

 Bumblebee

 v0.2.0

 Table of contents

 	Examples

 	Stable Diffusion

 	Fine-tuning

 	Modules

 	Bumblebee

 	Bumblebee.Audio

 	Bumblebee.Diffusion.StableDiffusion

 	Bumblebee.Text

 	Bumblebee.Vision

 	Bumblebee.Audio.Whisper

 	Bumblebee.Diffusion.StableDiffusion.SafetyChecker

 	Bumblebee.Diffusion.UNet2DConditional

 	Bumblebee.Diffusion.VaeKl

 	Bumblebee.Multimodal.Clip

 	Bumblebee.Multimodal.LayoutLm

 	Bumblebee.Text.Albert

 	Bumblebee.Text.Bart

 	Bumblebee.Text.Bert

 	Bumblebee.Text.ClipText

 	Bumblebee.Text.Distilbert

 	Bumblebee.Text.Gpt2

 	Bumblebee.Text.Mbart

 	Bumblebee.Text.Roberta

 	Bumblebee.Text.T5

 	Bumblebee.Vision.ClipVision

 	Bumblebee.Vision.ConvNext

 	Bumblebee.Vision.Deit

 	Bumblebee.Vision.ResNet

 	Bumblebee.Vision.Vit

 	Bumblebee.Audio.WhisperFeaturizer

 	Bumblebee.Text.AlbertTokenizer

 	Bumblebee.Text.BartTokenizer

 	Bumblebee.Text.BertTokenizer

 	Bumblebee.Text.CamembertTokenizer

 	Bumblebee.Text.ClipTokenizer

 	Bumblebee.Text.DistilbertTokenizer

 	Bumblebee.Text.Gpt2Tokenizer

 	Bumblebee.Text.LayoutLmTokenizer

 	Bumblebee.Text.MbartTokenizer

 	Bumblebee.Text.RobertaTokenizer

 	Bumblebee.Text.T5Tokenizer

 	Bumblebee.Text.WhisperTokenizer

 	Bumblebee.Text.XlmRobertaTokenizer

 	Bumblebee.Vision.ClipFeaturizer

 	Bumblebee.Vision.ConvNextFeaturizer

 	Bumblebee.Vision.DeitFeaturizer

 	Bumblebee.Vision.VitFeaturizer

 	Bumblebee.Diffusion.DdimScheduler

 	Bumblebee.Diffusion.PndmScheduler

 	Bumblebee.Configurable

 	Bumblebee.Featurizer

 	Bumblebee.ModelSpec

 	Bumblebee.Scheduler

 	Bumblebee.Text.Generation

 	Bumblebee.Tokenizer

Examples

Mix.install([
 {:bumblebee, "~> 0.2.0"},
 {:nx, "~> 0.5.1"},
 {:exla, "~> 0.5.1"},
 {:axon, "~> 0.5.1"},
 {:kino, "~> 0.8.0"}
])

Nx.global_default_backend(EXLA.Backend)
Introduction
In this notebook we go through a number of examples to get a quick overview of what Bumblebee brings to the table.
Image classification
Let's start with image classification. First, we load a pre-trained ResNet-50 model from a HuggingFace repository. We also load the corresponding featurizer for preprocessing input images.
{:ok, resnet} = Bumblebee.load_model({:hf, "microsoft/resnet-50"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, "microsoft/resnet-50"})

:ok
Next, we use the high-level API to build an end-to-end task definition on top of the model we just loaded. We will also need an image to work with, so let's show an image input.
serving = Bumblebee.Vision.image_classification(resnet, featurizer)

image_input = Kino.Input.image("Image", size: {224, 224})
Bumblebee implements end-to-end tasks using Nx.Serving. With serving we can choose to either do a one-off run, or to start a supervised process that automatically batches multiple inference requests. Thanks to this abstraction we can do quick experimentation and then plug the task into a production app with minimal effort.
In this case we will do the one-off run for the selected image:
image = Kino.Input.read(image_input)

Build a tensor from the raw pixel data
image =
 image.data
 |> Nx.from_binary(:u8)
 |> Nx.reshape({image.height, image.width, 3})

Nx.Serving.run(serving, image)
Manual inference
Note that we are dealing with regular Axon models and the high-level API is just a convenience. If you need full control over the inference flow, you can do it manually. In this case, we would pass the image through the featurizer to get normalized model inputs, then we would run the model and finally extract the most probable label.
inputs = Bumblebee.apply_featurizer(featurizer, image)
outputs = Axon.predict(resnet.model, resnet.params, inputs)

id = outputs.logits |> Nx.argmax() |> Nx.to_number()
resnet.spec.id_to_label[id]
You can try a number of other models, just replace the repository id with one of these:
	facebook/convnext-tiny-224 (ConvNeXT)

	google/vit-base-patch16-224 (ViT)

	facebook/deit-base-distilled-patch16-224 (DeiT)

Fill-mask
Now time for some text processing. Specifically, we want to fill in the missing word in a sentence. This time we load the BERT model together with a matching tokenizer. We will use the tokenizer to preprocess our text input.
{:ok, bert} = Bumblebee.load_model({:hf, "bert-base-uncased"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "bert-base-uncased"})

serving = Bumblebee.Text.fill_mask(bert, tokenizer)

text_input = Kino.Input.text("Sentence with mask", default: "The capital of [MASK] is Paris.")
text = Kino.Input.read(text_input)

Nx.Serving.run(serving, text)
Again, you can try other models, such as albert-base-v2 or roberta-base.
Text classification
In this example we will analyze text sentiment.
We will use the BERTweet model, trained to classify text into one of three categories: positive (POS), negative (NEG) or neutral (NEU).
{:ok, bertweet} = Bumblebee.load_model({:hf, "finiteautomata/bertweet-base-sentiment-analysis"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "vinai/bertweet-base"})

serving = Bumblebee.Text.text_classification(bertweet, tokenizer)

text_input = Kino.Input.text("Text", default: "This cat is so cute.")
Note: this time we need to load a matching tokenizer from a different repository.
text = Kino.Input.read(text_input)
Nx.Serving.run(serving, text)
Named-entity recognition
In this section we look at token classification, more specifically named-entity recognition (NER), where the objective is to identify and categorize entities in text. We will once again use a fine-tuned BERT model.
{:ok, bert} = Bumblebee.load_model({:hf, "dslim/bert-base-NER"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "bert-base-cased"})

serving = Bumblebee.Text.token_classification(bert, tokenizer, aggregation: :same)

text_input =
 Kino.Input.text("Text",
 default: "Rachel Green works at Ralph Lauren in New York City in the sitcom Friends"
)
text = Kino.Input.read(text_input)
Nx.Serving.run(serving, text)
Text generation
Generation is where things get even more exciting. In this section w will use the extremely popular GPT-2 model to generate text continuation.
Generation generally is an iterative process, where the model predicts the sentence token by token, adhering to some constraints. Again, we will make use of a higher-level API based on Nx.Serving.
{:ok, gpt2} = Bumblebee.load_model({:hf, "gpt2"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "gpt2"})

serving = Bumblebee.Text.generation(gpt2, tokenizer, max_new_tokens: 10)

text_input = Kino.Input.text("Text", default: "Yesterday, I was reading a book and")
text = Kino.Input.read(text_input)
Nx.Serving.run(serving, text)
There is also gpt2-medium and gpt2-large - heavier versions of the model with much more parameters.
Question answering
Another text-related task is question answering, where the objective is to retrieve the answer to a question based on a given text. We will work with a RoBERTa model trained to do just that.
{:ok, roberta} = Bumblebee.load_model({:hf, "deepset/roberta-base-squad2"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "roberta-base"})

serving = Bumblebee.Text.question_answering(roberta, tokenizer)

question_input =
 Kino.Input.text("Question",
 default: "Which name is also used to describe the Amazon rainforest in English?"
)

context_input =
 Kino.Input.textarea("Context",
 default:
 ~s/The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species./
)

Kino.Layout.grid([question_input, context_input])
question = Kino.Input.read(question_input)
context = Kino.Input.read(context_input)
Nx.Serving.run(serving, %{question: question, context: context})
Final notes
The examples we covered should give you a good idea of what Bumblebee is about. We are excited about enabling easy access to the pre-trained, powerful deep learning models in Elixir. We are actively working on adding more models and high-level APIs, so stay tuned 🚀

Stable Diffusion

Mix.install([
 {:bumblebee, "~> 0.2.0"},
 {:nx, "~> 0.5.1"},
 {:exla, "~> 0.5.1"},
 {:kino, "~> 0.8.0"}
])

Nx.global_default_backend(EXLA.Backend)
Introduction
Stable Diffusion is a latent text-to-image diffusion model, primarily used to generate images based on a text prompt. Ever since it became open-source, the research, applications and tooling around it exploded. You can find a ton of resources and examples online, meanwhile let's see how to run Stable Diffusion using Bumblebee!
Note: Stable Diffusion is a very involved model, so the generation can take a long time if you run it on a CPU. Also, running on the GPU currently requires at least 10 GB of VRAM.

Text to image
Stable Diffusion is composed of several separate models and preprocessors, so we will load all of them.
repository_id = "CompVis/stable-diffusion-v1-4"

{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "openai/clip-vit-large-patch14"})

{:ok, clip} = Bumblebee.load_model({:hf, repository_id, subdir: "text_encoder"})

{:ok, unet} =
 Bumblebee.load_model({:hf, repository_id, subdir: "unet"},
 params_filename: "diffusion_pytorch_model.bin"
)

{:ok, vae} =
 Bumblebee.load_model({:hf, repository_id, subdir: "vae"},
 architecture: :decoder,
 params_filename: "diffusion_pytorch_model.bin"
)

{:ok, scheduler} = Bumblebee.load_scheduler({:hf, repository_id, subdir: "scheduler"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, repository_id, subdir: "feature_extractor"})
{:ok, safety_checker} = Bumblebee.load_model({:hf, repository_id, subdir: "safety_checker"})

:ok
Note: some checkpoints, such as runwayml/stable-diffusion-v1-5, require a license agreement. In those cases, sign up on Hugging Face, accept the license on the repository page, generate an access token in the settings and add it to the repository specification via :auth_token. You can use Livebook secrets to pass the token securely.

With all the models loaded, we can now configure a serving implementation of the text-to-image task.
serving =
 Bumblebee.Diffusion.StableDiffusion.text_to_image(clip, unet, vae, tokenizer, scheduler,
 num_steps: 20,
 num_images_per_prompt: 2,
 safety_checker: safety_checker,
 safety_checker_featurizer: featurizer,
 compile: [batch_size: 1, sequence_length: 60],
 defn_options: [compiler: EXLA]
)

prompt_input =
 Kino.Input.text("Prompt", default: "numbat, forest, high quality, detailed, digital art")

negative_prompt_input = Kino.Input.text("Negative Prompt", default: "darkness, rainy, foggy")

Kino.Layout.grid([prompt_input, negative_prompt_input])
We are ready to generate images!
prompt = Kino.Input.read(prompt_input)
negative_prompt = Kino.Input.read(negative_prompt_input)

output = Nx.Serving.run(serving, %{prompt: prompt, negative_prompt: negative_prompt})

for result <- output.results do
 Kino.Image.new(result.image)
end
|> Kino.Layout.grid(columns: 2)
To achieve a better quality you can increase the number of steps and images.

Fine-tuning

Mix.install([
 {:bumblebee, "~> 0.2.0"},
 {:axon, "~> 0.5.1"},
 {:nx, "~> 0.5.1"},
 {:exla, "~> 0.5.1"},
 {:explorer, "~> 0.5.0"}
])
:ok
Introduction
Nx.default_backend(EXLA.Backend)
{Nx.BinaryBackend, []}
Fine-tuning is the process of specializing the parameters in a pre-trained model to a specific task. Large-language models such as BERT train on a generic langauge-modeling task which makes them powerful at extracting features from text. Despite their power, you often still need to train them on a downstream task.
This example demonstrates how to use Bumblebee and Axon to fine-tune a pre-trained Bert model to classify Yelp reviews into classes of 1-5 stars. This example is based on Fine-tune a pretrained model from Huggingface.
You'll need to first download the Yelp Reviews dataset (download).
Once downloaded, extract it to a directory of your choosing and you're ready to go!
Load a model
We'll start by loading a pre-trained model and tokenizer; however, we'll initialize the model to have an untrained sequence classification head.
Reviews in the dataset can have anywhere from 1 to 5 stars, which means we need 5 labels in our sequence classification head. We can change the default configuration by loading the model spec with Bumblebee.load_spec/2 and making changes to spec properties with Bumblebee.configure/2.
The pre-trained model we'll be using is bert-base-cased; however, you can use any of the supported models from the HuggingFace Hub.
{:ok, spec} =
 Bumblebee.load_spec({:hf, "bert-base-cased"},
 architecture: :for_sequence_classification
)

spec = Bumblebee.configure(spec, num_labels: 5)

{:ok, model} = Bumblebee.load_model({:hf, "bert-base-cased"}, spec: spec)
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "bert-base-cased"})

14:41:33.314 [info] TfrtCpuClient created.

14:41:33.820 [debug] the following parameters were missing:

 * sequence_classification_head.output.kernel
 * sequence_classification_head.output.bias

14:41:33.820 [debug] the following PyTorch parameters were unused:

 * cls.predictions.bias
 * cls.predictions.decoder.weight
 * cls.predictions.transform.LayerNorm.beta
 * cls.predictions.transform.LayerNorm.gamma
 * cls.predictions.transform.dense.bias
 * cls.predictions.transform.dense.weight
 * cls.seq_relationship.bias
 * cls.seq_relationship.weight

{:ok,
 %Bumblebee.Text.BertTokenizer{
 tokenizer: #Tokenizers.Tokenizer<[
 vocab_size: 28996,
 continuing_subword_prefix: "##",
 max_input_chars_per_word: 100,
 model_type: "bpe",
 unk_token: "[UNK]"
]>,
 special_tokens: %{cls: "[CLS]", mask: "[MASK]", pad: "[PAD]", sep: "[SEP]", unk: "[UNK]"}
 }}
Prepare a dataset
With the models downloaded and ready to go, you need to prepare the dataset. The downloaded dataset is a CSV. You can use the Explorer library to quickly load the CSV into a DataFrame.
Once the data is loaded, you need to convert raw text to tokens and the raw labels to tensors. Additionally, you need to convert the DataFrame to a Stream consisting of tuples: {tokenized, labels} - that is the form expected by Axon's training API.
defmodule Yelp do
 def load(path, tokenizer, opts \\ []) do
 path
 |> Explorer.DataFrame.from_csv!(header: false)
 |> Explorer.DataFrame.rename(["label", "text"])
 |> stream()
 |> tokenize_and_batch(tokenizer, opts[:batch_size], opts[:sequence_length])
 end

 def stream(df) do
 xs = df["text"]
 ys = df["label"]

 xs
 |> Explorer.Series.to_enum()
 |> Stream.zip(Explorer.Series.to_enum(ys))
 end

 def tokenize_and_batch(stream, tokenizer, batch_size, sequence_length) do
 stream
 |> Stream.chunk_every(batch_size)
 |> Stream.map(fn batch ->
 {text, labels} = Enum.unzip(batch)
 tokenized = Bumblebee.apply_tokenizer(tokenizer, text, length: sequence_length)
 {tokenized, Nx.stack(labels)}
 end)
 end
end
{:module, Yelp, <<70, 79, 82, 49, 0, 0, 13, ...>>, {:tokenize_and_batch, 4}}
Now you can use the Yelp.load/2 function to load a training set and a testing set:
batch_size = 32
sequence_length = 64

train_data =
 Yelp.load("~/yelp/yelp_review_full_csv/train.csv", tokenizer,
 batch_size: batch_size,
 sequence_length: sequence_length
)

test_data =
 Yelp.load("~/yelp/yelp_review_full_csv/test.csv", tokenizer,
 batch_size: batch_size,
 sequence_length: sequence_length
)
#Stream<[
 enum: #Stream<[
 enum: #Function<73.124013645/2 in Stream.zip_with/2>,
 funs: [#Function<3.124013645/1 in Stream.chunk_while/4>]
]>,
 funs: [#Function<48.124013645/1 in Stream.map/2>]
]>
You can see what a single batch looks like by grabbing 1 from the stream:
Enum.take(train_data, 1)
[
 {%{
 "attention_mask" => #Nx.Tensor<
 s64[32][64]
 EXLA.Backend<host:0, 0.801663575.1558315030.66545>
 [
 [1, ...],
 ...
]
 >,
 "input_ids" => #Nx.Tensor<
 s64[32][64]
 EXLA.Backend<host:0, 0.801663575.1558315030.66544>
 [
 [101, 173, 1197, 119, 2284, 2953, 3272, 1917, 178, 1440, 1111, 1107, 170, 1704, 22351, 119, 1119, 112, 188, 3505, 1105, 3123, 1106, 2037, 1106, 1443, 1217, 10063, 4404, 132, 1119, 112, 188, 1579, 1113, 1159, 1107, 3195, 1117, 4420, 132, 1119, 112, 188, 6559, 1114, ...],
 ...
]
 >,
 "token_type_ids" => #Nx.Tensor<
 s64[32][64]
 EXLA.Backend<host:0, 0.801663575.1558315030.66546>
 [
 [0, ...],
 ...
]
 >
 },
 #Nx.Tensor<
 s64[32]
 EXLA.Backend<host:0, 0.801663575.1558315028.66360>
 [5, 2, 4, 4, 1, 5, 5, 1, 2, 3, 1, 1, 4, 2, 5, 5, 5, 5, 5, 5, 4, 3, 2, 5, 1, 1, 1, 2, 2, 4, 2, 2]
 >}
]
The dataset is rather large for CPU training, so we'll just train a small subset (250 training batches and 50 testing batches):
train_data = Enum.take(train_data, 250)
test_data = Enum.take(test_data, 50)
:ok
:ok
Train the model
Now we can go about training the model! First, we need to extract the Axon model and parameters from the Bumblebee model map:
%{model: model, params: params} = model

model
#Axon<
 inputs: %{"attention_head_mask" => {12, 12}, "attention_mask" => {nil, nil}, "input_ids" => {nil, nil}, "position_ids" => {nil, nil}, "token_type_ids" => {nil, nil}}
 outputs: "container_37"
 nodes: 790
>
The Axon model actually outputs a map with :logits, :hidden_states, and :attentions. You can see this by using Axon.get_output_shape/2 with an input. This method symbolically executes the graph and gets the resulting shapes:
[{input, _}] = Enum.take(train_data, 1)
Axon.get_output_shape(model, input)
%{attentions: #Axon.None<...>, hidden_states: #Axon.None<...>, logits: {32, 5}}
For training, we only care about the :logits key, so we'll extract that by attaching an Axon.nx/2 layer to the model:
logits_model = Axon.nx(model, & &1.logits)
#Axon<
 inputs: %{"attention_head_mask" => {12, 12}, "attention_mask" => {nil, nil}, "input_ids" => {nil, nil}, "position_ids" => {nil, nil}, "token_type_ids" => {nil, nil}}
 outputs: "nx_0"
 nodes: 791
>
Now we can declare our training loop. You can construct Axon training loops using the Axon.Loop.trainer/3 factory method with a model, loss function, and optimizer. We'll also adjust the log-settings to more frequently log metrics to standard out:
loss =
 &Axon.Losses.categorical_cross_entropy(&1, &2,
 reduction: :mean,
 from_logits: true,
 sparse: true
)

optimizer = Axon.Optimizers.adam(5.0e-5)

loop = Axon.Loop.trainer(logits_model, loss, optimizer, log: 1)
#Axon.Loop<
 metrics: %{
 "loss" => {#Function<11.3813108/3 in Axon.Metrics.running_average/1>,
 #Function<41.3316493/2 in :erl_eval.expr/6>}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<6.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<64.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
The call to trainer just returns a data structure. In Axon, we manipulate this data structure to control different parts of the loop. For example, you can attach metrics:
accuracy = &Axon.Metrics.accuracy(&1, &2, from_logits: true, sparse: true)

loop = Axon.Loop.metric(loop, accuracy, "accuracy")
#Axon.Loop<
 metrics: %{
 "accuracy" => {#Function<11.3813108/3 in Axon.Metrics.running_average/1>,
 #Function<41.3316493/2 in :erl_eval.expr/6>},
 "loss" => {#Function<11.3813108/3 in Axon.Metrics.running_average/1>,
 #Function<41.3316493/2 in :erl_eval.expr/6>}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<6.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<64.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
And you can attach event handlers to do certain things, such as serialize the loop state at regular intervals so you don't lose your progress:
loop = Axon.Loop.checkpoint(loop, event: :epoch_completed)
#Axon.Loop<
 metrics: %{
 "accuracy" => {#Function<11.3813108/3 in Axon.Metrics.running_average/1>,
 #Function<41.3316493/2 in :erl_eval.expr/6>},
 "loss" => {#Function<11.3813108/3 in Axon.Metrics.running_average/1>,
 #Function<41.3316493/2 in :erl_eval.expr/6>}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<17.14409478/1 in Axon.Loop.checkpoint/2>,
 #Function<6.14409478/2 in Axon.Loop.build_filter_fn/1>},
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<6.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<64.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
To run the loop, you just need to call Axon.Loop.run/4. Axon.Loop.run/4 takes a loop, input data, and any initial state (in this case initial parameters). You can kind of think of Axon.Loop.run/4 as an Enum.reduce/3. It takes data, an accumulator, and a function - which map to Loop.run/4 input data, initial state, and the actual loop data structure.
You'll commonly see loops written out in long chains using Elixir's |> operator, like this:
trained_model_state =
 logits_model
 |> Axon.Loop.trainer(loss, optimizer, log: 1)
 |> Axon.Loop.metric(accuracy, "accuracy")
 |> Axon.Loop.checkpoint(event: :epoch_completed)
 |> Axon.Loop.run(train_data, params, epochs: 3, compiler: EXLA, strict?: false)

:ok

02:46:02.170 [debug] Forwarding options: [compiler: EXLA] to JIT compiler
Epoch: 0, Batch: 249, accuracy: 0.3462500 loss: 1.2216607
Epoch: 1, Batch: 249, accuracy: 0.5186251 loss: 1.0558304
Epoch: 2, Batch: 249, accuracy: 0.6236249 loss: 0.9317472
:ok
Evaluating the model
The training loop returns the final model state after training over your dataset for the given number of epochs. Axon uses the same Axon.Loop API to create evaluation loops as well. You can create one with the Axon.Loop.evaluator/1 factory, instrument it with metrics, and run it on your data with your trained model state:
logits_model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(accuracy, "accuracy")
|> Axon.Loop.run(test_data, trained_model_state, compiler: EXLA)
Batch: 49, accuracy: 0.3675000
%{
 0 => %{
 "accuracy" => #Nx.Tensor<
 f32
 EXLA.Backend<host:0, 0.446408219.3911319572.169449>
 0.36750003695487976
 >
 }
}

Bumblebee

Pre-trained Axon models for easy inference and boosted training.
Bumblebee provides state-of-the-art, configurable Axon models. On
top of that, it streamlines the process of loading pre-trained models
by integrating with Hugging Face Hub and 🤗 Transformers.
Usage
You can load one of the supported models by specifying the model repository:
{:ok, bert} = Bumblebee.load_model({:hf, "bert-base-uncased"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "bert-base-uncased"})
Then you are ready to make predictions:
inputs = Bumblebee.apply_tokenizer(tokenizer, "Hello Bumblebee!")
outputs = Axon.predict(bert.model, bert.params, inputs)
For complete examples see the Examples notebook.
Note
The models are generally large, so make sure to configure an efficient
Nx backend, such as EXLA or Torchx.

 Anchor for this section

 Summary

 Types

 model_info()

 A model together with its state and metadata.

 repository()

 A location to fetch model files from.

 Models

 build_model(spec)

 Builds an Axon model according to the given specification.

 load_model(repository, opts \\ [])

 Loads a pre-trained model from a model repository.

 load_spec(repository, opts \\ [])

 Loads model specification from a model repository.

 Featurizers

 apply_featurizer(featurizer, input, opts \\ [])

 Featurizes input with the given featurizer.

 load_featurizer(repository, opts \\ [])

 Loads featurizer from a model repository.

 Tokenizers

 apply_tokenizer(tokenizer, input, opts \\ [])

 Tokenizes and encodes input with the given tokenizer.

 load_tokenizer(repository, opts \\ [])

 Loads tokenizer from a model repository.

 Schedulers

 load_scheduler(repository, opts \\ [])

 Loads scheduler from a model repository.

 scheduler_init(scheduler, num_steps, sample_shape)

 Initializes state for a new scheduler loop.

 scheduler_step(scheduler, state, sample, prediction)

 Predicts sample at the previous timestep using the given scheduler.

 Functions

 configure(config, options \\ [])

 Builds or updates a configuration object with the given options.

 Anchor for this section

Types

 Link to this type

 model_info()

 View Source

 @type model_info() :: %{model: Axon.t(), params: map(), spec: Bumblebee.ModelSpec.t()}

A model together with its state and metadata.

 Link to this type

 repository()

 View Source

 @type repository() ::
 {:hf, String.t()} | {:hf, String.t(), keyword()} | {:local, Path.t()}

A location to fetch model files from.
Can be either:
	{:hf, repository_id} - the repository on Hugging Face. Options
may be passed as the third element:
	:revision - the specific model version to use, it can be
any valid git identifier, such as branch name, tag name, or
a commit hash

	:cache_dir - the directory to store the downloaded files
in. Defaults to the standard cache location for the given
operating system. You can also configure it globally by
setting the BUMBLEBEE_CACHE_DIR environment variable

	:auth_token - the token to use as HTTP bearer authorization
for remote files

	:subdir - the directory within the repository where the
files are located

	{:local, directory} - the directory containing model files

 Anchor for this section

Models

 Link to this function

 build_model(spec)

 View Source

 @spec build_model(Bumblebee.ModelSpec.t()) :: Axon.t()

Builds an Axon model according to the given specification.

 example

 Example

spec = Bumblebee.configure(Bumblebee.Vision.ResNet, architecture: :base, embedding_size: 128)
model = Bumblebee.build_model(spec)

 Link to this function

 load_model(repository, opts \\ [])

 View Source

 @spec load_model(
 repository(),
 keyword()
) :: {:ok, model_info()} | {:error, String.t()}

Loads a pre-trained model from a model repository.

 options

 Options

	:spec - the model specification to use when building the model.
By default the specification is loaded using load_spec/2

	:module - the model specification module. By default it is
inferred from the configuration file, if that is not possible,
it must be specified explicitly

	:architecture - the model architecture, must be supported by
:module. By default it is inferred from the configuration file

	:params_filename - the file with the model parameters to be loaded

	:log_params_diff - whether to log missing, mismatched and unused
parameters. Defaults to true

	:backend - the backend to allocate the tensors on. It is either
an atom or a tuple in the shape {backend, options}

 examples

 Examples

By default the model type is inferred from configuration, so loading
is as simple as:
{:ok, resnet} = Bumblebee.load_model({:hf, "microsoft/resnet-50"})
%{model: model, params: params, spec: spec} = resnet
You can explicitly specify a different architecture, in which case
matching parameters are still loaded:
{:ok, resnet} = Bumblebee.load_model({:hf, "microsoft/resnet-50"}, architecture: :base)
To further customize the model, you can also pass the specification:
{:ok, spec} = Bumblebee.load_spec({:hf, "microsoft/resnet-50"})
spec = Bumblebee.configure(spec, num_labels: 10)
{:ok, resnet} = Bumblebee.load_model({:hf, "microsoft/resnet-50"}, spec: spec)

 Link to this function

 load_spec(repository, opts \\ [])

 View Source

 @spec load_spec(
 repository(),
 keyword()
) :: {:ok, Bumblebee.ModelSpec.t()} | {:error, String.t()}

Loads model specification from a model repository.

 options

 Options

	:module - the model specification module. By default it is
inferred from the configuration file, if that is not possible,
it must be specified explicitly

	:architecture - the model architecture, must be supported by
:module. By default it is inferred from the configuration file

 examples

 Examples

{:ok, spec} = Bumblebee.load_spec({:hf, "microsoft/resnet-50"})
You can explicitly specify a different architecture:
{:ok, spec} = Bumblebee.load_spec({:hf, "microsoft/resnet-50"}, architecture: :base)

 Anchor for this section

Featurizers

 Link to this function

 apply_featurizer(featurizer, input, opts \\ [])

 View Source

 @spec apply_featurizer(Bumblebee.Featurizer.t(), any(), keyword()) :: any()

Featurizes input with the given featurizer.

 options

 Options

	:defn_options - the options for JIT compilation. Note that
this is only relevant for featurizers implemented with Nx.
Defaults to []

 examples

 Examples

featurizer = Bumblebee.configure(Bumblebee.Vision.ConvNextFeaturizer)
{:ok, img} = StbImage.read_file(path)
inputs = Bumblebee.apply_featurizer(featurizer, [img])

 Link to this function

 load_featurizer(repository, opts \\ [])

 View Source

 @spec load_featurizer(
 repository(),
 keyword()
) :: {:ok, Bumblebee.Featurizer.t()} | {:error, String.t()}

Loads featurizer from a model repository.

 options

 Options

	:module - the featurizer module. By default it is inferred
from the preprocessor configuration file, if that is not possible,
it must be specified explicitly

 examples

 Examples

{:ok, featurizer} = Bumblebee.load_featurizer({:hf, "microsoft/resnet-50"})

 Anchor for this section

Tokenizers

 Link to this function

 apply_tokenizer(tokenizer, input, opts \\ [])

 View Source

 @spec apply_tokenizer(
 Bumblebee.Tokenizer.t(),
 Bumblebee.Tokenizer.input() | [Bumblebee.Tokenizer.input()],
 keyword()
) :: any()

Tokenizes and encodes input with the given tokenizer.

 options

 Options

	:add_special_tokens - whether to add special tokens. Defaults
to true

	:pad_direction - the padding direction, either :right or
:left. Defaults to :right

	:return_attention_mask - whether to return attention mask for
encoded sequence. Defaults to true

	:return_token_type_ids - whether to return token type ids for
encoded sequence. Defaults to true

	:return_special_tokens_mask - whether to return special tokens
mask for encoded sequence. Defaults to false

	:return_offsets - whether to return token offsets for encoded
sequence. Defaults to false

	:length - applies fixed length padding or truncation to the given
input if set

 examples

 Examples

tokenizer = Bumblebee.load_tokenizer({:hf, "bert-base-uncased"})
inputs = Bumblebee.apply_tokenizer(tokenizer, ["The capital of France is [MASK]."])

 Link to this function

 load_tokenizer(repository, opts \\ [])

 View Source

 @spec load_tokenizer(
 repository(),
 keyword()
) :: {:ok, Bumblebee.Tokenizer.t()} | {:error, String.t()}

Loads tokenizer from a model repository.

 options

 Options

	:module - the tokenizer module. By default it is inferred from
the configuration files, if that is not possible, it must be
specified explicitly

 examples

 Examples

{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "bert-base-uncased"})

 Anchor for this section

Schedulers

 Link to this function

 load_scheduler(repository, opts \\ [])

 View Source

 @spec load_scheduler(
 repository(),
 keyword()
) :: {:ok, Bumblebee.Scheduler.t()} | {:error, String.t()}

Loads scheduler from a model repository.

 options

 Options

	:module - the scheduler module. By default it is inferred
from the scheduler configuration file, if that is not possible,
it must be specified explicitly

 examples

 Examples

{:ok, scheduler} =
 Bumblebee.load_scheduler({:hf, "CompVis/stable-diffusion-v1-4", subdir: "scheduler"})

 Link to this function

 scheduler_init(scheduler, num_steps, sample_shape)

 View Source

 @spec scheduler_init(
 Bumblebee.Scheduler.t(),
 non_neg_integer(),
 tuple()
) :: {Bumblebee.Scheduler.state(), Nx.Tensor.t()}

Initializes state for a new scheduler loop.
Returns a pair of {state, timesteps}, where state is an opaque
container expected by scheduler_step/4 and timesteps is a sequence
of subsequent timesteps for model forward pass.
Note that the number of timesteps may not match num_steps exactly.
num_steps parameterizes sampling points, however depending on the
method, sampling certain points may require multiple forward passes
of the model and each element in timesteps corresponds to a single
forward pass.

 Link to this function

 scheduler_step(scheduler, state, sample, prediction)

 View Source

 @spec scheduler_step(
 Bumblebee.Scheduler.t(),
 Bumblebee.Scheduler.state(),
 Nx.Tensor.t(),
 Nx.Tensor.t()
) :: {Bumblebee.Scheduler.state(), Nx.Tensor.t()}

Predicts sample at the previous timestep using the given scheduler.
Takes the current sample and prediction (usually noise) returned
by the model at the current timestep. Returns {state, prev_sample},
where state is the updated scheduler loop state and prev_sample
is the predicted sample at the previous timestep.
Note that some schedulers require several forward passes of the model
(and a couple calls to this function) to make an actual prediction for
the previous sample.

 Anchor for this section

Functions

 Link to this function

 configure(config, options \\ [])

 View Source

 @spec configure(
 module() | Bumblebee.Configurable.t(),
 keyword()
) :: Bumblebee.Configurable.t()

Builds or updates a configuration object with the given options.
Expects a configuration struct or a module supporting configuration.
These are usually configurable:
	model specification (Bumblebee.ModelSpec)

	featurizer (Bumblebee.Featurizer)

	scheduler (Bumblebee.Scheduler)

 examples

 Examples

To build a new configuration, pass a module:
featurizer = Bumblebee.configure(Bumblebee.Vision.ConvNextFeaturizer)
spec = Bumblebee.configure(Bumblebee.Vision.ResNet, architecture: :for_image_classification)
Similarly, you can update an existing configuration:
featurizer = Bumblebee.configure(featurizer, resize_method: :bilinear)
spec = Bumblebee.configure(spec, embedding_size: 128)

Bumblebee.Audio

High-level tasks related to audio processing.

 Anchor for this section

 Summary

 Types

 speech_to_text_input()

 A term representing audio.

 speech_to_text_output()

 speech_to_text_result()

 Functions

 speech_to_text(model_info, featurizer, tokenizer, opts \\ [])

 Builds serving for speech-to-text generation.

 Anchor for this section

Types

 Link to this type

 speech_to_text_input()

 View Source

 @type speech_to_text_input() :: Nx.t() | {:file, String.t()}

A term representing audio.
Can be either of:
	a 1-dimensional Nx.Tensor with audio samples

	{:file, path} with path to an audio file (note that this
requires ffmpeg installed)

 Link to this type

 speech_to_text_output()

 View Source

 @type speech_to_text_output() :: %{results: [speech_to_text_result()]}

 Link to this type

 speech_to_text_result()

 View Source

 @type speech_to_text_result() :: %{text: String.t()}

 Anchor for this section

Functions

 Link to this function

 speech_to_text(model_info, featurizer, tokenizer, opts \\ [])

 View Source

 @spec speech_to_text(
 Bumblebee.model_info(),
 Bumblebee.Featurizer.t(),
 Bumblebee.Tokenizer.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for speech-to-text generation.
The serving accepts speech_to_text_input/0 and returns
speech_to_text_output/0. A list of inputs is also supported.
Note that either :max_new_tokens or :max_length must be specified.
The generation should generally finish based on the audio input,
however you still need to specify the upper limit.

 options

 Options

	:max_new_tokens - the maximum number of tokens to be generated,
ignoring the number of tokens in the prompt

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

Also accepts all the other options of Bumblebee.Text.Generation.build_generate/3.

 examples

 Examples

{:ok, whisper} = Bumblebee.load_model({:hf, "openai/whisper-tiny"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, "openai/whisper-tiny"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "openai/whisper-tiny"})

serving =
 Bumblebee.Audio.speech_to_text(whisper, featurizer, tokenizer,
 max_new_tokens: 100,
 defn_options: [compiler: EXLA]
)

Nx.Serving.run(serving, {:file, "/path/to/audio.wav"})
#=> %{results: [%{text: "There is a cat outside the window."}]}

Bumblebee.Diffusion.StableDiffusion

High-level tasks based on Stable Diffusion.

 Anchor for this section

 Summary

 Types

 text_to_image_input()

 text_to_image_output()

 text_to_image_result()

 Functions

 text_to_image(encoder, unet, vae, tokenizer, scheduler, opts \\ [])

 Build serving for prompt-driven image generation.

 Anchor for this section

Types

 Link to this type

 text_to_image_input()

 View Source

 @type text_to_image_input() ::
 String.t()
 | %{:prompt => String.t(), optional(:negative_prompt) => String.t()}

 Link to this type

 text_to_image_output()

 View Source

 @type text_to_image_output() :: %{results: [text_to_image_result()]}

 Link to this type

 text_to_image_result()

 View Source

 @type text_to_image_result() :: %{
 :image => Nx.Tensor.t(),
 optional(:is_safe) => boolean()
}

 Anchor for this section

Functions

 Link to this function

 text_to_image(encoder, unet, vae, tokenizer, scheduler, opts \\ [])

 View Source

 @spec text_to_image(
 Bumblebee.model_info(),
 Bumblebee.model_info(),
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 Bumblebee.Scheduler.t(),
 keyword()
) :: Nx.Serving.t()

Build serving for prompt-driven image generation.
The serving accepts text_to_image_input/0 and returns text_to_image_output/0.
A list of inputs is also supported.
You can specify :safety_checker model to automatically detect
when a generated image is offensive or harmful and filter it out.

 options

 Options

	:safety_checker - the safety checker model info map. When a
safety checker is used, each output entry has an additional
:is_safe property and unsafe images are automatically zeroed.
Make sure to also set :safety_checker_featurizer

	:safety_checker_featurizer - the featurizer to use to preprocess
the safety checker input images

	:num_steps - the number of denoising steps. More denoising
steps usually lead to higher image quality at the expense of
slower inference. Defaults to 50

	:num_images_per_prompt - the number of images to generate for
each prompt. Defaults to 1

	:guidance_scale - the scale used for classifier-free diffusion
guidance. Higher guidance scale makes the generated images more
closely reflect the text prompt. This parameter corresponds to
ω in Equation (2) of the Imagen paper.
Defaults to 7.5

	:seed - a seed for the random number generator. Defaults to 0

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

 examples

 Examples

repository_id = "CompVis/stable-diffusion-v1-4"

{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "openai/clip-vit-large-patch14"})

{:ok, clip} = Bumblebee.load_model({:hf, repository_id, subdir: "text_encoder"})

{:ok, unet} =
 Bumblebee.load_model({:hf, repository_id, subdir: "unet"},
 params_filename: "diffusion_pytorch_model.bin"
)

{:ok, vae} =
 Bumblebee.load_model({:hf, repository_id, subdir: "vae"},
 architecture: :decoder,
 params_filename: "diffusion_pytorch_model.bin"
)

{:ok, scheduler} = Bumblebee.load_scheduler({:hf, repository_id, subdir: "scheduler"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, repository_id, subdir: "feature_extractor"})
{:ok, safety_checker} = Bumblebee.load_model({:hf, repository_id, subdir: "safety_checker"})

serving =
 Bumblebee.Diffusion.StableDiffusion.text_to_image(clip, unet, vae, tokenizer, scheduler,
 num_steps: 20,
 num_images_per_prompt: 2,
 safety_checker: safety_checker,
 safety_checker_featurizer: featurizer,
 compile: [batch_size: 1, sequence_length: 60],
 defn_options: [compiler: EXLA]
)

prompt = "numbat in forest, detailed, digital art"
Nx.Serving.run(serving, prompt)
#=> %{
#=> results: [
#=> %{
#=> image: #Nx.Tensor<
#=> u8[512][512][3]
#=> ...
#=> >,
#=> is_safe: true
#=> },
#=> %{
#=> image: #Nx.Tensor<
#=> u8[512][512][3]
#=> ...
#=> >,
#=> is_safe: true
#=> }
#=>]
#=> }

Bumblebee.Text

High-level tasks related to text processing.

 Anchor for this section

 Summary

 Types

 conversation_history()

 conversation_input()

 conversation_output()

 fill_mask_input()

 fill_mask_output()

 fill_mask_prediction()

 generation_input()

 generation_output()

 generation_result()

 question_answering_input()

 question_answering_output()

 question_answering_result()

 text_classification_input()

 text_classification_output()

 text_classification_prediction()

 token_classification_entity()

 A single entity label.

 token_classification_input()

 token_classification_output()

 zero_shot_classification_input()

 zero_shot_classification_output()

 zero_shot_classification_prediction()

 Functions

 conversation(model_info, tokenizer, opts \\ [])

 Builds serving for conversational generation.

 fill_mask(model_info, tokenizer, opts \\ [])

 Builds serving for the fill-mask task.

 generation(model_info, tokenizer, opts \\ [])

 Builds serving for prompt-driven text generation.

 question_answering(model_info, tokenizer, opts \\ [])

 Builds serving for the question answering task.

 text_classification(model_info, tokenizer, opts \\ [])

 Builds serving for text classification.

 token_classification(model_info, tokenizer, opts \\ [])

 Builds serving for token classification.

 zero_shot_classification(model_info, tokenizer, labels, opts \\ [])

 Builds serving for the zero-shot classification task.

 Anchor for this section

Types

 Link to this type

 conversation_history()

 View Source

 @type conversation_history() :: [{:user | :generated, String.t()}]

 Link to this type

 conversation_input()

 View Source

 @type conversation_input() :: %{
 text: String.t(),
 history: conversation_history() | nil
}

 Link to this type

 conversation_output()

 View Source

 @type conversation_output() :: %{text: String.t(), history: conversation_history()}

 Link to this type

 fill_mask_input()

 View Source

 @type fill_mask_input() :: String.t()

 Link to this type

 fill_mask_output()

 View Source

 @type fill_mask_output() :: %{predictions: [fill_mask_prediction()]}

 Link to this type

 fill_mask_prediction()

 View Source

 @type fill_mask_prediction() :: %{score: number(), token: String.t()}

 Link to this type

 generation_input()

 View Source

 @type generation_input() :: String.t()

 Link to this type

 generation_output()

 View Source

 @type generation_output() :: %{results: [generation_result()]}

 Link to this type

 generation_result()

 View Source

 @type generation_result() :: %{text: String.t()}

 Link to this type

 question_answering_input()

 View Source

 @type question_answering_input() :: %{question: String.t(), context: String.t()}

 Link to this type

 question_answering_output()

 View Source

 @type question_answering_output() :: %{predictions: [question_answering_result()]}

 Link to this type

 question_answering_result()

 View Source

 @type question_answering_result() :: %{
 text: String.t(),
 start: number(),
 end: number(),
 score: number()
}

 Link to this type

 text_classification_input()

 View Source

 @type text_classification_input() :: String.t()

 Link to this type

 text_classification_output()

 View Source

 @type text_classification_output() :: %{
 predictions: [text_classification_prediction()]
}

 Link to this type

 text_classification_prediction()

 View Source

 @type text_classification_prediction() :: %{score: number(), label: String.t()}

 Link to this type

 token_classification_entity()

 View Source

 @type token_classification_entity() :: %{
 start: non_neg_integer(),
 end: non_neg_integer(),
 score: float(),
 label: String.t(),
 phrase: String.t()
}

A single entity label.
Note that start and end indices are expressed in terms of UTF-8
bytes.

 Link to this type

 token_classification_input()

 View Source

 @type token_classification_input() :: String.t()

 Link to this type

 token_classification_output()

 View Source

 @type token_classification_output() :: %{entities: [token_classification_entity()]}

 Link to this type

 zero_shot_classification_input()

 View Source

 @type zero_shot_classification_input() :: String.t()

 Link to this type

 zero_shot_classification_output()

 View Source

 @type zero_shot_classification_output() :: %{
 predictions: [zero_shot_classification_prediction()]
}

 Link to this type

 zero_shot_classification_prediction()

 View Source

 @type zero_shot_classification_prediction() :: %{score: number(), label: String.t()}

 Anchor for this section

Functions

 Link to this function

 conversation(model_info, tokenizer, opts \\ [])

 View Source

 @spec conversation(Bumblebee.model_info(), Bumblebee.Tokenizer.t(), keyword()) ::
 Nx.Serving.t()

Builds serving for conversational generation.
The serving accepts conversation_input/0 and returns
conversation_output/0. A list of inputs is also supported.
Each call to serving returns the conversation history, which can be
fed into the next run to maintain the context.
Note that either :max_new_tokens or :max_length must be specified.

 options

 Options

	:max_new_tokens - the maximum number of tokens to be generated,
ignoring the number of tokens in the prompt

	:min_new_tokens - the minimum number of tokens to be generated,
ignoring the number of tokens in the prompt

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length.
Note that in this case, the whole conversation history is the
input, so this value should be relatively large to allow long
history (though the supported upper limit depends on the model)

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

Also accepts all the other options of Bumblebee.Text.Generation.build_generate/3.

 examples

 Examples

{:ok, model} = Bumblebee.load_model({:hf, "microsoft/DialoGPT-medium"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "gpt2"})

serving = Bumblebee.Text.conversation(model, tokenizer, max_new_tokens: 100)

history = nil

message = "Hey!"
%{text: text, history: history} = Nx.Serving.run(serving, %{text: message, history: history})
#=> %{history: ..., text: "Hey !"}

message = "What's up?"
%{text: text, history: history} = Nx.Serving.run(serving, %{text: message, history: history})
#=> %{history: ..., text: "Not much ."}

 Link to this function

 fill_mask(model_info, tokenizer, opts \\ [])

 View Source

 @spec fill_mask(Bumblebee.model_info(), Bumblebee.Tokenizer.t(), keyword()) ::
 Nx.Serving.t()

Builds serving for the fill-mask task.
The serving accepts fill_mask_input/0 and returns fill_mask_output/0.
A list of inputs is also supported.
In the fill-mask task, the objective is to predict a masked word in
the text. The serving expects the input to have exactly on such word,
denoted as [MASK].

 options

 Options

	:top_k - the number of top predictions to include in the output.
If the configured value is higher than the number of labels, all
labels are returned. Defaults to 5

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

 examples

 Examples

{:ok, bert} = Bumblebee.load_model({:hf, "bert-base-uncased"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "bert-base-uncased"})

serving = Bumblebee.Text.fill_mask(bert, tokenizer)

text = "The capital of [MASK] is Paris."
Nx.Serving.run(serving, text)
#=> %{
#=> predictions: [
#=> %{score: 0.9279842972755432, token: "france"},
#=> %{score: 0.008412551134824753, token: "brittany"},
#=> %{score: 0.007433671969920397, token: "algeria"},
#=> %{score: 0.004957548808306456, token: "department"},
#=> %{score: 0.004369721747934818, token: "reunion"}
#=>]
#=> }

 Link to this function

 generation(model_info, tokenizer, opts \\ [])

 View Source

 @spec generation(Bumblebee.model_info(), Bumblebee.Tokenizer.t(), keyword()) ::
 Nx.Serving.t()

Builds serving for prompt-driven text generation.
The serving accepts generation_input/0 and returns generation_output/0.
A list of inputs is also supported.
Note that either :max_new_tokens or :max_length must be specified.

 options

 Options

	:max_new_tokens - the maximum number of tokens to be generated,
ignoring the number of tokens in the prompt

	:min_new_tokens - the minimum number of tokens to be generated,
ignoring the number of tokens in the prompt

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

Also accepts all the other options of Bumblebee.Text.Generation.build_generate/3.

 examples

 Examples

{:ok, gpt2} = Bumblebee.load_model({:hf, "gpt2"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "gpt2"})

serving = Bumblebee.Text.generation(gpt2, tokenizer, max_new_tokens: 15)

prompt = "Elixir is a functional"
Nx.Serving.run(serving, prompt)
#=> %{
#=> results: [
#=> %{
#=> text: "Elixir is a functional programming language that is designed to be used in a variety of applications. It"
#=> }
#=>]
#=> }

 Link to this function

 question_answering(model_info, tokenizer, opts \\ [])

 View Source

 @spec question_answering(
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for the question answering task.
The serving accepts question_answering_input/0 and returns
question_answering_output/0. A list of inputs is also supported.
The question answering task finds the most probable answer to a
question within the given context text.

 options

 Options

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size. Note
that the batch size refers to the number of prompts to classify,
while the model prediction is made for every combination of
prompt and label

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

 examples

 Examples

{:ok, roberta} = Bumblebee.load_model({:hf, "deepset/roberta-base-squad2"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "roberta-base"})

serving = Bumblebee.Text.question_answering(roberta, tokenizer)

input = %{question: "What's my name?", context: "My name is Sarah and I live in London."}
Nx.Serving.run(serving, input)
#=> %{results: [%{end: 16, score: 0.81039959192276, start: 11, text: "Sarah"}]}

 Link to this function

 text_classification(model_info, tokenizer, opts \\ [])

 View Source

 @spec text_classification(
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for text classification.
The serving accepts text_classification_input/0 and returns
text_classification_output/0. A list of inputs is also supported.

 options

 Options

	:top_k - the number of top predictions to include in the output. If
the configured value is higher than the number of labels, all
labels are returned. Defaults to 5

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

 examples

 Examples

{:ok, bertweet} = Bumblebee.load_model({:hf, "finiteautomata/bertweet-base-sentiment-analysis"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "vinai/bertweet-base"})

serving = Bumblebee.Text.text_classification(bertweet, tokenizer)

text = "Cats are cute."
Nx.Serving.run(serving, text)
#=> %{
#=> predictions: [
#=> %{label: "POS", score: 0.9876555800437927},
#=> %{label: "NEU", score: 0.010068908333778381},
#=> %{label: "NEG", score: 0.002275536535307765}
#=>]
#=> }

 Link to this function

 token_classification(model_info, tokenizer, opts \\ [])

 View Source

 @spec token_classification(
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for token classification.
The serving accepts token_classification_input/0 and returns
token_classification_output/0. A list of inputs is also supported.
This function can be used for tasks such as named entity recognition
(NER) or part of speech tagging (POS).
The recognized entities can optionally be aggregated into groups
based on the given strategy.

 options

 Options

	:aggregation - an optional strategy for aggregating adjacent
tokens. Token classification models output probabilities for
each possible token class. The aggregation strategy takes scores
for each token (which possibly represents subwords) and groups
tokens into phrases which are readily interpretable as entities
of a certain class. Supported aggregation strategies:
	nil (default) - corresponds to no aggregation and returns
the most likely label for each input token

	:same - groups adjacent tokens with the same label. If
the labels use beginning-inside-outside (BIO) tagging, the
boundaries are respected and the prefix is omitted in the
output labels

	:ignored_labels - the labels to ignore in the final output.
The labels should be specified without BIO prefix. Defaults to
["O"]

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

 examples

 Examples

{:ok, bert} = Bumblebee.load_model({:hf, "dslim/bert-base-NER"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "bert-base-cased"})

serving = Bumblebee.Text.token_classification(bert, tokenizer, aggregation: :same)

text = "Rachel Green works at Ralph Lauren in New York City in the sitcom Friends"
Nx.Serving.run(serving, text)
#=> %{
#=> entities: [
#=> %{end: 12, label: "PER", phrase: "Rachel Green", score: 0.9997024834156036, start: 0},
#=> %{end: 34, label: "ORG", phrase: "Ralph Lauren", score: 0.9968731701374054, start: 22},
#=> %{end: 51, label: "LOC", phrase: "New York City", score: 0.9995547334353129, start: 38},
#=> %{end: 73, label: "MISC", phrase: "Friends", score: 0.6997143030166626, start: 66}
#=>]
#=>}

 Link to this function

 zero_shot_classification(model_info, tokenizer, labels, opts \\ [])

 View Source

 @spec zero_shot_classification(
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 [String.t()],
 keyword()
) :: Nx.Serving.t()

Builds serving for the zero-shot classification task.
The serving accepts zero_shot_classification_input/0 and returns
zero_shot_classification_output/0. A list of inputs is also
supported.
The zero-shot task predicts zero-shot labels for a given sequence by
proposing each label as a premise-hypothesis pairing.

 options

 Options

	:top_k - the number of top predictions to include in the output. If
the configured value is higher than the number of labels, all
labels are returned. Defaults to 5

	:hypothesis_template - an arity-1 function which accepts a label
and returns a hypothesis. The default hypothesis format is: "This example
is #{label}".

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size. Note
that the batch size refers to the number of prompts to classify,
while the model prediction is made for every combination of
prompt and label

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

 examples

 Examples

{:ok, model} = Bumblebee.load_model({:hf, "facebook/bart-large-mnli"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "facebook/bart-large-mnli"})

labels = ["cooking", "traveling", "dancing"]
zero_shot_serving = Bumblebee.Text.zero_shot_classification(model, tokenizer, labels)

output = Nx.Serving.run(zero_shot_serving, "One day I will see the world")
#=> %{
#=> predictions: [
#=> %{label: "cooking", score: 0.0070497458800673485},
#=> %{label: "traveling", score: 0.985000491142273},
#=> %{label: "dancing", score: 0.007949736900627613}
#=>]
#=> }

Bumblebee.Vision

High-level tasks related to vision.

 Anchor for this section

 Summary

 Types

 image()

 A term representing an image.

 image_classification_input()

 image_classification_output()

 image_classification_prediction()

 Functions

 image_classification(model_info, featurizer, opts \\ [])

 Builds serving for image classification.

 Anchor for this section

Types

 Link to this type

 image()

 View Source

 @type image() :: Nx.Container.t()

A term representing an image.
Either Nx.Tensor in HWC order or a struct implementing Nx.Container
and resolving to such tensor.

 Link to this type

 image_classification_input()

 View Source

 @type image_classification_input() :: image()

 Link to this type

 image_classification_output()

 View Source

 @type image_classification_output() :: %{
 predictions: [image_classification_prediction()]
}

 Link to this type

 image_classification_prediction()

 View Source

 @type image_classification_prediction() :: %{score: number(), label: String.t()}

 Anchor for this section

Functions

 Link to this function

 image_classification(model_info, featurizer, opts \\ [])

 View Source

 @spec image_classification(
 Bumblebee.model_info(),
 Bumblebee.Featurizer.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for image classification.
The serving accepts image_classification_input/0 and returns
image_classification_output/0. A list of inputs is also supported.

 options

 Options

	:top_k - the number of top predictions to include in the output. If
the configured value is higher than the number of labels, all
labels are returned. Defaults to 5

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

 examples

 Examples

{:ok, resnet} = Bumblebee.load_model({:hf, "microsoft/resnet-50"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, "microsoft/resnet-50"})

serving = Bumblebee.Vision.image_classification(resnet, featurizer)

image = ...
Nx.Serving.run(serving, image)
#=> %{
#=> predictions: [
#=> %{label: "Egyptian cat", score: 0.979233980178833},
#=> %{label: "tabby, tabby cat", score: 0.00679466687142849},
#=> %{label: "tiger cat", score: 0.005290505941957235},
#=> %{label: "lynx, catamount", score: 0.004550771787762642},
#=> %{label: "Siamese cat, Siamese", score: 1.1611092486418784e-4}
#=>]
#=> }

Bumblebee.Audio.Whisper

Whisper model family.
Architectures
	:base - plain Whisper without any head on top

	:for_conditional_generation - Whisper with a language modeling
head. The head returns logits for each token in the original
sequence

Inputs
	"input_features" - {batch_size, input_length, feature_size}
Indices of input sequence tokens in the vocabulary.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_features", which can be specified
for more control over how "input_features" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_features" will be ignored.

	"decoder_input_ids" - {batch_size, target_sequence_length}
Indices of decoder input sequence tokens in the vocabulary.

	"decoder_attention_mask" - {batch_size, target_sequence_length}
Mask indicating which decoder tokens to attend to. This is used
to ignore padding tokens, which are added when processing a batch
of sequences with different length.

	"decoder_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the decoder.

	"decoder_input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "decoder_input_ids", which can be
specified for more control over how "decoder_input_ids" are
embedded than the model's internal embedding lookup. If
"decoder_input_embeddings" are present, then "decoder_input_ids"
will be ignored.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"cross_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

Configuration
	:vocab_size - the vocabulary size of the model. This corresponds to the number of distinct
tokens that can be represented by the decoder
. Defaults to 51865

	:feature_size - the dimensionality of the input features. This corresponds to the number of Mel
bins in the preprocessed input
. Defaults to 80

	:encoder_max_positions - the vocabulary size of the encoder position embedding. This corresponds to the maximum
sequence length of log-mel filter-bank features that the model can process
. Defaults to 1500

	:decoder_max_positions - the vocabulary size of the decoder position embedding. This corresponds to the maximum
sequence length that this model can generate. Typically this is set to a large value just
in case, such as 512, 1024 or 2048
. Defaults to 448

	:hidden_size - the dimensionality of hidden layers. Defaults to 1024

	:encoder_num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:decoder_num_blocks - the number of Transformer blocks in the decoder. Defaults to 12

	:encoder_num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 16

	:decoder_num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 16

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:activation_dropout_rate - the dropout rate for activations inside fully connected layers. Defaults to 0.0

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

Bumblebee.Diffusion.StableDiffusion.SafetyChecker

A CLIP-based model for detecting unsafe image content.
This model is designed primarily to check images generated using
Stable Diffusion.
Architectures
	:base - the base safety detection model

Inputs
	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

Configuration
	:clip_spec - the specification of the CLIP model. See Bumblebee.Multimodal.Clip for details

References
	CompVis/stable-diffusion-v1-4

Bumblebee.Diffusion.UNet2DConditional

U-Net model with two spatial dimensions and conditional state.
Architectures
	:base - the U-Net model

Inputs
	"sample" - {batch_size, sample_size, sample_size, in_channels}
Sample input with two spatial dimensions.

	"timestep" - {}
The timestep used to parameterize model behaviour in a multi-step
process, such as diffusion.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
The conditional state (context) to use with cross-attention.

Configuration
	:sample_size - the size of the input spatial dimensions. Defaults to 32

	:in_channels - the number of channels in the input. Defaults to 4

	:out_channels - the number of channels in the output. Defaults to 4

	:center_input_sample - whether to center the input sample. Defaults to false

	:embedding_flip_sin_to_cos - whether to flip the sin to cos in the sinusoidal timestep embedding. Defaults to true

	:embedding_frequency_correction_term - controls the frequency formula in the timestep sinusoidal embedding. The frequency is computed
as $\omega_i = \frac{1}{10000^{\frac{i}{n - s}}}$, for $i \in \{0, ..., n-1\}$, where n
is half of the embedding size and s is the shift. Historically, certain implementations of
sinusoidal embedding used $s=0$, while others used $s=1$
. Defaults to 0

	:hidden_sizes - the dimensionality of hidden layers in each upsample/downsample block. Defaults to [320, 640, 1280, 1280]

	:depth - the number of residual blocks in each upsample/downsample block. Defaults to 2

	:down_block_types - a list of downsample block types. The supported blocks are: :down_block, :cross_attention_down_block. Defaults to [:cross_attention_down_block, :cross_attention_down_block, :cross_attention_down_block, :down_block]

	:up_block_types - a list of upsample block types. The supported blocks are: :up_block, :cross_attention_up_block. Defaults to [:up_block, :cross_attention_up_block, :cross_attention_up_block, :cross_attention_up_block]

	:downsample_padding - the padding to use in the downsample convolution. Defaults to [{1, 1}, {1, 1}]

	:mid_block_scale_factor - the scale factor to use for the mid block. Defaults to 1

	:num_attention_heads - the number of attention heads for each attention layer. Optionally can be a list with one number per block. Defaults to 8

	:cross_attention_size - the dimensionality of the cross attention features. Defaults to 1280

	:use_linear_projection - whether the input/output projection of the transformer block should be linear or convolutional. Defaults to false

	:activation - the activation function. Defaults to :silu

	:group_norm_num_groups - the number of groups used by the group normalization layers. Defaults to 32

	:group_norm_epsilon - the epsilon used by the group normalization layers. Defaults to 1.0e-5

Bumblebee.Diffusion.VaeKl

Variational autoencoder (VAE) with Kullback–Leibler divergence (KL) loss.
Architectures
	:base - the entire VAE model

	:encoder - just the encoder part of the base model

	:decoder - just the decoder part of the base model

Inputs
	"sample" - {batch_size, sample_size, sample_size, in_channels}
Sample input with two spatial dimensions. Note that in case of
the :decoder model, the input usually has lower dimensionality.

	"sample_posterior" - {}
When true, the decoder input is sampled from the encoder output
distribution. Otherwise the distribution mode value is used instead.
This input is only relevant for the :base model. Defaults to false.

Configuration
	:sample_size - the size of the input spatial dimensions. Defaults to 32

	:in_channels - the number of channels in the input. Defaults to 3

	:out_channels - the number of channels in the output. Defaults to 3

	:latent_channels - the number of channels in the latent space. Defaults to 4

	:hidden_sizes - the dimensionality of hidden layers in each upsample/downsample block. Defaults to '@'

	:depth - the number of residual blocks in each upsample/downsample block. Defaults to 1

	:down_block_types - a list of downsample block types. Currently the only supported type is :down_block. Defaults to [:down_block]

	:up_block_types - a list of upsample block types. Currently the only supported type is :up_block. Defaults to [:up_block]

	:activation - the activation function. Defaults to :silu

References
	Auto-Encoding Variational Bayes

Bumblebee.Multimodal.Clip

The CLIP model for text-image similarity.
Architectures
	:base - the base CLIP model

Inputs
	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

Configuration
	:text_spec - the specification of the text model. See Bumblebee.Text.ClipText for details

	:vision_spec - the specification of the vision model. See Bumblebee.Vision.ClipVision for details

	:projection_size - the dimensionality of text and vision projection layers. Defaults to 512

	:logit_scale_initial_value - the initial value for the scaling layer used to scale similarity logits. Defaults to 2.6592

References
	CLIP: Connecting Text and Images

	Learning Transferable Visual Models From Natural Language Supervision

Bumblebee.Multimodal.LayoutLm

LayoutLM Model family.
Architectures
	:base - plain LayoutLM without any head on top

	:for_masked_language_modeling - LayoutLM with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - LayoutLM with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - LayoutLM with a token classification
head. The head returns logits for each token in the original
sequence

	:for_question_answering - LayoutLM with a span classification head.
The head returns logits for the span start and end positions

Inputs
	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"token_type_ids" - {batch_size, sequence_length}
Mask distinguishing groups in the input sequence. This is used
in when the input sequence is a semantically a pair of sequences.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"bounding_box" - {batch_size, sequence_length, 4}

 Bounding boxes of each input sequence token. Each bounding box is
 {x0, y0, x1, y1} where {x0, y0} is the upper left corner and
 {x1, y1} is the lower right corner.
Configuration
	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 30522

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 1024

	:max_spatial_positions - the maximum value of the spatial position embedding. Typically this is set to a large value
just in case, such as 512, 1024, or 2048
. Defaults to 1024

	:max_token_types - the vocabulary size of the token type embedding (also referred to as segment embedding).
This corresponds to how many different token groups can be distinguished in the input
. Defaults to 2

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 12

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the decoder.
If not specified, defaults to 4 times :hidden_size
. Defaults to 3072

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.1

	:classifier_dropout_rate - the dropout rate for the classification head. If not specified, the value of :dropout_rate is used instead

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

References
	LayoutLM: LayoutLM: Pre-training of Text and Layout for Document Image Understanding

Bumblebee.Text.Albert

ALBERT model family.
Architectures
	:base - plain ALBERT without any head on top

	:for_masked_language_modeling - ALBERT with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - ALBERT with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - ALBERT with a token classification
head. The head returns logits for each token in the original
sequence

	:for_question_answering - ALBERT with a span classification head.
The head returns logits for the span start and end positions

	:for_multiple_choice - ALBERT with a multiple choice prediction
head. Each input in the batch consists of several sequences to
choose from and the model returns logits corresponding to those
choices

	:for_pre_training - ALBERT with both MLM and NSP heads as done
during the pre-training

Inputs
	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"token_type_ids" - {batch_size, sequence_length}
Mask distinguishing groups in the input sequence. This is used
in when the input sequence is a semantically a pair of sequences.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

Exceptions
The :for_multiple_choice model accepts groups of sequences, so the
expected sequence shape is {batch_size, num_choices, sequence_length}.
Configuration
	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 30000

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 512

	:max_token_types - the vocabulary size of the token type embedding (also referred to as segment embedding).
This corresponds to how many different token groups can be distinguished in the input
. Defaults to 2

	:embedding_size - the dimensionality of all input embeddings. Defaults to 128

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of blocks in the encoder. Note that each block contains :block_depth
Transformer blocks
. Defaults to 12

	:num_groups - the number of groups of encoder blocks. Parameters in the same group are shared. Defaults to 1

	:block_depth - the number of Transformer blocks in each encoder block. Defaults to 1

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 16384

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.0

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:classifier_dropout_rate - the dropout rate for the classification head. If not specified, the value of :dropout_rate is used instead

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

References
	ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

Bumblebee.Text.Bart

BART model family.
Architectures
	:base - plain BART without any head on top

	:for_causal_language_modeling - BART with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_conditional_generation - BART with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - BART with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_question_answering - BART with a span classification head.
The head returns logits for the span start and end positions

Inputs
	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {encoder_num_blocks, encoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"decoder_input_ids" - {batch_size, target_sequence_length}
Indices of decoder input sequence tokens in the vocabulary. If not
present and "input_ids" is, it will be generated by shifting
each token in "input_ids" to the right once.

	"decoder_attention_mask" - {batch_size, target_sequence_length}
Mask indicating which decoder tokens to attend to. This is used
to ignore padding tokens, which are added when processing a batch
of sequences with different length.

	"decoder_position_ids" - {batch_size, target_sequence_length}
Indices of positions of each decoder input sequence tokens in
the position embeddings.

	"decoder_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the decoder.

	"decoder_input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "decoder_input_ids", which can be
specified for more control over how "decoder_input_ids" are
embedded than the model's internal embedding lookup. If
"decoder_input_embeddings" are present, then "decoder_input_ids"
will be ignored.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"cross_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

Exceptions
The :for_causal_language_modeling model is just the decoder part and
accepts the following inputs instead: "input_ids", "attention_mask",
"position_ids", "attention_head_mask", "input_embeddings", "encoder_hidden_state",
"encoder_attention_mask", "cross_attention_head_mask", "cache".
Configuration
	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 50265

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 1024

	:hidden_size - the dimensionality of hidden layers. Defaults to 1024

	:encoder_num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:decoder_num_blocks - the number of Transformer blocks in the decoder. Defaults to 12

	:encoder_num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 16

	:decoder_num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 16

	:scale_embedding - whether to scale embeddings by dividing by the square root of :hidden_size. Defaults to false

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:activation_dropout_rate - the dropout rate for activations inside fully connected layers. Defaults to 0.0

	:classifier_dropout_rate - the dropout rate for the classification head. Defaults to 0.0

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

Bumblebee.Text.Bert

BERT model family.
Architectures
	:base - plain BERT without any head on top

	:for_masked_language_modeling - BERT with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - BERT with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - BERT with a token classification
head. The head returns logits for each token in the original
sequence

	:for_question_answering - BERT with a span classification head.
The head returns logits for the span start and end positions

	:for_multiple_choice - BERT with a multiple choice prediction
head. Each input in the batch consists of several sequences to
choose from and the model returns logits corresponding to those
choices

	:for_next_sentence_prediction - BERT with a next sentence
prediction head. The head returns logits predicting whether the
second sentence is random or in context

	:for_pre_training - BERT with both MLM and NSP heads as done
during the pre-training

	:for_causal_language_modeling - BERT working as a decoder with
a language modeling head. The head returns logits for each token
in the original sequence

Inputs
	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"token_type_ids" - {batch_size, sequence_length}
Mask distinguishing groups in the input sequence. This is used
in when the input sequence is a semantically a pair of sequences.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

Exceptions
The :for_multiple_choice model accepts groups of sequences, so the
expected sequence shape is {batch_size, num_choices, sequence_length}.
The :for_causal_language_modeling model is a decoder and accepts
the following additional inputs: "encoder_hidden_state",
"encoder_attention_mask", "cross_attention_head_mask", "cache".
Configuration
	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 30522

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 512

	:max_token_types - the vocabulary size of the token type embedding (also referred to as segment embedding).
This corresponds to how many different token groups can be distinguished in the input
. Defaults to 2

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 3072

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.1

	:classifier_dropout_rate - the dropout rate for the classification head. If not specified, the value of :dropout_rate is used instead

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

	:use_cross_attention - whether cross-attention layers should be added to the model.This is only relevant for decoder models. Defaults to false

References
	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Bumblebee.Text.ClipText

The CLIP model for text encoding.
Architectures
	:base - the base text model

Inputs
	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

Configuration
	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 49408

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 77

	:hidden_size - the dimensionality of hidden layers. Defaults to 512

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 8

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 2048

	:activation - the activation function. Defaults to :quick_gelu

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-5

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

Bumblebee.Text.Distilbert

DistilBERT model family.
Architectures
	:base - plain DistilBERT without any head on top

	:for_masked_language_modeling - DistilBERT with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - DistilBERT with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - DistilBERT with a token classification
head. The head returns logits for each token in the original
sequence

	:for_question_answering - DistilBERT with a span classification head.
The head returns logits for the span start and end positions

	:for_multiple_choice - DistilBERT with a multiple choice prediction
head. Each input in the batch consists of several sequences to
choose from and the model returns logits corresponding to those
choices

Inputs
	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.
Mask distinguishing groups in the input sequence. This is used
in when the input sequence is a semantically a pair of sequences.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

Exceptions
The :for_multiple_choice model accepts groups of sequences, so the
expected sequence shape is {batch_size, num_choices, sequence_length}.
Configuration
	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 30522

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 512

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 6

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 3072

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.1

	:classifier_dropout_rate - the dropout rate for the classification head. If not specified, the value of :dropout_rate is used instead

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

	:use_cross_attention - whether cross-attention layers should be added to the model.This is only relevant for decoder models. Defaults to false

References
	DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter

Bumblebee.Text.Gpt2

GPT-2 model family.
Architectures
	:base - plain GPT-2 without any head on top

	:for_causal_language_modeling - GPT-2 with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - GPT-2 with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - GPT-2 with a token classification
head. The head returns logits for each token in the original
sequence

Inputs
	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"encoder_hidden_state" - {batch_size, encoder_sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"encoder_attention_mask" - {batch_size, encoder_sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"cross_attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

Configuration
	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 50257

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 1024

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the decoder. Defaults to 24

	:num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 16

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the decoder.
If not specified, defaults to 4 times :hidden_size

	:activation - the activation function. Defaults to :gelu_new

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.1

	:embeddings_dropout_rate - the dropout rate for embeddings. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.1

	:classifier_dropout_rate - the dropout rate for the classification head. Defaults to 0.1

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-5

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

	:use_cross_attention - whether cross-attention layers should be added to the model.This is only relevant for decoder models. Defaults to false

Bumblebee.Text.Mbart

mBART model family.
Architectures
	:base - plain mBART without any head on top

	:for_causal_language_modeling - mBART with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_conditional_generation - mBART with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - mBART with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_question_answering - mBART with a span classification head.
The head returns logits for the span start and end positions

Inputs
	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {encoder_num_blocks, encoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"decoder_input_ids" - {batch_size, target_sequence_length}
Indices of decoder input sequence tokens in the vocabulary. If not
present and "input_ids" is, it will be generated by shifting
each token in "input_ids" to the right once.

	"decoder_attention_mask" - {batch_size, target_sequence_length}
Mask indicating which decoder tokens to attend to. This is used
to ignore padding tokens, which are added when processing a batch
of sequences with different length.

	"decoder_position_ids" - {batch_size, target_sequence_length}
Indices of positions of each decoder input sequence tokens in
the position embeddings.

	"decoder_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the decoder.

	"decoder_input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "decoder_input_ids", which can be
specified for more control over how "decoder_input_ids" are
embedded than the model's internal embedding lookup. If
"decoder_input_embeddings" are present, then "decoder_input_ids"
will be ignored.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"cross_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

Exceptions
The :for_causal_language_modeling model is just the decoder part and
accepts the following inputs instead: "input_ids", "attention_mask",
"position_ids", "attention_head_mask", "input_embeddings", "encoder_hidden_state",
"encoder_attention_mask", "cross_attention_head_mask", "cache".
Configuration
	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 50265

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 1024

	:hidden_size - the dimensionality of hidden layers. Defaults to 1024

	:encoder_num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:decoder_num_blocks - the number of Transformer blocks in the decoder. Defaults to 12

	:encoder_num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 16

	:decoder_num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 16

	:encoder_intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 4096

	:decoder_intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the decoder. Defaults to 4096

	:scale_embedding - scale embeddings by dividing by sqrt(hidden_size). Defaults to false

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:activation_dropout_rate - the dropout rate for activations inside fully connected layers. Defaults to 0.0

	:classifier_dropout_rate - the dropout rate for the classification head. Defaults to 0.0

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

Bumblebee.Text.Roberta

RoBERTa model family.
Architectures
	:base - plain RoBERTa without any head on top

	:for_masked_language_modeling - RoBERTa with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - RoBERTa with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - RoBERTa with a token classification
head. The head returns logits for each token in the original
sequence

	:for_question_answering - RoBERTa with a span classification head.
The head returns logits for the span start and end positions

	:for_multiple_choice - RoBERTa with a multiple choice prediction
head. Each input in the batch consists of several sequences to
choose from and the model returns logits corresponding to those
choices

	:for_causal_language_modeling - RoBERTa working as a decoder with
a language modeling head. The head returns logits for each token in
the original sequence

Inputs
	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"token_type_ids" - {batch_size, sequence_length}
Mask distinguishing groups in the input sequence. This is used
in when the input sequence is a semantically a pair of sequences.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

Exceptions
The :for_multiple_choice model accepts groups of sequences, so the
expected sequence shape is {batch_size, num_choices, sequence_length}.
The :for_causal_language_modeling model is a decoder and accepts
the following additional inputs: "encoder_hidden_state",
"encoder_attention_mask", "cross_attention_head_mask", "cache".
Configuration
	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 30522

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 512

	:max_token_types - the vocabulary size of the token type embedding (also referred to as segment embedding).
This corresponds to how many different token groups can be distinguished in the input
. Defaults to 2

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 3072

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.1

	:classifier_dropout_rate - the dropout rate for the classification head. If not specified, the value of :dropout_rate is used instead

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_range - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

	:use_cross_attention - whether cross-attention layers should be added to the model.This is only relevant for decoder models. Defaults to false

Bumblebee.Text.T5

T5 model family.
Architectures
	:base - plain T5 without any head on top

	:for_conditional_generation - T5 with a language modeling
head. The head returns logits for each token in the original
sequence

Inputs
	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"attention_head_mask" - {encoder_num_blocks, encoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"decoder_input_ids" - {batch_size, target_sequence_length}
Indices of decoder input sequence tokens in the vocabulary. If not
present and "input_ids" is, it will be generated by shifting
each token in "input_ids" to the right once.

	"decoder_attention_mask" - {batch_size, target_sequence_length}
Mask indicating which decoder tokens to attend to. This is used
to ignore padding tokens, which are added when processing a batch
of sequences with different length.

	"decoder_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the decoder.

	"decoder_input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "decoder_input_ids", which can be
specified for more control over how "decoder_input_ids" are
embedded than the model's internal embedding lookup. If
"decoder_input_embeddings" are present, then "decoder_input_ids"
will be ignored.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"cross_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

Configuration
	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 32128

	:tie_word_embeddings - whether or not to tie encoder and decoder token embedding
. Defaults to true

	:hidden_size - the dimensionality of hidden layers. Defaults to 512

	:attention_head_size - the size of the key, value, and query projection per attention head. Defaults to 64

	:encoder_num_blocks - the number of Transformer blocks in the encoder. Defaults to 6

	:decoder_num_blocks - the number of Transformer blocks in the decoder. Defaults to 6

	:encoder_num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 8

	:decoder_num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 8

	:activation - the activation function. Defaults to :relu

	:ffn_gated_activation - whether to use a gated variant of the activation function in the feed-forward network (FFN). Defaults to false

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.1

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 1.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-6

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

Bumblebee.Vision.ClipVision

The CLIP model for image encoding.
Architectures
	:base - the base image model

Inputs
	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

Configuration
	:image_size - the size of the input spatial dimensions. Defaults to 224

	:num_channels - the number of channels in the input. Defaults to 3

	:patch_size - the size of the patch spatial dimensions. Defaults to 32

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:activation - the activation function. Defaults to :quick_gelu

	:dropout_rate - the dropout rate for encoder. Defaults to 0.0

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-5

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

Bumblebee.Vision.ConvNext

ConvNeXT model family.
Architectures
	:base - plain ConvNeXT without any head on top

	:for_image_classification - ConvNeXT with a classification head.
The head consists of a single dense layer on top of the pooled
features

Inputs
	"pixel_values" - {batch_size, height, width, num_channels}
Featurized image pixel values (224x224).

Configuration
	:num_channels - the number of channels in the input. Defaults to 3

	:patch_size - the size of the patch spatial dimensions. Defaults to 4

	:hidden_sizes - the dimensionality of hidden layers at each stage. Defaults to [96, 192, 384, 768]

	:depths - the depth (number of residual blocks) at each stage. Defaults to [3, 3, 9, 3]

	:activation - the activation function. Defaults to :gelu

	:scale_initial_value - the initial value for scaling layers. Defaults to 1.0e-6

	:drop_path_rate - the drop path rate used to for stochastic depth. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

References
	A ConvNet for the 2020s

Bumblebee.Vision.Deit

DeiT model family.
Architectures
	:base - plain DeiT without any head on top

	:for_image_classification - DeiT with a classification head.
The head consists of two dense layers on top of the final
hidden state of the CLS token

	:for_image_classification_with teacher - DeiT with a
classification head. The head consists of two dense layers
on top of the final hidden state of the CLS token and the
final hidden state of the distillation token

	:for_masked_image_modeling - DEiT with a language modeling
head on top for predicting visual tokens

Inputs
	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

	"patch_mask" - {batch_size, num_patches}
Mask to nullify selected embedded patches.

Configuration
	:image_size - the size of the input spatial dimensions. Defaults to 224

	:num_channels - the number of channels in the input. Defaults to 3

	:patch_size - the size of the patch spatial dimensions. Defaults to 16

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:use_qkv_bias - whether to use bias in query, key, and value projections. Defaults to true

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.0

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

References
	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Bumblebee.Vision.ResNet

ResNet model family.
Architectures
	:base - plain ResNet without any head on top

	:for_image_classification - ResNet with a classification head.
The head consists of a single dense layer on top of the pooled
features and it returns logits corresponding to possible classes

Inputs
	"pixel_values" - {batch_size, height, width, num_channels}
Featurized image pixel values (224x224).

Configuration
	:num_channels - the number of channels in the input. Defaults to 3

	:embedding_size - the dimensionality of the embedding layer. Defaults to 64

	:hidden_sizes - the dimensionality of hidden layers at each stage. Defaults to [256, 512, 1024, 2048]

	:depths - the depth (number of residual blocks) at each stage. Defaults to [3, 4, 6, 3]

	:residual_block_type - the residual block to use, either :basic (used for smaller models, like ResNet-18 or ResNet-34)
or :bottleneck (used for larger models like ResNet-50 and above)
. Defaults to :bottleneck

	:activation - the activation function. Defaults to :relu

	:downsample_in_first_stage - whether the first stage should downsample the inputs using a stride of 2. Defaults to false

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

Bumblebee.Vision.Vit

ViT model family.
Architectures
	:base - plain ViT without any head on top

	:for_image_classification - ViT with a classification head.
The head consists of a single dense layer on top of the pooled
features

	:for_masked_image_modeling - ViT with a language modeling
head on top for predicting visual tokens

Inputs
	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

	"patch_mask" - {batch_size, num_patches}
Mask to nullify selected embedded patches.

Configuration
	:image_size - the size of the input spatial dimensions. Defaults to 224

	:num_channels - the number of channels in the input. Defaults to 3

	:patch_size - the size of the patch spatial dimensions. Defaults to 16

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:use_qkv_bias - whether to use bias in query, key, and value projections. Defaults to true

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.0

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

References
	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Bumblebee.Audio.WhisperFeaturizer

Whisper featurizer for audio data.
Configuration
	:feature_size - the dimension of the extracted features. This corresponds to the number of Mel bins. Defaults to 80

	:sampling_rate - the sampling rate at which the audio files should be digitally expressed in Hertz. Defaults to 16000

	:num_seconds - the maximum duration of the audio sequence. This implies that the the maximum length of the
input sequence is :num_seconds * :sampling_rate
. Defaults to 30

	:hop_length - the hop between consecutive overlapping windows for the STFT used to obtain Mel Frequency coefficients. Defaults to 160

	:fft_length - the size of the fourier transform. Defaults to 400

	:padding_value - the value used to pad the audio. Should correspond to silence. Defaults to 0.0

Bumblebee.Text.AlbertTokenizer

ALBERT tokenizer.

Bumblebee.Text.BartTokenizer

BART tokenizer.

Bumblebee.Text.BertTokenizer

BERT tokenizer.

Bumblebee.Text.CamembertTokenizer

Camembert tokenizer.

Bumblebee.Text.ClipTokenizer

CLIP tokenizer.

Bumblebee.Text.DistilbertTokenizer

DistilBERT tokenizer.

Bumblebee.Text.Gpt2Tokenizer

GPT-2 tokenizer.

Bumblebee.Text.LayoutLmTokenizer

LayoutLM tokenizer.

Bumblebee.Text.MbartTokenizer

mBART tokenizer.

Bumblebee.Text.RobertaTokenizer

RoBERTa tokenizer.

Bumblebee.Text.T5Tokenizer

T5 tokenizer.

Bumblebee.Text.WhisperTokenizer

Whisper tokenizer.

Bumblebee.Text.XlmRobertaTokenizer

XLM-RoBERTa tokenizer.

Bumblebee.Vision.ClipFeaturizer

CLIP featurizer for image data.
Configuration
	:resize - whether to resize (and optionally center crop) the input to the given :size. Defaults to true

	:size - the size to resize the input to. The image is resized to (:size, :size). Only has
an effect if :resize is true
. Defaults to 224

	:resize_method - the resizing method, either of :nearest, :bilinear, :bicubic, :lanczos3, :lanczos5. Defaults to :bicubic

	:center_crop - whether to crop the input at the center. If the input size is smaller than :crop_size along
any edge, the image is padded with zeros and then center cropped
. Defaults to true

	:crop_size - the size to center crop the image to. Only has an effect if :center_crop is true. Defaults to 224

	:normalize - whether or not to normalize the input with mean and standard deviation. Defaults to true

	:image_mean - the sequence of mean values for each channel, to be used when normalizing images. Defaults to [0.485, 0.456, 0.406]

	:image_std - the sequence of standard deviations for each channel, to be used when normalizing images. Defaults to [0.229, 0.224, 0.225]

Bumblebee.Vision.ConvNextFeaturizer

ConvNeXT featurizer for image data.
Configuration
	:resize - whether to resize (and optionally center crop) the input to the given :size. Defaults to true

	:size - the size to resize the input to. If 384 or larger, the image is resized to (:size, :size).
Otherwise, the shorter edge of the image is matched to :size / :crop_percentage, then image
is cropped to :size. Only has an effect if :resize is true
. Defaults to 224

	:resize_method - the resizing method, either of :nearest, :bilinear, :bicubic, :lanczos3, :lanczos5. Defaults to :bicubic

	:crop_percentage - the percentage of the image to crop. Only has an effect if :resize is true and :size < 384. Defaults to 0.875

	:normalize - whether or not to normalize the input with mean and standard deviation. Defaults to true

	:image_mean - the sequence of mean values for each channel, to be used when normalizing images. Defaults to [0.485, 0.456, 0.406]

	:image_std - the sequence of standard deviations for each channel, to be used when normalizing images. Defaults to [0.229, 0.224, 0.225]

Bumblebee.Vision.DeitFeaturizer

DeiT featurizer for image data.
Configuration
	:resize - whether to resize (and optionally center crop) the input to the given :size. Defaults to true

	:size - the size to resize the input to. Either a single number or a {height, width} tuple.
Only has an effect if :resize is true
. Defaults to 256

	:resize_method - the resizing method, either of :nearest, :bilinear, :bicubic, :lanczos3, :lanczos5. Defaults to :bicubic

	:center_crop - whether to crop the input at the center. If the input size is smaller than :crop_size along
any edge, the image is padded with zeros and then center cropped
. Defaults to true

	:crop_size - the size to center crop the image to. Only has an effect if :center_crop is true. Defaults to 224

	:normalize - whether or not to normalize the input with mean and standard deviation. Defaults to true

	:image_mean - the sequence of mean values for each channel, to be used when normalizing images. Defaults to [0.485, 0.456, 0.406]

	:image_std - the sequence of standard deviations for each channel, to be used when normalizing images. Defaults to [0.229, 0.224, 0.225]

Bumblebee.Vision.VitFeaturizer

ViT featurizer for image data.
Configuration
	:resize - whether to resize the input to the given :size. Defaults to true

	:size - the size to resize the input to. Either a single number or a {height, width} tuple.
Only has an effect if :resize is true
. Defaults to 224

	:resize_method - the resizing method, either of :nearest, :bilinear, :bicubic, :lanczos3, :lanczos5. Defaults to :bilinear

	:normalize - whether or not to normalize the input with mean and standard deviation. Defaults to true

	:image_mean - the sequence of mean values for each channel, to be used when normalizing images. Defaults to [0.5, 0.5, 0.5]

	:image_std - the sequence of standard deviations for each channel, to be used when normalizing images. Defaults to [0.5, 0.5, 0.5]

Bumblebee.Diffusion.DdimScheduler

Denoising diffusion implicit models (DDIMs).
This sampling method was proposed as a follow up to the original
denoising diffusion probabilistic models (DDPMs) in order to heavily
reduce the number of steps during inference. DDPMs model the diffusion
process as a Markov chain; DDIMs generalize this considering
non-Markovian diffusion processes that lead to the same objective.
This enables a reverse process with many less samples, as compared
to DDPMs, while using the same denoising model.
DDIMs were shown to be a simple variant of pseudo numerical methods
for diffusion models (PNDMs), see Bumblebee.Diffusion.PndmScheduler
and the corresponding paper for more details.
Configuration
	:num_train_steps - the number of diffusion steps used to train the model. Defaults to 1000

	:beta_schedule - the beta schedule type, a mapping from a beta range to a sequence of betas for stepping the model.
Either of :linear, :quadratic, or :squared_cosine
. Defaults to :linear

	:beta_start - the start value for the beta schedule. Defaults to 0.0001

	:beta_end - the end value for the beta schedule. Defaults to 0.02

	:prediction_type - prediction type of the denoising model. Either of:

	:noise (default) - the model predicts the noise of the diffusion process

	:angular_velocity - the model predicts velocity in angular parameterization.
See Section 2.4 in Imagen Video: High Definition Video Generation with Diffusion Models,
then Section 4 in Progressive Distillation for Fast Sampling of Diffusion Models
and Appendix D

. Defaults to :noise
	:alpha_clip_strategy - each step t uses the values of $\bar{\alpha}_t$ and $\bar{\alpha}_{t-1}$,
however for $t = 0$ there is no previous alpha. The strategy can be either
:one ($\bar{\alpha}_{t-1} = 1$) or :alpha_zero ($\bar{\alpha}_{t-1} = \bar{\alpha}_0$)
. Defaults to :one

	:timesteps_offset - an offset added to the inference steps. You can use a combination of timesteps_offset: 1 and
alpha_clip_strategy: :alpha_zero, so that the last step $t = 1$ uses $\bar{\alpha}_1$
and $\bar{\alpha}_0$, as done in stable diffusion
. Defaults to 0

	:clip_denoised_sample - whether to clip the predicted denoised sample (x_0 in Equation (12)) into $[-1, 1]$
for numerical stability.
. Defaults to true

	:rederive_noise - whether the noise (output of the denoising model) should be re-derived at each step based on the
predicted denoised sample (x_0) and the current sample. This technique is used in OpenAI GLIDE
. Defaults to false

	:eta - a weight for the noise added in a denoising diffusion step. This scales the value of σ_t
in Equation (12) in the original paper, as per Equation (16)
. Defaults to 0.0

References
	Denoising Diffusion Implicit Models

Bumblebee.Diffusion.PndmScheduler

Pseudo numerical methods for diffusion models (PNDMs).
The sampling is based on two numerical methods for solving ODE: the
Runge-Kutta method (RK) and the linear multi-step method (LMS). The
gradient at each step is computed according to either of these methods,
however the transfer part (approximating the next sample based on
current sample and gradient) is non-linear. Because of this property,
the authors of the paper refer to them as pseudo numerical methods,
denoted as PRK and PLMS respectively.
Configuration
	:num_train_steps - the number of diffusion steps used to train the model. Defaults to 1000

	:beta_schedule - the beta schedule type, a mapping from a beta range to a sequence of betas for stepping the model.
Either of :linear, :quadratic, or :squared_cosine
. Defaults to :linear

	:beta_start - the start value for the beta schedule. Defaults to 0.0001

	:beta_end - the end value for the beta schedule. Defaults to 0.02

	:alpha_clip_strategy - each step t uses the values of $\bar{\alpha}_t$ and $\bar{\alpha}_{t-1}$,
however for $t = 0$ there is no previous alpha. The strategy can be either
:one ($\bar{\alpha}_{t-1} = 1$) or :alpha_zero ($\bar{\alpha}_{t-1} = \bar{\alpha}_0$)
. Defaults to :one

	:timesteps_offset - an offset added to the inference steps. You can use a combination of timesteps_offset: 1 and
alpha_clip_strategy: :alpha_zero, so that the last step $t = 1$ uses $\bar{\alpha}_1$
and $\bar{\alpha}_0$, as done in stable diffusion
. Defaults to 0

	:reduce_warmup - when true, the first few samples are computed using lower-order linear multi-step,
rather than the Runge-Kutta method. This results in less forward passes of the model
. Defaults to false

References
	Pseudo Numerical Methods for Diffusion Models on Manifolds

Bumblebee.Configurable behaviour

An interface for configurable entities.
A module implementing this behaviour is expected to define a struct
with configuration.

 Anchor for this section

 Summary

 Types

 t()

 Callbacks

 config t, keyword

 Configures the struct.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: struct()

 Anchor for this section

Callbacks

 Link to this callback

 config t, keyword

 View Source

 @callback config(
 t(),
 keyword()
) :: t()

Configures the struct.

Bumblebee.Featurizer behaviour

An interface for configuring and applying featurizers.
A featurizer is used to convert raw data into model input.
Every module implementing this behaviour is expected to also define
a configuration struct.

 Anchor for this section

 Summary

 Types

 t()

 Callbacks

 apply(t, input, defn_options)

 Performs feature extraction on the given input.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: Bumblebee.Configurable.t()

 Anchor for this section

Callbacks

 Link to this callback

 apply(t, input, defn_options)

 View Source

 @callback apply(t(), input :: any(), defn_options :: keyword()) :: any()

Performs feature extraction on the given input.

Bumblebee.ModelSpec behaviour

An interface for configuring and building models based on the same
architecture.
Every module implementing this behaviour is expected to also define
a configuration struct.

 Anchor for this section

 Summary

 Types

 t()

 Callbacks

 architectures()

 Returns the list of supported model architectures.

 input_template(t)

 Builds a template input for the model.

 model(t)

 Builds an Axon model according to the given configuration.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: Bumblebee.Configurable.t()

 Anchor for this section

Callbacks

 Link to this callback

 architectures()

 View Source

 @callback architectures() :: [atom()]

Returns the list of supported model architectures.

 Link to this callback

 input_template(t)

 View Source

 @callback input_template(t()) :: map()

Builds a template input for the model.
The template is used to compile the model when initializing parameters.

 Link to this callback

 model(t)

 View Source

 @callback model(t()) :: Axon.t()

Builds an Axon model according to the given configuration.

Bumblebee.Scheduler behaviour

An interface for configuring and using schedulers.
A scheduler defines a sampling method, usually used for multi-step
denoising process, as in stable diffusion.
Every module implementing this behaviour is expected to also define
a configuration struct.
Context
Imagine a denoising model trained in 1000 steps. During training,
we take some original data and add random noise 1000 times, this
way we obtain 1000 steps with increasing level of noise. Then, the
model learns to predict noise at each timestep, given data at that
step (sample) and the timestep.
Once such model is trained, we can obtain brand new data (such as
image) by generating random data and denoising it with our model in
1000 steps.
Doing 1000 forward passes of the model for a single generation can
be expensive, hence multiple methods have been developed to reduce
the number of steps during denoising, with no changes to the model.
Each method specifies a subset of the original timesteps, at each
timestep we need to do a forward pass of the model (or possibly a
few), then the method extrapolates the sample to the next selected
timestep, possibly skipping a lot of timesteps in between.
Note on wording
Throughout the docs and APIs the word "steps" refers to diffusion
steps, whereas "timesteps" is more specific and refers to the exact
values t (points in time).

 Anchor for this section

 Summary

 Types

 state()

 t()

 Callbacks

 init(t, num_steps, sample_shape)

 Initializes state for a new scheduler loop.

 step(t, state, sample, prediction)

 Predicts sample at the previous timestep.

 Anchor for this section

Types

 Link to this type

 state()

 View Source

 @type state() :: Nx.Container.t()

 Link to this type

 t()

 View Source

 @type t() :: Bumblebee.Configurable.t()

 Anchor for this section

Callbacks

 Link to this callback

 init(t, num_steps, sample_shape)

 View Source

 @callback init(
 t(),
 num_steps :: pos_integer(),
 sample_shape :: tuple()
) :: {state :: map(), timesteps :: Nx.Tensor.t()}

Initializes state for a new scheduler loop.
Returns a pair of {state, timesteps}, where state is an opaque
Nx.Container and timesteps is a tensor with the subsequent
timesteps for model forward pass.

 Link to this callback

 step(t, state, sample, prediction)

 View Source

 @callback step(
 t(),
 state(),
 sample :: Nx.Tensor.t(),
 prediction :: Nx.Tensor.t()
) :: {state :: map(), prev_sample :: Nx.Tensor.t()}

Predicts sample at the previous timestep.
Takes the current sample and prediction (usually noise) returned
by the model at the current timestep. Returns {state, prev_sample},
where state is the updated state and prev_sample is the predicted
sample at the previous timestep.

Bumblebee.Text.Generation behaviour

An interface for language models supporting sequence generation.

 Anchor for this section

 Summary

 Callbacks

 init_cache(spec, batch_size, max_length, inputs)

 Initializes an opaque cache input for iterative inference.

 Functions

 build_generate(model, spec, opts \\ [])

 Builds a numerical definition that generates sequences of tokens using
the given language model.

 init_cache(spec, batch_size, max_length, inputs)

 Initializes an opaque cache input for iterative inference.

 Anchor for this section

Callbacks

 Link to this callback

 init_cache(spec, batch_size, max_length, inputs)

 View Source

 @callback init_cache(
 spec :: Bumblebee.ModelSpec.t(),
 batch_size :: pos_integer(),
 max_length :: pos_integer(),
 inputs :: map()
) :: Nx.Tensor.t() | Nx.Container.t()

Initializes an opaque cache input for iterative inference.

 Anchor for this section

Functions

 Link to this function

 build_generate(model, spec, opts \\ [])

 View Source

 @spec build_generate(Axon.t(), Bumblebee.ModelSpec.t(), keyword()) ::
 (params :: map(), inputs :: map() -> Nx.t())

Builds a numerical definition that generates sequences of tokens using
the given language model.
The model should be either a decoder or an encoder-decoder. The tokens
are generated by iterative inference using the decoder (autoregression),
until the termination criteria are met.
In case of encoder-decoder models, the corresponding encoder is run
only once and the intermediate state is reused during all iterations.
The length of the generated sequence is not fixed, however it can be
controlled via several options.
Note that either :max_new_tokens or :max_length must be specified.

 options

 Options

	:max_new_tokens - the maximum number of tokens to be generated,
ignoring the number of tokens in the prompt

	:min_new_tokens - the minimum number of tokens to be generated,
ignoring the number of tokens in the prompt

	:max_length - the maximum length of the sequence to be generated.
Note that this length includes the length of the input prompt
(including padding). In general, prefer :max_new_tokens, which
ignores the number of tokens in the prompt

	:min_length - the minimum length of the sequence to be generated.
Note that this length includes the length of the input prompt
(including padding). In general, prefer :min_new_tokens, which
ignores the number of tokens in the prompt

	:decoder_start_token_id - the id of the initial token when
generating from scratch, in case of encoder-decoder models

	:bos_token_id - the id of the beginning-of-sequence token

	:eos_token_id - the id of the end-of-sequence token

	:pad_token_id - the id of the padding token

	:forced_bos_token_id - the id of the token to force as the first
generated token

	:forced_eos_token_id - the id of the token to force as the last
generated token when :max_length is reached

The default token option values are taken from the given model specification
when available.

 Link to this function

 init_cache(spec, batch_size, max_length, inputs)

 View Source

 @spec init_cache(Bumblebee.ModelSpec.t(), pos_integer(), pos_integer(), map()) ::
 Nx.t()

Initializes an opaque cache input for iterative inference.

Bumblebee.Tokenizer behaviour

An interface for configuring and applying tokenizers.
A tokenizer is used to convert raw text data into model input.
Every module implementing this behaviour is expected to also define
a configuration struct.

 Anchor for this section

 Summary

 Types

 input()

 special_token_type()

 A type corresponding to a special token in the vocabulary.

 t()

 token()

 token_id()

 Callbacks

 apply(t, arg2, keyword)

 Performs tokenization and encoding on the given input.

 decode(t, arg2)

 Decodes a list of token ids into a sentence.

 id_to_token(t, token_id)

 Converts the given token id the corresponding token.

 special_tokens(t)

 Returns a map with special tokens.

 token_to_id(t, token)

 Converts the given token into the corresponding numeric id.

 Functions

 decode(tokenizer, ids)

 Decodes a list of token ids into a sentence.

 id_to_token(tokenizer, id)

 Converts the given token id the corresponding token.

 special_token(tokenizer, type)

 Returns a special token by name.

 special_token_id(tokenizer, type)

 Returns id of a special token by name.

 token_to_id(tokenizer, token)

 Converts the given token into the corresponding numeric id.

 Anchor for this section

Types

 Link to this type

 input()

 View Source

 @type input() :: String.t() | {String.t(), String.t()}

 Link to this type

 special_token_type()

 View Source

 @type special_token_type() :: atom()

A type corresponding to a special token in the vocabulary.

 common-types

 Common types

	:bos - a token representing the beginning of a sentence

	:eos - a token representing the end of a sentence

	:unk - a token representing an out-of-vocabulary token

	:sep - a token separating two different sentences in the same
input

	:pad - a token added when processing a batch of sequences with
different length

	:cls - a token representing the class of the input

	:mask - a token representing a masked token, used for masked
language modeling tasks

 Link to this type

 t()

 View Source

 @type t() :: struct()

 Link to this type

 token()

 View Source

 @type token() :: String.t()

 Link to this type

 token_id()

 View Source

 @type token_id() :: non_neg_integer()

 Anchor for this section

Callbacks

 Link to this callback

 apply(t, arg2, keyword)

 View Source

 @callback apply(t(), input() | [input()], keyword()) :: any()

Performs tokenization and encoding on the given input.

 Link to this callback

 decode(t, arg2)

 View Source

 @callback decode(t(), [token_id()] | [[token_id()]]) :: String.t()

Decodes a list of token ids into a sentence.

 Link to this callback

 id_to_token(t, token_id)

 View Source

 @callback id_to_token(t(), token_id()) :: token()

Converts the given token id the corresponding token.

 Link to this callback

 special_tokens(t)

 View Source

 @callback special_tokens(t()) :: %{required(special_token_type()) => token()}

Returns a map with special tokens.

 Link to this callback

 token_to_id(t, token)

 View Source

 @callback token_to_id(t(), token()) :: token_id()

Converts the given token into the corresponding numeric id.

 Anchor for this section

Functions

 Link to this function

 decode(tokenizer, ids)

 View Source

 @spec decode(
 t(),
 token() | [token_id()] | [[token_id()]] | Nx.Tensor.t()
) :: String.t()

Decodes a list of token ids into a sentence.

 Link to this function

 id_to_token(tokenizer, id)

 View Source

Converts the given token id the corresponding token.

 Link to this function

 special_token(tokenizer, type)

 View Source

 @spec special_token(t(), special_token_type()) :: token() | nil

Returns a special token by name.

 Link to this function

 special_token_id(tokenizer, type)

 View Source

 @spec special_token_id(t(), special_token_type()) :: token_id() | nil

Returns id of a special token by name.

 Link to this function

 token_to_id(tokenizer, token)

 View Source

 @spec token_to_id(t(), token()) :: token_id()

 @spec token_to_id(t(), token_id()) :: token()

Converts the given token into the corresponding numeric id.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

