View Source Bumblebee.Vision.DinoV2 (Bumblebee v0.5.3)
DINOv2 model family.
Architectures
:base- plain DINOv2 without any head on top:for_image_classification- DINOv2 with head for image classification:backbone- DINOv2 with feature maps output
Inputs
"pixel_values"-{batch_size, image_size, image_size, num_channels}Featurized image pixel values.
"patch_mask"-{batch_size, num_patches}Mask to nullify selected embedded patches.
Configuration
:image_size- the size of the input spatial dimensions. The model is trained for this size, however the model supports any other input size by interpolating position embeddings . Defaults to518:num_channels- the number of channels in the input. Defaults to3:patch_size- the size of the patch spatial dimensions. Defaults to14:hidden_size- the dimensionality of hidden layers. Defaults to384:num_blocks- the number of Transformer blocks in the encoder. Defaults to12:num_attention_heads- the number of attention heads for each attention layer in the encoder. Defaults to12:intermediate_size_ratio- the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder, expressed as a multiplier of:hidden_size. Defaults to4:use_qkv_bias- whether to use bias in query, key, and value projections. Defaults totrue:activation- the activation function. Defaults to:gelu:ffn_swiglu_activation- whether to use the gated SwiGLU activation function in the feed-forward network (FFN). Defaults tofalse:scale_initial_value- the initial value for scaling layers. Defaults to1.0:dropout_rate- the dropout rate for encoder and decoder. Defaults to0.0:attention_dropout_rate- the dropout rate for attention weights. Defaults to0.0:layer_norm_epsilon- the epsilon used by the layer normalization layers. Defaults to1.0e-6:initializer_scale- the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to0.02:backbone_output_indices- list of indices indicating which feature maps to include in the output. If not specified, only the last feature map is included:backbone_use_norm- whether to add layer normalization layer to each of the feature maps returned by the backbone. Defaults totrue:output_hidden_states- whether the model should return all hidden states. Defaults tofalse:output_attentions- whether the model should return all attentions. Defaults tofalse:num_labels- the number of labels to use in the last layer for the classification task. Defaults to2:id_to_label- a map from class index to label. Defaults to%{}