition, <<"key2">>, <<"value2">>),
SubscriberCallbackFun = fun(Partition, Msg, ShellPid = CallbackState) -> ShellPid ! Msg, {ok, ack, CallbackState} end,
Receive = fun() -> receive Msg -> Msg after 1000 -> timeout end end,
brod_topic_subscriber:start_link(client1, Topic, Partitions=[Partition],
 _ConsumerConfig=[{begin_offset, FirstOffset}],
 _CommittedOffsets=[], message, SubscriberCallbackFun,
 _CallbackState=self()),
AckCb = fun(Partition, BaseOffset) -> io:format(user, "\nProduced to partition ~p at base-offset ~p\n", [Partition, BaseOffset]) end,
ok = brod:produce_cb(client1, Topic, Partition, <<>>, [{<<"key3">>, <<"value3">>}], AckCb).
Receive().
Receive().
{ok, {_, [Msg]}} = brod:fetch(KafkaBootstrapEndpoints, Topic, Partition, FirstOffset + 2), Msg.
Example outputs:
#kafka_message{offset = 0,key = <<"key1">>,
 value = <<"value1">>,ts_type = create,ts = 1531995555085,
 headers = []}
#kafka_message{offset = 1,key = <<"key2">>,
 value = <<"value2">>,ts_type = create,ts = 1531995555107,
 headers = []}
Produced to partition 0 at base-offset 406
#kafka_message{offset = 2,key = <<"key3">>,
 value = <<"value3">>,ts_type = create,ts = 1531995555129,
 headers = []}
Overview
Brod supervision (and process link) tree.
[image: brod supervision architecture]
Clients
A brod_client in brod is a gen_server responsible for establishing and
maintaining tcp sockets connecting to kafka brokers.
It also manages per-topic-partition producer and consumer processes under
two-level supervision trees.
To use producers or consumers, you have to start at least one client that
will manage them.
Start clients by default
You may include client configs in sys.config have them started by default
(by application controller)
Example of configuration (for sys.config):
[{brod,
 [{ clients
 , [{ brod_client_1 %% registered name
 , [{ endpoints, [{"localhost", 9092}]}
 , { reconnect_cool_down_seconds, 10} %% socket error recovery
]
 }
]
 }
 %% start another client for another kafka cluster
 %% or if you think it's necessary to start another set of tcp connections
]
}]
Example of configuration in Elixir (for config/dev.exs or config/prod.exs, etc.):
config :brod,
 clients: [
 # :brod_client_1 is the registered name of the client
 brod_client_1: [
 endpoints: [{"localhost", 9092}],
 reconnect_cool_down_seconds: 10
]
]
Start brod client on demand
You may also call brod:start_client/1,2,3 to start a client on demand,
which will be added to brod supervision tree.
ClientConfig = [{reconnect_cool_down_seconds, 10}],
ok = brod:start_client([{"localhost", 9092}], brod_client_1, ClientConfig).
Extra socket options
could be passed as {extra_sock_opts, ExtraSockOpts}, e.g.
ExtraSockOpts = [{sndbuf, 1024*1024}],
ok = brod:start_client([{"localhost", 9092}], brod_client_1, [{extra_sock_opts, ExtraSockOpts}]).
Producers
A brod_producer is a gen_server that is responsible for producing messages to a given
partition of a given topic.
Producers may be started either manually or automatically in the moment you call brod:produce
but did not call brod:start_producer beforehand.
Auto start producer with default producer config
Put below configs to client config in sys.config or app env if you start client statically:
{auto_start_producers, true}
{default_producer_config, []}
Or pass the {auto_start_producers, true} option to brod:start_client if you start the client
dynamically.
Start a Producer on Demand
brod:start_producer(_Client = brod_client_1,
 _Topic = <<"brod-test-topic-1">>,
 _ProducerConfig = []).
Supported Message Input Format
Brod supports below produce APIs:
	brod:produce: Async produce with ack message sent back to caller.
	brod:produce_cb: Async produce with a callback evaluated when ack is received.
	brod:produce_sync: Sync produce that returns ok.
	brod:produce_sync_offset: Sync produce that returns {ok, BaseOffset}.
	brod:produce_no_ack: Async produce without backpressure (use with care!).

The Value arg in these APIs can be:
	binary(): One single message
	{brod:msg_ts(), binary()}: One single message with its create-time timestamp
	#{ts => brod:msg_ts(), value => binary(), headers => [{_, _}]}:
One single message. If this map does not have a key field, the Key argument is used.
	[{K, V} | {T, K, V}]: A batch, where V could be a nested list of such representation.

	[#{key => K, value => V, ts => T, headers => [{_, _}]}]: A batch.

When Value is a batch, the Key argument is only used as partitioner input and all messages are written on the same partition.
All messages are unified into a batch format of below spec:
[#{key => K, value => V, ts => T, headers => [{_, _}]}].
ts field is dropped for kafka prior to version 0.10 (produce API version 0, magic version 0).
headers field is dropped for kafka prior to version 0.11 (produce API version 0-2, magic version 0-1).
Synchronized Produce API
brod:produce_sync(_Client = brod_client_1,
 _Topic = <<"brod-test-topic-1">>,
 _Partition = 0,
 _Key = <<"some-key">>,
 _Value = <<"some-value">>).
Or block calling process until Kafka confirmed the message:
{ok, CallRef} =
 brod:produce(_Client = brod_client_1,
 _Topic = <<"brod-test-topic-1">>,
 _Partition = 0,
 _Key = <<"some-key">>,
 _Value = <<"some-value">>),
brod:sync_produce_request(CallRef).
Produce One Message and Receive Its Offset in Kafka
Client = brod_client_1,
Topic = <<"brod-test-topic-1">>,
{ok, Offset} = brod:produce_sync_offset(Client, Topic, 0, <<>>, <<"value">>).
Produce with Random Partitioner
Client = brod_client_1,
Topic = <<"brod-test-topic-1">>,
ok = brod:produce_sync(Client, Topic, random, Key, Value).
Produce a Batch
brod:produce(_Client = brod_client_1,
 _Topic = <<"brod-test-topic-1">>,
 _Partition = MyPartitionerFun,
 _Key = KeyUsedForPartitioning,
 _Value = [#{key => "k1", value => "v1", headers => [{"foo", "bar"}]}
 , #{key => "k2", value => "v2"}
]).
Handle Acks from Kafka as Messages
For async produce APIs brod:produce/3 and brod:produce/5,
the caller should expect a message of below pattern for each produce call.
#brod_produce_reply{ call_ref = CallRef %% returned from brod:produce
 , result = brod_produce_req_acked
 }
Add -include_lib("brod/include/brod.hrl"). to use the record.
In case the brod:produce caller is a process like gen_server which
receives ALL messages, the callers should keep the call references in its
looping state and match the replies against them when received.
Otherwise brod:sync_produce_request/1 can be used to block-wait for acks.
NOTE: If required_acks is set to none in producer config,
kafka will NOT ack the requests, and the reply message is sent back
to caller immediately after the message has been sent to the socket process.
NOTE: The replies are only strictly ordered per-partition.
i.e. if the caller is producing to two or more partitions,
it may receive replies ordered differently than in which order
brod:produce API was called.
Handle Acks from Kafka in Callback Function
Async APIs brod:produce_cb/4 and brod:produce_cb/6 allow callers to
provided a callback function to handle acknowledgements from kafka.
In this case, the caller may want to monitor the producer process because
then they know that the callbacks will not be evaluated if the producer is 'DOWN',
and there is perhaps a need for retry.
Consumers
Kafka consumers work in poll mode. In brod, brod_consumer is the poller,
which is constantly asking for more data from the kafka node which is a leader
for the given partition.
By subscribing to brod_consumer a process should receive the polled message
sets (not individual messages) into its mailbox.
In brod, we have so far implemented two different subscribers
(brod_topic_subscriber and brod_group_subscriber),
hopefully covered most of the common use cases.
For maximum flexibility, applications may implement their own
per-partition subscriber.
Below diagrams illustrate 3 examples of how subscriber processes may work
with brod_consumer.
Partition subscriber
[image: partition subscriber architecture]
This gives the best flexibility as the per-partition subscribers work
directly with per-partition pollers (brod_consumers).
The messages are delivered to subscribers in message sets (batches),
not individual messages, (however the subscribers are allowed to
ack individual offsets).
Example:
ok = brod:start_client([{"localhost", 9092}], my_client). % one client per application is enough
ok = brod:start_consumer(my_client, <<"my_topic">>, []).

% Now in a separate process for each partition of my_topic call:
{ok, ConsumerPid} = brod:subscribe(my_client, self(), <<"my_topic">>, Partition, []).
% The process should now receive messages sets as regular messages
Topic subscriber (brod_topic_subscriber)
[image: topic subscribe flow]
A topic subscriber provides the easiest way to receive and process messages from
ALL partitions of a given topic. See
brod_demo_cg_collector and
brod_demo_topic_subscriber for example.
Users may choose to implement the brod_topic_subscriber behaviour callbacks
in a module, or simply provide an anonymous callback function to have the
individual messages processed.
Group subscriber (brod_group_subscriber)
[image: group subscriber flow]
Similar to topic subscriber, the brod_group_subscriber behaviour callbacks are
to be implemented to process individual messages. See
brod_demo_group_subscriber_koc and
brod_demo_group_subscriber_loc for
example.
A group subscriber is started by giving a set of topics, some
(maybe none, or maybe all) of the partitions in the topic set will be
assigned to it, then the subscriber should subscribe to ALL the assigned
partitions.
Users may also choose to implement the brod_group_member behaviour (callbacks
for brod_group_coordinator) for a different group subscriber (e.g. spawn
one subscriber per partition), see brucke
for example.
Example of group consumer which commits offsets to Kafka
-module(my_subscriber).
-include_lib("brod/include/brod.hrl"). %% needed for the #kafka_message record definition

-export([start/1]).
-export([init/2, handle_message/4]). %% callback api

%% brod_group_subscriber behaviour callback
init(_GroupId, _Arg) -> {ok, []}.

%% brod_group_subscriber behaviour callback
handle_message(_Topic, Partition, Message, State) ->
 #kafka_message{ offset = Offset
 , key = Key
 , value = Value
 } = Message,
 error_logger:info_msg("~p ~p: offset:~w key:~s value:~s\n",
 [self(), Partition, Offset, Key, Value]),
 {ok, ack, State}.

%% @doc The brod client identified ClientId should have been started
%% either by configured in sys.config and started as a part of brod application
%% or started by brod:start_client/3
%% @end
-spec start(brod:client_id()) -> {ok, pid()}.
start(ClientId) ->
 Topic = <<"brod-test-topic-1">>,
 %% commit offsets to kafka every 5 seconds
 GroupConfig = [{offset_commit_policy, commit_to_kafka_v2},
 {offset_commit_interval_seconds, 5}
],
 GroupId = <<"my-unique-group-id-shared-by-all-members">>,
 ConsumerConfig = [{begin_offset, earliest}],
 brod:start_link_group_subscriber(ClientId, GroupId, [Topic],
 GroupConfig, ConsumerConfig,
 _CallbackModule = ?MODULE,
 _CallbackInitArg = []).
Authentication support
brod supports SASL PLAIN, SCRAM-SHA-256 and SCRAM-SHA-512 authentication mechanisms out of the box.
To use it, add {sasl, {Mechanism, Username, Password}} or {sasl, {Mechanism, File}} to client config.
Where Mechanism is plain | scram_sha_256 | scram_sha_512, and File is the path to a text file
which contains two lines, first line for username and second line for password
Also, brod has authentication plugins support with {sasl, {callback, Module, Opts}} in client config.
Authentication callback module should implement kpro_auth_backend behaviour.
Auth function spec:
auth(Host :: string(), Sock :: gen_tcp:socket() | ssl:sslsocket(),
 Mod :: gen_tcp | ssl, ClientId :: binary(),
 Timeout :: pos_integer(), SaslOpts :: term()) ->
 ok | {error, Reason :: term()}
If authentication is successful - callback function should return an atom ok, otherwise - error tuple with reason description.
For example, you can use brod_gssapi plugin for SASL GSSAPI authentication.
To use it - add it as dependency to your top level project that uses brod.
Then add {sasl, {callback, brod_gssapi, {gssapi, Keytab, Principal}}} to client config.
Keytab should be the keytab file path, and Principal should be a byte-list or binary string.
See also: https://github.com/klarna/brod/wiki/SASL-gssapi-(kerberos)-authentication
Other API to play with/inspect kafka
These functions open a connection to kafka cluster, send a request,
await response and then close the connection.
Hosts = [{"localhost", 9092}].
Topic = <<"topic">>.
Partition = 0.
Timeout = 1000.
TopicConfigs = [
 #{
 configs => [#{name => <<"cleanup.policy">>, value => "compact"}],
 num_partitions => 1,
 assignments => [],
 replication_factor => 1,
 name => Topic
 }
].
brod:get_metadata(Hosts).
brod:create_topics(Hosts, TopicConfigs, #{timeout => Timeout}).
brod:get_metadata(Hosts, [Topic]).
brod:resolve_offset(Hosts, Topic, Partition).
brod:delete_topics(Hosts, [Topic], Timeout).
Caution the above delete_topics can fail if you do not have delete.topic.enable set to true in your kafka config
brod-cli: A command line tool to interact with Kafka
This will build a self-contained binary with brod application
make brod-cli
_build/brod_cli/rel/brod/bin/brod -h

Disclaimer: This script is NOT designed for use cases where fault-tolerance is a hard requirement.
As it may crash when e.g. kafka cluster is temporarily unreachable,
or (for fetch command) when the partition leader migrates to another broker in the cluster.
brod-cli examples (with alias brod=_build/brod_cli/rel/brod/bin/brod):
Fetch and print metadata
brod meta -b localhost

Produce a Message
brod send -b localhost -t test-topic -p 0 -k "key" -v "value"

Fetch a Message
brod fetch -b localhost -t test-topic -p 0 --fmt 'io:format("offset=~p, ts=~p, key=~s, value=~s\n", [Offset, Ts, Key, Value])'

Bound variables to be used in --fmt expression:
	Offset: Message offset
	Key: Kafka key
	Value: Kafka Value
	TsType: Timestamp type either create or append
	Ts: Timestamp, -1 as no value

Stream Messages to Kafka
Send README.md to kafka one line per kafka message
brod pipe -b localhost:9092 -t test-topic -p 0 -s @./README.md

Resolve Offset
brod offset -b localhost:9092 -t test-topic -p 0

List or Describe Groups
List all groups
brod groups -b localhost:9092

Describe groups
brod groups -b localhost:9092 --ids group-1,group-2

Display Committed Offsets
all topics
brod commits -b localhost:9092 --id the-group-id --describe

a specific topic
brod commits -b localhost:9092 --id the-group-id --describe --topic topic-name

Commit Offsets
NOTE: This feature is designed for force overwriting commits, not for regular use of offset commit.
Commit 'latest' offsets of all partitions with 2 days retention
brod commits -b localhost:9092 --id the-group-id --topic topic-name --offsets latest --retention 2d

Commit offset=100 for partition 0 and 200 for partition 1
brod commits -b localhost:9092 --id the-group-id --topic topic-name --offsets "0:100,1:200"

Use --retention 0 to delete commits (may linger in kafka before cleaner does its job)
brod commits -b localhost:9092 --id the-group-id --topic topic-name --offsets latest --retention 0

Try join an active consumer group using 'range' protocol and steal one partition assignment then commit offset=10000
brod commits -b localhost:9092 -i the-group-id -t topic-name -o "0:10000" --protocol range

TODOs
	Support scram-sasl in brod-cli
	Transactional produce APIs

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

Publisher Example

Info
There is also a more complete example here.

Ensure :brod is added to your deps on mix.exs
defp deps do
 [
 {:brod, "~> 3.10.0"}
]
end
Client Configuration
To use producers, you have to start a client first.
You can do that by adding the following configuration (e.g. into config/dev.exs):
import Config

config :brod,
 clients: [
 kafka_client: [
 endpoints: [localhost: 9092],
 auto_start_producers: true,
 # The following :ssl and :sasl configs are not
 # required when running kafka locally unauthenticated
 ssl: true,
 sasl: {
 :plain,
 System.get_env("KAFKA_CLUSTER_API_KEY"),
 System.get_env("KAFKA_CLUSTER_API_SECRET")
 }
]
]
or by starting it dynamically with this snippet (you can also add SSL/SASL configuration if you want to):
:brod.start_client([localhost: 9092], :kafka_client, auto_start_producers: true)
Note: kafka_client can be any valid atom. And :endpoints accepts multiple host port tuples (e.g. endpoints: [{"192.168.0.2", 9092}, {"192.168.0.3", 9092}, ...]).
If you don't pass the auto_start_producers: true option, you also have to manually start producers before calling :brod.produce_sync/5 (and other produce functions).
For example like this: :brod.start_producer(:kafka_client, "my_topic", []).
See :brod.start_client/3 for a list of all available options.
Publisher
To send a message with brod we can use the :brod.produce_sync/5 function
defmodule BrodExample.Publisher do
 def publish(topic, partition, key, message) do
 :brod.produce_sync(:kafka_client, topic, :hash, key, message)
 end
end
There are also other ways (functions) how to produce messages, you can find them in the overview and in the brod
module documentation.
Using partition key
When providing :hash as the partition when calling :brod.produce_sync/5 is equivalent to the following:
{:ok, count} = :brod.get_partitions_count(:kafka_client, topic)
partition = rem(:erlang.phash2(key), count)
:brod.produce_sync(:kafka_client, topic, partition, key, message)
Internally brod will get the partition count, generate a hash for the key within the range of partitions,
and publish the message to the calculated hash. This is the same sticky routing that Kafka's ProducerRecord implements:
If no partition is specified but a key is present a partition will be chosen using a hash of the key. If neither key nor partition is present a partition will be assigned in a round-robin fashion.

Consumer Example

Info
There is also a more complete example here.

Ensure :brod is added to your deps on mix.exs
defp deps do
 [
 {:brod, "~> 3.10.0"}
]
end
Both examples require a brod client with name :kafka_client to be already started.
You can do that either statically by specifying it in the configuration (see an
example)
or dynamically
(e.g. by calling :brod.start_client([{"localhost", 9092}], :kafka_client)).
Group Subscriber
Either the brod_group_subscriber_v2 or brod_group_subscriber behaviours can be used
to consume messages. The key difference is that the v2 subscriber runs a worker for each
partition in a separate Erlang process, allowing parallel message processing.
Here is an example of callback module that implements the brod_group_subscriber_v2 behaviour to consume messages.
defmodule BrodSample.GroupSubscriberV2 do
 @behaviour :brod_group_subscriber_v2

 def child_spec(_arg) do
 config = %{
 client: :kafka_client,
 group_id: "consumer_group_name",
 topics: ["streaming.events"],
 cb_module: __MODULE__,
 consumer_config: [{:begin_offset, :earliest}],
 init_data: [],
 message_type: :message_set,
 group_config: [
 offset_commit_policy: :commit_to_kafka_v2,
 offset_commit_interval_seconds: 5,
 rejoin_delay_seconds: 60,
 reconnect_cool_down_seconds: 60
]
 }

 %{
 id: __MODULE__,
 start: {:brod_group_subscriber_v2, :start_link, [config]},
 type: :worker,
 restart: :temporary,
 shutdown: 5000
 }
 end

 @impl :brod_group_subscriber_v2
 def init(_group_id, _init_data), do: {:ok, []}

 @impl :brod_group_subscriber_v2
 def handle_message(message, _state) do
 IO.inspect(message, label: "message")
 {:ok, :commit, []}
 end
end
The example module implements child_spec/1 so that our consumer can be started by a Supervisor. The restart policy is set to :temporary
because, in this case, if a message can not be processed, then there is no point in restarting. This might not always
be the case.
See :brod_group_subscriber_v2.start_link/1 for details on the configuration options.
See docs for more details about the required or optional callbacks.
Partition Subscriber
A more low-level approach can be used when you want a more fine-grained control or when you have only a single partition.
defmodule BrodSample.PartitionSubscriber do
 use GenServer

 import Record, only: [defrecord: 2, extract: 2]

 defrecord :kafka_message, extract(:kafka_message, from_lib: "brod/include/brod.hrl")
 defrecord :kafka_message_set, extract(:kafka_message_set, from_lib: "brod/include/brod.hrl")
 defrecord :kafka_fetch_error, extract(:kafka_fetch_error, from_lib: "brod/include/brod.hrl")

 defmodule State do
 @enforce_keys [:consumer_pid]
 defstruct consumer_pid: nil
 end

 defmodule KafkaMessage do
 @enforce_keys [:offset, :key, :value, :ts]
 defstruct offset: nil, key: nil, value: nil, ts: nil
 end

 def start_link(topic, partition) do
 GenServer.start_link(__MODULE__, {topic, partition})
 end

 @impl true
 def init({topic, partition}) do
 # start the consumer(s)
 # if you have more than one partition, do it somewhere else once for all paritions
 # (e.g. in the parent process)
 :ok = :brod.start_consumer(:kafka_client, topic, begin_offset: :latest)

 {:ok, consumer_pid} = :brod.subscribe(:kafka_client, self(), topic, partition, [])
 # you may also want to handle error when subscribing
 # and to monitor the consumer pid (and resubscribe when the consumer crashes)

 {:ok, %State{consumer_pid: consumer_pid}}
 end

 @impl true
 def handle_info(
 {consumer_pid, kafka_message_set(messages: msgs)},
 %State{consumer_pid: consumer_pid} = state
) do
 for msg <- msgs do
 msg = kafka_message_to_struct(msg)

 # process the message...
 IO.inspect(msg)

 # and then acknowledge it
 :brod.consume_ack(consumer_pid, msg.offset)
 end

 {:noreply, state}
 end

 def handle_info({pid, kafka_fetch_error()} = error, %State{consumer_pid: pid} = state) do
 # you may want to handle the error differently
 {:stop, error, state}
 end

 defp kafka_message_to_struct(kafka_message(offset: offset, key: key, value: value, ts: ts)) do
 %KafkaMessage{
 offset: offset,
 key: key,
 value: value,
 ts: DateTime.from_unix!(ts, :millisecond)
 }
 end
end

Authentication

SASL/PLAIN
Erlang
[{brod,
 [{clients
 , [{kafka_client
 , [{ endpoints, [{"localhost", 9092}] }
 , { ssl, true}
 , { sasl, {plain, "GFRW5BSQHKEH0TSG", "GrL3CNTkLhsvtBr8srGn0VilMpgDb4lPD"}}
]
 }
]
 }
]
}]
Elixir
import Config

config :brod,
 clients: [
 kafka_client: [
 endpoints: [
 localhost: 9092
],
 ssl: true,
 sasl: {
 :plain,
 System.get_env("KAFKA_USERNAME"),
 System.get_env("KAFKA_PASSWORD")
 }
]
]
SSL Certificate Validation
Erlang's default configuration for SSL is verify_none
which means that certificates are accepted but not validated. brod passes SSL options to the kafka_protocol library
where they are used to create the SSL connection.
For more info see the Erlang Ecosystem Foundation's server certificate verification recommendations.
Erlang
[{brod,
 [{clients
 , [{kafka_client
 , [{ endpoints, [{"localhost", 9092}] }
 , { ssl, [{ verify, verify_peer }
 , { cacertfile, "/etc/ssl/certs/ca-certificates.crt" }
 , { depth, 3 }
 , { customize_hostname_check,
 [{match_fun, public_key:pkix_verify_hostname_match_fun(https)}]}
]}
 , { sasl, {plain, "GFRW5BSQHKEH0TSG", "GrL3CNTkLhsvtBr8srGn0VilMpgDb4lPD"}}
]
 }
]
 }
]
}]
Elixir
import Config

config :brod,
 clients: [
 kafka_client: [
 endpoints: [
 localhost: 9092
],
 ssl: [
 verify: :verify_peer,
 cacertfile: "/etc/ssl/certs/ca-certificates.crt",
 depth: 3,
 customize_hostname_check: [
 match_fun: :public_key.pkix_verify_hostname_match_fun(:https)
],
],
 sasl: {
 :plain,
 System.get_env("KAFKA_USERNAME"),
 System.get_env("KAFKA_PASSWORD")
 }
]
]
The examples above are using /etc/ssl/certs/ca-certificates.crt which is the certificate authority that comes
with alpine linux. You will need to provide a path to a valid certificate authority
certificate or use certifi

brod

 Anchor for this section

 Summary

 Types

 batch_input/0

 bootstrap/0

 call_ref/0

 A record with caller, callee, and ref.

 cg/0

 cg_protocol_type/0

 client/0

 client_config/0

 client_id/0

 compression/0

 conn_config/0

 Connection configuration that will be passed to kpro calls.

 connection/0

 consumer_config/0

 Consumer configuration.

 endpoint/0

 error_code/0

 fetch_opts/0

 fold_acc/0

 fold_fun/1

 fold always returns when reaches the high watermark offset. fold also returns when any of the limits is hit.

 fold_limits/0

 fold_result/0

 fold_stop_reason/0

 OffsetToContinue: begin offset for the next fold call

 group_config/0

 group_generation_id/0

 group_id/0

 group_member/0

 group_member_id/0

 hostname/0

 key/0

 message/0

 A record with offset, key, value, ts_type, ts, and headers.

 message_set/0

 A record with topic, partition, high_wm_offset (max offset of the partition), and messages.

 msg_input/0

 msg_ts/0

 Unix time in milliseconds

 offset/0

 Physical offset (an integer)

 offset_time/0

 partition/0

 partition_assignment/0

 partition_fun/0

 partitioner/0

 portnum/0

 produce_ack_cb/0

 produce_reply/0

 A record with call_ref, base_offset, and result.

 produce_result/0

 producer_config/0

 received_assignments/0

 topic/0

 topic_config/0

 topic_partition/0

 value/0

 Functions

 connect_group_coordinator(BootstrapEndpoints, ConnCfg, GroupId)

 Connect to consumer group coordinator broker.

 connect_leader(Hosts, Topic, Partition, ConnConfig)

 Connect partition leader.

 consume_ack(ConsumerPid, Offset)

 Equivalent to brod_consumer:ack(ConsumerPid, Offset).

 consume_ack(Client, Topic, Partition, Offset)

 Acknowledge that one or more messages have been processed.

 create_topics(Hosts, TopicConfigs, RequestConfigs)

 Equivalent to create_topics(Hosts, TopicsConfigs, RequestConfigs, []).

 create_topics(Hosts, TopicConfigs, RequestConfigs, Options)

 Create topic(s) in kafka.

 delete_topics(Hosts, Topics, Timeout)

 Equivalent to delete_topics(Hosts, Topics, Timeout, []).

 delete_topics(Hosts, Topics, Timeout, Options)

 Delete topic(s) from kafka.

 describe_groups(CoordinatorEndpoint, ConnCfg, IDs)

 Describe consumer groups.

 fetch(ConnOrBootstrap, Topic, Partition, Offset)

 Fetch a single message set from the given topic-partition.

 fetch(ConnOrBootstrap, Topic, Partition, Offset, Opts)

 Fetch a single message set from the given topic-partition.

 fetch(Hosts, Topic, Partition, Offset, MaxWaitTime, MinBytes, MaxBytes)

 deprecated

 Equivalent to fetch(Hosts, Topic, Partition, Offset, Wait, MinBytes, MaxBytes, []).

 fetch(Hosts, Topic, Partition, Offset, MaxWaitTime, MinBytes, MaxBytes, ConnConfig)

 deprecated

 Fetch a single message set from the given topic-partition.

 fetch_committed_offsets(Client, GroupId)

 Same as {link fetch_committed_offsets/3}, but works with a started brod_client

 fetch_committed_offsets(BootstrapEndpoints, ConnCfg, GroupId)

 Fetch committed offsets for ALL topics in the given consumer group.

 fold(Bootstrap, Topic, Partition, Offset, Opts, Acc, Fun, Limits)

 Fold through messages in a partition.

 get_consumer(Client, Topic, Partition)

 get_metadata(Hosts)

 Fetch broker metadata for all topics.

 get_metadata(Hosts, Topics)

 Fetch broker metadata for the given topics.

 get_metadata(Hosts, Topics, Options)

 Fetch broker metadata for the given topics using the given connection options.

 get_partitions_count(Client, Topic)

 Get number of partitions for a given topic.

 get_partitions_count_safe(Client, Topic)

 The same as get_partitions_count(Client, Topic) but ensured not to auto-create topics in Kafka even when Kafka has topic auto-creation configured.

 get_producer(Client, Topic, Partition)

 Equivalent to brod_client:get_producer(Client, Topic, Partition).

 list_all_groups(Endpoints, ConnCfg)

 List ALL consumer groups in the given kafka cluster.

 list_groups(CoordinatorEndpoint, ConnCfg)

 List consumer groups in the given group coordinator broker.

 produce(Pid, Value)

 Equivalent to produce(Pid, <<>>, Value).

 produce(ProducerPid, Key, Value)

 Produce one or more messages.

 produce(Client, Topic, Partition, Key, Value)

 Produce one or more messages.

 produce_cb(ProducerPid, Key, Value, AckCb)

 Same as produce/3, only the ack is not delivered as a message, instead, the callback is evaluated by producer worker when ack is received from kafka (see the produce_ack_cb() type).

 produce_cb(Client, Topic, Part, Key, Value, AckCb)

 Same as produce/5 only the ack is not delivered as a message, instead, the callback is evaluated by producer worker when ack is received from kafka (see the produce_ack_cb() type).

 produce_no_ack(Client, Topic, Part, Key, Value)

 Find the partition worker and send message without any ack.

 produce_sync(Pid, Value)

 Equivalent to produce_sync(Pid, <<>>, Value).

 produce_sync(Pid, Key, Value)

 Sync version of produce/3.

 produce_sync(Client, Topic, Partition, Key, Value)

 Sync version of produce/5.

 produce_sync_offset(Client, Topic, Partition, Key, Value)

 Version of produce_sync/5 that returns the offset assigned by Kafka.

 resolve_offset(Hosts, Topic, Partition)

 Equivalent to resolve_offset(Hosts, Topic, Partition, latest, []).

 resolve_offset(Hosts, Topic, Partition, Time)

 Equivalent to resolve_offset(Hosts, Topic, Partition, Time, []).

 resolve_offset(Hosts, Topic, Partition, Time, ConnCfg)

 Resolve semantic offset or timestamp to real offset.

 resolve_offset(Hosts, Topic, Partition, Time, ConnCfg, Opts)

 Resolve semantic offset or timestamp to real offset.

 start()

 Start brod application.

 start(StartType, StartArgs)

 Application behaviour callback

 start_client(BootstrapEndpoints)

 Equivalent to start_client(BootstrapEndpoints, brod_default_client).

 start_client(BootstrapEndpoints, ClientId)

 Equivalent to start_client(BootstrapEndpoints, ClientId, []).

 start_client(BootstrapEndpoints, ClientId, Config)

 Start a client (brod_client).

 start_consumer(Client, TopicName, ConsumerConfig)

 Dynamically start topic consumer(s) and register it in the client.

 start_link_client(BootstrapEndpoints)

 Equivalent to start_link_client(BootstrapEndpoints, brod_default_client).

 start_link_client(BootstrapEndpoints, ClientId)

 Equivalent to start_link_client(BootstrapEndpoints, ClientId, []).

 start_link_client(BootstrapEndpoints, ClientId, Config)

 start_link_group_subscriber(Client, GroupId, Topics, GroupConfig, ConsumerConfig, CbModule, CbInitArg)

 See also: brod_group_subscriber:start_link/7.

 start_link_group_subscriber(Client, GroupId, Topics, GroupConfig, ConsumerConfig, MessageType, CbModule, CbInitArg)

 See also: brod_group_subscriber:start_link/8.

 start_link_group_subscriber_v2(Config)

 Start group_subscriber_v2.

 start_link_topic_subscriber(Config)

 See also: brod_topic_subscriber:start_link/1.

 start_link_topic_subscriber(Client, Topic, ConsumerConfig, CbModule, CbInitArg)

 deprecated

 Equivalent to start_link_topic_subscriber(Client, Topic, all, ConsumerConfig, CbModule, CbInitArg).

 start_link_topic_subscriber(Client, Topic, Partitions, ConsumerConfig, CbModule, CbInitArg)

 deprecated

 Equivalent to start_link_topic_subscriber(Client, Topic, Partitions, ConsumerConfig, message, CbModule, CbInitArg).

 start_link_topic_subscriber(Client, Topic, Partitions, ConsumerConfig, MessageType, CbModule, CbInitArg)

 deprecated

 See also: brod_topic_subscriber:start_link/7.

 start_producer(Client, TopicName, ProducerConfig)

 Dynamically start a per-topic producer and register it in the client.

 stop()

 Stop brod application.

 stop(State)

 Application behaviour callback

 stop_client(Client)

 Stop a client.

 subscribe(ConsumerPid, SubscriberPid, Options)

 Subscribe to a data stream from the given consumer.

 subscribe(Client, SubscriberPid, Topic, Partition, Options)

 Subscribe to a data stream from the given topic-partition.

 sync_produce_request(CallRef)

 Equivalent to sync_produce_request(CallRef, infinity).

 sync_produce_request(CallRef, Timeout)

 Block wait for sent produced request to be acked by kafka.

 sync_produce_request_offset(CallRef)

 Equivalent to sync_produce_request_offset(CallRef, infinity).

 sync_produce_request_offset(CallRef, Timeout)

 As sync_produce_request/2, but also returning assigned offset.

 unsubscribe(ConsumerPid)

 Unsubscribe the current subscriber.

 unsubscribe(ConsumerPid, SubscriberPid)

 Unsubscribe the current subscriber.

 unsubscribe(Client, Topic, Partition)

 Unsubscribe the current subscriber.

 unsubscribe(Client, Topic, Partition, SubscriberPid)

 Unsubscribe the current subscriber.

 Anchor for this section

Types

 Link to this type

 batch_input/0

 View Source

 -type batch_input() :: [msg_input()].

 Link to this type

 bootstrap/0

 View Source

 -type bootstrap() :: [endpoint()] | {[endpoint()], client_config()}.

 Link to this type

 call_ref/0

 View Source

 -type call_ref() :: #brod_call_ref{}.

A record with caller, callee, and ref.

 Link to this type

 cg/0

 View Source

 -type cg() :: #brod_cg{}.

 Link to this type

 cg_protocol_type/0

 View Source

 -type cg_protocol_type() :: binary().

 Link to this type

 client/0

 View Source

 -type client() :: client_id() | pid().

 Link to this type

 client_config/0

 View Source

 -type client_config() :: brod_client:config().

 Link to this type

 client_id/0

 View Source

 -type client_id() :: atom().

 Link to this type

 compression/0

 View Source

 -type compression() :: no_compression | gzip | snappy.

 Link to this type

 conn_config/0

 View Source

 -type conn_config() :: [{atom(), term()}] | kpro:conn_config().

Connection configuration that will be passed to kpro calls.
For more info, see the kpro_connection:config() type.

 Link to this type

 connection/0

 View Source

 -type connection() :: kpro:connection().

 Link to this type

 consumer_config/0

 View Source

 -type consumer_config() ::
 [{begin_offset, offset_time()} |
 {min_bytes, non_neg_integer()} |
 {max_bytes, non_neg_integer()} |
 {max_wait_time, integer()} |
 {sleep_timeout, integer()} |
 {prefetch_count, integer()} |
 {prefetch_bytes, non_neg_integer()} |
 {offset_reset_policy, brod_consumer:offset_reset_policy()} |
 {size_stat_window, non_neg_integer()} |
 {isolation_level, brod_consumer:isolation_level()}].

Consumer configuration.
The meaning of the options is documented at brod_consumer:start_link/5.

 Link to this type

 endpoint/0

 View Source

 -type endpoint() :: {hostname(), portnum()}.

 Link to this type

 error_code/0

 View Source

 -type error_code() :: kpro:error_code().

 Link to this type

 fetch_opts/0

 View Source

 -type fetch_opts() :: kpro:fetch_opts().

 Link to this type

 fold_acc/0

 View Source

 -type fold_acc() :: term().

 Link to this type

 fold_fun/1

 View Source

 -type fold_fun(Acc) :: fun((message(), Acc) -> {ok, Acc} | {error, any()}).

fold always returns when reaches the high watermark offset. fold also returns when any of the limits is hit.

 Link to this type

 fold_limits/0

 View Source

 -type fold_limits() :: #{message_count => pos_integer(), reach_offset => offset()}.

 Link to this type

 fold_result/0

 View Source

 -type fold_result() :: {fold_acc(), OffsetToContinue :: offset(), fold_stop_reason()}.

 Link to this type

 fold_stop_reason/0

 View Source

 -type fold_stop_reason() ::
 reached_end_of_partition | reached_message_count_limit | reached_target_offset |
 {error, any()}.

OffsetToContinue: begin offset for the next fold call

 Link to this type

 group_config/0

 View Source

 -type group_config() :: proplists:proplist().

 Link to this type

 group_generation_id/0

 View Source

 -type group_generation_id() :: non_neg_integer().

 Link to this type

 group_id/0

 View Source

 -type group_id() :: kpro:group_id().

 Link to this type

 group_member/0

 View Source

 -type group_member() :: {group_member_id(), #kafka_group_member_metadata{}}.

 Link to this type

 group_member_id/0

 View Source

 -type group_member_id() :: binary().

 Link to this type

 hostname/0

 View Source

 -type hostname() :: kpro:hostname().

 Link to this type

 key/0

 View Source

 -type key() :: undefined | binary().

 Link to this type

 message/0

 View Source

 -type message() :: kpro:message().

A record with offset, key, value, ts_type, ts, and headers.

 Link to this type

 message_set/0

 View Source

 -type message_set() :: #kafka_message_set{}.

A record with topic, partition, high_wm_offset (max offset of the partition), and messages.
See the definition for more information.

 Link to this type

 msg_input/0

 View Source

 -type msg_input() :: kpro:msg_input().

 Link to this type

 msg_ts/0

 View Source

 -type msg_ts() :: kpro:msg_ts().

Unix time in milliseconds

 Link to this type

 offset/0

 View Source

 -type offset() :: kpro:offset().

Physical offset (an integer)

 Link to this type

 offset_time/0

 View Source

 -type offset_time() :: msg_ts() | earliest | latest.

 Link to this type

 partition/0

 View Source

 -type partition() :: kpro:partition().

 Link to this type

 partition_assignment/0

 View Source

 -type partition_assignment() :: {topic(), [partition()]}.

 Link to this type

 partition_fun/0

 View Source

 -type partition_fun() :: fun((topic(), pos_integer(), key(), value()) -> {ok, partition()}).

 Link to this type

 partitioner/0

 View Source

 -type partitioner() :: partition_fun() | random | hash.

 Link to this type

 portnum/0

 View Source

 -type portnum() :: pos_integer().

 Link to this type

 produce_ack_cb/0

 View Source

 -type produce_ack_cb() :: fun((partition(), offset()) -> _).

 Link to this type

 produce_reply/0

 View Source

 -type produce_reply() :: #brod_produce_reply{}.

A record with call_ref, base_offset, and result.
See the the definition for more information.

 Link to this type

 produce_result/0

 View Source

 -type produce_result() :: brod_produce_req_buffered | brod_produce_req_acked.

 Link to this type

 producer_config/0

 View Source

 -type producer_config() :: brod_producer:config().

 Link to this type

 received_assignments/0

 View Source

 -type received_assignments() :: [#brod_received_assignment{}].

 Link to this type

 topic/0

 View Source

 -type topic() :: kpro:topic().

 Link to this type

 topic_config/0

 View Source

 -type topic_config() :: kpro:struct().

 Link to this type

 topic_partition/0

 View Source

 -type topic_partition() :: {topic(), partition()}.

 Link to this type

 value/0

 View Source

 -type value() ::
 undefined |
 iodata() |
 {msg_ts(), binary()} |
 [{key(), value()}] |
 [{msg_ts(), key(), value()}] |
 kpro:msg_input() |
 kpro:batch_input().

 Anchor for this section

Functions

 Link to this function

 connect_group_coordinator(BootstrapEndpoints, ConnCfg, GroupId)

 View Source

 -spec connect_group_coordinator([endpoint()], conn_config(), group_id()) -> {ok, pid()} | {error, any()}.

Connect to consumer group coordinator broker.
Done in steps:	Connect to any of the given bootstrap ednpoints
	Send group_coordinator_request to resolve group coordinator endpoint
	Connect to the resolved endpoint and return the connection pid

 Link to this function

 connect_leader(Hosts, Topic, Partition, ConnConfig)

 View Source

 -spec connect_leader([endpoint()], topic(), partition(), conn_config()) -> {ok, pid()}.

Connect partition leader.

 Link to this function

 consume_ack(ConsumerPid, Offset)

 View Source

 -spec consume_ack(pid(), offset()) -> ok | {error, any()}.

Equivalent to brod_consumer:ack(ConsumerPid, Offset).
See consume_ack/4 for more information.

 Link to this function

 consume_ack(Client, Topic, Partition, Offset)

 View Source

 -spec consume_ack(client(), topic(), partition(), offset()) -> ok | {error, any()}.

Acknowledge that one or more messages have been processed.
brod_consumer sends message-sets to the subscriber process, and keep the messages in a 'pending' queue. The subscriber may choose to ack any received offset. Acknowledging a greater offset will automatically acknowledge the messages before this offset. For example, if message [1, 2, 3, 4] have been sent to (as one or more message-sets) to the subscriber, the subscriber may acknowledge with offset 3 to indicate that the first three messages are successfully processed, leaving behind only message 4 pending.
The 'pending' queue has a size limit (see prefetch_count consumer config) which is to provide a mechanism to handle back-pressure. If there are too many messages pending on ack, the consumer will stop fetching new ones so the subscriber won't get overwhelmed.
Note, there is no range check done for the acknowledging offset, meaning if offset [M, N] are pending to be acknowledged, acknowledging with Offset > N will cause all offsets to be removed from the pending queue, and acknowledging with Offset < M has no effect.
Use this function only with plain partition subscribers (i.e., when you manually call subscribe/5). Behaviours like brod_topic_subscriber have their own way how to ack messages.

 Link to this function

 create_topics(Hosts, TopicConfigs, RequestConfigs)

 View Source

 -spec create_topics([endpoint()], [topic_config()], #{timeout => kpro:int32()}) -> ok | {error, any()}.

Equivalent to create_topics(Hosts, TopicsConfigs, RequestConfigs, []).

 Link to this function

 create_topics(Hosts, TopicConfigs, RequestConfigs, Options)

 View Source

 -spec create_topics([endpoint()], [topic_config()], #{timeout => kpro:int32()}, conn_config()) ->
 ok | {error, any()}.

Create topic(s) in kafka.
TopicConfigs is a list of topic configurations. A topic configuration is a map (or tuple list for backward compatibility) with the following keys (all of them are reuired):	name
The topic name.
	num_partitions
The number of partitions to create in the topic, or -1 if we are either specifying a manual partition assignment or using the default partitions.
	replication_factor
The number of replicas to create for each partition in the topic, or -1 if we are either specifying a manual partition assignment or using the default replication factor.
	assignments
The manual partition assignment, or the empty list if we let Kafka automatically assign them. It is a list of maps (or tuple lists) with the following keys: partition_index and broker_ids (a list of of brokers to place the partition on).
	configs
The custom topic configurations to set. It is a list of of maps (or tuple lists) with keys name and value. You can find possible options in the Kafka documentation.

Example: > TopicConfigs = [
 #{
 name => <<"my_topic">>,
 num_partitions => 1,
 replication_factor => 1,
 assignments => [],
 configs => [#{name => <<"cleanup.policy">>, value => "compact"}]
 }
].
 > brod:create_topics([{"localhost", 9092}], TopicConfigs, #{timeout => 1000}, []).
 ok

 Link to this function

 delete_topics(Hosts, Topics, Timeout)

 View Source

 -spec delete_topics([endpoint()], [topic()], pos_integer()) -> ok | {error, any()}.

Equivalent to delete_topics(Hosts, Topics, Timeout, []).

 Link to this function

 delete_topics(Hosts, Topics, Timeout, Options)

 View Source

 -spec delete_topics([endpoint()], [topic()], pos_integer(), conn_config()) -> ok | {error, any()}.

Delete topic(s) from kafka.
Example: > brod:delete_topics([{"localhost", 9092}], ["my_topic"], 5000, []).
 ok

 Link to this function

 describe_groups(CoordinatorEndpoint, ConnCfg, IDs)

 View Source

 -spec describe_groups(endpoint(), conn_config(), [group_id()]) -> {ok, [kpro:struct()]} | {error, any()}.

Describe consumer groups.
The given consumer group IDs should be all managed by the coordinator-broker running at the given endpoint. Otherwise error codes will be returned in the result structs. Return describe_groups response body field named groups. See kpro_schema.erl for struct details.

 Link to this function

 fetch(ConnOrBootstrap, Topic, Partition, Offset)

 View Source

 -spec fetch(connection() | client_id() | bootstrap(), topic(), partition(), integer()) ->
 {ok, {HwOffset :: offset(), [message()]}} | {error, any()}.

Fetch a single message set from the given topic-partition.
Calls fetch/5 with the default options: max_wait_time = 1 second, min_bytes = 1 B, and max_bytes = 2^20 B (1 MB).
See fetch/5 for more information.

 Link to this function

 fetch(ConnOrBootstrap, Topic, Partition, Offset, Opts)

 View Source

 -spec fetch(connection() | client_id() | bootstrap(), topic(), partition(), offset(), fetch_opts()) ->
 {ok, {HwOffset :: offset(), [message()]}} | {error, any()}.

Fetch a single message set from the given topic-partition.
The first arg can either be an already established connection to leader, or {Endpoints, ConnConfig} (or just Endpoints) so to establish a new connection before fetch.
The fourth argument is the start offset of the query. Messages with offset greater or equal will be fetched.
You can also pass options for the fetch query. See the kpro_req_lib:fetch_opts() type for their documentation. Only max_wait_time, min_bytes, max_bytes, and isolation_level options are currently supported. The defaults are the same as documented in the linked type, except for min_bytes which defaults to 1 in brod. Note that max_bytes will be rounded up so that full messages are retrieved. For example, if you specify max_bytes = 42 and there are three messages of size 40 bytes, two of them will be fetched.
On success, the function returns the messages along with the last stable offset (when using read_committed mode, the last committed offset) or the high watermark offset (offset of the last message that was successfully copied to all replicas, incremented by 1), whichever is lower. In essence, this is the offset up to which it was possible to read the messages at the time of fetching. This is similar to what resolve_offset/6 with latest returns. You can use this information to determine how far from the end of the topic you currently are. Note that when you use this offset as the start offset for a subseuqent call, an empty list of messages will be returned (assuming the topic hasn't changed, e.g. no new message arrived). Only when you use an offset greater than this one, {error, offset_out_of_range} will be returned.
Note also that Kafka batches messages in a message set only up to the end of a topic segment in which the first retrieved message is, so there may actually be more messages behind the last fetched offset even if the fetched size is significantly less than max_bytes provided in fetch_opts(). See this issue for more details.
Example (the topic has only two messages): > brod:fetch([{"localhost", 9092}], <<"my_topic">>, 0, 0, #{max_bytes => 1024}).
 {ok,{2,
 [{kafka_message,0,<<"some_key">>,<<"Hello world!">>,
 create,1663940976473,[]},
 {kafka_message,1,<<"another_key">>,<<"This is a message with offset 1.">>,
 create,1663940996335,[]}]}}

 > brod:fetch([{"localhost", 9092}], <<"my_topic">>, 0, 2, #{max_bytes => 1024}).
 {ok,{2,[]}}

 > brod:fetch([{"localhost", 9092}], <<"my_topic">>, 0, 3, #{max_bytes => 1024}).
 {error,offset_out_of_range}

 Link to this function

 fetch(Hosts, Topic, Partition, Offset, MaxWaitTime, MinBytes, MaxBytes)

 View Source

 This function is deprecated. Please use fetch/5 instead.

 -spec fetch([endpoint()],
 topic(),
 partition(),
 offset(),
 non_neg_integer(),
 non_neg_integer(),
 pos_integer()) ->
 {ok, [message()]} | {error, any()}.

Equivalent to fetch(Hosts, Topic, Partition, Offset, Wait, MinBytes, MaxBytes, []).

 Link to this function

 fetch(Hosts, Topic, Partition, Offset, MaxWaitTime, MinBytes, MaxBytes, ConnConfig)

 View Source

 This function is deprecated. Please use fetch/5 instead.

 -spec fetch([endpoint()],
 topic(),
 partition(),
 offset(),
 non_neg_integer(),
 non_neg_integer(),
 pos_integer(),
 conn_config()) ->
 {ok, [message()]} | {error, any()}.

Fetch a single message set from the given topic-partition.

 Link to this function

 fetch_committed_offsets(Client, GroupId)

 View Source

 -spec fetch_committed_offsets(client(), group_id()) -> {ok, [kpro:struct()]} | {error, any()}.

Same as {link fetch_committed_offsets/3}, but works with a started brod_client

 Link to this function

 fetch_committed_offsets(BootstrapEndpoints, ConnCfg, GroupId)

 View Source

 -spec fetch_committed_offsets([endpoint()], conn_config(), group_id()) ->
 {ok, [kpro:struct()]} | {error, any()}.

Fetch committed offsets for ALL topics in the given consumer group.
Return the responses field of the offset_fetch response. See kpro_schema.erl for struct details.

 Link to this function

 fold(Bootstrap, Topic, Partition, Offset, Opts, Acc, Fun, Limits)

 View Source

 -spec fold(connection() | client_id() | bootstrap(),
 topic(),
 partition(),
 offset(),
 fetch_opts(),
 Acc,
 fold_fun(Acc),
 fold_limits()) ->
 fold_result()
 when Acc :: fold_acc().

Fold through messages in a partition.
Works like lists:foldl/2 but with below stop conditions:	Always return after reach high watermark offset
	Return after the given message count limit is reached
	Return after the given kafka offset is reached
	Return if the FoldFun returns an {error, Reason} tuple

NOTE: Exceptions from evaluating FoldFun are not caught.

 Link to this function

 get_consumer(Client, Topic, Partition)

 View Source

 -spec get_consumer(client(), topic(), partition()) -> {ok, pid()} | {error, Reason}
 when
 Reason ::
 client_down |
 {client_down, any()} |
 {consumer_down, any()} |
 {consumer_not_found, topic()} |
 {consumer_not_found, topic(), partition()}.

 Link to this function

 get_metadata(Hosts)

 View Source

 -spec get_metadata([endpoint()]) -> {ok, kpro:struct()} | {error, any()}.

Fetch broker metadata for all topics.
See get_metadata/3 for more information.

 Link to this function

 get_metadata(Hosts, Topics)

 View Source

 -spec get_metadata([endpoint()], all | [topic()]) -> {ok, kpro:struct()} | {error, any()}.

Fetch broker metadata for the given topics.
See get_metadata/3 for more information.

 Link to this function

 get_metadata(Hosts, Topics, Options)

 View Source

 -spec get_metadata([endpoint()], all | [topic()], conn_config()) -> {ok, kpro:struct()} | {error, any()}.

Fetch broker metadata for the given topics using the given connection options.
The response differs in each version of the Metadata API call. The last supported Metadata API version is 2, so this will be probably used (if your Kafka supports it too). See kafka.bnf (search for MetadataResponseV2) for response schema with comments.
Beware that when auto.create.topics.enable is set to true in the broker configuration, fetching metadata with a concrete topic specified (in the Topics parameter) may cause creation of the topic when it does not exist. If you want a safe get_metadata call, always pass all as Topics and then filter them.
 > brod:get_metadata([{"localhost", 9092}], [<<"my_topic">>], []).
 {ok,#{brokers =>
 [#{host => <<"localhost">>,node_id => 1,port => 9092,
 rack => <<>>}],
 cluster_id => <<"jTb2faMLRf6p21yD1y3v-A">>,
 controller_id => 1,
 topics =>
 [#{error_code => no_error,is_internal => false,
 name => <<"my_topic">>,
 partitions =>
 [#{error_code => no_error,
 isr_nodes => [1],
 leader_id => 1,partition_index => 1,
 replica_nodes => [1]},
 #{error_code => no_error,
 isr_nodes => [1],
 leader_id => 1,partition_index => 0,
 replica_nodes => [1]}]}]}}

 Link to this function

 get_partitions_count(Client, Topic)

 View Source

 -spec get_partitions_count(client(), topic()) -> {ok, pos_integer()} | {error, any()}.

Get number of partitions for a given topic.
The higher level producers may need the partition numbers to find the partition producer pid – if the number of partitions is not statically configured for them. It is up to the callers how they want to distribute their data (e.g. random, roundrobin or consistent-hashing) to the partitions. NOTE: The partitions count is cached for 120 seconds.

 Link to this function

 get_partitions_count_safe(Client, Topic)

 View Source

 -spec get_partitions_count_safe(client(), topic()) -> {ok, pos_integer()} | {error, any()}.

The same as get_partitions_count(Client, Topic) but ensured not to auto-create topics in Kafka even when Kafka has topic auto-creation configured.

 Link to this function

 get_producer(Client, Topic, Partition)

 View Source

 -spec get_producer(client(), topic(), partition()) -> {ok, pid()} | {error, Reason}
 when
 Reason ::
 client_down |
 {client_down, any()} |
 {producer_down, any()} |
 {producer_not_found, topic()} |
 {producer_not_found, topic(), partition()}.

Equivalent to brod_client:get_producer(Client, Topic, Partition).

 Link to this function

 list_all_groups(Endpoints, ConnCfg)

 View Source

 -spec list_all_groups([endpoint()], conn_config()) -> [{endpoint(), [cg()] | {error, any()}}].

List ALL consumer groups in the given kafka cluster.
NOTE: Exception if failed to connect any of the coordinator brokers.

 Link to this function

 list_groups(CoordinatorEndpoint, ConnCfg)

 View Source

 -spec list_groups(endpoint(), conn_config()) -> {ok, [cg()]} | {error, any()}.

List consumer groups in the given group coordinator broker.

 Link to this function

 produce(Pid, Value)

 View Source

 -spec produce(pid(), value()) -> {ok, call_ref()} | {error, any()}.

Equivalent to produce(Pid, <<>>, Value).

 Link to this function

 produce(ProducerPid, Key, Value)

 View Source

 -spec produce(pid(), key(), value()) -> {ok, call_ref()} | {error, any()}.

Produce one or more messages.
See produce/5 for information about possible shapes of Value.
The pid should be a partition producer pid, NOT client pid.
The return value is a call reference of type call_ref(), so the caller can use it to expect (match) a #brod_produce_reply{result = brod_produce_req_acked} message after the produce request has been acked by Kafka.

 Link to this function

 produce(Client, Topic, Partition, Key, Value)

 View Source

 -spec produce(client(), topic(), partition() | partitioner(), key(), value()) ->
 {ok, call_ref()} | {error, any()}.

Produce one or more messages.
Value can have many different forms:	binary(): Single message with key from the Key argument
	{brod:msg_ts(), binary()}: Single message with its create-time timestamp and key from Key
	#{ts => brod:msg_ts(), value => binary(), headers => [{_, _}]}: Single message; if this map does not have a key field, Key is used instead
	[{K, V} | {T, K, V}]: A batch, where V could be a nested list of such representation
	[#{key => K, value => V, ts => T, headers => [{_, _}]}]: A batch

When Value is a batch, the Key argument is only used as partitioner input and all messages are written on the same partition.
ts field is dropped for kafka prior to version 0.10 (produce API version 0, magic version 0). headers field is dropped for kafka prior to version 0.11 (produce API version 0-2, magic version 0-1).
Partition may be either a concrete partition (an integer) or a partitioner (see partitioner() for more info).
A producer for the particular topic has to be already started (by calling start_producer/3), unless you have specified auto_start_producers = true when starting the client.
This function first looks up the producer pid, then calls produce/3 to do the real work.
The return value is a call reference of type call_ref(), so the caller can used it to expect (match) a #brod_produce_reply{result = brod_produce_req_acked} (see the produce_reply() type) message after the produce request has been acked by Kafka.
Example: > brod:produce(my_client, <<"my_topic">>, 0, "key", <<"Hello from erlang!">>).
 {ok,{brod_call_ref,<0.83.0>,<0.133.0>,#Ref<0.3024768151.2556690436.92841>}}
 > flush().
 Shell got {brod_produce_reply,
 {brod_call_ref,<0.83.0>,<0.133.0>,
 #Ref<0.3024768151.2556690436.92841>},
 12,brod_produce_req_acked}

 Link to this function

 produce_cb(ProducerPid, Key, Value, AckCb)

 View Source

 -spec produce_cb(pid(), key(), value(), produce_ack_cb()) -> ok | {error, any()}.

Same as produce/3, only the ack is not delivered as a message, instead, the callback is evaluated by producer worker when ack is received from kafka (see the produce_ack_cb() type).

 Link to this function

 produce_cb(Client, Topic, Part, Key, Value, AckCb)

 View Source

 -spec produce_cb(client(), topic(), partition() | partitioner(), key(), value(), produce_ack_cb()) ->
 ok | {ok, partition()} | {error, any()}.

Same as produce/5 only the ack is not delivered as a message, instead, the callback is evaluated by producer worker when ack is received from kafka (see the produce_ack_cb() type).
Return the partition to caller as {ok, Partition} for caller to correlate the callback when the 3rd arg is not a partition number.

 Link to this function

 produce_no_ack(Client, Topic, Part, Key, Value)

 View Source

 -spec produce_no_ack(client(), topic(), partition() | partitioner(), key(), value()) ->
 ok | {error, any()}.

Find the partition worker and send message without any ack.
NOTE: This call has no back-pressure to the caller, excessive usage may cause BEAM to run out of memory.

 Link to this function

 produce_sync(Pid, Value)

 View Source

 -spec produce_sync(pid(), value()) -> ok | {error, any()}.

Equivalent to produce_sync(Pid, <<>>, Value).

 Link to this function

 produce_sync(Pid, Key, Value)

 View Source

 -spec produce_sync(pid(), key(), value()) -> ok | {error, any()}.

Sync version of produce/3.
This function will not return until the response is received from Kafka. But when producer is started with required_acks set to 0, this function will return once the messages are buffered in the producer process.

 Link to this function

 produce_sync(Client, Topic, Partition, Key, Value)

 View Source

 -spec produce_sync(client(), topic(), partition() | partitioner(), key(), value()) ->
 ok | {error, any()}.

Sync version of produce/5.
This function will not return until a response is received from kafka, however if producer is started with required_acks set to 0, this function will return once the messages are buffered in the producer process.

 Link to this function

 produce_sync_offset(Client, Topic, Partition, Key, Value)

 View Source

 -spec produce_sync_offset(client(), topic(), partition() | partitioner(), key(), value()) ->
 {ok, offset()} | {error, any()}.

Version of produce_sync/5 that returns the offset assigned by Kafka.
If producer is started with required_acks set to 0, the offset will be ?BROD_PRODUCE_UNKNOWN_OFFSET.

 Link to this function

 resolve_offset(Hosts, Topic, Partition)

 View Source

 -spec resolve_offset([endpoint()], topic(), partition()) -> {ok, offset()} | {error, any()}.

Equivalent to resolve_offset(Hosts, Topic, Partition, latest, []).

 Link to this function

 resolve_offset(Hosts, Topic, Partition, Time)

 View Source

 -spec resolve_offset([endpoint()], topic(), partition(), offset_time()) ->
 {ok, offset()} | {error, any()}.

Equivalent to resolve_offset(Hosts, Topic, Partition, Time, []).

 Link to this function

 resolve_offset(Hosts, Topic, Partition, Time, ConnCfg)

 View Source

 -spec resolve_offset([endpoint()], topic(), partition(), offset_time(), conn_config()) ->
 {ok, offset()} | {error, any()}.

Resolve semantic offset or timestamp to real offset.
The same as resolve_offset/6 but the timeout is extracted from connection config.

 Link to this function

 resolve_offset(Hosts, Topic, Partition, Time, ConnCfg, Opts)

 View Source

 -spec resolve_offset([endpoint()],
 topic(),
 partition(),
 offset_time(),
 conn_config(),
 #{timeout => kpro:int32()}) ->
 {ok, offset()} | {error, any()}.

Resolve semantic offset or timestamp to real offset.
The function returns the offset of the first message with the given timestamp, or of the first message after the given timestamp (in case no message matches the timestamp exactly), or -1 if the timestamp is newer than (>) all messages in the topic.
You can also use two semantic offsets instead of a timestamp: earliest gives you the offset of the first message in the topic and latest gives you the offset of the last message incremented by 1.
If the topic is empty, both earliest and latest return the same value (which is 0 unless some messages were deleted from the topic), and any timestamp returns -1.
An example for illustration: Messages:
 offset 0 1 2 3
 timestamp 10 20 20 30

 Calls:
 resolve_offset(Endpoints, Topic, Partition, 5) → 0
 resolve_offset(Endpoints, Topic, Partition, 10) → 0
 resolve_offset(Endpoints, Topic, Partition, 13) → 1
 resolve_offset(Endpoints, Topic, Partition, 20) → 1
 resolve_offset(Endpoints, Topic, Partition, 31) → -1
 resolve_offset(Endpoints, Topic, Partition, earliest) → 0
 resolve_offset(Endpoints, Topic, Partition, latest) → 4

 Link to this function

 start()

 View Source

 -spec start() -> ok | no_return().

Start brod application.

 Link to this function

 start(StartType, StartArgs)

 View Source

Application behaviour callback

 Link to this function

 start_client(BootstrapEndpoints)

 View Source

 -spec start_client([endpoint()]) -> ok | {error, any()}.

Equivalent to start_client(BootstrapEndpoints, brod_default_client).

 Link to this function

 start_client(BootstrapEndpoints, ClientId)

 View Source

 -spec start_client([endpoint()], client_id()) -> ok | {error, any()}.

Equivalent to start_client(BootstrapEndpoints, ClientId, []).

 Link to this function

 start_client(BootstrapEndpoints, ClientId, Config)

 View Source

 -spec start_client([endpoint()], client_id(), client_config()) -> ok | {error, any()}.

Start a client (brod_client).
BootstrapEndpoints: Kafka cluster endpoints, can be any of the brokers in the cluster, which does not necessarily have to be the leader of any partition, e.g. a load-balanced entrypoint to the remote Kafka cluster.
ClientId: Atom to identify the client process.
Config is a proplist, possible values:	restart_delay_seconds (optional, default=10)
How long to wait between attempts to restart brod_client process when it crashes.
	get_metadata_timeout_seconds (optional, default=5)
Return {error, timeout} from brod_client:get_xxx calls if responses for APIs such as metadata, find_coordinator are not received in time.
	reconnect_cool_down_seconds (optional, default=1)
Delay this configured number of seconds before retrying to establish a new connection to the kafka partition leader.
	allow_topic_auto_creation (optional, default=true)
By default, brod respects what is configured in the broker about topic auto-creation. i.e. whether auto.create.topics.enable is set in the broker configuration. However if allow_topic_auto_creation is set to false in client config, brod will avoid sending metadata requests that may cause an auto-creation of the topic regardless of what broker config is.
	auto_start_producers (optional, default=false)
If true, brod client will spawn a producer automatically when user is trying to call produce but did not call brod:start_producer explicitly. Can be useful for applications which don't know beforehand which topics they will be working with.
	default_producer_config (optional, default=[])
Producer configuration to use when auto_start_producers is true. See brod_producer:start_link/4 for details about producer config

Connection options can be added to the same proplist. See kpro_connection.erl in kafka_protocol for the details:
	ssl (optional, default=false)
true | false | ssl:ssl_option()true is translated to [] as ssl:ssl_option() i.e. all default.
	sasl (optional, default=undefined)
Credentials for SASL/Plain authentication. {mechanism(), Filename} or {mechanism(), UserName, Password} where mechanism can be atoms: plain (for "PLAIN"), scram_sha_256 (for "SCRAM-SHA-256") or scram_sha_512 (for SCRAM-SHA-512). Filename should be a file consisting two lines, first line is the username and the second line is the password. Both Username and Password should be string() | binary()
	connect_timeout (optional, default=5000)
Timeout when trying to connect to an endpoint.
	request_timeout (optional, default=240000, constraint: >= 1000)
Timeout when waiting for a response, connection restart when timed out.
	query_api_versions (optional, default=true)
Must be set to false to work with kafka versions prior to 0.10, When set to true, at connection start, brod will send a query request to get the broker supported API version ranges. When set to 'false', brod will always use the lowest supported API version when sending requests to kafka. Supported API version ranges can be found in: brod_kafka_apis:supported_versions/1
	extra_sock_opts (optional, default=[])
Extra socket options to tune socket performance. e.g. [{sndbuf, 1 bsl 20}]. More info

You can read more about clients in the overview.

 Link to this function

 start_consumer(Client, TopicName, ConsumerConfig)

 View Source

 -spec start_consumer(client(), topic(), consumer_config()) -> ok | {error, any()}.

Dynamically start topic consumer(s) and register it in the client.
A brod_consumer is started for each partition of the given topic. Note that you can have only one consumer per client-topic.
See brod_consumer:start_link/5 for details about consumer config.
You can read more about consumers in the overview.

 Link to this function

 start_link_client(BootstrapEndpoints)

 View Source

 -spec start_link_client([endpoint()]) -> {ok, pid()} | {error, any()}.

Equivalent to start_link_client(BootstrapEndpoints, brod_default_client).

 Link to this function

 start_link_client(BootstrapEndpoints, ClientId)

 View Source

 -spec start_link_client([endpoint()], client_id()) -> {ok, pid()} | {error, any()}.

Equivalent to start_link_client(BootstrapEndpoints, ClientId, []).

 Link to this function

 start_link_client(BootstrapEndpoints, ClientId, Config)

 View Source

 -spec start_link_client([endpoint()], client_id(), client_config()) -> {ok, pid()} | {error, any()}.

 Link to this function

 start_link_group_subscriber(Client, GroupId, Topics, GroupConfig, ConsumerConfig, CbModule, CbInitArg)

 View Source

 -spec start_link_group_subscriber(client(),
 group_id(),
 [topic()],
 group_config(),
 consumer_config(),
 module(),
 term()) ->
 {ok, pid()} | {error, any()}.

See also: brod_group_subscriber:start_link/7.

 Link to this function

 start_link_group_subscriber(Client, GroupId, Topics, GroupConfig, ConsumerConfig, MessageType, CbModule, CbInitArg)

 View Source

 -spec start_link_group_subscriber(client(),
 group_id(),
 [topic()],
 group_config(),
 consumer_config(),
 message | message_set,
 module(),
 term()) ->
 {ok, pid()} | {error, any()}.

See also: brod_group_subscriber:start_link/8.

 Link to this function

 start_link_group_subscriber_v2(Config)

 View Source

 -spec start_link_group_subscriber_v2(brod_group_subscriber_v2:subscriber_config()) ->
 {ok, pid()} | {error, any()}.

Start group_subscriber_v2.

 Link to this function

 start_link_topic_subscriber(Config)

 View Source

 -spec start_link_topic_subscriber(brod_topic_subscriber:topic_subscriber_config()) ->
 {ok, pid()} | {error, any()}.

See also: brod_topic_subscriber:start_link/1.

 Link to this function

 start_link_topic_subscriber(Client, Topic, ConsumerConfig, CbModule, CbInitArg)

 View Source

 This function is deprecated. Please use start_link_topic_subscriber/1 instead.

 -spec start_link_topic_subscriber(client(), topic(), consumer_config(), module(), term()) ->
 {ok, pid()} | {error, any()}.

Equivalent to start_link_topic_subscriber(Client, Topic, all, ConsumerConfig, CbModule, CbInitArg).

 Link to this function

 start_link_topic_subscriber(Client, Topic, Partitions, ConsumerConfig, CbModule, CbInitArg)

 View Source

 This function is deprecated. Please use start_link_topic_subscriber/1 instead.

 -spec start_link_topic_subscriber(client(),
 topic(),
 all | [partition()],
 consumer_config(),
 module(),
 term()) ->
 {ok, pid()} | {error, any()}.

Equivalent to start_link_topic_subscriber(Client, Topic, Partitions, ConsumerConfig, message, CbModule, CbInitArg).

 Link to this function

 start_link_topic_subscriber(Client, Topic, Partitions, ConsumerConfig, MessageType, CbModule, CbInitArg)

 View Source

 This function is deprecated. Please use start_link_topic_subscriber/1 instead.

 -spec start_link_topic_subscriber(client(),
 topic(),
 all | [partition()],
 consumer_config(),
 message | message_set,
 module(),
 term()) ->
 {ok, pid()} | {error, any()}.

See also: brod_topic_subscriber:start_link/7.

 Link to this function

 start_producer(Client, TopicName, ProducerConfig)

 View Source

 -spec start_producer(client(), topic(), producer_config()) -> ok | {error, any()}.

Dynamically start a per-topic producer and register it in the client.
You have to start a producer for each topic you want to produce messages into, unless you have specified auto_start_producers = true when starting the client (in that case you don't have to call this function at all).
After starting the producer, you can call produce/5 and friends for producing messages.
You can read more about producers in the overview.
A client has to be already started before making this call (e.g. by calling start_client/3).
See brod_producer:start_link/4 for a list of available configuration options.
Example: > brod:start_producer(my_client, <<"my_topic">>, [{max_retries, 5}]).
 ok

 Link to this function

 stop()

 View Source

 -spec stop() -> ok.

Stop brod application.

 Link to this function

 stop(State)

 View Source

Application behaviour callback

 Link to this function

 stop_client(Client)

 View Source

 -spec stop_client(client()) -> ok.

Stop a client.

 Link to this function

 subscribe(ConsumerPid, SubscriberPid, Options)

 View Source

 -spec subscribe(pid(), pid(), consumer_config()) -> ok | {error, any()}.

Subscribe to a data stream from the given consumer.
See subscribe/5 for more information.

 Link to this function

 subscribe(Client, SubscriberPid, Topic, Partition, Options)

 View Source

 -spec subscribe(client(), pid(), topic(), partition(), consumer_config()) ->
 {ok, pid()} | {error, any()}.

Subscribe to a data stream from the given topic-partition.
A client has to be already started (by calling start_client/3, one client per multiple topics is enough) and a corresponding consumer for the topic and partition as well (by calling start_consumer/3), before calling this function.
Caller may specify a set of options extending consumer config. See brod_consumer:subscribe/3 for more info on that.
If {error, Reason} is returned, the caller should perhaps retry later.
{ok, ConsumerPid} is returned on success. The caller may want to monitor the consumer pid and re-subscribe should the ConsumerPid crash.
Upon successful subscription the subscriber process should expect messages of pattern: {ConsumerPid, #kafka_message_set{}} and {ConsumerPid, #kafka_fetch_error{}}.
-include_lib("brod/include/brod.hrl") to access the records.
In case #kafka_fetch_error{} is received the subscriber should re-subscribe itself to resume the data stream.
To provide a mechanism to handle backpressure, brod requires all messages sent to a subscriber to be acked by calling consume_ack/4 after they are processed. If there are too many not-acked messages received by the subscriber, the consumer will stop to fetch new ones so the subscriber won't get overwhelmed.
Only one process can be subscribed to a consumer. This means that if you want to read at different places (or at different paces), you have to create separate consumers (and thus also separate clients).

 Link to this function

 sync_produce_request(CallRef)

 View Source

 -spec sync_produce_request(call_ref()) -> ok | {error, Reason :: any()}.

Equivalent to sync_produce_request(CallRef, infinity).

 Link to this function

 sync_produce_request(CallRef, Timeout)

 View Source

 -spec sync_produce_request(call_ref(), timeout()) -> ok | {error, Reason :: any()}.

Block wait for sent produced request to be acked by kafka.
This way, you can turn asynchronous requests, made by produce/5 and friends, into synchronous ones.
Example: {ok, CallRef} = brod:produce(
 brod_client_1, <<"my_topic">>, 0, <<"some-key">>, <<"some-value">>)
). % returns immediately
 % the following call waits and returns after the ack is received or timed out
 brod:sync_produce_request(CallRef, 5_000).

 Link to this function

 sync_produce_request_offset(CallRef)

 View Source

 -spec sync_produce_request_offset(call_ref()) -> {ok, offset()} | {error, Reason :: any()}.

Equivalent to sync_produce_request_offset(CallRef, infinity).

 Link to this function

 sync_produce_request_offset(CallRef, Timeout)

 View Source

 -spec sync_produce_request_offset(call_ref(), timeout()) -> {ok, offset()} | {error, Reason :: any()}.

As sync_produce_request/2, but also returning assigned offset.
See {link produce_sync_offset/5}.

 Link to this function

 unsubscribe(ConsumerPid)

 View Source

 -spec unsubscribe(pid()) -> ok | {error, any()}.

Unsubscribe the current subscriber.
Assuming the subscriber is %% self().

 Link to this function

 unsubscribe(ConsumerPid, SubscriberPid)

 View Source

 -spec unsubscribe(pid(), pid()) -> ok | {error, any()}.

Unsubscribe the current subscriber.

 Link to this function

 unsubscribe(Client, Topic, Partition)

 View Source

 -spec unsubscribe(client(), topic(), partition()) -> ok | {error, any()}.

Unsubscribe the current subscriber.
Assuming the subscriber is %% self().

 Link to this function

 unsubscribe(Client, Topic, Partition, SubscriberPid)

 View Source

 -spec unsubscribe(client(), topic(), partition(), pid()) -> ok | {error, any()}.

Unsubscribe the current subscriber.

brod_cg_commits

This is a utility module to help force commit offsets to kafka.

 Anchor for this section

 Summary

 Types

 group_id/0

 group_input/0

 member_id/0

 offset/0

 offsets/0

 partition/0

 pending_sync/0

 prop_key/0

 prop_val/0

 retention/0

 -1 to use whatever configured in kafka

 state/0

 topic/0

 Functions

 assign_partitions(Pid, Members, TopicPartitionList)

 This function is called only when partition_assignment_strategy is set for callback_implemented in group config.

 assignments_received(Pid, MemberId, GenerationId, TopicAssignments)

 Called by group coordinator when there is new assignment received.

 assignments_revoked(Pid)

 Called by group coordinator before re-joinning the consumer group.

 code_change(OldVsn, State, Extra)

 get_committed_offsets(Pid, TopicPartitions)

 Called by group coordinator when initializing the assignments for subscriber. NOTE: this function is called only when it is DISABLED to commit offsets to kafka. i.e. offset_commit_policy is set to consumer_managed

 handle_call(Call, From, State0)

 handle_cast(Cast, State)

 handle_info(Info, State)

 init(_)

 run(ClientId, GroupInput)

 Force commit offsets.

 start_link(Client, GroupInput)

 Start (link) a group member. The member will try to join the consumer group and get assignments for the given topic-partitions, then commit given offsets to kafka. In case not all given partitions are assigned to it, it will terminate with an exit exception

 stop(Pid)

 Stop the process.

 sync(Pid)

 Make a call to the resetter process, the call will be blocked until offsets are committed.

 terminate(Reason, State)

 Anchor for this section

Types

 Link to this type

 group_id/0

 View Source

 -type group_id() :: brod:group_id().

 Link to this type

 group_input/0

 View Source

 -type group_input() :: [{prop_key(), prop_val()}].

 Link to this type

 member_id/0

 View Source

 -type member_id() :: brod:group_member_id().

 Link to this type

 offset/0

 View Source

 -type offset() :: brod:offset().

 Link to this type

 offsets/0

 View Source

 -type offsets() :: latest | earliest | [{partition(), offset()}].

 Link to this type

 partition/0

 View Source

 -type partition() :: brod:partition().

 Link to this type

 pending_sync/0

 View Source

 -type pending_sync() :: undefined | gen_server:from().

 Link to this type

 prop_key/0

 View Source

 -type prop_key() :: id | topic | retention | protocol | offsets.

 Link to this type

 prop_val/0

 View Source

 -type prop_val() ::
 group_id() | topic() | retention() | offsets() | brod_group_coordinator:protocol_name().

 Link to this type

 retention/0

 View Source

 -type retention() :: integer().

-1 to use whatever configured in kafka

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Link to this type

 topic/0

 View Source

 -type topic() :: brod:topic().

 Anchor for this section

Functions

 Link to this function

 assign_partitions(Pid, Members, TopicPartitionList)

 View Source

 -spec assign_partitions(pid(), [brod:group_member()], [{brod:topic(), brod:partition()}]) ->
 [{member_id(), [brod:partition_assignment()]}].

This function is called only when partition_assignment_strategy is set for callback_implemented in group config.

 Link to this function

 assignments_received(Pid, MemberId, GenerationId, TopicAssignments)

 View Source

 -spec assignments_received(pid(), member_id(), integer(), brod:received_assignments()) -> ok.

Called by group coordinator when there is new assignment received.

 Link to this function

 assignments_revoked(Pid)

 View Source

 -spec assignments_revoked(pid()) -> ok.

Called by group coordinator before re-joinning the consumer group.

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 Link to this function

 get_committed_offsets(Pid, TopicPartitions)

 View Source

 -spec get_committed_offsets(pid(), [{brod:topic(), brod:partition()}]) ->
 {ok, [{{brod:topic(), brod:partition()}, brod:offset()}]}.

Called by group coordinator when initializing the assignments for subscriber. NOTE: this function is called only when it is DISABLED to commit offsets to kafka. i.e. offset_commit_policy is set to consumer_managed

 Link to this function

 handle_call(Call, From, State0)

 View Source

 Link to this function

 handle_cast(Cast, State)

 View Source

 Link to this function

 handle_info(Info, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 run(ClientId, GroupInput)

 View Source

Force commit offsets.

 Link to this function

 start_link(Client, GroupInput)

 View Source

 -spec start_link(brod:client(), group_input()) -> {ok, pid()} | {error, any()}.

Start (link) a group member. The member will try to join the consumer group and get assignments for the given topic-partitions, then commit given offsets to kafka. In case not all given partitions are assigned to it, it will terminate with an exit exception

 Link to this function

 stop(Pid)

 View Source

 -spec stop(pid()) -> ok.

Stop the process.

 Link to this function

 sync(Pid)

 View Source

 -spec sync(pid()) -> ok.

Make a call to the resetter process, the call will be blocked until offsets are committed.

 Link to this function

 terminate(Reason, State)

 View Source

brod_client

A brod_client in brod is a gen_server responsible for establishing and maintaining tcp sockets connecting to kafka brokers. It also manages per-topic-partition producer and consumer processes under two-level supervision trees.
You can start clients automatically at application startup or on demand. See the overview for examples.

 Anchor for this section

 Summary

 Types

 client/0

 client_id/0

 config/0

 conn_state/0

 connection/0

 dead_conn/0

 endpoint/0

 get_consumer_error/0

 get_producer_error/0

 get_worker_error/0

 group_id/0

 partition/0

 partition_worker_key/0

 state/0

 topic/0

 Functions

 deregister_consumer(Client, Topic, Partition)

 De-register the consumer for a partition.

 deregister_producer(Client, Topic, Partition)

 De-register the producer for a partition.

 find_consumer(Client, Topic, Partition)

 find_producer(Client, Topic, Partition)

 get_connection(Client, Host, Port)

 Get connection to a kafka broker.

 get_consumer(Client, Topic, Partition)

 Get consumer of the given topic-parition.

 get_group_coordinator(Client, GroupId)

 Get broker endpoint and connection config for connecting a group coordinator.

 get_leader_connection(Client, Topic, Partition)

 Get the connection to kafka broker which is a leader for given Topic-Partition.

 get_metadata(Client, Topic)

 Get topic metadata, if topic is undefined, will fetch ALL metadata.

 get_metadata_safe(Client, Topic)

 Ensure not topic auto creation even if Kafka has it enabled.

 get_partitions_count(Client, Topic)

 Get number of partitions for a given topic.

 get_partitions_count_safe(Client, Topic)

 Get number of partitions for an existing topic. Ensured not to auto create a topic even when Kafka is configured with topic auto creation enabled.

 get_producer(Client, Topic, Partition)

 Get producer of the given topic-partition.

 lookup_partitions_count_cache(Ets, Topic)

 register_consumer(Client, Topic, Partition)

 Register self() as a partition consumer.

 register_producer(Client, Topic, Partition)

 Register self() as a partition producer.

 start_consumer(Client, TopicName, ConsumerConfig)

 Dynamically start a topic consumer.

 start_link(BootstrapEndpoints, ClientId, Config)

 start_producer(Client, TopicName, ProducerConfig)

 Dynamically start a per-topic producer.

 stop(Client)

 stop_consumer(Client, TopicName)

 Stop all partition consumers of the given topic.

 stop_producer(Client, TopicName)

 Stop all partition producers of the given topic.

 Anchor for this section

Types

 Link to this type

 client/0

 View Source

 -type client() :: brod:client().

 Link to this type

 client_id/0

 View Source

 -type client_id() :: brod:client_id().

 Link to this type

 config/0

 View Source

 -type config() :: proplists:proplist().

 Link to this type

 conn_state/0

 View Source

 -type conn_state() :: #conn{}.

 Link to this type

 connection/0

 View Source

 -type connection() :: kpro:connection().

 Link to this type

 dead_conn/0

 View Source

 -type dead_conn() :: {dead_since, erlang:timestamp(), any()}.

 Link to this type

 endpoint/0

 View Source

 -type endpoint() :: brod:endpoint().

 Link to this type

 get_consumer_error/0

 View Source

 -type get_consumer_error() ::
 client_down |
 {client_down, any()} |
 {consumer_down, any()} |
 {consumer_not_found, topic()} |
 {consumer_not_found, topic(), partition()}.

 Link to this type

 get_producer_error/0

 View Source

 -type get_producer_error() ::
 client_down |
 {client_down, any()} |
 {producer_down, any()} |
 {producer_not_found, topic()} |
 {producer_not_found, topic(), partition()}.

 Link to this type

 get_worker_error/0

 View Source

 -type get_worker_error() :: get_producer_error() | get_consumer_error().

 Link to this type

 group_id/0

 View Source

 -type group_id() :: brod:group_id().

 Link to this type

 partition/0

 View Source

 -type partition() :: brod:partition().

 Link to this type

 partition_worker_key/0

 View Source

 -type partition_worker_key() :: {producer, topic(), partition()} | {consumer, topic(), partition()}.

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Link to this type

 topic/0

 View Source

 -type topic() :: brod:topic().

 Anchor for this section

Functions

 Link to this function

 deregister_consumer(Client, Topic, Partition)

 View Source

 -spec deregister_consumer(client(), topic(), partition()) -> ok.

De-register the consumer for a partition.
The partition consumer entry is deleted from the ETS table to allow cleanup of purposefully %% stopped consumers and allow later restart.

 Link to this function

 deregister_producer(Client, Topic, Partition)

 View Source

 -spec deregister_producer(client(), topic(), partition()) -> ok.

De-register the producer for a partition.
The partition producer entry is deleted from the ETS table to allow cleanup of purposefully stopped producers and allow later restart.

 Link to this function

 find_consumer(Client, Topic, Partition)

 View Source

 -spec find_consumer(client(), topic(), partition()) -> {ok, pid()} | {error, get_consumer_error()}.

 Link to this function

 find_producer(Client, Topic, Partition)

 View Source

 -spec find_producer(client(), topic(), partition()) -> {ok, pid()} | {error, get_producer_error()}.

 Link to this function

 get_connection(Client, Host, Port)

 View Source

 -spec get_connection(client(), brod:hostname(), brod:portnum()) -> {ok, pid()} | {error, any()}.

Get connection to a kafka broker.
Return already established connection towards the broker, otherwise a new one is established and cached in client state. If the old connection was dead less than a configurable N seconds ago, {error, LastReason} is returned.

 Link to this function

 get_consumer(Client, Topic, Partition)

 View Source

 -spec get_consumer(client(), topic(), partition()) -> {ok, pid()} | {error, get_consumer_error()}.

Get consumer of the given topic-parition.

 Link to this function

 get_group_coordinator(Client, GroupId)

 View Source

 -spec get_group_coordinator(client(), group_id()) ->
 {ok, {endpoint(), brod:conn_config()}} | {error, any()}.

Get broker endpoint and connection config for connecting a group coordinator.

 Link to this function

 get_leader_connection(Client, Topic, Partition)

 View Source

 -spec get_leader_connection(client(), topic(), partition()) -> {ok, pid()} | {error, any()}.

Get the connection to kafka broker which is a leader for given Topic-Partition.
Return already established connection towards the leader broker, Otherwise a new one is established and cached in client state. If the old connection was dead less than a configurable N seconds ago, {error, LastReason} is returned.

 Link to this function

 get_metadata(Client, Topic)

 View Source

 -spec get_metadata(client(), all | undefined | topic()) -> {ok, kpro:struct()} | {error, any()}.

Get topic metadata, if topic is undefined, will fetch ALL metadata.

 Link to this function

 get_metadata_safe(Client, Topic)

 View Source

 -spec get_metadata_safe(client(), topic()) -> {ok, kpro:struct()} | {error, any()}.

Ensure not topic auto creation even if Kafka has it enabled.

 Link to this function

 get_partitions_count(Client, Topic)

 View Source

 -spec get_partitions_count(client(), topic()) -> {ok, pos_integer()} | {error, any()}.

Get number of partitions for a given topic.

 Link to this function

 get_partitions_count_safe(Client, Topic)

 View Source

 -spec get_partitions_count_safe(client(), topic()) -> {ok, pos_integer()} | {error, any()}.

Get number of partitions for an existing topic. Ensured not to auto create a topic even when Kafka is configured with topic auto creation enabled.

 Link to this function

 get_producer(Client, Topic, Partition)

 View Source

 -spec get_producer(client(), topic(), partition()) -> {ok, pid()} | {error, get_producer_error()}.

Get producer of the given topic-partition.
The producer is started if auto_start_producers is enabled in client config.

 Link to this function

 lookup_partitions_count_cache(Ets, Topic)

 View Source

 -spec lookup_partitions_count_cache(ets:tab(), undefined | topic()) ->
 {ok, pos_integer()} | {error, any()} | false.

 Link to this function

 register_consumer(Client, Topic, Partition)

 View Source

 -spec register_consumer(client(), topic(), partition()) -> ok.

Register self() as a partition consumer.
The pid is registered in an ETS table, then the callers may lookup a consumer pid from the table and make subscribe calls to the process directly.

 Link to this function

 register_producer(Client, Topic, Partition)

 View Source

 -spec register_producer(client(), topic(), partition()) -> ok.

Register self() as a partition producer.
The pid is registered in an ETS table, then the callers may lookup a producer pid from the table and make produce requests to the producer process directly.

 Link to this function

 start_consumer(Client, TopicName, ConsumerConfig)

 View Source

 -spec start_consumer(client(), topic(), brod:consumer_config()) -> ok | {error, any()}.

Dynamically start a topic consumer.
Returns ok if the consumer is already started.

 Link to this function

 start_link(BootstrapEndpoints, ClientId, Config)

 View Source

 -spec start_link([endpoint()], client_id(), config()) -> {ok, pid()} | {error, any()}.

 Link to this function

 start_producer(Client, TopicName, ProducerConfig)

 View Source

 -spec start_producer(client(), topic(), brod:producer_config()) -> ok | {error, any()}.

Dynamically start a per-topic producer.
Return ok if the producer is already started.

 Link to this function

 stop(Client)

 View Source

 -spec stop(client()) -> ok.

 Link to this function

 stop_consumer(Client, TopicName)

 View Source

 -spec stop_consumer(client(), topic()) -> ok | {error, any()}.

Stop all partition consumers of the given topic.

 Link to this function

 stop_producer(Client, TopicName)

 View Source

 -spec stop_producer(client(), topic()) -> ok | {error, any()}.

Stop all partition producers of the given topic.

brod_consumer

Kafka consumers work in poll mode. In brod, brod_consumer is the poller, which is constantly asking for more data from the kafka node which is a leader for the given partition.
By subscribing to brod_consumer a process should receive the polled message sets (not individual messages) into its mailbox. Shape of the message is documented at brod:subscribe/5.
Messages processed by the subscriber has to be acked by calling ack/2 (or brod:consume_ack/4) to notify the consumer that all messages before the acknowledged offsets are processed, hence more messages can be fetched and sent to the subscriber and the subscriber won't be overwhelmed by it.
Each consumer can have only one subscriber.
See the overview for some more information and examples.

 Anchor for this section

 Summary

 Types

 bytes/0

 config/0

 isolation_level/0

 offset/0

 offset_reset_policy/0

 offset_time/0

 partition/0

 pending/0

 pending_acks/0

 pending_queue/0

 state/0

 topic/0

 Functions

 ack(Pid, Offset)

 Subscriber confirms that a message (identified by offset) has been consumed, consumer process now may continue to fetch more messages.

 debug(Pid, File)

 Enable/disable debugging on the consumer process.

 get_connection(Pid)

 Get connection pid. Test/debug only.

 init(_)

 start_link(Bootstrap, Topic, Partition, Config)

 Equivalent to start_link(ClientPid, Topic, Partition, Config, []).

 start_link(Bootstrap, Topic, Partition, Config, Debug)

 Start (link) a partition consumer.

 stop(Pid)

 stop_maybe_kill(Pid, Timeout)

 subscribe(Pid, SubscriberPid, ConsumerOptions)

 Subscribe or resubscribe on messages from a partition.

 unsubscribe(Pid, SubscriberPid)

 Unsubscribe the current subscriber.

 Anchor for this section

Types

 Link to this type

 bytes/0

 View Source

 -type bytes() :: non_neg_integer().

 Link to this type

 config/0

 View Source

 -type config() :: brod:consumer_config().

 Link to this type

 isolation_level/0

 View Source

 -type isolation_level() :: kpro:isolation_level().

 Link to this type

 offset/0

 View Source

 -type offset() :: brod:offset().

 Link to this type

 offset_reset_policy/0

 View Source

 -type offset_reset_policy() :: reset_by_subscriber | reset_to_earliest | reset_to_latest.

 Link to this type

 offset_time/0

 View Source

 -type offset_time() :: brod:offset_time().

 Link to this type

 partition/0

 View Source

 -type partition() :: brod:partition().

 Link to this type

 pending/0

 View Source

 -type pending() :: {offset(), bytes()}.

 Link to this type

 pending_acks/0

 View Source

 -type pending_acks() :: #pending_acks{}.

 Link to this type

 pending_queue/0

 View Source

 -type pending_queue() :: queue:queue(pending()).

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Link to this type

 topic/0

 View Source

 -type topic() :: brod:topic().

 Anchor for this section

Functions

 Link to this function

 ack(Pid, Offset)

 View Source

 -spec ack(pid(), brod:offset()) -> ok.

Subscriber confirms that a message (identified by offset) has been consumed, consumer process now may continue to fetch more messages.

 Link to this function

 debug(Pid, File)

 View Source

 -spec debug(pid(), print | string() | none) -> ok.

Enable/disable debugging on the consumer process.
debug(Pid, print) prints debug info to stdout.
debug(Pid, File) prints debug info to a file File.

 Link to this function

 get_connection(Pid)

 View Source

Get connection pid. Test/debug only.

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link(Bootstrap, Topic, Partition, Config)

 View Source

 -spec start_link(pid() | brod:bootstrap(), topic(), partition(), config()) ->
 {ok, pid()} | {error, any()}.

Equivalent to start_link(ClientPid, Topic, Partition, Config, []).

 Link to this function

 start_link(Bootstrap, Topic, Partition, Config, Debug)

 View Source

 -spec start_link(pid() | brod:bootstrap(), topic(), partition(), config(), [any()]) ->
 {ok, pid()} | {error, any()}.

Start (link) a partition consumer.
Possible configs:	min_bytes (optional, default = 0)
Minimal bytes to fetch in a batch of messages
	max_bytes (optional, default = 1MB)
Maximum bytes to fetch in a batch of messages.
NOTE: this value might be expanded to retry when it is not enough to fetch even a single message, then slowly shrunk back to the given value.
	max_wait_time (optional, default = 10000 ms)
Max number of seconds allowed for the broker to collect min_bytes of messages in fetch response
	sleep_timeout (optional, default = 1000 ms)
Allow consumer process to sleep this amount of ms if kafka replied 'empty' message set.
	prefetch_count (optional, default = 10)
The window size (number of messages) allowed to fetch-ahead.
	prefetch_bytes (optional, default = 100KB)
The total number of bytes allowed to fetch-ahead. brod_consumer is greed, it only stops fetching more messages in when number of unacked messages has exceeded prefetch_count AND the unacked total volume has exceeded prefetch_bytes
	begin_offset (optional, default = latest)
The offset from which to begin fetch requests. A subscriber may consume and process messages, then persist the associated offset to a persistent storage, then start (or restart) from last_processed_offset + 1 as the begin_offset to proceed. The offset has to already exist at the time of calling.
	offset_reset_policy (optional, default = reset_by_subscriber)
How to reset begin_offset if OffsetOutOfRange exception is received.
reset_by_subscriber: consumer is suspended (is_suspended=true in state) and wait for subscriber to re-subscribe with a new begin_offset option.
reset_to_earliest: consume from the earliest offset.
reset_to_latest: consume from the last available offset.
	size_stat_window: (optional, default = 5)
The moving-average window size to calculate average message size. Average message size is used to shrink max_bytes in fetch requests after it has been expanded to fetch a large message. Use 0 to immediately shrink back to original max_bytes from config. A size estimation allows users to set a relatively small max_bytes, then let it dynamically adjust to a number around PrefetchCount * AverageSize
	isolation_level: (optional, default = read_commited)
Level to control what transaction records are exposed to the consumer. Two values are allowed, read_uncommitted to retrieve all records, independently on the transaction outcome (if any), and read_committed to get only the records from committed transactions

 Link to this function

 stop(Pid)

 View Source

 -spec stop(pid()) -> ok | {error, any()}.

 Link to this function

 stop_maybe_kill(Pid, Timeout)

 View Source

 -spec stop_maybe_kill(pid(), timeout()) -> ok.

 Link to this function

 subscribe(Pid, SubscriberPid, ConsumerOptions)

 View Source

 -spec subscribe(pid(), pid(), config()) -> ok | {error, any()}.

Subscribe or resubscribe on messages from a partition.
Caller may specify a set of options extending consumer config. It is possible to update parameters such as max_bytes and max_wait_time, or the starting point (begin_offset) of the data stream. Note that you currently cannot update isolation_level.
Possible options are documented at start_link/5.

 Link to this function

 unsubscribe(Pid, SubscriberPid)

 View Source

 -spec unsubscribe(pid(), pid()) -> ok | {error, any()}.

Unsubscribe the current subscriber.

brod_group_coordinator

 Anchor for this section

 Summary

 Types

 brod_offset_commit_policy/0

 brod_partition_assignment_strategy/0

 config/0

 member/0

 member_id/0

 offset_commit_policy/0

 partition_assignment_strategy/0

 protocol_name/0

 state/0

 ts/0

 Functions

 ack(Pid, GenerationId, Topic, Partition, Offset)

 For group member to call to acknowledge a consumed message offset.

 code_change(OldVsn, State, Extra)

 commit_offsets(CoordinatorPid)

 Force commit collected (acked) offsets immediately.

 commit_offsets(CoordinatorPid, Offsets0)

 Force commit collected (acked) offsets plus the given extra offsets immediately.

 handle_call(Call, From, State)

 handle_cast(Cast, State)

 handle_info(Info, State)

 init(_)

 start_link(Client, GroupId, Topics, Config, CbModule, MemberPid)

 Start a kafka consumer group coordinator.

 stop(Pid)

 Stop group coordinator, wait for pid DOWN before return.

 terminate(Reason, State)

 update_topics(CoordinatorPid, Topics)

 Update the list of topics the brod_group_coordinator follow which triggers a join group rebalance

 Anchor for this section

Types

 Link to this type

 brod_offset_commit_policy/0

 View Source

 -type brod_offset_commit_policy() :: commit_to_kafka_v2 | consumer_managed.

 Link to this type

 brod_partition_assignment_strategy/0

 View Source

 -type brod_partition_assignment_strategy() :: roundrobin_v2 | callback_implemented.

 Link to this type

 config/0

 View Source

 -type config() :: brod:group_config().

 Link to this type

 member/0

 View Source

 -type member() :: brod:group_member().

 Link to this type

 member_id/0

 View Source

 -type member_id() :: brod:group_member_id().

 Link to this type

 offset_commit_policy/0

 View Source

 -type offset_commit_policy() :: brod_offset_commit_policy().

 Link to this type

 partition_assignment_strategy/0

 View Source

 -type partition_assignment_strategy() :: brod_partition_assignment_strategy().

 Link to this type

 protocol_name/0

 View Source

 -type protocol_name() :: string().

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Link to this type

 ts/0

 View Source

 -type ts() :: erlang:timestamp().

 Anchor for this section

Functions

 Link to this function

 ack(Pid, GenerationId, Topic, Partition, Offset)

 View Source

 -spec ack(pid(), integer(), brod:topic(), brod:partition(), brod:offset()) -> ok.

For group member to call to acknowledge a consumed message offset.

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 Link to this function

 commit_offsets(CoordinatorPid)

 View Source

 -spec commit_offsets(pid()) -> ok | {error, any()}.

Force commit collected (acked) offsets immediately.

 Link to this function

 commit_offsets(CoordinatorPid, Offsets0)

 View Source

 -spec commit_offsets(pid(), [{{brod:topic(), brod:partition()}, brod:offset()}]) -> ok | {error, any()}.

Force commit collected (acked) offsets plus the given extra offsets immediately.
NOTE: lists:usort/1 is applied on the given extra offsets to commit, meaning if two or more offsets for the same topic-partition exist in the list, only the one closest the head of the list is kept

 Link to this function

 handle_call(Call, From, State)

 View Source

 Link to this function

 handle_cast(Cast, State)

 View Source

 Link to this function

 handle_info(Info, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link(Client, GroupId, Topics, Config, CbModule, MemberPid)

 View Source

 -spec start_link(brod:client(), brod:group_id(), [brod:topic()], config(), module(), pid()) ->
 {ok, pid()} | {error, any()}.

Start a kafka consumer group coordinator.
Client: ClientId (or pid, but not recommended)
GroupId: Predefined globally unique (in a kafka cluster) binary string.
Topics: Predefined set of topic names to join the group.
CbModule: The module which implements group coordinator callbacks
MemberPid: The member process pid.
Config: The group coordinator configs in a proplist, possible entries:
	partition_assignment_strategy (optional, default = roundrobin_v2)
Possible values:
	roundrobin_v2 (topic-sticky)
Take all topic-offset (sorted topic_partition() list), assign one to each member in a roundrobin fashion. Only partitions in the subscription topic list are assigned.
	callback_implemented
Call CbModule:assign_partitions/2 to assign partitions.

	session_timeout_seconds (optional, default = 30)
Time in seconds for the group coordinator broker to consider a member 'down' if no heartbeat or any kind of requests received from a broker in the past N seconds. A group member may also consider the coordinator broker 'down' if no heartbeat response response received in the past N seconds.
	rebalance_timeout_seconds (optional, default = 30)
Time in seconds for each worker to join the group once a rebalance has begun. If the timeout is exceeded, then the worker will be removed from the group, which will cause offset commit failures.
	heartbeat_rate_seconds (optional, default = 5)
Time in seconds for the member to 'ping' the group coordinator. OBS: Care should be taken when picking the number, on one hand, we do not want to flush the broker with requests if we set it too low, on the other hand, if set it too high, it may take too long for the members to realise status changes of the group such as assignment rebalacing or group coordinator switchover etc.
	max_rejoin_attempts (optional, default = 5)
Maximum number of times allowed for a member to re-join the group. The gen_server will stop if it reached the maximum number of retries. OBS: 'let it crash' may not be the optimal strategy here because the group member id is kept in the gen_server looping state and it is reused when re-joining the group.
	rejoin_delay_seconds (optional, default = 1)
Delay in seconds before re-joining the group.
	offset_commit_policy (optional, default = commit_to_kafka_v2)
How/where to commit offsets, possible values:	commit_to_kafka_v2: Group coordinator will commit the offsets to kafka using version 2 OffsetCommitRequest.
	consumer_managed: The group member (e.g. brod_group_subscriber.erl) is responsible for persisting offsets to a local or centralized storage. And the callback get_committed_offsets should be implemented to allow group coordinator to retrieve the committed offsets.

	offset_commit_interval_seconds (optional, default = 5)
The time interval between two OffsetCommitRequest messages. This config is irrelevant if offset_commit_policy is consumer_managed.
	offset_retention_seconds (optional, default = -1)
How long the time is to be kept in kafka before it is deleted. The default special value -1 indicates that the __consumer_offsets topic retention policy is used. This config is irrelevant if offset_commit_policy is consumer_managed.
	protocol_name (optional, default = roundrobin_v2)
This is the protocol name used when join a group, if not given, by default partition_assignment_strategy is used as the protocol name. Setting a protocol name allows to interact with consumer group members designed in other programming languages. For example, 'range' is the most commonly used protocol name for JAVA client. However, brod only supports roundrobin protocol out of the box, in order to mimic 'range' protocol one will have to do it via callback_implemented assignment strategy

 Link to this function

 stop(Pid)

 View Source

 -spec stop(pid()) -> ok.

Stop group coordinator, wait for pid DOWN before return.

 Link to this function

 terminate(Reason, State)

 View Source

 Link to this function

 update_topics(CoordinatorPid, Topics)

 View Source

 -spec update_topics(pid(), [brod:topic()]) -> ok.

Update the list of topics the brod_group_coordinator follow which triggers a join group rebalance

brod_group_member behaviour

Implement brod_group_member behaviour callbacks to allow a process to act as a group member without having to deal with Kafka group protocol details. A typical workflow:
1. Spawn a group coordinator by calling brod_group_coordinator:start_link/6.
2. Subscribe to partitions received in the assignments from assignments_received/4 callback.
3. Receive messages from the assigned partitions (delivered by the partition workers (the pollers) implemented in brod_consumer).
4. Unsubscribe from all previously subscribed partitions when assignments_revoked/1 is called.
For group members that commit offsets to Kafka, do:
1. Call brod_group_coordinator:ack/5. to acknowledge successful consumption of the messages. Group coordinator will commit the acknowledged offsets at configured interval.
2. Call brod_group_coordinator:commit_offsets/2 to force an immediate offset commit if necessary.
For group members that manage offsets locally, do:
1. Implement the get_committed_offsets/2 callback. This callback is evaluated every time when new assignments are received.

 Anchor for this section

 Summary

 Callbacks

 assign_partitions/3

 assignments_received/4

 assignments_revoked/1

 get_committed_offsets/2

 user_data/1

 Anchor for this section

Callbacks

 Link to this callback

 assign_partitions/3

 View Source

 (optional)

 -callback assign_partitions(pid(), [brod:group_member()], [{brod:topic(), brod:partition()}]) ->
 [{brod:group_member_id(), [brod:partition_assignment()]}].

 Link to this callback

 assignments_received/4

 View Source

 -callback assignments_received(pid(),
 brod:group_member_id(),
 brod:group_generation_id(),
 brod:received_assignments()) ->
 ok.

 Link to this callback

 assignments_revoked/1

 View Source

 -callback assignments_revoked(pid()) -> ok.

 Link to this callback

 get_committed_offsets/2

 View Source

 -callback get_committed_offsets(pid(), [{brod:topic(), brod:partition()}]) ->
 {ok, [{{brod:topic(), brod:partition()}, brod:offset()}]}.

 Link to this callback

 user_data/1

 View Source

 (optional)

 -callback user_data(pid()) -> binary().

brod_group_subscriber behaviour

A group subscriber is a gen_server which subscribes to partition consumers (poller) and calls the user-defined callback functions for message processing.
An overview of what it does behind the scene:	Start a consumer group coordinator to manage the consumer group states, see brod_group_coordinator:start_link/6
	Start (if not already started) topic-consumers (pollers) and subscribe to the partition workers when group assignment is received from the group leader, see brod:start_consumer/3
	Call CallbackModule:handle_message/4 when messages are received from the partition consumers.
	Send acknowledged offsets to group coordinator which will be committed to kafka periodically.

Callbacks are documented in the source code of this module.

 Anchor for this section

 Summary

 Types

 ack_ref/0

 cb_state/0

 consumer/0

 member_id/0

 state/0

 Callbacks

 handle_message/4

 init/2

 Functions

 ack(Pid, Topic, Partition, Offset)

 Acknowledge and commit an offset. The subscriber may ack a later (greater) offset which will be considered as multi-acking the earlier (smaller) offsets. This also means that disordered acks may overwrite offset commits and lead to unnecessary message re-delivery in case of restart.

 ack(Pid, Topic, Partition, Offset, Commit)

 Acknowledge an offset. This call may or may not commit group subscriber offset depending on the value of Commit argument

 assign_partitions(Pid, Members, TopicPartitionList)

 This function is called only when partition_assignment_strategy is set for callback_implemented in group config.

 assignments_received(Pid, MemberId, GenerationId, TopicAssignments)

 Called by group coordinator when there is new assignment received.

 assignments_revoked(Pid)

 Called by group coordinator before re-joining the consumer group.

 code_change(OldVsn, State, Extra)

 commit(Pid)

 Commit all acked offsets. NOTE: This is an async call.

 commit(Pid, Topic, Partition, Offset)

 Commit offset for a topic. This is an asynchronous call

 get_committed_offsets(Pid, TopicPartitions)

 Called by group coordinator when initializing the assignments for subscriber.

 handle_call(Call, From, State)

 handle_cast(Cast, State)

 handle_info(Info, State0)

 init(_)

 start_link(Client, GroupId, Topics, GroupConfig, ConsumerConfig, CbModule, CbInitArg)

 Equivalent to start_link(Client, GroupId, Topics, GroupConfig, ConsumerConfig, message, CbModule, CbInitArg).

 start_link(Client, GroupId, Topics, GroupConfig, ConsumerConfig, MessageType, CbModule, CbInitArg)

 Start (link) a group subscriber.

 stop(Pid)

 Stop group subscriber, wait for pid DOWN before return.

 terminate(Reason, State)

 user_data(Pid)

 Anchor for this section

Types

 Link to this type

 ack_ref/0

 View Source

 -type ack_ref() :: {brod:topic(), brod:partition(), brod:offset()}.

 Link to this type

 cb_state/0

 View Source

 -type cb_state() :: term().

 Link to this type

 consumer/0

 View Source

 -type consumer() :: #consumer{}.

 Link to this type

 member_id/0

 View Source

 -type member_id() :: brod:group_member_id().

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Anchor for this section

Callbacks

 Link to this callback

 handle_message/4

 View Source

 -callback handle_message(brod:topic(), brod:partition(), brod:message() | brod:message_set(), cb_state()) ->
 {ok, cb_state()} | {ok, ack, cb_state()} | {ok, ack_no_commit, cb_state()}.

 Link to this callback

 init/2

 View Source

 -callback init(brod:group_id(), term()) -> {ok, cb_state()}.

 Anchor for this section

Functions

 Link to this function

 ack(Pid, Topic, Partition, Offset)

 View Source

 -spec ack(pid(), brod:topic(), brod:partition(), brod:offset()) -> ok.

Acknowledge and commit an offset. The subscriber may ack a later (greater) offset which will be considered as multi-acking the earlier (smaller) offsets. This also means that disordered acks may overwrite offset commits and lead to unnecessary message re-delivery in case of restart.

 Link to this function

 ack(Pid, Topic, Partition, Offset, Commit)

 View Source

 -spec ack(pid(), brod:topic(), brod:partition(), brod:offset(), boolean()) -> ok.

Acknowledge an offset. This call may or may not commit group subscriber offset depending on the value of Commit argument

 Link to this function

 assign_partitions(Pid, Members, TopicPartitionList)

 View Source

 -spec assign_partitions(pid(), [brod:group_member()], [{brod:topic(), brod:partition()}]) ->
 [{member_id(), [brod:partition_assignment()]}].

This function is called only when partition_assignment_strategy is set for callback_implemented in group config.

 Link to this function

 assignments_received(Pid, MemberId, GenerationId, TopicAssignments)

 View Source

 -spec assignments_received(pid(), member_id(), integer(), brod:received_assignments()) -> ok.

Called by group coordinator when there is new assignment received.

 Link to this function

 assignments_revoked(Pid)

 View Source

 -spec assignments_revoked(pid()) -> ok.

Called by group coordinator before re-joining the consumer group.

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 Link to this function

 commit(Pid)

 View Source

 -spec commit(pid()) -> ok.

Commit all acked offsets. NOTE: This is an async call.

 Link to this function

 commit(Pid, Topic, Partition, Offset)

 View Source

 -spec commit(pid(), brod:topic(), brod:partition(), brod:offset()) -> ok.

Commit offset for a topic. This is an asynchronous call

 Link to this function

 get_committed_offsets(Pid, TopicPartitions)

 View Source

 -spec get_committed_offsets(pid(), [{brod:topic(), brod:partition()}]) ->
 {ok, [{{brod:topic(), brod:partition()}, brod:offset()}]}.

Called by group coordinator when initializing the assignments for subscriber.
NOTE: This function is called only when offset_commit_policy is set to consumer_managed in group config.
NOTE: The committed offsets should be the offsets for successfully processed (acknowledged) messages, not the begin_offset to start fetching from.

 Link to this function

 handle_call(Call, From, State)

 View Source

 Link to this function

 handle_cast(Cast, State)

 View Source

 Link to this function

 handle_info(Info, State0)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link(Client, GroupId, Topics, GroupConfig, ConsumerConfig, CbModule, CbInitArg)

 View Source

 -spec start_link(brod:client(),
 brod:group_id(),
 [brod:topic()],
 brod:group_config(),
 brod:consumer_config(),
 module(),
 term()) ->
 {ok, pid()} | {error, any()}.

Equivalent to start_link(Client, GroupId, Topics, GroupConfig, ConsumerConfig, message, CbModule, CbInitArg).
Handle a message. Return one of:
{ok, NewCallbackState}: The subscriber has received the message for processing async-ly. It should call brod_group_subscriber:ack/4 to acknowledge later.
{ok, ack, NewCallbackState}: The subscriber has completed processing the message.
{ok, ack_no_commit, NewCallbackState}: The subscriber has completed processing the message, but it is not ready to commit offset yet. It should call brod_group_subscriber:commit/4 later.
While this callback function is being evaluated, the fetch-ahead partition-consumers are fetching more messages behind the scene unless prefetch_count and prefetch_bytes are set to 0 in consumer config.

 Link to this function

 start_link(Client, GroupId, Topics, GroupConfig, ConsumerConfig, MessageType, CbModule, CbInitArg)

 View Source

 -spec start_link(brod:client(),
 brod:group_id(),
 [brod:topic()],
 brod:group_config(),
 brod:consumer_config(),
 message | message_set,
 module(),
 term()) ->
 {ok, pid()} | {error, any()}.

Start (link) a group subscriber.
Client: Client ID (or pid, but not recommended) of the brod client.
GroupId: Consumer group ID which should be unique per kafka cluster
Topics: Predefined set of topic names to join the group.
NOTE: The group leader member will collect topics from all members and assign all collected topic-partitions to members in the group. i.e. members can join with arbitrary set of topics.
GroupConfig: For group coordinator, see brod_group_coordinator:start_link/6
ConsumerConfig: For partition consumer, see brod_consumer:start_link/4
MessageType: The type of message that is going to be handled by the callback module. Can be either message or message_set.
CbModule: Callback module which should have the callback functions implemented for message processing.
CbInitArg: The term() that is going to be passed to CbModule:init/2 as a second argument when initializing the subscriber.

 Link to this function

 stop(Pid)

 View Source

 -spec stop(pid()) -> ok.

Stop group subscriber, wait for pid DOWN before return.

 Link to this function

 terminate(Reason, State)

 View Source

 Link to this function

 user_data(Pid)

 View Source

brod_group_subscriber_v2 behaviour

This module implements an improved version of brod_group_subscriber behavior. Key difference is that each partition worker runs in a separate Erlang process, allowing parallel message processing.
Callbacks are documented in the source code of this module.

 Anchor for this section

 Summary

 Types

 commit_fun/0

 committed_offsets/0

 init_info/0

 member_id/0

 state/0

 subscriber_config/0

 worker/0

 workers/0

 Callbacks

 assign_partitions/3

 get_committed_offset/3

 handle_message/2

 init/2

 terminate/2

 Functions

 ack(Pid, Topic, Partition, Offset)

 Commit offset for a topic-partition, but don't commit it to Kafka. This is an asynchronous call

 assign_partitions(Pid, Members, TopicPartitionList)

 This function is called only when partition_assignment_strategy is set for callback_implemented in group config.

 assignments_received(Pid, MemberId, GenerationId, TopicAssignments)

 Called by group coordinator when there is new assignment received.

 assignments_revoked(Pid)

 Called by group coordinator before re-joining the consumer group.

 commit(Pid, Topic, Partition, Offset)

 Ack offset for a topic-partition. This is an asynchronous call

 get_committed_offsets(Pid, TopicPartitions)

 Called by group coordinator when initializing the assignments for subscriber.

 get_workers(Pid)

 Returns a map from Topic-Partitions to worker PIDs for the given group. Useful for health checking. This is a synchronous call.

 handle_call(Call, From, State)

 start_link(Config)

 Start (link) a group subscriber.

 stop(Pid)

 Stop group subscriber, wait for pid DOWN before return.

 Anchor for this section

Types

 Link to this type

 commit_fun/0

 View Source

 -type commit_fun() :: fun((brod:offset()) -> ok).

 Link to this type

 committed_offsets/0

 View Source

 -type committed_offsets() :: #{brod:topic_partition() => {brod:offset(), boolean()}}.

 Link to this type

 init_info/0

 View Source

 -type init_info() ::
 #{group_id := brod:group_id(),
 topic := brod:topic(),
 partition := brod:partition(),
 commit_fun := commit_fun()}.

 Link to this type

 member_id/0

 View Source

 -type member_id() :: brod:group_member_id().

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Link to this type

 subscriber_config/0

 View Source

 -type subscriber_config() ::
 #{client := brod:client(),
 group_id := brod:group_id(),
 topics := [brod:topic()],
 cb_module := module(),
 init_data => term(),
 message_type => message | message_set,
 consumer_config => brod:consumer_config(),
 group_config => brod:group_config()}.

 Link to this type

 worker/0

 View Source

 -type worker() :: pid().

 Link to this type

 workers/0

 View Source

 -type workers() :: #{brod:topic_partition() => worker()}.

 Anchor for this section

Callbacks

 Link to this callback

 assign_partitions/3

 View Source

 (optional)

 -callback assign_partitions(_CbConfig, [brod:group_member()], [brod:topic_partition()]) ->
 [{member_id(), [brod:partition_assignment()]}].

 Link to this callback

 get_committed_offset/3

 View Source

 (optional)

 -callback get_committed_offset(_CbConfig, brod:topic(), brod:partition()) ->
 {ok, brod:offset() | {begin_offset, brod:offset_time()}} | undefined.

 Link to this callback

 handle_message/2

 View Source

 -callback handle_message(brod:message(), State) -> {ok, commit, State} | {ok, ack, State} | {ok, State}.

 Link to this callback

 init/2

 View Source

 -callback init(brod_group_subscriber_v2:init_info(), _CbConfig) -> {ok, _State}.

 Link to this callback

 terminate/2

 View Source

 (optional)

 -callback terminate(_Reason, _State) -> _.

 Anchor for this section

Functions

 Link to this function

 ack(Pid, Topic, Partition, Offset)

 View Source

 -spec ack(pid(), brod:topic(), brod:partition(), brod:offset()) -> ok.

Commit offset for a topic-partition, but don't commit it to Kafka. This is an asynchronous call

 Link to this function

 assign_partitions(Pid, Members, TopicPartitionList)

 View Source

 -spec assign_partitions(pid(), [brod:group_member()], [brod:topic_partition()]) ->
 [{member_id(), [brod:partition_assignment()]}].

This function is called only when partition_assignment_strategy is set for callback_implemented in group config.

 Link to this function

 assignments_received(Pid, MemberId, GenerationId, TopicAssignments)

 View Source

 -spec assignments_received(pid(), member_id(), integer(), brod:received_assignments()) -> ok.

Called by group coordinator when there is new assignment received.

 Link to this function

 assignments_revoked(Pid)

 View Source

 -spec assignments_revoked(pid()) -> ok.

Called by group coordinator before re-joining the consumer group.

 Link to this function

 commit(Pid, Topic, Partition, Offset)

 View Source

 -spec commit(pid(), brod:topic(), brod:partition(), brod:offset()) -> ok.

Ack offset for a topic-partition. This is an asynchronous call

 Link to this function

 get_committed_offsets(Pid, TopicPartitions)

 View Source

 -spec get_committed_offsets(pid(), [brod:topic_partition()]) ->
 {ok, [{brod:topic_partition(), brod:offset()}]}.

Called by group coordinator when initializing the assignments for subscriber.
NOTE: This function is called only when offset_commit_policy is set to consumer_managed in group config.

 Link to this function

 get_workers(Pid)

 View Source

 -spec get_workers(pid()) -> workers().

Returns a map from Topic-Partitions to worker PIDs for the given group. Useful for health checking. This is a synchronous call.

 Link to this function

 handle_call(Call, From, State)

 View Source

 Link to this function

 start_link(Config)

 View Source

 -spec start_link(subscriber_config()) -> {ok, pid()} | {error, any()}.

Start (link) a group subscriber.
Possible Config keys:
	client: Client ID (or pid, but not recommended) of the brod client. Mandatory
	group_id: Consumer group ID which should be unique per kafka cluster. Mandatory
	topics: Predefined set of topic names to join the group. Mandatory
NOTE: The group leader member will collect topics from all members and assign all collected topic-partitions to members in the group. i.e. members can join with arbitrary set of topics.
	cb_module: Callback module which should have the callback functions implemented for message processing. Mandatory
	group_config: For group coordinator, see brod_group_coordinator:start_link/6 Optional
	consumer_config: For partition consumer, brod_topic_subscriber:start_link/6. Optional
	message_type: The type of message that is going to be handled by the callback module. Can be either message or message set. Optional, defaults to message
	init_data: The term() that is going to be passed to CbModule:init/2 when initializing the subscriber. Optional, defaults to undefined

 Link to this function

 stop(Pid)

 View Source

 -spec stop(pid()) -> ok.

Stop group subscriber, wait for pid DOWN before return.

brod_kafka_request

Helper functions for building request messages.

 Anchor for this section

 Summary

 Types

 api/0

 conn/0

 offset/0

 partition/0

 topic/0

 topic_config/0

 vsn/0

 Functions

 create_topics(Connection, TopicConfigs, RequestConfigs)

 Make a create_topics request.

 delete_topics(Connection, Topics, Timeout)

 Make a delete_topics request.

 fetch(Pid, Topic, Partition, Offset, WaitTime, MinBytes, MaxBytes, IsolationLevel)

 Make a fetch request, If the first arg is a connection pid, call brod_kafka_apis:pick_version/2 to resolve version.

 join_group(Conn, Fields)

 Make a join_group request.

 list_groups(Connection)

 Make a list_groups request.

 list_offsets(Connection, Topic, Partition, TimeOrSemanticOffset)

 Make a list_offsets request message for offset resolution. In kafka protocol, -2 and -1 are semantic 'time' to request for 'earliest' and 'latest' offsets. In brod implementation, -2, -1, 'earliest' and 'latest' are semantic 'offset', this is why often a variable named Offset is used as the Time argument.

 metadata(Connection, Topics)

 Make a metadata request.

 offset_commit(Conn, Fields)

 Make a offset_commit request.

 offset_fetch(Connection, GroupId, Topics)

 Make a offset fetch request. NOTE: empty topics list only works for kafka 0.10.2.0 or later

 produce(MaybePid, Topic, Partition, BatchInput, RequiredAcks, AckTimeout, Compression)

 Make a produce request, If the first arg is a connection pid, call brod_kafka_apis:pick_version/2 to resolve version.

 sync_group(Conn, Fields)

 Make a sync_group request.

 Anchor for this section

Types

 Link to this type

 api/0

 View Source

 -type api() :: brod_kafka_apis:api().

 Link to this type

 conn/0

 View Source

 -type conn() :: kpro:connection().

 Link to this type

 offset/0

 View Source

 -type offset() :: brod:offset().

 Link to this type

 partition/0

 View Source

 -type partition() :: brod:partition().

 Link to this type

 topic/0

 View Source

 -type topic() :: brod:topic().

 Link to this type

 topic_config/0

 View Source

 -type topic_config() :: kpro:struct().

 Link to this type

 vsn/0

 View Source

 -type vsn() :: brod_kafka_apis:vsn().

 Anchor for this section

Functions

 Link to this function

 create_topics(Connection, TopicConfigs, RequestConfigs)

 View Source

 -spec create_topics(vsn() | conn(),
 [topic_config()],
 #{timeout => kpro:int32(), validate_only => boolean()}) ->
 kpro:req().

Make a create_topics request.

 Link to this function

 delete_topics(Connection, Topics, Timeout)

 View Source

 -spec delete_topics(vsn() | conn(), [topic()], pos_integer()) -> kpro:req().

Make a delete_topics request.

 Link to this function

 fetch(Pid, Topic, Partition, Offset, WaitTime, MinBytes, MaxBytes, IsolationLevel)

 View Source

 -spec fetch(conn(),
 topic(),
 partition(),
 offset(),
 kpro:wait(),
 kpro:count(),
 kpro:count(),
 kpro:isolation_level()) ->
 kpro:req().

Make a fetch request, If the first arg is a connection pid, call brod_kafka_apis:pick_version/2 to resolve version.

 Link to this function

 join_group(Conn, Fields)

 View Source

 -spec join_group(conn(), kpro:struct()) -> kpro:req().

Make a join_group request.

 Link to this function

 list_groups(Connection)

 View Source

 -spec list_groups(conn()) -> kpro:req().

Make a list_groups request.

 Link to this function

 list_offsets(Connection, Topic, Partition, TimeOrSemanticOffset)

 View Source

 -spec list_offsets(conn(), topic(), partition(), brod:offset_time()) -> kpro:req().

Make a list_offsets request message for offset resolution. In kafka protocol, -2 and -1 are semantic 'time' to request for 'earliest' and 'latest' offsets. In brod implementation, -2, -1, 'earliest' and 'latest' are semantic 'offset', this is why often a variable named Offset is used as the Time argument.

 Link to this function

 metadata(Connection, Topics)

 View Source

 -spec metadata(vsn() | conn(), all | [topic()]) -> kpro:req().

Make a metadata request.

 Link to this function

 offset_commit(Conn, Fields)

 View Source

 -spec offset_commit(conn(), kpro:struct()) -> kpro:req().

Make a offset_commit request.

 Link to this function

 offset_fetch(Connection, GroupId, Topics)

 View Source

 -spec offset_fetch(conn(), brod:group_id(), Topics) -> kpro:req()
 when Topics :: [{topic(), [partition()]}].

Make a offset fetch request. NOTE: empty topics list only works for kafka 0.10.2.0 or later

 Link to this function

 produce(MaybePid, Topic, Partition, BatchInput, RequiredAcks, AckTimeout, Compression)

 View Source

 -spec produce(conn() | vsn(),
 topic(),
 partition(),
 kpro:batch_input(),
 integer(),
 integer(),
 brod:compression()) ->
 kpro:req().

Make a produce request, If the first arg is a connection pid, call brod_kafka_apis:pick_version/2 to resolve version.

 Link to this function

 sync_group(Conn, Fields)

 View Source

 -spec sync_group(conn(), kpro:struct()) -> kpro:req().

Make a sync_group request.

brod_producer

A brod_producer is a gen_server that is responsible for producing messages to a given partition of a given topic.
See the overview for some more information and examples.

 Anchor for this section

 Summary

 Types

 call_ref/0

 config/0

 conn/0

 delay_send_ref/0

 milli_sec/0

 offset/0

 partition/0

 state/0

 topic/0

 Functions

 produce(Pid, Key, Value)

 Produce a message to partition asynchronously.

 produce_cb(Pid, Key, Value, AckCb)

 Async produce, evaluate callback if AckCb is a function otherwise send #brod_produce_reply{result = brod_produce_req_acked} message to caller after the produce request has been acked by kafka.

 produce_no_ack(Pid, Key, Value)

 Fire-n-forget, no ack, no back-pressure.

 start_link(ClientPid, Topic, Partition, Config)

 Start (link) a partition producer.

 stop(Pid)

 Stop the process

 sync_produce_request(CallRef, Timeout)

 Block calling process until it receives an acked reply for the CallRef.

 Anchor for this section

Types

 Link to this type

 call_ref/0

 View Source

 -type call_ref() :: brod:call_ref().

 Link to this type

 config/0

 View Source

 -type config() :: proplists:proplist().

 Link to this type

 conn/0

 View Source

 -type conn() :: kpro:connection().

 Link to this type

 delay_send_ref/0

 View Source

 -type delay_send_ref() :: undefined | {reference(), reference()}.

 Link to this type

 milli_sec/0

 View Source

 -type milli_sec() :: non_neg_integer().

 Link to this type

 offset/0

 View Source

 -type offset() :: brod:offset().

 Link to this type

 partition/0

 View Source

 -type partition() :: brod:partition().

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Link to this type

 topic/0

 View Source

 -type topic() :: brod:topic().

 Anchor for this section

Functions

 Link to this function

 produce(Pid, Key, Value)

 View Source

 -spec produce(pid(), brod:key(), brod:value()) -> {ok, call_ref()} | {error, any()}.

Produce a message to partition asynchronously.
The call is blocked until the request has been buffered in producer worker The function returns a call reference of type call_ref() to the caller so the caller can used it to expect (match) a #brod_produce_reply{result = brod_produce_req_acked} message after the produce request has been acked by kafka.

 Link to this function

 produce_cb(Pid, Key, Value, AckCb)

 View Source

 -spec produce_cb(pid(), brod:key(), brod:value(), undefined | brod:produce_ack_cb()) ->
 ok | {ok, call_ref()} | {error, any()}.

Async produce, evaluate callback if AckCb is a function otherwise send #brod_produce_reply{result = brod_produce_req_acked} message to caller after the produce request has been acked by kafka.

 Link to this function

 produce_no_ack(Pid, Key, Value)

 View Source

 -spec produce_no_ack(pid(), brod:key(), brod:value()) -> ok.

Fire-n-forget, no ack, no back-pressure.

 Link to this function

 start_link(ClientPid, Topic, Partition, Config)

 View Source

 -spec start_link(pid(), topic(), partition(), config()) -> {ok, pid()}.

Start (link) a partition producer.
Possible configs (passed as a proplist):	required_acks (optional, default = -1):
How many acknowledgements the kafka broker should receive from the clustered replicas before acking producer. 0: the broker will not send any response (this is the only case where the broker will not reply to a request) 1: The leader will wait the data is written to the local log before sending a response. -1: If it is -1 the broker will block until the message is committed by all in sync replicas before acking.
	ack_timeout (optional, default = 10000 ms):
Maximum time in milliseconds the broker can await the receipt of the number of acknowledgements in RequiredAcks. The timeout is not an exact limit on the request time for a few reasons: (1) it does not include network latency, (2) the timer begins at the beginning of the processing of this request so if many requests are queued due to broker overload that wait time will not be included, (3) kafka leader will not terminate a local write so if the local write time exceeds this timeout it will not be respected.
	partition_buffer_limit (optional, default = 256):
How many requests (per-partition) can be buffered without blocking the caller. The callers are released (by receiving the 'brod_produce_req_buffered' reply) once the request is taken into buffer and after the request has been put on wire, then the caller may expect a reply 'brod_produce_req_acked' when the request is accepted by kafka.
	partition_onwire_limit (optional, default = 1):
How many message sets (per-partition) can be sent to kafka broker asynchronously before receiving ACKs from broker.
NOTE: setting a number greater than 1 may cause messages being persisted in an order different from the order they were produced.
	max_batch_size (in bytes, optional, default = 1M):
In case callers are producing faster than brokers can handle (or congestion on wire), try to accumulate small requests into batches as much as possible but not exceeding max_batch_size.
OBS: If compression is enabled, care should be taken when picking the max batch size, because a compressed batch will be produced as one message and this message might be larger than 'max.message.bytes' in kafka config (or topic config)
	max_retries (optional, default = 3):
If {max_retries, N} is given, the producer retry produce request for N times before crashing in case of failures like connection being shutdown by remote or exceptions received in produce response from kafka. The special value N = -1 means "retry indefinitely"
	retry_backoff_ms (optional, default = 500);
Time in milli-seconds to sleep before retry the failed produce request.
	compression (optional, default = no_compression`): `gzip or snappy to enable compression
	max_linger_ms (optional, default = 0):
Messages are allowed to 'linger' in buffer for this amount of milli-seconds before being sent. Definition of 'linger': A message is in "linger" state when it is allowed to be sent on-wire, but chosen not to (for better batching).
The default value is 0 for 2 reasons:	Backward compatibility (for 2.x releases)
	Not to surprise brod:produce_sync callers

	max_linger_count (optional, default = 0):
At most this amount (count not size) of messages are allowed to "linger" in buffer. Messages will be sent regardless of "linger" age when this threshold is hit.
NOTE: It does not make sense to have this value set larger than partition_buffer_limit
	produce_req_vsn (optional, default = undefined):
User determined produce API version to use, discard the API version range received from kafka. This is to be used when a topic in newer version kafka is configured to store older version message format. e.g. When a topic in kafka 0.11 is configured to have message format 0.10, sending message with headers would result in unknown_server_error error code.

 Link to this function

 stop(Pid)

 View Source

 -spec stop(pid()) -> ok.

Stop the process

 Link to this function

 sync_produce_request(CallRef, Timeout)

 View Source

 -spec sync_produce_request(call_ref(), timeout()) -> {ok, offset()} | {error, Reason}
 when Reason :: timeout | {producer_down, any()}.

Block calling process until it receives an acked reply for the CallRef.
The caller pid of this function must be the caller of produce/3 in which the call reference was created.

brod_supervisor3 behaviour

 Anchor for this section

 Summary

 Types

 call/0

 XXX: refine

 child/0

 child_id/0

 child_rec/0

 child_spec/0

 delay/0

 dynamics/0

 init_sup_name/0

 mfargs/0

 modules/0

 restart/0

 shutdown/0

 startchild_err/0

 startchild_ret/0

 startlink_err/0

 startlink_ret/0

 state/0

 stop_rsn/0

 strategy/0

 sup_name/0

 sup_ref/0

 tref/0

 worker/0

 Callbacks

 init/1

 post_init/1

 Functions

 check_childspecs(ChildSpecs)

 code_change(_, State, _)

 count_children(SupRef)

 delete_child(SupRef, Id)

 find_child(Supervisor, Name)

 format_status(_, _)

 handle_call(_, From, State)

 handle_cast(_, State)

 handle_info(Msg, State)

 init(_)

 restart_child(SupRef, Id)

 start_child(SupRef, ChildSpec)

 start_link(Module, Args)

 start_link(SupName, Module, Args)

 terminate(Reason, State)

 terminate_child(SupRef, Id)

 try_again_restart(SupRef, Child, Reason)

 which_children(SupRef)

 Anchor for this section

Types

 Link to this type

 call/0

 View Source

 -type call() :: which_children | count_children | {_, _}.

XXX: refine

 Link to this type

 child/0

 View Source

 -type child() :: undefined | pid().

 Link to this type

 child_id/0

 View Source

 -type child_id() :: term().

 Link to this type

 child_rec/0

 View Source

 -type child_rec() :: #child{}.

 Link to this type

 child_spec/0

 View Source

 -type child_spec() ::
 {Id :: child_id(),
 StartFunc :: mfargs(),
 Restart :: restart(),
 Shutdown :: shutdown(),
 Type :: worker(),
 Modules :: modules()}.

 Link to this type

 delay/0

 View Source

 -type delay() :: non_neg_integer().

 Link to this type

 dynamics/0

 View Source

 -type dynamics() :: dict:dict() | sets:set().

 Link to this type

 init_sup_name/0

 View Source

 -type init_sup_name() :: sup_name() | self.

 Link to this type

 mfargs/0

 View Source

 -type mfargs() :: {M :: module(), F :: atom(), A :: [term()] | undefined}.

 Link to this type

 modules/0

 View Source

 -type modules() :: [module()] | dynamic.

 Link to this type

 restart/0

 View Source

 -type restart() ::
 permanent | transient | temporary | intrinsic |
 {permanent, delay()} |
 {transient, delay()} |
 {intrinsic, delay()}.

 Link to this type

 shutdown/0

 View Source

 -type shutdown() :: brutal_kill | timeout().

 Link to this type

 startchild_err/0

 View Source

 -type startchild_err() :: already_present | {already_started, Child :: child()} | term().

 Link to this type

 startchild_ret/0

 View Source

 -type startchild_ret() ::
 {ok, Child :: child()} | {ok, Child :: child(), Info :: term()} | {error, startchild_err()}.

 Link to this type

 startlink_err/0

 View Source

 -type startlink_err() :: {already_started, pid()} | {shutdown, term()} | term().

 Link to this type

 startlink_ret/0

 View Source

 -type startlink_ret() :: {ok, pid()} | ignore | {error, startlink_err()}.

 Link to this type

 state/0

 View Source

 -type state() ::
 #state{name :: atom(),
 strategy :: strategy(),
 children :: [child_rec()],
 dynamics :: dynamics(),
 intensity :: non_neg_integer(),
 period :: pos_integer(),
 restarts :: list(),
 module :: module(),
 args :: list()}.

 Link to this type

 stop_rsn/0

 View Source

 -type stop_rsn() ::
 {shutdown, term()} |
 {bad_return, {module(), init, term()}} |
 {bad_start_spec, term()} |
 {start_spec, term()} |
 {supervisor_data, term()}.

 Link to this type

 strategy/0

 View Source

 -type strategy() :: one_for_all | one_for_one | rest_for_one | simple_one_for_one.

 Link to this type

 sup_name/0

 View Source

 -type sup_name() :: {local, Name :: atom()} | {global, Name :: atom()}.

 Link to this type

 sup_ref/0

 View Source

 -type sup_ref() ::
 (Name :: atom()) | {Name :: atom(), Node :: node()} | {global, Name :: atom()} | pid().

 Link to this type

 tref/0

 View Source

 -type tref() :: reference().

 Link to this type

 worker/0

 View Source

 -type worker() :: worker | supervisor.

 Anchor for this section

Callbacks

 Link to this callback

 init/1

 View Source

 -callback init(Args :: term()) ->
 {ok,
 {{RestartStrategy :: strategy(), MaxR :: non_neg_integer(), MaxT :: non_neg_integer()},
 [ChildSpec :: child_spec()]}} |
 ignore | post_init.

 Link to this callback

 post_init/1

 View Source

 (optional)

 -callback post_init(Args :: term()) ->
 {ok,
 {{RestartStrategy :: strategy(),
 MaxR :: non_neg_integer(),
 MaxT :: non_neg_integer()},
 [ChildSpec :: child_spec()]}} |
 ignore.

 Anchor for this section

Functions

 Link to this function

 check_childspecs(ChildSpecs)

 View Source

 -spec check_childspecs(ChildSpecs) -> Result
 when ChildSpecs :: [child_spec()], Result :: ok | {error, Error :: term()}.

 Link to this function

 code_change(_, State, _)

 View Source

 -spec code_change(term(), state(), term()) -> {ok, state()} | {error, term()}.

 Link to this function

 count_children(SupRef)

 View Source

 -spec count_children(SupRef) -> PropListOfCounts
 when
 SupRef :: sup_ref(),
 PropListOfCounts :: [Count],
 Count ::
 {specs, ChildSpecCount :: non_neg_integer()} |
 {active, ActiveProcessCount :: non_neg_integer()} |
 {supervisors, ChildSupervisorCount :: non_neg_integer()} |
 {workers, ChildWorkerCount :: non_neg_integer()}.

 Link to this function

 delete_child(SupRef, Id)

 View Source

 -spec delete_child(SupRef, Id) -> Result
 when
 SupRef :: sup_ref(),
 Id :: child_id(),
 Result :: ok | {error, Error},
 Error :: running | restarting | not_found | simple_one_for_one.

 Link to this function

 find_child(Supervisor, Name)

 View Source

 -spec find_child(Supervisor, Name) -> [pid()] when Supervisor :: sup_ref(), Name :: child_id().

 Link to this function

 format_status(_, _)

 View Source

 Link to this function

 handle_call(_, From, State)

 View Source

 -spec handle_call(call(), term(), state()) -> {reply, term(), state()}.

 Link to this function

 handle_cast(_, State)

 View Source

 -spec handle_cast({try_again_restart, child_id() | pid(), term()}, state()) ->
 {noreply, state()} | {stop, shutdown, state()}.

 Link to this function

 handle_info(Msg, State)

 View Source

 -spec handle_info(term(), state()) -> {noreply, state()} | {stop, term(), state()}.

 Link to this function

 init(_)

 View Source

 -spec init({init_sup_name(), module(), [term()]}) -> {ok, state()} | ignore | {stop, stop_rsn()}.

 Link to this function

 restart_child(SupRef, Id)

 View Source

 -spec restart_child(SupRef, Id) -> Result
 when
 SupRef :: sup_ref(),
 Id :: child_id(),
 Result ::
 {ok, Child :: child()} |
 {ok, Child :: child(), Info :: term()} |
 {error, Error},
 Error :: running | restarting | not_found | simple_one_for_one | term().

 Link to this function

 start_child(SupRef, ChildSpec)

 View Source

 -spec start_child(SupRef, ChildSpec) -> startchild_ret()
 when SupRef :: sup_ref(), ChildSpec :: child_spec() | (List :: [term()]).

 Link to this function

 start_link(Module, Args)

 View Source

 -spec start_link(Module, Args) -> startlink_ret() when Module :: module(), Args :: term().

 Link to this function

 start_link(SupName, Module, Args)

 View Source

 -spec start_link(SupName, Module, Args) -> startlink_ret()
 when SupName :: sup_name(), Module :: module(), Args :: term().

 Link to this function

 terminate(Reason, State)

 View Source

 -spec terminate(term(), state()) -> ok.

 Link to this function

 terminate_child(SupRef, Id)

 View Source

 -spec terminate_child(SupRef, Id) -> Result
 when
 SupRef :: sup_ref(),
 Id :: pid() | child_id(),
 Result :: ok | {error, Error},
 Error :: not_found | simple_one_for_one.

 Link to this function

 try_again_restart(SupRef, Child, Reason)

 View Source

 -spec try_again_restart(SupRef, Child, Reason) -> ok
 when SupRef :: sup_ref(), Child :: child_id() | pid(), Reason :: term().

 Link to this function

 which_children(SupRef)

 View Source

 -spec which_children(SupRef) -> [{Id, Child, Type, Modules}]
 when
 SupRef :: sup_ref(),
 Id :: child_id() | undefined,
 Child :: child() | restarting,
 Type :: worker(),
 Modules :: modules().

brod_topic_subscriber behaviour

A topic subscriber is a gen_server which subscribes to all or a given set of partition consumers (pollers) of a given topic and calls the user-defined callback functions for message processing.
Callbacks are documented in the source code of this module.

 Anchor for this section

 Summary

 Types

 ack_ref/0

 cb_fun/0

 cb_ret/0

 cb_state/0

 committed_offsets/0

 consumer/0

 state/0

 topic_subscriber_config/0

 Callbacks

 handle_message/3

 init/2

 terminate/2

 Functions

 ack(Pid, Partition, Offset)

 Acknowledge that message has been successfully consumed.

 start_link(Config)

 Start (link) a topic subscriber which receives and processes the messages from a given partition set.

 start_link(Client, Topic, Partitions, ConsumerConfig, CbModule, CbInitArg)

 deprecated

 Equivalent to start_link(Client, Topic, Partitions, ConsumerConfig, message, CbModule, CbInitArg).

 start_link(Client, Topic, Partitions, ConsumerConfig, MessageType, CbModule, CbInitArg)

 deprecated

 Start (link) a topic subscriber which receives and processes the messages or message sets from the given partition set. Use atom all to subscribe to all partitions. Messages are handled by calling CbModule:handle_message

 start_link(Client, Topic, Partitions, ConsumerConfig, CommittedOffsets, MessageType, CbFun, CbInitialState)

 deprecated

 Start (link) a topic subscriber which receives and processes the messages from the given partition set. Use atom all to subscribe to all partitions. Messages are handled by calling the callback function.

 stop(Pid)

 Stop topic subscriber.

 Anchor for this section

Types

 Link to this type

 ack_ref/0

 View Source

 -type ack_ref() :: {brod:partition(), brod:offset()}.

 Link to this type

 cb_fun/0

 View Source

 -type cb_fun() :: fun((brod:partition(), brod:message() | brod:message_set(), cb_state()) -> cb_ret()).

 Link to this type

 cb_ret/0

 View Source

 -type cb_ret() :: {ok, cb_state()} | {ok, ack, cb_state()}.

 Link to this type

 cb_state/0

 View Source

 -type cb_state() :: term().

 Link to this type

 committed_offsets/0

 View Source

 -type committed_offsets() :: [{brod:partition(), brod:offset()}].

 Link to this type

 consumer/0

 View Source

 -type consumer() :: #consumer{}.

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Link to this type

 topic_subscriber_config/0

 View Source

 -type topic_subscriber_config() ::
 #{client := brod:client(),
 topic := brod:topic(),
 cb_module := module(),
 init_data => term(),
 message_type => message | message_set,
 consumer_config => brod:consumer_config(),
 partitions => all | [brod:partition()]}.

 Anchor for this section

Callbacks

 Link to this callback

 handle_message/3

 View Source

 -callback handle_message(brod:partition(), brod:message() | brod:message_set(), cb_state()) -> cb_ret().

 Link to this callback

 init/2

 View Source

 -callback init(brod:topic(), term()) -> {ok, committed_offsets(), cb_state()}.

 Link to this callback

 terminate/2

 View Source

 (optional)

 -callback terminate(_Reason, cb_state()) -> _.

 Anchor for this section

Functions

 Link to this function

 ack(Pid, Partition, Offset)

 View Source

 -spec ack(pid(), brod:partition(), brod:offset()) -> ok.

Acknowledge that message has been successfully consumed.

 Link to this function

 start_link(Config)

 View Source

 -spec start_link(topic_subscriber_config()) -> {ok, pid()} | {error, _}.

Start (link) a topic subscriber which receives and processes the messages from a given partition set.
Possible Config keys:
	client: Client ID (or pid, but not recommended) of the brod client. Mandatory
	topic: Topic to consume from. Mandatory
	cb_module: Callback module which should have the callback functions implemented for message processing. Mandatory
	consumer_config: For partition consumer, brod_topic_subscriber:start_link/6. Optional, defaults to []
	message_type: The type of message that is going to be handled by the callback module. Can be either message or message set. Optional, defaults to message_set
	init_data: The term() that is going to be passed to CbModule:init/2 when initializing the subscriber. Optional, defaults to undefined
	partitions: List of partitions to consume from, or atom all. Optional, defaults to all.

 Link to this function

 start_link(Client, Topic, Partitions, ConsumerConfig, CbModule, CbInitArg)

 View Source

 This function is deprecated. Please use start_link/1 instead.

 -spec start_link(brod:client(),
 brod:topic(),
 all | [brod:partition()],
 brod:consumer_config(),
 module(),
 term()) ->
 {ok, pid()} | {error, any()}.

Equivalent to start_link(Client, Topic, Partitions, ConsumerConfig, message, CbModule, CbInitArg).

 Link to this function

 start_link(Client, Topic, Partitions, ConsumerConfig, MessageType, CbModule, CbInitArg)

 View Source

 This function is deprecated. Please use start_link/1 instead.

 -spec start_link(brod:client(),
 brod:topic(),
 all | [brod:partition()],
 brod:consumer_config(),
 message | message_set,
 module(),
 term()) ->
 {ok, pid()} | {error, any()}.

Start (link) a topic subscriber which receives and processes the messages or message sets from the given partition set. Use atom all to subscribe to all partitions. Messages are handled by calling CbModule:handle_message

 Link to this function

 start_link(Client, Topic, Partitions, ConsumerConfig, CommittedOffsets, MessageType, CbFun, CbInitialState)

 View Source

 This function is deprecated. Please use start_link/1 instead.

 -spec start_link(brod:client(),
 brod:topic(),
 all | [brod:partition()],
 brod:consumer_config(),
 committed_offsets(),
 message | message_set,
 cb_fun(),
 cb_state()) ->
 {ok, pid()} | {error, any()}.

Start (link) a topic subscriber which receives and processes the messages from the given partition set. Use atom all to subscribe to all partitions. Messages are handled by calling the callback function.
NOTE: CommittedOffsets are the offsets for the messages that have been successfully processed (acknowledged), not the begin-offset to start fetching from.

 Link to this function

 stop(Pid)

 View Source

 -spec stop(pid()) -> ok.

Stop topic subscriber.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

