View Source Bumblebee.Vision.Swin (Bumblebee v0.6.3)
Swin Transformer model.
Architectures
:base- plain Swin without any head on top:for_image_classification- Swin tranformer model with a classification head
Global layer options
:output_hidden_states- whentrue, the model output includes all hidden states:output_attentions- whentrue, the model output includes all attention weights
Configuration
:image_size- the size of the input spatial dimensions. Defaults to224:num_channels- the number of channels in the input. Defaults to3:patch_size- the size of the patch spatial dimensions. Defaults to4:embedding_size- the dimensionality of patch embedding layer. Defaults to96:use_absolute_position_embeddings- whether to add absolute position embeddings to the patch embeddings. Defaults tofalse:num_blocks- the number of Transformer blocks in the encoder at each stage. Defaults to[2, 2, 6, 2]:num_attention_heads- the number of attention heads for each attention layer in the encoder at each stage. Defaults to[3, 6, 12, 24]:window_size- the window size, used to limit self-attention computation to non-overlapping windows. Defaults to7:intermediate_size_ratio- the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder, expressed as a multiplier of hidden size (at the given stage) . Defaults to4:use_attention_bias- whether to use bias in query, key, and value projections. Defaults totrue:activation- the activation function. Defaults to:gelu:dropout_rate- the dropout rate for encoder and decoder. Defaults to0.0:attention_dropout_rate- the dropout rate for attention weights. Defaults to0.0:initializer_scale- the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to0.02:drop_path_rate- the drop path rate used to for stochastic depth. Defaults to0.1:layer_norm_epsilon- the epsilon used by the layer normalization layers. Defaults to1.0e-5:num_labels- the number of labels to use in the last layer for the classification task. Defaults to2:id_to_label- a map from class index to label. Defaults to%{}