

 Bumblebee

 v0.5.3

 Table of contents

 	Examples

 	Stable Diffusion

 	LLMs

 	LLMs and RAG

 	Fine-tuning

 	Modules

 	Bumblebee

 	Bumblebee.Audio

 	Bumblebee.Diffusion.StableDiffusion

 	Bumblebee.Text

 	Bumblebee.Vision

 	Bumblebee.Audio.Whisper

 	Bumblebee.Diffusion.StableDiffusion.SafetyChecker

 	Bumblebee.Diffusion.UNet2DConditional

 	Bumblebee.Diffusion.VaeKl

 	Bumblebee.Multimodal.Blip

 	Bumblebee.Multimodal.Clip

 	Bumblebee.Multimodal.LayoutLm

 	Bumblebee.Text.Albert

 	Bumblebee.Text.Bart

 	Bumblebee.Text.Bert

 	Bumblebee.Text.Blenderbot

 	Bumblebee.Text.BlipText

 	Bumblebee.Text.ClipText

 	Bumblebee.Text.Distilbert

 	Bumblebee.Text.Gpt2

 	Bumblebee.Text.GptBigCode

 	Bumblebee.Text.GptNeoX

 	Bumblebee.Text.Llama

 	Bumblebee.Text.Mbart

 	Bumblebee.Text.Mistral

 	Bumblebee.Text.Roberta

 	Bumblebee.Text.T5

 	Bumblebee.Vision.BlipVision

 	Bumblebee.Vision.ClipVision

 	Bumblebee.Vision.ConvNext

 	Bumblebee.Vision.Deit

 	Bumblebee.Vision.DinoV2

 	Bumblebee.Vision.ResNet

 	Bumblebee.Vision.Vit

 	Bumblebee.Audio.WhisperFeaturizer

 	Bumblebee.Text.PreTrainedTokenizer

 	Bumblebee.Vision.BitFeaturizer

 	Bumblebee.Vision.BlipFeaturizer

 	Bumblebee.Vision.ClipFeaturizer

 	Bumblebee.Vision.ConvNextFeaturizer

 	Bumblebee.Vision.DeitFeaturizer

 	Bumblebee.Vision.VitFeaturizer

 	Bumblebee.Diffusion.DdimScheduler

 	Bumblebee.Diffusion.LcmScheduler

 	Bumblebee.Diffusion.PndmScheduler

 	Bumblebee.Configurable

 	Bumblebee.Featurizer

 	Bumblebee.ModelSpec

 	Bumblebee.Scheduler

 	Bumblebee.Text.Generation

 	Bumblebee.Tokenizer

 	Bumblebee.Text.GenerationConfig

 	Bumblebee.Text.WhisperGenerationConfig

Examples

Mix.install([
 {:bumblebee, "~> 0.5.0"},
 {:nx, "~> 0.7.0"},
 {:exla, "~> 0.7.0"},
 {:axon, "~> 0.6.1"},
 {:kino, "~> 0.12.0"}
])

Nx.global_default_backend(EXLA.Backend)

 Introduction

In this notebook we go through a number of examples to get a quick overview of what Bumblebee brings to the table.

 Image classification

Let's start with image classification. First, we load a pre-trained ResNet-50 model from a HuggingFace repository. We also load the corresponding featurizer for preprocessing input images.
{:ok, resnet} = Bumblebee.load_model({:hf, "microsoft/resnet-50"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, "microsoft/resnet-50"})

:ok
Next, we use the high-level API to build an end-to-end task definition on top of the model we just loaded. We will also need an image to work with, so let's show an image input.
serving = Bumblebee.Vision.image_classification(resnet, featurizer)

image_input = Kino.Input.image("Image", size: {224, 224})
Bumblebee implements end-to-end tasks using Nx.Serving. With serving we can choose to either do a one-off run, or to start a supervised process that automatically batches multiple inference requests. Thanks to this abstraction we can do quick experimentation and then plug the task into a production app with minimal effort.
In this case we will do the one-off run for the selected image:
image = Kino.Input.read(image_input)

Build a tensor from the raw pixel data
image =
 image.file_ref
 |> Kino.Input.file_path()
 |> File.read!()
 |> Nx.from_binary(:u8)
 |> Nx.reshape({image.height, image.width, 3})

Nx.Serving.run(serving, image)

 Manual inference

Note that we are dealing with regular Axon models and the high-level API is just a convenience. If you need full control over the inference flow, you can do it manually. In this case, we would pass the image through the featurizer to get normalized model inputs, then we would run the model and finally extract the most probable label.
inputs = Bumblebee.apply_featurizer(featurizer, image)
outputs = Axon.predict(resnet.model, resnet.params, inputs)

id = outputs.logits |> Nx.argmax() |> Nx.to_number()
resnet.spec.id_to_label[id]
You can try a number of other models, just replace the repository id with one of these:
	facebook/convnext-tiny-224 (ConvNeXT)

	google/vit-base-patch16-224 (ViT)

	facebook/deit-base-distilled-patch16-224 (DeiT)

 Fill-mask

Now time for some text processing. Specifically, we want to fill in the missing word in a sentence. This time we load the BERT model together with a matching tokenizer. We will use the tokenizer to preprocess our text input.
{:ok, bert} = Bumblebee.load_model({:hf, "google-bert/bert-base-uncased"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "google-bert/bert-base-uncased"})

serving = Bumblebee.Text.fill_mask(bert, tokenizer)

text_input = Kino.Input.text("Sentence with mask", default: "The capital of [MASK] is Paris.")
text = Kino.Input.read(text_input)

Nx.Serving.run(serving, text)
Again, you can try other models, such as albert-base-v2 or roberta-base.

 Text classification

In this example we will analyze text sentiment.
We will use the BERTweet model, trained to classify text into one of three categories: positive (POS), negative (NEG) or neutral (NEU).
{:ok, bertweet} = Bumblebee.load_model({:hf, "finiteautomata/bertweet-base-sentiment-analysis"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "vinai/bertweet-base"})

serving = Bumblebee.Text.text_classification(bertweet, tokenizer)

text_input = Kino.Input.text("Text", default: "This cat is so cute.")
Note: this time we need to load a matching tokenizer from a different repository.
text = Kino.Input.read(text_input)
Nx.Serving.run(serving, text)

 Named-entity recognition

In this section we look at token classification, more specifically named-entity recognition (NER), where the objective is to identify and categorize entities in text. We will once again use a fine-tuned BERT model.
{:ok, bert} = Bumblebee.load_model({:hf, "dslim/bert-base-NER"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "google-bert/bert-base-cased"})

serving = Bumblebee.Text.token_classification(bert, tokenizer, aggregation: :same)

text_input =
 Kino.Input.text("Text",
 default: "Rachel Green works at Ralph Lauren in New York City in the sitcom Friends"
)
text = Kino.Input.read(text_input)
Nx.Serving.run(serving, text)

 Text generation

Generation is where things get even more exciting. In this section w will use the extremely popular GPT-2 model to generate text continuation.
Generation generally is an iterative process, where the model predicts the sentence token by token, adhering to some constraints. Again, we will make use of a higher-level API based on Nx.Serving.
{:ok, gpt2} = Bumblebee.load_model({:hf, "openai-community/gpt2"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "openai-community/gpt2"})
{:ok, generation_config} = Bumblebee.load_generation_config({:hf, "openai-community/gpt2"})

serving = Bumblebee.Text.generation(gpt2, tokenizer, generation_config)

text_input = Kino.Input.text("Text", default: "Yesterday, I was reading a book and")
text = Kino.Input.read(text_input)
Nx.Serving.run(serving, text)
There is also gpt2-medium and gpt2-large - heavier versions of the model with much more parameters.

 Question answering

Another text-related task is question answering, where the objective is to retrieve the answer to a question based on a given text. We will work with a RoBERTa model trained to do just that.
{:ok, roberta} = Bumblebee.load_model({:hf, "deepset/roberta-base-squad2"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "roberta-FacebookAI/roberta-base"})

serving = Bumblebee.Text.question_answering(roberta, tokenizer)

question_input =
 Kino.Input.text("Question",
 default: "Which name is also used to describe the Amazon rainforest in English?"
)

context_input =
 Kino.Input.textarea("Context",
 default:
 ~s/The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species./
)

Kino.Layout.grid([question_input, context_input])
question = Kino.Input.read(question_input)
context = Kino.Input.read(context_input)
Nx.Serving.run(serving, %{question: question, context: context})

 Final notes

The examples we covered should give you a good idea of what Bumblebee is about. We are excited about enabling easy access to the pre-trained, powerful deep learning models in Elixir. We are actively working on adding more models and high-level APIs, so stay tuned 🚀

Stable Diffusion

Mix.install([
 {:bumblebee, "~> 0.5.0"},
 {:nx, "~> 0.7.0"},
 {:exla, "~> 0.7.0"},
 {:kino, "~> 0.12.0"}
])

Nx.global_default_backend({EXLA.Backend, client: :host})

 Introduction

Stable Diffusion is a latent text-to-image diffusion model, primarily used to generate images based on a text prompt. Ever since it became open-source, the research, applications and tooling around it exploded. You can find a ton of resources and examples online, meanwhile let's see how to run Stable Diffusion using Bumblebee!
Note: Stable Diffusion is a very involved model, so the generation can take a long time if you run it on a CPU. Also, running on the GPU currently requires at least 5GiB of VRAM (or 3GiB with lower speed, see below).

 Text to image

Stable Diffusion is composed of several separate models and preprocessors, so we will load all of them.
repo_id = "CompVis/stable-diffusion-v1-4"
opts = [params_variant: "fp16", type: :bf16, backend: EXLA.Backend]

{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "openai/clip-vit-large-patch14"})
{:ok, clip} = Bumblebee.load_model({:hf, repo_id, subdir: "text_encoder"}, opts)
{:ok, unet} = Bumblebee.load_model({:hf, repo_id, subdir: "unet"}, opts)
{:ok, vae} = Bumblebee.load_model({:hf, repo_id, subdir: "vae"}, [architecture: :decoder] ++ opts)
{:ok, scheduler} = Bumblebee.load_scheduler({:hf, repo_id, subdir: "scheduler"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, repo_id, subdir: "feature_extractor"})
{:ok, safety_checker} = Bumblebee.load_model({:hf, repo_id, subdir: "safety_checker"}, opts)

:ok
Note: some checkpoints, such as runwayml/stable-diffusion-v1-5, require a license agreement. In those cases, sign up on Hugging Face, accept the license on the repository page, generate an access token in the settings and add it to the repository specification via :auth_token. You can use Livebook secrets to pass the token securely.

With all the models loaded, we can now configure a serving implementation of the text-to-image task.
serving =
 Bumblebee.Diffusion.StableDiffusion.text_to_image(clip, unet, vae, tokenizer, scheduler,
 num_steps: 20,
 num_images_per_prompt: 1,
 safety_checker: safety_checker,
 safety_checker_featurizer: featurizer,
 compile: [batch_size: 1, sequence_length: 60],
 # Option 1
 defn_options: [compiler: EXLA]
 # Option 2 (reduces GPU usage, but runs noticeably slower)
 # Also remove `backend: EXLA.Backend` from the loading options above
 # defn_options: [compiler: EXLA, lazy_transfers: :always]
)

Kino.start_child({Nx.Serving, name: StableDiffusion, serving: serving})
prompt_input =
 Kino.Input.text("Prompt", default: "numbat, forest, high quality, detailed, digital art")

negative_prompt_input = Kino.Input.text("Negative Prompt", default: "darkness, rainy, foggy")

Kino.Layout.grid([prompt_input, negative_prompt_input])
We are ready to generate images!
prompt = Kino.Input.read(prompt_input)
negative_prompt = Kino.Input.read(negative_prompt_input)

output =
 Nx.Serving.batched_run(StableDiffusion, %{prompt: prompt, negative_prompt: negative_prompt})

for result <- output.results do
 Kino.Image.new(result.image)
end
|> Kino.Layout.grid(columns: 2)
To achieve a better quality you can increase the number of steps and images.

LLMs

Mix.install([
 {:bumblebee, "~> 0.5.0"},
 {:nx, "~> 0.7.0"},
 {:exla, "~> 0.7.0"},
 {:kino, "~> 0.12.0"}
])

Nx.global_default_backend({EXLA.Backend, client: :host})

 Introduction

In this notebook we outline the general setup for running a Large Langauge Model (LLM).

 Llama 2

In this section we look at running Meta's Llama model, specifically Llama 2, one of the most powerful open source Large Language Models (LLMs).
Note: this is a very involved model, so the generation can take a long time if you run it on a CPU. Also, running on the GPU currently requires at least 16GiB of VRAM.

In order to load Llama 2, you need to ask for access on meta-llama/Llama-2-7b-chat-hf. Once you are granted access, generate a HuggingFace auth token and put it in a HF_TOKEN Livebook secret.
Let's load the model and create a serving for text generation:
hf_token = System.fetch_env!("LB_HF_TOKEN")
repo = {:hf, "meta-llama/Llama-2-7b-chat-hf", auth_token: hf_token}

{:ok, model_info} = Bumblebee.load_model(repo, type: :bf16, backend: EXLA.Backend)
{:ok, tokenizer} = Bumblebee.load_tokenizer(repo)
{:ok, generation_config} = Bumblebee.load_generation_config(repo)

:ok
generation_config =
 Bumblebee.configure(generation_config,
 max_new_tokens: 256,
 strategy: %{type: :multinomial_sampling, top_p: 0.6}
)

serving =
 Bumblebee.Text.generation(model_info, tokenizer, generation_config,
 compile: [batch_size: 1, sequence_length: 1028],
 stream: true,
 defn_options: [compiler: EXLA]
)

Should be supervised
Kino.start_child({Nx.Serving, name: Llama, serving: serving})
Note that we load the parameters directly onto the GPU with Bumblebee.load_model(..., backend: EXLA.Backend) and with defn_options: [compiler: EXLA] we tell the serving to compile and run computations on the GPU as well.
We adjust the generation config to use a non-deterministic generation strategy, so that the model is able to produce a slightly different output every time.
As for the other options, we specify :compile with fixed shapes, so that the model is compiled only once and inputs are always padded to match these shapes. We also enable :stream to receive text chunks as the generation is progressing.
user_input = Kino.Input.textarea("User prompt", default: "What is love?")
user = Kino.Input.read(user_input)

prompt = """
[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
#{user} [/INST] \
"""

Nx.Serving.batched_run(Llama, prompt) |> Enum.each(&IO.write/1)

 Mistral

We can easily test other LLMs, we just need to change the repository and possibly adjust the prompt template. In this example we run the Mistral model.
repo = {:hf, "mistralai/Mistral-7B-Instruct-v0.2"}

{:ok, model_info} = Bumblebee.load_model(repo, type: :bf16, backend: EXLA.Backend)
{:ok, tokenizer} = Bumblebee.load_tokenizer(repo)
{:ok, generation_config} = Bumblebee.load_generation_config(repo)

:ok
generation_config =
 Bumblebee.configure(generation_config,
 max_new_tokens: 256,
 strategy: %{type: :multinomial_sampling, top_p: 0.6}
)

serving =
 Bumblebee.Text.generation(model_info, tokenizer, generation_config,
 compile: [batch_size: 1, sequence_length: 1028],
 stream: true,
 defn_options: [compiler: EXLA]
)

Should be supervised
Kino.start_child({Nx.Serving, name: Mistral, serving: serving})
prompt = """
<s>[INST] What is your favourite condiment? [/INST]
Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s>
[INST] Do you have mayonnaise recipes? [/INST]\
"""

Nx.Serving.batched_run(Mistral, prompt) |> Enum.each(&IO.write/1)

LLMs and RAG

Mix.install([
 {:bumblebee, "~> 0.5.3"},
 {:nx, "~> 0.7.0"},
 {:exla, "~> 0.7.0"},
 {:kino, "~> 0.11.0"},
 {:hnswlib, "~> 0.1.5"},
 {:req, "~> 0.4.0"}
])

Nx.global_default_backend(EXLA.Backend)

 Introduction

In this notebook we go through an example of in-memory Retrieval Augmented Generation (RAG).
On a high-level, we want to use a text document as the source of knowledge. When the user asks a question, we want to find relevant snippets from the essay and pass it alongside the question to the LLM. This way the LLM can provide a more accurate answer, based on the provided information.

 Knowledge

The first step is to download the text document, in this case we use an essay written by Paul Graham.
%{body: text} =
 Req.get!(
 "https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt"
)

IO.puts("Document length: #{String.length(text)}")
Document length: 75014
:ok

 Generating embeddings

There are many ways we could partition and retrieve snippets from a large text document. In this example we will use embedding-based lookup. That is, we will split the text into smaller chunks, compute an embedding (the chunk meaning compressed into a vector) and create an in-memory index for efficient lookup. In real world problems, you may want to explore other retrieval methods, such as reranking or BM25.
First, let's split the text into chunks, 1024 characters each.
chunks =
 text
 |> String.codepoints()
 |> Enum.chunk_every(1024)
 |> Enum.map(&Enum.join/1)

length(chunks)
74
To generate our embeddings we will use the gte-small model. Let's download it and start a serving.
repo = {:hf, "thenlper/gte-small"}

{:ok, model_info} = Bumblebee.load_model(repo)
{:ok, tokenizer} = Bumblebee.load_tokenizer(repo)

:ok

10:45:24.653 [info] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355

10:45:24.653 [info] XLA service 0x7fe2640185e0 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:

10:45:24.653 [info] StreamExecutor device (0): NVIDIA A100-PCIE-40GB, Compute Capability 8.0

10:45:24.653 [info] Using BFC allocator.

10:45:24.654 [info] XLA backend allocating 38068951449 bytes on device 0 for BFCAllocator.

10:45:25.724 [info] Loaded cuDNN version 8900

10:45:25.741 [info] Using nvlink for parallel linking

:ok
serving =
 Bumblebee.Text.TextEmbedding.text_embedding(model_info, tokenizer,
 compile: [batch_size: 64, sequence_length: 512],
 defn_options: [compiler: EXLA],
 output_attribute: :hidden_state,
 output_pool: :mean_pooling
)

Kino.start_child({Nx.Serving, serving: serving, name: GteServing})

10:45:40.784 [info] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot_5', 416 bytes spill stores, 380 bytes spill loads

10:45:40.941 [info] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot_4', 16 bytes spill stores, 8 bytes spill loads

10:45:41.043 [info] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot_5', 216 bytes spill stores, 216 bytes spill loads

10:45:41.911 [info] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot_4', 116 bytes spill stores, 116 bytes spill loads

10:45:42.297 [info] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot', 224 bytes spill stores, 224 bytes spill loads

10:45:43.685 [info] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot', 116 bytes spill stores, 116 bytes spill loads

{:ok, #PID<0.337.0>}
We are ready to generate embeddings for the chunks. We can pass the whole list to Nx.Serving.batched_run, it is going to split them into batches for us automatically!
results = Nx.Serving.batched_run(GteServing, chunks)
chunk_embeddings = for result <- results, do: result.embedding

List.first(chunk_embeddings)
#Nx.Tensor<
 f32[384]
 [-0.5916804075241089, -0.13268965482711792, 0.36229825019836426, -0.556615948677063, 0.01819833740592003, -0.024938391521573067, 0.04474494233727455, 0.47490546107292175, -0.05340703949332237, -0.4221706986427307, 0.28060096502304077, 0.17608247697353363, 0.4058661460876465, -0.18497221171855927, -0.03590576723217964, 0.08227517455816269, 0.01424853503704071, 3.000508586410433e-4, -0.4355849027633667, -0.031500332057476044, 0.09329124540090561, -0.3475785255432129, -0.32122331857681274, -0.6944850087165833, 0.37913432717323303, 0.6656467318534851, -0.13363417983055115, -0.15357448160648346, -0.49233582615852356, -1.609808325767517, -0.1069299727678299, -0.6130001544952393, 0.5398191809654236, -0.1528831273317337, 0.2520260810852051, -0.23963800072669983, 0.11689342558383942, 0.2304331660270691, -0.33046290278434753, 0.19069115817546844, 0.18440452218055725, 0.004146122839301825, -0.2470259666442871, -0.4341312348842621, -0.10821156948804855, -0.494146466255188, -0.364268034696579, -0.3443082273006439, 0.5371165871620178, -0.3544468879699707, ...]
>

 Embeddings index and retrieval

Having all the embeddings at hand, we will now create an index using hnswlib. With the index, we will be able to quickly retrieve embeddings matching a query. The hnswlib library uses Approximate Nearest Neighbor (ANN) search underneath.
{:ok, index} = HNSWLib.Index.new(:cosine, 384, 1_000_000)

for embedding <- chunk_embeddings do
 HNSWLib.Index.add_items(index, embedding)
end

HNSWLib.Index.get_current_count(index)
{:ok, 74}
Now, given a textual query, we first need to compute its embedding using the same embedding model. Once we have the embedding, we do a similarity lookup and get top 4 matching results.
query = "What were the two main things the author worked on before college?"

%{embedding: embedding} = Nx.Serving.batched_run(GteServing, query)

{:ok, labels, dist} = HNSWLib.Index.knn_query(index, embedding, k: 4)
{:ok,
 #Nx.Tensor<
 u64[1][4]
 EXLA.Backend<cuda:0, 0.740345038.3226599448.172063>
 [
 [0, 10, 11, 54]
]
 >,
 #Nx.Tensor<
 f32[1][4]
 EXLA.Backend<cuda:0, 0.740345038.3226599448.172065>
 [
 [0.11476433277130127, 0.14768105745315552, 0.15568876266479492, 0.15724539756774902]
]
 >}
The lookup conveniently returns indices, so we can get their corresponding chunks and join into a context text.
We can see some overlapping in our chunks
context =
 labels
 |> Nx.to_flat_list()
 |> Enum.sort()
 |> Enum.map(fn idx -> "[...] " <> Enum.at(chunks, idx) <> " [...]" end)
 |> Enum.join("\n\n")

IO.puts(context)
[...]

What I Worked On

February 2021

Before college the two main things I worked on, outside of school, were writing and programming. I didn't write essays. I wrote what beginning writers were supposed to write then, and probably still are: short stories. My stories were awful. They had hardly any plot, just characters with strong feelings, which I imagined made them deep.

The first programs I tried writing were on the IBM 1401 that our school district used for what was then called "data processing." This was in 9th grade, so I was 13 or 14. The school district's 1401 happened to be in the basement of our junior high school, and my friend Rich Draves and I got permission to use it. It was like a mini Bond villain's lair down there, with all these alien-looking machines — CPU, disk drives, printer, card reader — sitting up on a raised floor under bright fluorescent lights.

The language we used was an early version of Fortran. You had to type programs on punch cards, then stack them in the card reader and press [...]

[...] g art classes at Harvard. Grad students could take classes in any department, and my advisor, Tom Cheatham, was very easy going. If he even knew about the strange classes I was taking, he never said anything.

So now I was in a PhD program in computer science, yet planning to be an artist, yet also genuinely in love with Lisp hacking and working away at On Lisp. In other words, like many a grad student, I was working energetically on multiple projects that were not my thesis.

I didn't see a way out of this situation. I didn't want to drop out of grad school, but how else was I going to get out? I remember when my friend Robert Morris got kicked out of Cornell for writing the internet worm of 1988, I was envious that he'd found such a spectacular way to get out of grad school.

Then one day in April 1990 a crack appeared in the wall. I ran into professor Cheatham and he asked if I was far enough along to graduate that June. I didn't have a word of my dissertation written, but in what must have been the quicke [...]

[...] st bit of thinking in my life, I decided to take a shot at writing one in the 5 weeks or so that remained before the deadline, reusing parts of On Lisp where I could, and I was able to respond, with no perceptible delay "Yes, I think so. I'll give you something to read in a few days."

I picked applications of continuations as the topic. In retrospect I should have written about macros and embedded languages. There's a whole world there that's barely been explored. But all I wanted was to get out of grad school, and my rapidly written dissertation sufficed, just barely.

Meanwhile I was applying to art schools. I applied to two: RISD in the US, and the Accademia di Belli Arti in Florence, which, because it was the oldest art school, I imagined would be good. RISD accepted me, and I never heard back from the Accademia, so off to Providence I went.

I'd applied for the BFA program at RISD, which meant in effect that I had to go to college again. This was not as strange as it sounds, because I was only 25, and a [...]

[...] b. I was going to do three things: hack, write essays, and work on YC. As YC grew, and I grew more excited about it, it started to take up a lot more than a third of my attention. But for the first few years I was still able to work on other things.

In the summer of 2006, Robert and I started working on a new version of Arc. This one was reasonably fast, because it was compiled into Scheme. To test this new Arc, I wrote Hacker News in it. It was originally meant to be a news aggregator for startup founders and was called Startup News, but after a few months I got tired of reading about nothing but startups. Plus it wasn't startup founders we wanted to reach. It was future startup founders. So I changed the name to Hacker News and the topic to whatever engaged one's intellectual curiosity.

HN was no doubt good for YC, but it was also by far the biggest source of stress for me. If all I'd had to do was select and help founders, life would have been so easy. And that implies that HN was a mistake. Surely the b [...]
:ok

 Generating an answer

We have our context, the last thing left to do is have a LLM answer the question. In this example we will use the Mistral model.
For more details on running an LLM, see the LLMs notebook.
repo = {:hf, "mistralai/Mistral-7B-Instruct-v0.2"}

{:ok, model_info} = Bumblebee.load_model(repo, type: :bf16)
{:ok, tokenizer} = Bumblebee.load_tokenizer(repo)
{:ok, generation_config} = Bumblebee.load_generation_config(repo)

generation_config = Bumblebee.configure(generation_config, max_new_tokens: 100)

:ok
:ok
serving =
 Bumblebee.Text.generation(model_info, tokenizer, generation_config,
 compile: [batch_size: 1, sequence_length: 6000],
 defn_options: [compiler: EXLA]
)

Kino.start_child({Nx.Serving, name: MistralServing, serving: serving})

10:46:17.065 [info] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot_516', 4 bytes spill stores, 4 bytes spill loads

10:46:17.681 [info] ptxas warning : Registers are spilled to local memory in function 'triton_gemm_dot_516', 104 bytes spill stores, 152 bytes spill loads

{:ok, #PID<0.347.0>}
prompt =
 """
 Context information is below.

 #{context}

 Given the context information and not prior knowledge, answer the query.
 Query: #{query}
 Answer:
 """

results = Nx.Serving.batched_run(MistralServing, prompt)
%{
 results: [
 %{
 text: "1. Writing: The author wrote short stories before college, which he describes as having hardly any plot and strong feelings.\n2. Programming: The author started programming on an IBM 1401 computer in 9th grade, using an early version of Fortran to write programs.",
 token_summary: %{input: 1099, output: 61, padding: 4901}
 }
]
}
And here we have our answer!
For additional context you can also visit the Mistral docs that go through a similar example.

Fine-tuning

Mix.install([
 {:bumblebee, "~> 0.5.0"},
 {:nx, "~> 0.7.0"},
 {:exla, "~> 0.7.0"},
 {:axon, "~> 0.6.1"},
 {:explorer, "~> 0.7.0"}
])

Nx.default_backend(EXLA.Backend)

 Introduction

Fine-tuning is the process of specializing the parameters in a pre-trained model to a specific task. Large-language models such as BERT train on a generic langauge-modeling task which makes them powerful at extracting features from text. Despite their power, you often still need to train them on a downstream task.
This example demonstrates how to use Bumblebee and Axon to fine-tune a pre-trained Bert model to classify Yelp reviews into classes of 1-5 stars. This example is based on Fine-tune a pretrained model from Huggingface.
You'll need to first download the Yelp Reviews dataset (download).
Once downloaded, extract it to a directory of your choosing and you're ready to go!

 Load a model

We'll start by loading a pre-trained model and tokenizer; however, we'll initialize the model to have an untrained sequence classification head.
Reviews in the dataset can have anywhere from 1 to 5 stars, which means we need 5 labels in our sequence classification head. We can change the default configuration by loading the model spec with Bumblebee.load_spec/2 and making changes to spec properties with Bumblebee.configure/2.
The pre-trained model we'll be using is bert-base-cased; however, you can use any of the supported models from the HuggingFace Hub.
{:ok, spec} =
 Bumblebee.load_spec({:hf, "google-bert/bert-base-cased"},
 architecture: :for_sequence_classification
)

spec = Bumblebee.configure(spec, num_labels: 5)

{:ok, model} = Bumblebee.load_model({:hf, "google-bert/bert-base-cased"}, spec: spec)
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "google-bert/bert-base-cased"})

14:41:33.314 [info] TfrtCpuClient created.

14:41:33.820 [debug] the following parameters were missing:

 * sequence_classification_head.output.kernel
 * sequence_classification_head.output.bias

14:41:33.820 [debug] the following PyTorch parameters were unused:

 * cls.predictions.bias
 * cls.predictions.decoder.weight
 * cls.predictions.transform.LayerNorm.beta
 * cls.predictions.transform.LayerNorm.gamma
 * cls.predictions.transform.dense.bias
 * cls.predictions.transform.dense.weight
 * cls.seq_relationship.bias
 * cls.seq_relationship.weight

{:ok,
 %Bumblebee.Text.BertTokenizer{
 tokenizer: #Tokenizers.Tokenizer<[
 vocab_size: 28996,
 continuing_subword_prefix: "##",
 max_input_chars_per_word: 100,
 model_type: "bpe",
 unk_token: "[UNK]"
]>,
 special_tokens: %{cls: "[CLS]", mask: "[MASK]", pad: "[PAD]", sep: "[SEP]", unk: "[UNK]"}
 }}

 Prepare a dataset

With the models downloaded and ready to go, you need to prepare the dataset. The downloaded dataset is a CSV. You can use the Explorer library to quickly load the CSV into a DataFrame.
Once the data is loaded, you need to convert raw text to tokens and the raw labels to tensors. Additionally, you need to convert the DataFrame to a Stream consisting of tuples: {tokenized, labels} - that is the form expected by Axon's training API.
defmodule Yelp do
 def load(path, tokenizer, opts \\ []) do
 path
 |> Explorer.DataFrame.from_csv!(header: false)
 |> Explorer.DataFrame.rename(["label", "text"])
 |> stream()
 |> tokenize_and_batch(tokenizer, opts[:batch_size], opts[:sequence_length])
 end

 def stream(df) do
 xs = df["text"]
 ys = df["label"]

 xs
 |> Explorer.Series.to_enum()
 |> Stream.zip(Explorer.Series.to_enum(ys))
 end

 def tokenize_and_batch(stream, tokenizer, batch_size, sequence_length) do
 tokenizer = Bumblebee.configure(tokenizer, length: sequence_length)

 stream
 |> Stream.chunk_every(batch_size)
 |> Stream.map(fn batch ->
 {text, labels} = Enum.unzip(batch)
 tokenized = Bumblebee.apply_tokenizer(tokenizer, text)
 {tokenized, Nx.stack(labels)}
 end)
 end
end
{:module, Yelp, <<70, 79, 82, 49, 0, 0, 13, ...>>, {:tokenize_and_batch, 4}}
Now you can use the Yelp.load/2 function to load a training set and a testing set:
batch_size = 32
sequence_length = 64

train_data =
 Yelp.load("~/yelp/yelp_review_full_csv/train.csv", tokenizer,
 batch_size: batch_size,
 sequence_length: sequence_length
)

test_data =
 Yelp.load("~/yelp/yelp_review_full_csv/test.csv", tokenizer,
 batch_size: batch_size,
 sequence_length: sequence_length
)
#Stream<[
 enum: #Stream<[
 enum: #Function<73.124013645/2 in Stream.zip_with/2>,
 funs: [#Function<3.124013645/1 in Stream.chunk_while/4>]
]>,
 funs: [#Function<48.124013645/1 in Stream.map/2>]
]>
You can see what a single batch looks like by grabbing 1 from the stream:
Enum.take(train_data, 1)
[
 {%{
 "attention_mask" => #Nx.Tensor<
 s64[32][64]
 EXLA.Backend<host:0, 0.801663575.1558315030.66545>
 [
 [1, ...],
 ...
]
 >,
 "input_ids" => #Nx.Tensor<
 s64[32][64]
 EXLA.Backend<host:0, 0.801663575.1558315030.66544>
 [
 [101, 173, 1197, 119, 2284, 2953, 3272, 1917, 178, 1440, 1111, 1107, 170, 1704, 22351, 119, 1119, 112, 188, 3505, 1105, 3123, 1106, 2037, 1106, 1443, 1217, 10063, 4404, 132, 1119, 112, 188, 1579, 1113, 1159, 1107, 3195, 1117, 4420, 132, 1119, 112, 188, 6559, 1114, ...],
 ...
]
 >,
 "token_type_ids" => #Nx.Tensor<
 s64[32][64]
 EXLA.Backend<host:0, 0.801663575.1558315030.66546>
 [
 [0, ...],
 ...
]
 >
 },
 #Nx.Tensor<
 s64[32]
 EXLA.Backend<host:0, 0.801663575.1558315028.66360>
 [5, 2, 4, 4, 1, 5, 5, 1, 2, 3, 1, 1, 4, 2, 5, 5, 5, 5, 5, 5, 4, 3, 2, 5, 1, 1, 1, 2, 2, 4, 2, 2]
 >}
]
The dataset is rather large for CPU training, so we'll just train a small subset (250 training batches and 50 testing batches):
train_data = Enum.take(train_data, 250)
test_data = Enum.take(test_data, 50)
:ok
:ok

 Train the model

Now we can go about training the model! First, we need to extract the Axon model and parameters from the Bumblebee model map:
%{model: model, params: params} = model

model
#Axon<
 inputs: %{"attention_head_mask" => {12, 12}, "attention_mask" => {nil, nil}, "input_ids" => {nil, nil}, "position_ids" => {nil, nil}, "token_type_ids" => {nil, nil}}
 outputs: "container_37"
 nodes: 790
>
The Axon model actually outputs a map with :logits, :hidden_states, and :attentions. You can see this by using Axon.get_output_shape/2 with an input. This method symbolically executes the graph and gets the resulting shapes:
[{input, _}] = Enum.take(train_data, 1)
Axon.get_output_shape(model, input)
%{attentions: #Axon.None<...>, hidden_states: #Axon.None<...>, logits: {32, 5}}
For training, we only care about the :logits key, so we'll extract that by attaching an Axon.nx/2 layer to the model:
logits_model = Axon.nx(model, & &1.logits)
#Axon<
 inputs: %{"attention_head_mask" => {12, 12}, "attention_mask" => {nil, nil}, "input_ids" => {nil, nil}, "position_ids" => {nil, nil}, "token_type_ids" => {nil, nil}}
 outputs: "nx_0"
 nodes: 791
>
Now we can declare our training loop. You can construct Axon training loops using the Axon.Loop.trainer/3 factory method with a model, loss function, and optimizer. We'll also adjust the log-settings to more frequently log metrics to standard out:
loss =
 &Axon.Losses.categorical_cross_entropy(&1, &2,
 reduction: :mean,
 from_logits: true,
 sparse: true
)

optimizer = Polaris.Optimizers.adam(learning_rate: 5.0e-5)

loop = Axon.Loop.trainer(logits_model, loss, optimizer, log: 1)
#Axon.Loop<
 metrics: %{
 "loss" => {#Function<11.3813108/3 in Axon.Metrics.running_average/1>,
 #Function<41.3316493/2 in :erl_eval.expr/6>}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<6.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<64.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
The call to trainer just returns a data structure. In Axon, we manipulate this data structure to control different parts of the loop. For example, you can attach metrics:
accuracy = &Axon.Metrics.accuracy(&1, &2, from_logits: true, sparse: true)

loop = Axon.Loop.metric(loop, accuracy, "accuracy")
#Axon.Loop<
 metrics: %{
 "accuracy" => {#Function<11.3813108/3 in Axon.Metrics.running_average/1>,
 #Function<41.3316493/2 in :erl_eval.expr/6>},
 "loss" => {#Function<11.3813108/3 in Axon.Metrics.running_average/1>,
 #Function<41.3316493/2 in :erl_eval.expr/6>}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<6.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<64.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
And you can attach event handlers to do certain things, such as serialize the loop state at regular intervals so you don't lose your progress:
loop = Axon.Loop.checkpoint(loop, event: :epoch_completed)
#Axon.Loop<
 metrics: %{
 "accuracy" => {#Function<11.3813108/3 in Axon.Metrics.running_average/1>,
 #Function<41.3316493/2 in :erl_eval.expr/6>},
 "loss" => {#Function<11.3813108/3 in Axon.Metrics.running_average/1>,
 #Function<41.3316493/2 in :erl_eval.expr/6>}
 },
 handlers: %{
 completed: [],
 epoch_completed: [
 {#Function<17.14409478/1 in Axon.Loop.checkpoint/2>,
 #Function<6.14409478/2 in Axon.Loop.build_filter_fn/1>},
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<6.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 epoch_halted: [],
 epoch_started: [],
 halted: [],
 iteration_completed: [
 {#Function<27.14409478/1 in Axon.Loop.log/3>,
 #Function<64.14409478/2 in Axon.Loop.build_filter_fn/1>}
],
 iteration_started: [],
 started: []
 },
 ...
>
To run the loop, you just need to call Axon.Loop.run/4. Axon.Loop.run/4 takes a loop, input data, and any initial state (in this case initial parameters). You can kind of think of Axon.Loop.run/4 as an Enum.reduce/3. It takes data, an accumulator, and a function - which map to Loop.run/4 input data, initial state, and the actual loop data structure.
You'll commonly see loops written out in long chains using Elixir's |> operator, like this:
trained_model_state =
 logits_model
 |> Axon.Loop.trainer(loss, optimizer, log: 1)
 |> Axon.Loop.metric(accuracy, "accuracy")
 |> Axon.Loop.checkpoint(event: :epoch_completed)
 |> Axon.Loop.run(train_data, params, epochs: 3, compiler: EXLA, strict?: false)

:ok

02:46:02.170 [debug] Forwarding options: [compiler: EXLA] to JIT compiler
Epoch: 0, Batch: 249, accuracy: 0.3462500 loss: 1.2216607
Epoch: 1, Batch: 249, accuracy: 0.5186251 loss: 1.0558304
Epoch: 2, Batch: 249, accuracy: 0.6236249 loss: 0.9317472
:ok

 Evaluating the model

The training loop returns the final model state after training over your dataset for the given number of epochs. Axon uses the same Axon.Loop API to create evaluation loops as well. You can create one with the Axon.Loop.evaluator/1 factory, instrument it with metrics, and run it on your data with your trained model state:
logits_model
|> Axon.Loop.evaluator()
|> Axon.Loop.metric(accuracy, "accuracy")
|> Axon.Loop.run(test_data, trained_model_state, compiler: EXLA)
Batch: 49, accuracy: 0.3675000
%{
 0 => %{
 "accuracy" => #Nx.Tensor<
 f32
 EXLA.Backend<host:0, 0.446408219.3911319572.169449>
 0.36750003695487976
 >
 }
}

Bumblebee

Pre-trained Axon models for easy inference and boosted training.
Bumblebee provides state-of-the-art, configurable Axon models. On
top of that, it streamlines the process of loading pre-trained models
by integrating with Hugging Face Hub and 🤗 Transformers.

 Usage

You can load one of the supported models by specifying the model repository:
{:ok, model_info} = Bumblebee.load_model({:hf, "google-bert/bert-base-uncased"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "google-bert/bert-base-uncased"})
Then you are ready to make predictions:
inputs = Bumblebee.apply_tokenizer(tokenizer, "Hello Bumblebee!")
outputs = Axon.predict(model_info.model, model_info.params, inputs)

 Tasks

On top of bare models, Bumblebee provides a number of "servings"
that act as end-to-end pipelines for specific tasks.
serving = Bumblebee.Text.fill_mask(model_info, tokenizer)
Nx.Serving.run(serving, "The capital of [MASK] is Paris.")
#=> %{
#=> predictions: [
#=> %{score: 0.9279842972755432, token: "france"},
#=> %{score: 0.008412551134824753, token: "brittany"},
#=> %{score: 0.007433671969920397, token: "algeria"},
#=> %{score: 0.004957548808306456, token: "department"},
#=> %{score: 0.004369721747934818, token: "reunion"}
#=>]
#=> }
As you can see the serving takes care of pre-processing the
text input, runs the model and also post-processes its output into
more structured data. In the above example we run serving on the
fly, however for production usage you can start serving as a process
and it will automatically batch requests from multiple clients.
Processing inputs in batches is usually much more efficient, since
it can take advantage of parallel capabilities of the target device,
which is particularly relevant in case of GPU. For more details read
the Nx.Serving docs.
For more examples see the Examples notebook.
Note
The models are generally large, so make sure to configure an efficient
Nx backend, such as EXLA or Torchx.

 HuggingFace Hub

HuggingFace Hub is a platform hosting models, datasets and demo apps (Spaces), all using Git repositories (with Git LFS for large files). For further information check out the Hub documentation and explore the model repositories.

 Models

Model repositories are regular Git repositories, therefore they can store arbitrary files. However, most repositories store models saved using the Python Transformers library. Bumblebee is an Elixir counterpart of Transformers and allows for importing those models, as long as they are implemented in Bumblebee.
A repository in the Transformers format does not store an actual model, only the trained parameters and a configuration file. The configuration file specifies the model type (e.g. BERT) and high-level properties, such as the number layers and their size. The model implementation lives in the library code (both Transformers and Bumblebee). When loading a model, the library fetches the configuration and builds a matching model, then it fetches the trained parameters to pair them with the model. The key takeaway is that in order to use any given model, it needs to have an implementation in Bumblebee.

 Model repository

Here is a list of files commonly found in a repository following the Transformers format.
	config.json - model configuration, specifies the model type and model-specific options. You can think of this as a blueprint for how the model should be constructed

	pytorch_model.bin - raw model parameters (tensors) serialized from a PyTorch model using PyTorch format (supported by Bumblebee)

	model.safetensors - raw model parameters (tensors) serialized from a PyTorch model using Safetensors (supported by Bumblebee)

	flax_model.msgpack, tf_model.h5 - raw model parameters (tensors) serialized from Flax and Tensorflow models respectively (not supported by Bumblebee)

	tokenizer.json, tokenizer_config.json - tokenizer configuration, describes how to convert text input to model inputs (tensors). See Tokenizer support

	preprocessor_config.json - featurizer configuration, describes how to convert real-world input (image, audio) to model inputs (tensors)

	generation_config.json - a set of configuration options specific to text generation, such as token sampling strategy and various constraints

 Model support

As pointed out above, in order to load a model, the given model type must be implemented in Bumblebee. To find out whether the model is supported you can call Bumblebee.load_model({:hf, "model-repo"}) or use this tool to run a number of checks against the repository.
If you prefer to poke around the code, open the config.json file in the model repository and copy the class name under "architectures". Next,

 Bumblebee.Audio - Bumblebee v0.5.3

Bumblebee.Audio

High-level tasks related to audio processing.

 Summary

 Types

 audio()

 A term representing audio.

 speech_to_text_whisper_chunk()

 speech_to_text_whisper_input()

 speech_to_text_whisper_output()

 Functions

 speech_to_text_whisper(model_info, featurizer, tokenizer, generation_config, opts \\ [])

 Builds serving for speech-to-text generation with Whisper models.

 Types

 Link to this type

 audio()

 View Source

 @type audio() :: Nx.t() | {:file, String.t()}

A term representing audio.
Can be either of:
	a 1-dimensional Nx.Tensor with audio samples

	{:file, path} with path to an audio file (note that this
requires ffmpeg installed)

 Link to this type

 speech_to_text_whisper_chunk()

 View Source

 @type speech_to_text_whisper_chunk() :: %{
 text: String.t(),
 start_timestamp_seconds: number() | nil,
 end_timestamp_seconds: number() | nil
}

 Link to this type

 speech_to_text_whisper_input()

 View Source

 @type speech_to_text_whisper_input() ::
 audio() | %{:audio => audio(), optional(:seed) => integer() | nil}

 Link to this type

 speech_to_text_whisper_output()

 View Source

 @type speech_to_text_whisper_output() :: %{chunks: [speech_to_text_whisper_chunk()]}

 Functions

 Link to this function

 speech_to_text_whisper(model_info, featurizer, tokenizer, generation_config, opts \\ [])

 View Source

 @spec speech_to_text_whisper(
 Bumblebee.model_info(),
 Bumblebee.Featurizer.t(),
 Bumblebee.Tokenizer.t(),
 Bumblebee.Text.GenerationConfig.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for speech-to-text generation with Whisper models.
The serving accepts speech_to_text_whisper_input/0 and returns
speech_to_text_whisper_output/0. A list of inputs is also supported.

 Options

	:chunk_num_seconds - enables long-form transcription by splitting
the input into chunks of the given length. Models generally have
a limit on the input length, so by chunking we can feed smaller
bits into the model, then merge the individual outputs into a
single result at the end. By default chunking is disabled

	:context_num_seconds - specifies the amount of overlap between
chunks on both sides of split points. The context is effectively
discarded when merging the chunks at the end, but it improves
the results at the chunk edges. Note that the context is included
in the total :chunk_num_seconds. Defaults to 1/6 of
:chunk_num_seconds

	:language - the language of the speech, when known upfront.
Should be given as ISO alpha-2 code as string. By default no
language is assumed and it is inferred from the input

	:task - either of:
	:transcribe (default) - generate audio transcription in
the same language as the speech

	:translate - generate translation of the given speech in
English

	:timestamps - when set, the model predicts timestamps and each
annotated segment becomes an output chunk. Currently the only
supported value is :segments, the length of each segment is up
to the model

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

	:stream - when true, the serving immediately returns a
stream that emits chunks as they are generated. Note that
when using streaming, only a single input can be given to the
serving. To process a batch, call the serving with each input
separately. Defaults to false

 Examples

{:ok, whisper} = Bumblebee.load_model({:hf, "openai/whisper-tiny"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, "openai/whisper-tiny"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "openai/whisper-tiny"})
{:ok, generation_config} = Bumblebee.load_generation_config({:hf, "openai/whisper-tiny"})

serving =
 Bumblebee.Audio.speech_to_text_whisper(whisper, featurizer, tokenizer, generation_config,
 defn_options: [compiler: EXLA]
)

output = Nx.Serving.run(serving, {:file, "/path/to/audio.wav"})
#=> %{
#=> chunks: [
#=> %{
#=> text: " There is a cat outside the window.",
#=> start_timestamp_seconds: nil,
#=> end_timestamp_seconds: nil
#=> }
#=>]
#=> }

text = output.chunks |> Enum.map_join(& &1.text) |> String.trim()
#=> "There is a cat outside the window."
And with timestamps:
serving =
 Bumblebee.Audio.speech_to_text_whisper(whisper, featurizer, tokenizer, generation_config,
 defn_options: [compiler: EXLA],
 chunk_num_seconds: 30,
 timestamps: :segments
)

Nx.Serving.run(serving, {:file, "/path/to/colouredstars_08_mathers_128kb.mp3"})
#=> %{
#=> chunks: [
#=> %{
#=> text: " Such an eight of colored stars, versions of fifty isiatic love poems by Edward Powis-Mathers.",
#=> start_timestamp_seconds: 0.0,
#=> end_timestamp_seconds: 7.0
#=> },
#=> %{
#=> text: " This the revocs recording is in the public domain. Doubt. From the Japanese of Hori-Kawa,",
#=> start_timestamp_seconds: 7.0,
#=> end_timestamp_seconds: 14.0
#=> },
#=> %{
#=> text: " will he be true to me that I do not know. But since the dawn, I have had as much disorder in my thoughts as in my black hair, and of doubt.",
#=> start_timestamp_seconds: 14.0,
#=> end_timestamp_seconds: 27.0
#=> }
#=>]
#=> }

 Bumblebee.Diffusion.StableDiffusion - Bumblebee v0.5.3

Bumblebee.Diffusion.StableDiffusion

High-level tasks based on Stable Diffusion.

 Summary

 Types

 text_to_image_input()

 text_to_image_output()

 text_to_image_result()

 Functions

 text_to_image(encoder, unet, vae, tokenizer, scheduler, opts \\ [])

 Build serving for prompt-driven image generation.

 Types

 Link to this type

 text_to_image_input()

 View Source

 @type text_to_image_input() ::
 String.t()
 | %{
 :prompt => String.t(),
 optional(:negative_prompt) => String.t() | nil,
 optional(:seed) => integer() | nil
 }

 Link to this type

 text_to_image_output()

 View Source

 @type text_to_image_output() :: %{results: [text_to_image_result()]}

 Link to this type

 text_to_image_result()

 View Source

 @type text_to_image_result() :: %{
 :image => Nx.Tensor.t(),
 optional(:is_safe) => boolean()
}

 Functions

 Link to this function

 text_to_image(encoder, unet, vae, tokenizer, scheduler, opts \\ [])

 View Source

 @spec text_to_image(
 Bumblebee.model_info(),
 Bumblebee.model_info(),
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 Bumblebee.Scheduler.t(),
 keyword()
) :: Nx.Serving.t()

Build serving for prompt-driven image generation.
The serving accepts text_to_image_input/0 and returns text_to_image_output/0.
A list of inputs is also supported.
You can specify :safety_checker model to automatically detect
when a generated image is offensive or harmful and filter it out.

 Options

	:safety_checker - the safety checker model info map. When a
safety checker is used, each output entry has an additional
:is_safe property and unsafe images are automatically zeroed.
Make sure to also set :safety_checker_featurizer

	:safety_checker_featurizer - the featurizer to use to preprocess
the safety checker input images

	:num_steps - the number of denoising steps. More denoising
steps usually lead to higher image quality at the expense of
slower inference. Defaults to 50

	:num_images_per_prompt - the number of images to generate for
each prompt. Defaults to 1

	:guidance_scale - the scale used for classifier-free diffusion
guidance. Higher guidance scale makes the generated images more
closely reflect the text prompt. This parameter corresponds to
ω in Equation (2) of the Imagen paper.
Defaults to 7.5

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

 Examples

repository_id = "CompVis/stable-diffusion-v1-4"

{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "openai/clip-vit-large-patch14"})
{:ok, clip} = Bumblebee.load_model({:hf, repository_id, subdir: "text_encoder"})
{:ok, unet} = Bumblebee.load_model({:hf, repository_id, subdir: "unet"})
{:ok, vae} = Bumblebee.load_model({:hf, repository_id, subdir: "vae"}, architecture: :decoder)
{:ok, scheduler} = Bumblebee.load_scheduler({:hf, repository_id, subdir: "scheduler"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, repository_id, subdir: "feature_extractor"})
{:ok, safety_checker} = Bumblebee.load_model({:hf, repository_id, subdir: "safety_checker"})

serving =
 Bumblebee.Diffusion.StableDiffusion.text_to_image(clip, unet, vae, tokenizer, scheduler,
 num_steps: 20,
 num_images_per_prompt: 2,
 safety_checker: safety_checker,
 safety_checker_featurizer: featurizer,
 compile: [batch_size: 1, sequence_length: 60],
 defn_options: [compiler: EXLA]
)

prompt = "numbat in forest, detailed, digital art"
Nx.Serving.run(serving, prompt)
#=> %{
#=> results: [
#=> %{
#=> image: #Nx.Tensor<
#=> u8[512][512][3]
#=> ...
#=> >,
#=> is_safe: true
#=> },
#=> %{
#=> image: #Nx.Tensor<
#=> u8[512][512][3]
#=> ...
#=> >,
#=> is_safe: true
#=> }
#=>]
#=> }

 Bumblebee.Text - Bumblebee v0.5.3

Bumblebee.Text

High-level tasks related to text processing.

 Summary

 Types

 fill_mask_input()

 fill_mask_output()

 fill_mask_prediction()

 generation_input()

 generation_output()

 generation_result()

 question_answering_input()

 question_answering_output()

 question_answering_result()

 text_classification_input()

 text_classification_output()

 text_classification_prediction()

 text_embedding_input()

 text_embedding_output()

 token_classification_entity()

 A single entity label.

 token_classification_input()

 token_classification_output()

 token_summary()

 zero_shot_classification_input()

 zero_shot_classification_output()

 zero_shot_classification_prediction()

 Functions

 fill_mask(model_info, tokenizer, opts \\ [])

 Builds serving for the fill-mask task.

 generation(model_info, tokenizer, generation_config, opts \\ [])

 Builds serving for prompt-driven text generation.

 question_answering(model_info, tokenizer, opts \\ [])

 Builds serving for the question answering task.

 text_classification(model_info, tokenizer, opts \\ [])

 Builds serving for text classification.

 text_embedding(model_info, tokenizer, opts \\ [])

 Builds serving for text embeddings.

 token_classification(model_info, tokenizer, opts \\ [])

 Builds serving for token classification.

 zero_shot_classification(model_info, tokenizer, labels, opts \\ [])

 Builds serving for the zero-shot classification task.

 Types

 Link to this type

 fill_mask_input()

 View Source

 @type fill_mask_input() :: String.t()

 Link to this type

 fill_mask_output()

 View Source

 @type fill_mask_output() :: %{predictions: [fill_mask_prediction()]}

 Link to this type

 fill_mask_prediction()

 View Source

 @type fill_mask_prediction() :: %{score: number(), token: String.t()}

 Link to this type

 generation_input()

 View Source

 @type generation_input() ::
 String.t() | %{:text => String.t(), optional(:seed) => integer() | nil}

 Link to this type

 generation_output()

 View Source

 @type generation_output() :: %{results: [generation_result()]}

 Link to this type

 generation_result()

 View Source

 @type generation_result() :: %{text: String.t(), token_summary: token_summary()}

 Link to this type

 question_answering_input()

 View Source

 @type question_answering_input() :: %{question: String.t(), context: String.t()}

 Link to this type

 question_answering_output()

 View Source

 @type question_answering_output() :: %{predictions: [question_answering_result()]}

 Link to this type

 question_answering_result()

 View Source

 @type question_answering_result() :: %{
 text: String.t(),
 start: number(),
 end: number(),
 score: number()
}

 Link to this type

 text_classification_input()

 View Source

 @type text_classification_input() :: String.t()

 Link to this type

 text_classification_output()

 View Source

 @type text_classification_output() :: %{
 predictions: [text_classification_prediction()]
}

 Link to this type

 text_classification_prediction()

 View Source

 @type text_classification_prediction() :: %{score: number(), label: String.t()}

 Link to this type

 text_embedding_input()

 View Source

 @type text_embedding_input() :: String.t()

 Link to this type

 text_embedding_output()

 View Source

 @type text_embedding_output() :: %{embedding: Nx.Tensor.t()}

 Link to this type

 token_classification_entity()

 View Source

 @type token_classification_entity() :: %{
 start: non_neg_integer(),
 end: non_neg_integer(),
 score: float(),
 label: String.t(),
 phrase: String.t()
}

A single entity label.
Note that start and end indices are expressed in terms of UTF-8
bytes.

 Link to this type

 token_classification_input()

 View Source

 @type token_classification_input() :: String.t()

 Link to this type

 token_classification_output()

 View Source

 @type token_classification_output() :: %{entities: [token_classification_entity()]}

 Link to this type

 token_summary()

 View Source

 @type token_summary() :: %{
 input: pos_integer(),
 outout: pos_integer(),
 padding: non_neg_integer()
}

 Link to this type

 zero_shot_classification_input()

 View Source

 @type zero_shot_classification_input() :: String.t()

 Link to this type

 zero_shot_classification_output()

 View Source

 @type zero_shot_classification_output() :: %{
 predictions: [zero_shot_classification_prediction()]
}

 Link to this type

 zero_shot_classification_prediction()

 View Source

 @type zero_shot_classification_prediction() :: %{score: number(), label: String.t()}

 Functions

 Link to this function

 fill_mask(model_info, tokenizer, opts \\ [])

 View Source

 @spec fill_mask(Bumblebee.model_info(), Bumblebee.Tokenizer.t(), keyword()) ::
 Nx.Serving.t()

Builds serving for the fill-mask task.
The serving accepts fill_mask_input/0 and returns fill_mask_output/0.
A list of inputs is also supported.
In the fill-mask task, the objective is to predict a masked word in
the text. The serving expects the input to have exactly one such word,
denoted as [MASK].

 Options

	:top_k - the number of top predictions to include in the output.
If the configured value is higher than the number of labels, all
labels are returned. Defaults to 5

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length.
A list can be given, in which case the serving compiles
a separate computation for each length and then inputs are
matched to the smallest bounding length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

 Examples

{:ok, bert} = Bumblebee.load_model({:hf, "google-bert/bert-base-uncased"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "google-bert/bert-base-uncased"})

serving = Bumblebee.Text.fill_mask(bert, tokenizer)

text = "The capital of [MASK] is Paris."
Nx.Serving.run(serving, text)
#=> %{
#=> predictions: [
#=> %{score: 0.9279842972755432, token: "france"},
#=> %{score: 0.008412551134824753, token: "brittany"},
#=> %{score: 0.007433671969920397, token: "algeria"},
#=> %{score: 0.004957548808306456, token: "department"},
#=> %{score: 0.004369721747934818, token: "reunion"}
#=>]
#=> }

 Link to this function

 generation(model_info, tokenizer, generation_config, opts \\ [])

 View Source

 @spec generation(
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 Bumblebee.Text.GenerationConfig.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for prompt-driven text generation.
The serving accepts generation_input/0 and returns generation_output/0.
A list of inputs is also supported.

 Options

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length.
A list can be given, in which case the serving compiles
a separate computation for each length and then inputs are
matched to the smallest bounding length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

	:stream - when true, the serving immediately returns a
stream that emits text chunks as they are generated. Note that
when using streaming, only a single input can be given to the
serving. To process a batch, call the serving with each input
separately. Defaults to false

	:stream_done - when :stream is enabled, this enables a final
event, after all chunks have been emitted. The event has the
shape {:done, result}, where result includes the same fields
as generation_result/0, except for :text, which has been
already streamed. Defaults to false

 Examples

{:ok, model_info} = Bumblebee.load_model({:hf, "openai-community/gpt2"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "openai-community/gpt2"})
{:ok, generation_config} = Bumblebee.load_generation_config({:hf, "openai-community/gpt2"})
generation_config = Bumblebee.configure(generation_config, max_new_tokens: 15)

serving = Bumblebee.Text.generation(model_info, tokenizer, generation_config)

Nx.Serving.run(serving, "Elixir is a functional")
#=> %{
#=> results: [
#=> %{
#=> text: "Elixir is a functional programming language that is designed to be used in a variety of applications. It"
#=> }
#=>]
#=> }
We can stream the result by creating the serving with stream: true:
{:ok, model_info} = Bumblebee.load_model({:hf, "openai-community/gpt2"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "openai-community/gpt2"})
{:ok, generation_config} = Bumblebee.load_generation_config({:hf, "openai-community/gpt2"})
generation_config = Bumblebee.configure(generation_config, max_new_tokens: 15)

serving = Bumblebee.Text.generation(model_info, tokenizer, generation_config, stream: true)

Nx.Serving.run(serving, "Elixir is a functional") |> Enum.to_list()
#=> [" programming", " language", " that", " is", " designed", " to", " be", " used", " in", " a",
#=> " variety", " of", " applications.", " It"]

 Link to this function

 question_answering(model_info, tokenizer, opts \\ [])

 View Source

 @spec question_answering(
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for the question answering task.
The serving accepts question_answering_input/0 and returns
question_answering_output/0. A list of inputs is also supported.
The question answering task finds the most probable answer to a
question within the given context text.

 Options

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size. Note
that the batch size refers to the number of prompts to classify,
while the model prediction is made for every combination of
prompt and label

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length.
A list can be given, in which case the serving compiles
a separate computation for each length and then inputs are
matched to the smallest bounding length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

 Examples

{:ok, roberta} = Bumblebee.load_model({:hf, "deepset/roberta-base-squad2"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "FacebookAI/roberta-base"})

serving = Bumblebee.Text.question_answering(roberta, tokenizer)

input = %{question: "What's my name?", context: "My name is Sarah and I live in London."}
Nx.Serving.run(serving, input)
#=> %{results: [%{end: 16, score: 0.81039959192276, start: 11, text: "Sarah"}]}

 Link to this function

 text_classification(model_info, tokenizer, opts \\ [])

 View Source

 @spec text_classification(
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for text classification.
The serving accepts text_classification_input/0 and returns
text_classification_output/0. A list of inputs is also supported.

 Options

	:top_k - the number of top predictions to include in the output. If
the configured value is higher than the number of labels, all
labels are returned. Defaults to 5

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length.
A list can be given, in which case the serving compiles
a separate computation for each length and then inputs are
matched to the smallest bounding length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:scores_function - the function to use for converting logits to
scores. Should be one of :softmax, :sigmoid, or :none.
Defaults to :softmax

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

 Examples

{:ok, bertweet} = Bumblebee.load_model({:hf, "finiteautomata/bertweet-base-sentiment-analysis"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "vinai/bertweet-base"})

serving = Bumblebee.Text.text_classification(bertweet, tokenizer)

text = "Cats are cute."
Nx.Serving.run(serving, text)
#=> %{
#=> predictions: [
#=> %{label: "POS", score: 0.9876555800437927},
#=> %{label: "NEU", score: 0.010068908333778381},
#=> %{label: "NEG", score: 0.002275536535307765}
#=>]
#=> }

 Link to this function

 text_embedding(model_info, tokenizer, opts \\ [])

 View Source

 @spec text_embedding(
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for text embeddings.
The serving accepts text_embedding_input/0 and returns
text_embedding_output/0. A list of inputs is also supported.

 Options

	:output_attribute - the attribute of the model output map to
retrieve. When the output is a single tensor (rather than a map),
this option is ignored. Defaults to :pooled_state

	:output_pool - pooling to apply on top of the model output, in case
it is not already a pooled embedding. Supported values: :mean_pooling.
By default no pooling is applied

	:embedding_processor - a post-processing step to apply to the
embedding. Supported values: :l2_norm. By default the output is
returned as is

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length.
A list can be given, in which case the serving compiles
a separate computation for each length and then inputs are
matched to the smallest bounding length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

 Examples

{:ok, model_info} = Bumblebee.load_model({:hf, "intfloat/e5-large"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "intfloat/e5-large"})

serving = Bumblebee.Text.text_embedding(model_info, tokenizer)

text = "query: Cats are cute."
Nx.Serving.run(serving, text)

#=> %{
#=> embedding: #Nx.Tensor<
#=> f32[1024]
#=> EXLA.Backend<host:0, 0.124908262.1234305056.185360>
#=> [-0.9789889454841614, -0.9814645051956177, -0.5015208125114441, 0.9867952466011047, 0.9917466640472412, -0.5557178258895874, -0.18618212640285492, 0.797040581703186, 0.8922086954116821, 0.7599573135375977, -0.16524426639080048, -0.8740050792694092, 0.9433475732803345, 0.7217797636985779, 0.9437620639801025, 0.4694959223270416, 0.40594056248664856, -0.20143413543701172, 0.7144518494606018, -0.8689796924591064, 0.94001305103302, 0.17163503170013428, -0.9896315932273865, 0.4455447494983673, 0.41139301657676697, 0.01911175064742565, -0.11275406181812286, -0.734498143196106, -0.6410953402519226, -0.628239095211029, -0.2570168673992157, 0.475137323141098, -0.7534396052360535, -0.9492156505584717, -0.17271563410758972, 0.9081271886825562, -0.4851466119289398, -0.9440935254096985, -0.20976334810256958, -0.684502899646759, -0.11581139266490936, 0.17509342730045319, 0.05547652021050453, 0.31042391061782837, 0.955132007598877, -0.35595986247062683, 0.016105204820632935, -0.3154579997062683, 0.9630348682403564, ...]
#=> >
#=> }

 Link to this function

 token_classification(model_info, tokenizer, opts \\ [])

 View Source

 @spec token_classification(
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for token classification.
The serving accepts token_classification_input/0 and returns
token_classification_output/0. A list of inputs is also supported.
This function can be used for tasks such as named entity recognition
(NER) or part of speech tagging (POS).
The recognized entities can optionally be aggregated into groups
based on the given strategy.

 Options

	:aggregation - an optional strategy for aggregating adjacent
tokens. Token classification models output probabilities for
each possible token class. The aggregation strategy takes scores
for each token (which possibly represents subwords) and groups
tokens into phrases which are readily interpretable as entities
of a certain class. Supported aggregation strategies:
	nil (default) - corresponds to no aggregation and returns
the most likely label for each input token

	:same - groups adjacent tokens with the same label. If
the labels use beginning-inside-outside (BIO) tagging, the
boundaries are respected and the prefix is omitted in the
output labels

	:word_first - uses :same strategy except that word tokens
cannot end up with different labels. With this strategy word
gets the label of the first token of that word when there
is ambiguity. Note that this works only on word based models

	:word_average - uses :same strategy except that word tokens
cannot end up with different labels. With this strategy scores
are averaged across word tokens and then the maximum label
is taken. Note that this works only on word based models

	:word_max - uses :same strategy except that word tokens
cannot end up with different labels. With this strategy word
gets the label of the token with the maximum score. Note that
this works only on word based models

	:ignored_labels - the labels to ignore in the final output.
The labels should be specified without BIO prefix. Defaults to
["O"]

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length.
A list can be given, in which case the serving compiles
a separate computation for each length and then inputs are
matched to the smallest bounding length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:scores_function - the function to use for converting logits to
scores. Should be one of :softmax, :sigmoid, or :none.
Defaults to :softmax

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

 Examples

{:ok, bert} = Bumblebee.load_model({:hf, "dslim/bert-base-NER"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "google-bert/bert-base-cased"})

serving = Bumblebee.Text.token_classification(bert, tokenizer, aggregation: :same)

text = "Rachel Green works at Ralph Lauren in New York City in the sitcom Friends"
Nx.Serving.run(serving, text)
#=> %{
#=> entities: [
#=> %{end: 12, label: "PER", phrase: "Rachel Green", score: 0.9997024834156036, start: 0},
#=> %{end: 34, label: "ORG", phrase: "Ralph Lauren", score: 0.9968731701374054, start: 22},
#=> %{end: 51, label: "LOC", phrase: "New York City", score: 0.9995547334353129, start: 38},
#=> %{end: 73, label: "MISC", phrase: "Friends", score: 0.6997143030166626, start: 66}
#=>]
#=>}

 Link to this function

 zero_shot_classification(model_info, tokenizer, labels, opts \\ [])

 View Source

 @spec zero_shot_classification(
 Bumblebee.model_info(),
 Bumblebee.Tokenizer.t(),
 [String.t()],
 keyword()
) :: Nx.Serving.t()

Builds serving for the zero-shot classification task.
The serving accepts zero_shot_classification_input/0 and returns
zero_shot_classification_output/0. A list of inputs is also
supported.
The zero-shot task predicts zero-shot labels for a given sequence by
proposing each label as a premise-hypothesis pairing.

 Options

	:top_k - the number of top predictions to include in the output. If
the configured value is higher than the number of labels, all
labels are returned. Defaults to 5

	:hypothesis_template - an arity-1 function which accepts a label
and returns a hypothesis. The default hypothesis format is: "This example
is #{label}".

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size. Note
that the batch size refers to the number of prompts to classify,
while the model prediction is made for every combination of
prompt and label

	:sequence_length - the maximum input sequence length. Input
sequences are always padded/truncated to match that length.
A list can be given, in which case the serving compiles
a separate computation for each length and then inputs are
matched to the smallest bounding length

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

 Examples

{:ok, model} = Bumblebee.load_model({:hf, "facebook/bart-large-mnli"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "facebook/bart-large-mnli"})

labels = ["cooking", "traveling", "dancing"]
zero_shot_serving = Bumblebee.Text.zero_shot_classification(model, tokenizer, labels)

output = Nx.Serving.run(zero_shot_serving, "One day I will see the world")
#=> %{
#=> predictions: [
#=> %{label: "cooking", score: 0.0070497458800673485},
#=> %{label: "traveling", score: 0.985000491142273},
#=> %{label: "dancing", score: 0.007949736900627613}
#=>]
#=> }

 Bumblebee.Vision - Bumblebee v0.5.3

Bumblebee.Vision

High-level tasks related to vision.

 Summary

 Types

 image()

 A term representing an image.

 image_classification_input()

 image_classification_output()

 image_classification_prediction()

 image_embedding_input()

 image_embedding_output()

 image_to_text_input()

 image_to_text_output()

 image_to_text_result()

 Functions

 image_classification(model_info, featurizer, opts \\ [])

 Builds serving for image classification.

 image_embedding(model_info, featurizer, opts \\ [])

 Builds serving for image embeddings.

 image_to_text(model_info, featurizer, tokenizer, generation_config, opts \\ [])

 Builds serving for image-to-text generation.

 Types

 Link to this type

 image()

 View Source

 @type image() :: Nx.Container.t()

A term representing an image.
Either Nx.Tensor or a struct implementing Nx.Container and
resolving to a tensor, with the following properties:
	HWC order
	RGB color channels
	alpha channel may be present, but it's usually stripped out
	integer type (:s or :u)

 Link to this type

 image_classification_input()

 View Source

 @type image_classification_input() :: image()

 Link to this type

 image_classification_output()

 View Source

 @type image_classification_output() :: %{
 predictions: [image_classification_prediction()]
}

 Link to this type

 image_classification_prediction()

 View Source

 @type image_classification_prediction() :: %{score: number(), label: String.t()}

 Link to this type

 image_embedding_input()

 View Source

 @type image_embedding_input() :: image()

 Link to this type

 image_embedding_output()

 View Source

 @type image_embedding_output() :: %{embedding: Nx.Tensor.t()}

 Link to this type

 image_to_text_input()

 View Source

 @type image_to_text_input() ::
 image() | %{:image => image(), optional(:seed) => integer() | nil}

 Link to this type

 image_to_text_output()

 View Source

 @type image_to_text_output() :: %{results: [image_to_text_result()]}

 Link to this type

 image_to_text_result()

 View Source

 @type image_to_text_result() :: %{text: String.t()}

 Functions

 Link to this function

 image_classification(model_info, featurizer, opts \\ [])

 View Source

 @spec image_classification(
 Bumblebee.model_info(),
 Bumblebee.Featurizer.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for image classification.
The serving accepts image_classification_input/0 and returns
image_classification_output/0. A list of inputs is also supported.

 Options

	:top_k - the number of top predictions to include in the output. If
the configured value is higher than the number of labels, all
labels are returned. Defaults to 5

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:scores_function - the function to use for converting logits to
scores. Should be one of :softmax, :sigmoid, or :none.
Defaults to :softmax

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

 Examples

{:ok, resnet} = Bumblebee.load_model({:hf, "microsoft/resnet-50"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, "microsoft/resnet-50"})

serving = Bumblebee.Vision.image_classification(resnet, featurizer)

image = StbImage.read_file!(path)
Nx.Serving.run(serving, image)
#=> %{
#=> predictions: [
#=> %{label: "Egyptian cat", score: 0.979233980178833},
#=> %{label: "tabby, tabby cat", score: 0.00679466687142849},
#=> %{label: "tiger cat", score: 0.005290505941957235},
#=> %{label: "lynx, catamount", score: 0.004550771787762642},
#=> %{label: "Siamese cat, Siamese", score: 1.1611092486418784e-4}
#=>]
#=> }

 Link to this function

 image_embedding(model_info, featurizer, opts \\ [])

 View Source

 @spec image_embedding(
 Bumblebee.model_info(),
 Bumblebee.Featurizer.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for image embeddings.
The serving accepts image_embedding_input/0 and returns
image_embedding_output/0. A list of inputs is also supported.

 Options

	:output_attribute - the attribute of the model output map to
retrieve. When the output is a single tensor (rather than a map),
this option is ignored. Defaults to :pooled_state

	:embedding_processor - a post-processing step to apply to the
embedding. Supported values: :l2_norm. By default the output is
returned as is

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

 Examples

{:ok, clip} =
 Bumblebee.load_model({:hf, "openai/clip-vit-base-patch32"},
 module: Bumblebee.Vision.ClipVision
)
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, "openai/clip-vit-base-patch32"})
serving = Bumblebee.Vision.image_embedding(clip, featurizer)
image = StbImage.read_file!(path)
Nx.Serving.run(serving, image)
#=> %{
#=> embedding: #Nx.Tensor<
#=> f32[768]
#=> [-0.43403682112693787, 0.09786412119865417, -0.7233262062072754, -0.7707743644714355, 0.5550824403762817, -0.8923342227935791, 0.2687447965145111, 0.9633643627166748, 0.3520320951938629, 0.43195801973342896, 2.1438512802124023, -0.6542983651161194, -1.9736307859420776, 0.1611439287662506, 0.24555791914463043, 0.16985465586185455, 0.9012499451637268, 1.0657984018325806, 1.087411642074585, -0.5864712595939636, 0.3314521908760071, 0.8396108150482178, 0.3906593322753906, 0.13463366031646729, 0.2605385184288025, -0.07457947731018066, 0.4735124707221985, -0.41367805004119873, 0.18244807422161102, 1.4741417169570923, -5.807061195373535, 0.38920706510543823, 0.057687126100063324, 0.060301072895526886, 0.9680367708206177, 0.9670255184173584, 1.3876476287841797, -0.15498873591423035, -0.969764232635498, -0.38127464056015015, 0.05450016260147095, 2.2317700386047363, -0.07926210761070251, -0.11876475065946579, -1.5408644676208496, 0.7505669593811035, 0.9280041456222534, -0.3571934103965759, -1.1390857696533203, ...]
#=> >
#=> }

 Link to this function

 image_to_text(model_info, featurizer, tokenizer, generation_config, opts \\ [])

 View Source

 @spec image_to_text(
 Bumblebee.model_info(),
 Bumblebee.Featurizer.t(),
 Bumblebee.Tokenizer.t(),
 Bumblebee.Text.GenerationConfig.t(),
 keyword()
) :: Nx.Serving.t()

Builds serving for image-to-text generation.
The serving accepts image_to_text_input/0 and returns
image_to_text_output/0. A list of inputs is also supported.

 Options

	:compile - compiles all computations for predefined input shapes
during serving initialization. Should be a keyword list with the
following keys:
	:batch_size - the maximum batch size of the input. Inputs
are optionally padded to always match this batch size

It is advised to set this option in production and also configure
a defn compiler using :defn_options to maximally reduce inference
time.

	:defn_options - the options for JIT compilation. Defaults to []

	:preallocate_params - when true, explicitly allocates params
on the device configured by :defn_options. You may want to set
this option when using partitioned serving, to allocate params
on each of the devices. When using this option, you should first
load the parameters into the host. This can be done by passing
backend: {EXLA.Backend, client: :host} to load_model/1 and friends.
Defaults to false

 Examples

{:ok, blip} = Bumblebee.load_model({:hf, "Salesforce/blip-image-captioning-base"})
{:ok, featurizer} = Bumblebee.load_featurizer({:hf, "Salesforce/blip-image-captioning-base"})
{:ok, tokenizer} = Bumblebee.load_tokenizer({:hf, "Salesforce/blip-image-captioning-base"})

{:ok, generation_config} =
 Bumblebee.load_generation_config({:hf, "Salesforce/blip-image-captioning-base"})

serving =
 Bumblebee.Vision.image_to_text(blip, featurizer, tokenizer, generation_config,
 defn_options: [compiler: EXLA]
)

image = StbImage.read_file!(path)
Nx.Serving.run(serving, image)
#=> %{results: [%{text: "a cat sitting on a chair"}]}

 Bumblebee.Audio.Whisper - Bumblebee v0.5.3

Bumblebee.Audio.Whisper

Whisper model family.

 Architectures

	:base - plain Whisper without any head on top

	:for_conditional_generation - Whisper with a language modeling
head. The head returns logits for each token in the original
sequence

 Inputs

	"input_features" - {batch_size, input_length, feature_size}
Indices of input sequence tokens in the vocabulary.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_features", which can be specified
for more control over how "input_features" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_features" will be ignored.

	"decoder_input_ids" - {batch_size, target_sequence_length}
Indices of decoder input sequence tokens in the vocabulary.

	"decoder_attention_mask" - {batch_size, target_sequence_length}
Mask indicating which decoder tokens to attend to. This is used
to ignore padding tokens, which are added when processing a batch
of sequences with different length.

	"decoder_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the decoder.

	"decoder_input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "decoder_input_ids", which can be
specified for more control over how "decoder_input_ids" are
embedded than the model's internal embedding lookup. If
"decoder_input_embeddings" are present, then "decoder_input_ids"
will be ignored.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"cross_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Configuration

	:vocab_size - the vocabulary size of the model. This corresponds to the number of distinct
tokens that can be represented by the decoder
. Defaults to 51865

	:feature_size - the dimensionality of the input features. This corresponds to the number of Mel
bins in the preprocessed input
. Defaults to 80

	:encoder_max_positions - the vocabulary size of the encoder position embedding. This corresponds to the maximum
sequence length of log-mel filter-bank features that the model can process
. Defaults to 1500

	:decoder_max_positions - the vocabulary size of the decoder position embedding. This corresponds to the maximum
sequence length that this model can generate. Typically this is set to a large value just
in case, such as 512, 1024 or 2048
. Defaults to 448

	:hidden_size - the dimensionality of hidden layers. Defaults to 1024

	:encoder_num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:decoder_num_blocks - the number of Transformer blocks in the decoder. Defaults to 12

	:encoder_num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 16

	:decoder_num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 16

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:activation_dropout_rate - the dropout rate for activations inside fully connected layers. Defaults to 0.0

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

 Bumblebee.Diffusion.StableDiffusion.SafetyChecker - Bumblebee v0.5.3

Bumblebee.Diffusion.StableDiffusion.SafetyChecker

A CLIP-based model for detecting unsafe image content.
This model is designed primarily to check images generated using
Stable Diffusion.

 Architectures

	:base - the base safety detection model

 Inputs

	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

 Configuration

	:clip_spec - the specification of the CLIP model. See Bumblebee.Multimodal.Clip for details

 References

	CompVis/stable-diffusion-v1-4

 Bumblebee.Diffusion.UNet2DConditional - Bumblebee v0.5.3

Bumblebee.Diffusion.UNet2DConditional

U-Net model with two spatial dimensions and conditional state.

 Architectures

	:base - the U-Net model

 Inputs

	"sample" - {batch_size, sample_size, sample_size, in_channels}
Sample input with two spatial dimensions.

	"timestep" - {}
The timestep used to parameterize model behaviour in a multi-step
process, such as diffusion.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
The conditional state (context) to use with cross-attention.

 Configuration

	:sample_size - the size of the input spatial dimensions. Defaults to 32

	:in_channels - the number of channels in the input. Defaults to 4

	:out_channels - the number of channels in the output. Defaults to 4

	:center_input_sample - whether to center the input sample. Defaults to false

	:embedding_flip_sin_to_cos - whether to flip the sin to cos in the sinusoidal timestep embedding. Defaults to true

	:embedding_frequency_correction_term - controls the frequency formula in the timestep sinusoidal embedding. The frequency is computed
as $\\omega_i = \\frac{1}{10000^{\\frac{i}{n - s}}}$, for $i \\in \\{0, ..., n-1\\}$, where n
is half of the embedding size and s is the shift. Historically, certain implementations of
sinusoidal embedding used $s=0$, while others used $s=1$
. Defaults to 0

	:hidden_sizes - the dimensionality of hidden layers in each upsample/downsample block. Defaults to [320, 640, 1280, 1280]

	:depth - the number of residual blocks in each upsample/downsample block. Defaults to 2

	:down_block_types - a list of downsample block types. The supported blocks are: :down_block, :cross_attention_down_block. Defaults to [:cross_attention_down_block, :cross_attention_down_block, :cross_attention_down_block, :down_block]

	:up_block_types - a list of upsample block types. The supported blocks are: :up_block, :cross_attention_up_block. Defaults to [:up_block, :cross_attention_up_block, :cross_attention_up_block, :cross_attention_up_block]

	:downsample_padding - the padding to use in the downsample convolution. Defaults to [{1, 1}, {1, 1}]

	:mid_block_scale_factor - the scale factor to use for the mid block. Defaults to 1

	:num_attention_heads - the number of attention heads for each attention layer. Optionally can be a list with one number per block. Defaults to 8

	:cross_attention_size - the dimensionality of the cross attention features. Defaults to 1280

	:use_linear_projection - whether the input/output projection of the transformer block should be linear or convolutional. Defaults to false

	:activation - the activation function. Defaults to :silu

	:group_norm_num_groups - the number of groups used by the group normalization layers. Defaults to 32

	:group_norm_epsilon - the epsilon used by the group normalization layers. Defaults to 1.0e-5

 Bumblebee.Diffusion.VaeKl - Bumblebee v0.5.3

Bumblebee.Diffusion.VaeKl

Variational autoencoder (VAE) with Kullback–Leibler divergence (KL) loss.

 Architectures

	:base - the entire VAE model

	:encoder - just the encoder part of the base model

	:decoder - just the decoder part of the base model

 Inputs

	"sample" - {batch_size, sample_size, sample_size, in_channels}
Sample input with two spatial dimensions. Note that in case of
the :decoder model, the input usually has lower dimensionality.

	"sample_posterior" - {}
When true, the decoder input is sampled from the encoder output
distribution. Otherwise the distribution mode value is used instead.
This input is only relevant for the :base model. Defaults to false.

 Configuration

	:sample_size - the size of the input spatial dimensions. Defaults to 32

	:in_channels - the number of channels in the input. Defaults to 3

	:out_channels - the number of channels in the output. Defaults to 3

	:latent_channels - the number of channels in the latent space. Defaults to 4

	:hidden_sizes - the dimensionality of hidden layers in each upsample/downsample block. Defaults to ~c"@"

	:depth - the number of residual blocks in each upsample/downsample block. Defaults to 1

	:down_block_types - a list of downsample block types. Currently the only supported type is :down_block. Defaults to [:down_block]

	:up_block_types - a list of upsample block types. Currently the only supported type is :up_block. Defaults to [:up_block]

	:activation - the activation function. Defaults to :silu

 References

	Auto-Encoding Variational Bayes

 Bumblebee.Multimodal.Blip - Bumblebee v0.5.3

Bumblebee.Multimodal.Blip

The BLIP model for text-image similarity.

 Architectures

	:for_conditional_generation - BLIP model with a language
modeling head

 Inputs

	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

	"decoder_input_ids" - {batch_size, target_sequence_length}
Indices of decoder input sequence tokens in the vocabulary. If not
present and "input_ids" is, it will be generated by shifting
each token in "input_ids" to the right once.

	"decoder_attention_mask" - {batch_size, target_sequence_length}
Mask indicating which decoder tokens to attend to. This is used
to ignore padding tokens, which are added when processing a batch
of sequences with different length.

	"decoder_position_ids" - {batch_size, target_sequence_length}
Indices of positions of each decoder input sequence tokens in
the position embeddings.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the image encoding process and use this value
directly for cross-attentions in the text decoder.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Configuration

	:text_spec - the specification of the text model. See Bumblebee.Text.BlipText for details

	:vision_spec - the specification of the vision model. See Bumblebee.Vision.BlipVision for details

	:projection_size - the dimensionality of text and vision projection layers. Defaults to 512

	:logit_scale_initial_value - the initial value for the scaling layer used to scale similarity logits. Defaults to 2.6592

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

 References

	BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

 Bumblebee.Multimodal.Clip - Bumblebee v0.5.3

Bumblebee.Multimodal.Clip

The CLIP model for text-image similarity.

 Architectures

	:base - the base CLIP model

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

 Configuration

	:text_spec - the specification of the text model. See Bumblebee.Text.ClipText for details

	:vision_spec - the specification of the vision model. See Bumblebee.Vision.ClipVision for details

	:projection_size - the dimensionality of text and vision projection layers. Defaults to 512

	:logit_scale_initial_value - the initial value for the scaling layer used to scale similarity logits. Defaults to 2.6592

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

 References

	CLIP: Connecting Text and Images

	Learning Transferable Visual Models From Natural Language Supervision

 Bumblebee.Multimodal.LayoutLm - Bumblebee v0.5.3

Bumblebee.Multimodal.LayoutLm

LayoutLM Model family.

 Architectures

	:base - plain LayoutLM without any head on top

	:for_masked_language_modeling - LayoutLM with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - LayoutLM with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - LayoutLM with a token classification
head. The head returns logits for each token in the original
sequence

	:for_question_answering - LayoutLM with a span classification head.
The head returns logits for the span start and end positions

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"token_type_ids" - {batch_size, sequence_length}
Mask distinguishing groups in the input sequence. This is used
in when the input sequence is a semantically a pair of sequences.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"bounding_box" - {batch_size, sequence_length, 4}

 Bounding boxes of each input sequence token. Each bounding box is
 {x0, y0, x1, y1} where {x0, y0} is the upper left corner and
 {x1, y1} is the lower right corner.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 30522

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 1024

	:max_spatial_positions - the maximum value of the spatial position embedding. Typically this is set to a large value
just in case, such as 512, 1024, or 2048
. Defaults to 1024

	:max_token_types - the vocabulary size of the token type embedding (also referred to as segment embedding).
This corresponds to how many different token groups can be distinguished in the input
. Defaults to 2

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 12

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the decoder.
If not specified, defaults to 4 times :hidden_size
. Defaults to 3072

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.1

	:classifier_dropout_rate - the dropout rate for the classification head. If not specified, the value of :dropout_rate is used instead

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 References

	LayoutLM: LayoutLM: Pre-training of Text and Layout for Document Image Understanding

 Bumblebee.Text.Albert - Bumblebee v0.5.3

Bumblebee.Text.Albert

ALBERT model family.

 Architectures

	:base - plain ALBERT without any head on top

	:for_masked_language_modeling - ALBERT with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - ALBERT with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - ALBERT with a token classification
head. The head returns logits for each token in the original
sequence

	:for_question_answering - ALBERT with a span classification head.
The head returns logits for the span start and end positions

	:for_multiple_choice - ALBERT with a multiple choice prediction
head. Each input in the batch consists of several sequences to
choose from and the model returns logits corresponding to those
choices

	:for_pre_training - ALBERT with both MLM and NSP heads as done
during the pre-training

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"token_type_ids" - {batch_size, sequence_length}
Mask distinguishing groups in the input sequence. This is used
in when the input sequence is a semantically a pair of sequences.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

 Exceptions

The :for_multiple_choice model accepts groups of sequences, so the
expected sequence shape is {batch_size, num_choices, sequence_length}.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 30000

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 512

	:max_token_types - the vocabulary size of the token type embedding (also referred to as segment embedding).
This corresponds to how many different token groups can be distinguished in the input
. Defaults to 2

	:embedding_size - the dimensionality of all input embeddings. Defaults to 128

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of blocks in the encoder. Note that each block contains :block_depth
Transformer blocks
. Defaults to 12

	:num_groups - the number of groups of encoder blocks. Parameters in the same group are shared. Defaults to 1

	:block_depth - the number of Transformer blocks in each encoder block. Defaults to 1

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 16384

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.0

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:classifier_dropout_rate - the dropout rate for the classification head. If not specified, the value of :dropout_rate is used instead

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 References

	ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

 Bumblebee.Text.Bart - Bumblebee v0.5.3

Bumblebee.Text.Bart

BART model family.

 Architectures

	:base - plain BART without any head on top

	:for_causal_language_modeling - BART with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_conditional_generation - BART with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - BART with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_question_answering - BART with a span classification head.
The head returns logits for the span start and end positions

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {encoder_num_blocks, encoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"decoder_input_ids" - {batch_size, target_sequence_length}
Indices of decoder input sequence tokens in the vocabulary. If not
present and "input_ids" is, it will be generated by shifting
each token in "input_ids" to the right once.

	"decoder_attention_mask" - {batch_size, target_sequence_length}
Mask indicating which decoder tokens to attend to. This is used
to ignore padding tokens, which are added when processing a batch
of sequences with different length.

	"decoder_position_ids" - {batch_size, target_sequence_length}
Indices of positions of each decoder input sequence tokens in
the position embeddings.

	"decoder_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the decoder.

	"decoder_input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "decoder_input_ids", which can be
specified for more control over how "decoder_input_ids" are
embedded than the model's internal embedding lookup. If
"decoder_input_embeddings" are present, then "decoder_input_ids"
will be ignored.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"cross_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Exceptions

The :for_causal_language_modeling model is just the decoder part and
accepts the following inputs instead: "input_ids", "attention_mask",
"position_ids", "attention_head_mask", "input_embeddings", "encoder_hidden_state",
"encoder_attention_mask", "cross_attention_head_mask", "cache".

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 50265

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 1024

	:hidden_size - the dimensionality of hidden layers. Defaults to 1024

	:encoder_num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:decoder_num_blocks - the number of Transformer blocks in the decoder. Defaults to 12

	:encoder_num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 16

	:decoder_num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 16

	:scale_embedding - whether to scale embeddings by dividing by the square root of :hidden_size. Defaults to false

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:activation_dropout_rate - the dropout rate for activations inside fully connected layers. Defaults to 0.0

	:classifier_dropout_rate - the dropout rate for the classification head. Defaults to 0.0

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 Bumblebee.Text.Bert - Bumblebee v0.5.3

Bumblebee.Text.Bert

BERT model family.

 Architectures

	:base - plain BERT without any head on top

	:for_masked_language_modeling - BERT with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - BERT with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - BERT with a token classification
head. The head returns logits for each token in the original
sequence

	:for_question_answering - BERT with a span classification head.
The head returns logits for the span start and end positions

	:for_multiple_choice - BERT with a multiple choice prediction
head. Each input in the batch consists of several sequences to
choose from and the model returns logits corresponding to those
choices

	:for_next_sentence_prediction - BERT with a next sentence
prediction head. The head returns logits predicting whether the
second sentence is random or in context

	:for_pre_training - BERT with both MLM and NSP heads as done
during the pre-training

	:for_causal_language_modeling - BERT working as a decoder with
a language modeling head. The head returns logits for each token
in the original sequence

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"token_type_ids" - {batch_size, sequence_length}
Mask distinguishing groups in the input sequence. This is used
in when the input sequence is a semantically a pair of sequences.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

 Exceptions

The :for_multiple_choice model accepts groups of sequences, so the
expected sequence shape is {batch_size, num_choices, sequence_length}.
The :for_causal_language_modeling model is a decoder and accepts
the following additional inputs: "encoder_hidden_state",
"encoder_attention_mask", "cross_attention_head_mask", "cache".

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 30522

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 512

	:max_token_types - the vocabulary size of the token type embedding (also referred to as segment embedding).
This corresponds to how many different token groups can be distinguished in the input
. Defaults to 2

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 3072

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.1

	:classifier_dropout_rate - the dropout rate for the classification head. If not specified, the value of :dropout_rate is used instead

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

	:use_cross_attention - whether cross-attention layers should be added to the model.This is only relevant for decoder models. Defaults to false

 References

	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

 Bumblebee.Text.Blenderbot - Bumblebee v0.5.3

Bumblebee.Text.Blenderbot

Blenderbot model family.

 Architectures

	:base - plain Blenderbot without any head on top

	:for_conditional_generation - Blenderbot with a language modeling
head. The head returns logits for each token in the original
sequence

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {encoder_num_blocks, encoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"decoder_input_ids" - {batch_size, target_sequence_length}
Indices of decoder input sequence tokens in the vocabulary. If not
present and "input_ids" is, it will be generated by shifting
each token in "input_ids" to the right once.

	"decoder_attention_mask" - {batch_size, target_sequence_length}
Mask indicating which decoder tokens to attend to. This is used
to ignore padding tokens, which are added when processing a batch
of sequences with different length.

	"decoder_position_ids" - {batch_size, target_sequence_length}
Indices of positions of each decoder input sequence tokens in
the position embeddings.

	"decoder_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the decoder.

	"decoder_input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "decoder_input_ids", which can be
specified for more control over how "decoder_input_ids" are
embedded than the model's internal embedding lookup. If
"decoder_input_embeddings" are present, then "decoder_input_ids"
will be ignored.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"cross_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 8008

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 128

	:hidden_size - the dimensionality of hidden layers. Defaults to 2560

	:encoder_num_blocks - the number of Transformer blocks in the encoder. Defaults to 2

	:decoder_num_blocks - the number of Transformer blocks in the decoder. Defaults to 24

	:encoder_num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 32

	:decoder_num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 32

	:scale_embedding - whether to scale embeddings by dividing by the square root of :hidden_size. Defaults to false

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:activation_dropout_rate - the dropout rate for activations inside fully connected layers. Defaults to 0.0

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

 Bumblebee.Text.BlipText - Bumblebee v0.5.3

Bumblebee.Text.BlipText

The BLIP model for text encoding.

 Architectures

	:base - the base text model

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {encoder_num_blocks, encoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"encoder_hidden_state" - {batch_size, encoder_sequence_length, encoder_hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"encoder_attention_mask" - {batch_size, encoder_sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"cross_attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 30524

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 512

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:encoder_hidden_size - the dimensionality of hidden layers in the vision encoder. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 8

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 3072

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.0

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

 Bumblebee.Text.ClipText - Bumblebee v0.5.3

Bumblebee.Text.ClipText

The CLIP model for text encoding.

 Architectures

	:base - the base text model

	:for_embedding - the base model with a single projection layer
on top. The head returns a vector embedded in the joint text-image
CLIP space

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 49408

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 77

	:hidden_size - the dimensionality of hidden layers. Defaults to 512

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 8

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 2048

	:projection_size - the dimensionality of the projection layer. Defaults to 512

	:activation - the activation function. Defaults to :gelu_approx_sigmoid

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-5

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 Bumblebee.Text.Distilbert - Bumblebee v0.5.3

Bumblebee.Text.Distilbert

DistilBERT model family.

 Architectures

	:base - plain DistilBERT without any head on top

	:for_masked_language_modeling - DistilBERT with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - DistilBERT with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - DistilBERT with a token classification
head. The head returns logits for each token in the original
sequence

	:for_question_answering - DistilBERT with a span classification head.
The head returns logits for the span start and end positions

	:for_multiple_choice - DistilBERT with a multiple choice prediction
head. Each input in the batch consists of several sequences to
choose from and the model returns logits corresponding to those
choices

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.
Mask distinguishing groups in the input sequence. This is used
in when the input sequence is a semantically a pair of sequences.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

 Exceptions

The :for_multiple_choice model accepts groups of sequences, so the
expected sequence shape is {batch_size, num_choices, sequence_length}.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 30522

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 512

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 6

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 3072

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.1

	:classifier_dropout_rate - the dropout rate for the classification head. If not specified, the value of :dropout_rate is used instead

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

	:use_cross_attention - whether cross-attention layers should be added to the model.This is only relevant for decoder models. Defaults to false

 References

	DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter

 Bumblebee.Text.Gpt2 - Bumblebee v0.5.3

Bumblebee.Text.Gpt2

GPT-2 model family.

 Architectures

	:base - plain GPT-2 without any head on top

	:for_causal_language_modeling - GPT-2 with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - GPT-2 with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - GPT-2 with a token classification
head. The head returns logits for each token in the original
sequence

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"encoder_hidden_state" - {batch_size, encoder_sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"encoder_attention_mask" - {batch_size, encoder_sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"cross_attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 50257

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 1024

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the decoder. Defaults to 24

	:num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 16

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the decoder.
If not specified, defaults to 4 times :hidden_size

	:activation - the activation function. Defaults to :gelu_approx_tanh

	:scale_attention_weights - whether to scale attention weights to have variance of 1. Defaults to true

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.1

	:embeddings_dropout_rate - the dropout rate for embeddings. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.1

	:classifier_dropout_rate - the dropout rate for the classification head. Defaults to 0.1

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-5

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

	:use_cross_attention - whether cross-attention layers should be added to the model.This is only relevant for decoder models. Defaults to false

 Bumblebee.Text.GptBigCode - Bumblebee v0.5.3

Bumblebee.Text.GptBigCode

GPT-BigCode model family.

 Architectures

	:base - plain GPT-BigCode without any head on top

	:for_causal_language_modeling - GPT-BigCode with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - GPT-BigCode with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - GPT-BigCode with a token classification
head. The head returns logits for each token in the original
sequence

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"encoder_hidden_state" - {batch_size, encoder_sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"encoder_attention_mask" - {batch_size, encoder_sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"cross_attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 50257

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 1024

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the decoder. Defaults to 24

	:num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 16

	:num_key_value_heads - the number of key value heads for each attention layer in the model

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the decoder.
If not specified, defaults to 4 times :hidden_size

	:activation - the activation function. Defaults to :gelu_approx_tanh

	:scale_attention_weights - whether to scale attention weights to have variance of 1. Defaults to true

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.1

	:embeddings_dropout_rate - the dropout rate for embeddings. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.1

	:classifier_dropout_rate - the dropout rate for the classification head. Defaults to 0.1

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-5

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

	:use_cross_attention - whether cross-attention layers should be added to the model.This is only relevant for decoder models. Defaults to false

 Bumblebee.Text.GptNeoX - Bumblebee v0.5.3

Bumblebee.Text.GptNeoX

GPT-NeoX model family.

 Architectures

	:base - plain GPT-NeoX without any head on top

	:for_causal_language_modeling - GPT-NeoX with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - GPT-NeoX with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - GPT-NeoX with a token classification
head. The head returns logits for each token in the original
sequence

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {encoder_num_blocks, encoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 32000

	:hidden_size - the dimensionality of hidden layers. Defaults to 4096

	:intermediate_size - the dimensionality of intermediate layers. Defaults to 11008

	:num_blocks - the number of Transformer blocks in the model. Defaults to 32

	:num_attention_heads - the number of attention heads for each attention layer in the model. Defaults to 32

	:activation - the activation function. Defaults to :silu

	:rotary_embedding_percentage - percentage of hidden dimensions to allocate to rotary embeddings. Defaults to 0.25

	:rotary_embedding_base - base for computing rotary embedding frequency. Defaults to 10000

	:classifier_dropout_rate - the dropout rate for the classification head. Defaults to 0.1

	:layer_norm_epsilon - the epsilon used by RMS normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:use_parallel_transformer_block - whether to use the parallel formulation of the Transformer block, where attention and FFN is computed independently. Defaults to true

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 Bumblebee.Text.Llama - Bumblebee v0.5.3

Bumblebee.Text.Llama

LLaMA model family.

 Architectures

	:base - plain LLaMA without any head on top

	:for_causal_language_modeling - LLaMA with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - LLaMA with a sequence
classification head. The head returns logits corresponding to
possible classes

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {encoder_num_blocks, encoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 32000

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 1024

	:hidden_size - the dimensionality of hidden layers. Defaults to 4096

	:intermediate_size - the dimensionality of intermediate layers. Defaults to 11008

	:num_blocks - the number of Transformer blocks in the model. Defaults to 32

	:num_attention_heads - the number of attention heads for each attention layer in the model. Defaults to 32

	:num_key_value_heads - the number of key value heads for each attention layer in the model

	:activation - the activation function. Defaults to :silu

	:rotary_embedding_base - base for computing rotary embedding frequency. Defaults to 10000

	:rotary_embedding_scaling_strategy - scaling configuration for rotary embedding. Currently the supported values are:
	%{type: :linear, factor: number()}

	%{type: :dynamic, factor: number()}

For more details see https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases

	:layer_norm_epsilon - the epsilon used by RMS normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 Bumblebee.Text.Mbart - Bumblebee v0.5.3

Bumblebee.Text.Mbart

mBART model family.

 Architectures

	:base - plain mBART without any head on top

	:for_causal_language_modeling - mBART with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_conditional_generation - mBART with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - mBART with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_question_answering - mBART with a span classification head.
The head returns logits for the span start and end positions

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {encoder_num_blocks, encoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"decoder_input_ids" - {batch_size, target_sequence_length}
Indices of decoder input sequence tokens in the vocabulary. If not
present and "input_ids" is, it will be generated by shifting
each token in "input_ids" to the right once.

	"decoder_attention_mask" - {batch_size, target_sequence_length}
Mask indicating which decoder tokens to attend to. This is used
to ignore padding tokens, which are added when processing a batch
of sequences with different length.

	"decoder_position_ids" - {batch_size, target_sequence_length}
Indices of positions of each decoder input sequence tokens in
the position embeddings.

	"decoder_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the decoder.

	"decoder_input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "decoder_input_ids", which can be
specified for more control over how "decoder_input_ids" are
embedded than the model's internal embedding lookup. If
"decoder_input_embeddings" are present, then "decoder_input_ids"
will be ignored.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"cross_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Exceptions

The :for_causal_language_modeling model is just the decoder part and
accepts the following inputs instead: "input_ids", "attention_mask",
"position_ids", "attention_head_mask", "input_embeddings", "encoder_hidden_state",
"encoder_attention_mask", "cross_attention_head_mask", "cache".

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 50265

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 1024

	:hidden_size - the dimensionality of hidden layers. Defaults to 1024

	:encoder_num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:decoder_num_blocks - the number of Transformer blocks in the decoder. Defaults to 12

	:encoder_num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 16

	:decoder_num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 16

	:encoder_intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 4096

	:decoder_intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the decoder. Defaults to 4096

	:scale_embedding - scale embeddings by dividing by sqrt(hidden_size). Defaults to false

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:activation_dropout_rate - the dropout rate for activations inside fully connected layers. Defaults to 0.0

	:classifier_dropout_rate - the dropout rate for the classification head. Defaults to 0.0

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 Bumblebee.Text.Mistral - Bumblebee v0.5.3

Bumblebee.Text.Mistral

Mistral model family.

 Architectures

	:base - plain Mistral without any head on top

	:for_causal_language_modeling - Mistral with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - Mistral with a sequence
classification head. The head returns logits corresponding to
possible classes

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {encoder_num_blocks, encoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 32000

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 131072

	:hidden_size - the dimensionality of hidden layers. Defaults to 4096

	:intermediate_size - the dimensionality of intermediate layers. Defaults to 14336

	:num_blocks - the number of Transformer blocks in the model. Defaults to 32

	:num_attention_heads - the number of attention heads for each attention layer in the model. Defaults to 32

	:num_key_value_heads - the number of key-value heads used to implement Grouped Query Attention. If
this value is set to the same as the number of attention heads, it will use
regular MHA. If it's set to 1, it will use MQA, otherwise it uses Grouped Query
Attention
. Defaults to 8

	:attention_window_size - window size for both sides of the sliding attention window. Defaults to 4096

	:activation - the activation function. Defaults to :silu

	:layer_norm_epsilon - the epsilon used by RMS normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:rotary_embedding_base - base for computing rotary embedding frequency. Defaults to 10000

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 Bumblebee.Text.Roberta - Bumblebee v0.5.3

Bumblebee.Text.Roberta

RoBERTa model family.

 Architectures

	:base - plain RoBERTa without any head on top

	:for_masked_language_modeling - RoBERTa with a language modeling
head. The head returns logits for each token in the original
sequence

	:for_sequence_classification - RoBERTa with a sequence
classification head. The head returns logits corresponding to
possible classes

	:for_token_classification - RoBERTa with a token classification
head. The head returns logits for each token in the original
sequence

	:for_question_answering - RoBERTa with a span classification head.
The head returns logits for the span start and end positions

	:for_multiple_choice - RoBERTa with a multiple choice prediction
head. Each input in the batch consists of several sequences to
choose from and the model returns logits corresponding to those
choices

	:for_causal_language_modeling - RoBERTa working as a decoder with
a language modeling head. The head returns logits for each token in
the original sequence

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"token_type_ids" - {batch_size, sequence_length}
Mask distinguishing groups in the input sequence. This is used
in when the input sequence is a semantically a pair of sequences.

	"position_ids" - {batch_size, sequence_length}
Indices of positions of each input sequence tokens in the position
embeddings.

	"attention_head_mask" - {num_blocks, num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

 Exceptions

The :for_multiple_choice model accepts groups of sequences, so the
expected sequence shape is {batch_size, num_choices, sequence_length}.
The :for_causal_language_modeling model is a decoder and accepts
the following additional inputs: "encoder_hidden_state",
"encoder_attention_mask", "cross_attention_head_mask", "cache".

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 30522

	:max_positions - the vocabulary size of the position embedding. This corresponds to the maximum sequence
length that this model can process. Typically this is set to a large value just in case,
such as 512, 1024 or 2048
. Defaults to 512

	:max_token_types - the vocabulary size of the token type embedding (also referred to as segment embedding).
This corresponds to how many different token groups can be distinguished in the input
. Defaults to 2

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:intermediate_size - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder. Defaults to 3072

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for embedding and encoder. Defaults to 0.1

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.1

	:classifier_dropout_rate - the dropout rate for the classification head. If not specified, the value of :dropout_rate is used instead

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_range - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

	:use_cross_attention - whether cross-attention layers should be added to the model.This is only relevant for decoder models. Defaults to false

 Bumblebee.Text.T5 - Bumblebee v0.5.3

Bumblebee.Text.T5

T5 model family.

 Architectures

	:base - plain T5 without any head on top

	:for_conditional_generation - T5 with a language modeling
head. The head returns logits for each token in the original
sequence

	:encoder - just the encoder part of the base model

 Inputs

	"input_ids" - {batch_size, sequence_length}
Indices of input sequence tokens in the vocabulary.

	"attention_mask" - {batch_size, sequence_length}
Mask indicating which tokens to attend to. This is used to ignore
padding tokens, which are added when processing a batch of sequences
with different length.

	"attention_head_mask" - {encoder_num_blocks, encoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the encoder.

	"input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "input_ids", which can be specified
for more control over how "input_ids" are embedded than the
model's internal embedding lookup. If "input_embeddings" are present,
then "input_ids" will be ignored.

	"decoder_input_ids" - {batch_size, target_sequence_length}
Indices of decoder input sequence tokens in the vocabulary. If not
present and "input_ids" is, it will be generated by shifting
each token in "input_ids" to the right once.

	"decoder_attention_mask" - {batch_size, target_sequence_length}
Mask indicating which decoder tokens to attend to. This is used
to ignore padding tokens, which are added when processing a batch
of sequences with different length.

	"decoder_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the self-attention blocks in
the decoder.

	"decoder_input_embeddings" - {batch_size, sequence_length, hidden_size}
Embedded representation of "decoder_input_ids", which can be
specified for more control over how "decoder_input_ids" are
embedded than the model's internal embedding lookup. If
"decoder_input_embeddings" are present, then "decoder_input_ids"
will be ignored.

	"encoder_hidden_state" - {batch_size, sequence_length, hidden_size}
Last hidden state output from the encoder. This hidden state is
used in cross-attention blocks in the decoder. If specified, the
model will skip the encoding process and use this value directly
for cross-attentions in the decoder.

	"cross_attention_head_mask" - {decoder_num_blocks, decoder_num_attention_heads}
Mask to nullify selected heads of the cross-attention blocks in
the decoder with shape.

	"cache"
A container with cached layer results used to speed up sequential
decoding (autoregression). With cache, certain hidden states are
taken from the cache, rather than recomputed on every decoding
pass. The cache should be treated as opaque and initialized with
Bumblebee.Text.Generation.init_cache/4.

 Configuration

	:vocab_size - the vocabulary size of the token embedding. This corresponds to the number of distinct
tokens that can be represented in model input and output
. Defaults to 32128

	:tie_word_embeddings - whether or not to tie encoder and decoder token embedding
. Defaults to true

	:hidden_size - the dimensionality of hidden layers. Defaults to 512

	:attention_head_size - the size of the key, value, and query projection per attention head. Defaults to 64

	:encoder_num_blocks - the number of Transformer blocks in the encoder. Defaults to 6

	:decoder_num_blocks - the number of Transformer blocks in the decoder. Defaults to 6

	:encoder_num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 8

	:decoder_num_attention_heads - the number of attention heads for each attention layer in the decoder. Defaults to 8

	:activation - the activation function. Defaults to :relu

	:ffn_gated_activation - whether to use a gated variant of the activation function in the feed-forward network (FFN). Defaults to false

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.1

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 1.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-6

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 Bumblebee.Vision.BlipVision - Bumblebee v0.5.3

Bumblebee.Vision.BlipVision

The BLIP model for image encoding.

 Architectures

	:base - the base image model

 Inputs

	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

 Configuration

	:image_size - the size of the input spatial dimensions. Defaults to 384

	:num_channels - the number of channels in the input. Defaults to 3

	:patch_size - the size of the patch spatial dimensions. Defaults to 16

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:activation - the activation function. Defaults to :gelu

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-5

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

 Bumblebee.Vision.ClipVision - Bumblebee v0.5.3

Bumblebee.Vision.ClipVision

The CLIP model for image encoding.

 Architectures

	:base - the base image model

	:for_embedding - the base model with a single projection layer
on top. The head returns a vector embedded in the joint text-image
CLIP space

 Inputs

	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

 Configuration

	:image_size - the size of the input spatial dimensions. Defaults to 224

	:num_channels - the number of channels in the input. Defaults to 3

	:patch_size - the size of the patch spatial dimensions. Defaults to 32

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:projection_size - the dimensionality of the projection layer. Defaults to 512

	:activation - the activation function. Defaults to :gelu_approx_sigmoid

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-5

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

 Bumblebee.Vision.ConvNext - Bumblebee v0.5.3

Bumblebee.Vision.ConvNext

ConvNeXT model family.

 Architectures

	:base - plain ConvNeXT without any head on top

	:for_image_classification - ConvNeXT with a classification head.
The head consists of a single dense layer on top of the pooled
features

 Inputs

	"pixel_values" - {batch_size, height, width, num_channels}
Featurized image pixel values (224x224).

 Configuration

	:num_channels - the number of channels in the input. Defaults to 3

	:patch_size - the size of the patch spatial dimensions. Defaults to 4

	:hidden_sizes - the dimensionality of hidden layers at each stage. Defaults to [96, 192, 384, 768]

	:depths - the depth (number of residual blocks) at each stage. Defaults to [3, 3, 9, 3]

	:activation - the activation function. Defaults to :gelu

	:scale_initial_value - the initial value for scaling layers. Defaults to 1.0e-6

	:drop_path_rate - the drop path rate used to for stochastic depth. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 References

	A ConvNet for the 2020s

 Bumblebee.Vision.Deit - Bumblebee v0.5.3

Bumblebee.Vision.Deit

DeiT model family.

 Architectures

	:base - plain DeiT without any head on top

	:for_image_classification - DeiT with a classification head.
The head consists of two dense layers on top of the final
hidden state of the CLS token

	:for_image_classification_with teacher - DeiT with a
classification head. The head consists of two dense layers
on top of the final hidden state of the CLS token and the
final hidden state of the distillation token

	:for_masked_image_modeling - DEiT with a language modeling
head on top for predicting visual tokens

 Inputs

	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

	"patch_mask" - {batch_size, num_patches}
Mask to nullify selected embedded patches.

 Configuration

	:image_size - the size of the input spatial dimensions. Defaults to 224

	:num_channels - the number of channels in the input. Defaults to 3

	:patch_size - the size of the patch spatial dimensions. Defaults to 16

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:use_qkv_bias - whether to use bias in query, key, and value projections. Defaults to true

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.0

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 References

	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

 Bumblebee.Vision.DinoV2 - Bumblebee v0.5.3

Bumblebee.Vision.DinoV2

DINOv2 model family.

 Architectures

	:base - plain DINOv2 without any head on top

	:for_image_classification - DINOv2 with head for image classification

	:backbone - DINOv2 with feature maps output

 Inputs

	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

	"patch_mask" - {batch_size, num_patches}
Mask to nullify selected embedded patches.

 Configuration

	:image_size - the size of the input spatial dimensions. The model is trained for this size, however
the model supports any other input size by interpolating position embeddings
. Defaults to 518

	:num_channels - the number of channels in the input. Defaults to 3

	:patch_size - the size of the patch spatial dimensions. Defaults to 14

	:hidden_size - the dimensionality of hidden layers. Defaults to 384

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:intermediate_size_ratio - the dimensionality of the intermediate layer in the transformer feed-forward network (FFN) in the encoder,
expressed as a multiplier of :hidden_size
. Defaults to 4

	:use_qkv_bias - whether to use bias in query, key, and value projections. Defaults to true

	:activation - the activation function. Defaults to :gelu

	:ffn_swiglu_activation - whether to use the gated SwiGLU activation function in the feed-forward network (FFN). Defaults to false

	:scale_initial_value - the initial value for scaling layers. Defaults to 1.0

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.0

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-6

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:backbone_output_indices - list of indices indicating which feature maps to include in the output. If not specified, only
the last feature map is included

	:backbone_use_norm - whether to add layer normalization layer to each of the feature maps returned by the backbone. Defaults to true

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 References

	DINOv2: Learning Robust Visual Features without Supervision

 Bumblebee.Vision.ResNet - Bumblebee v0.5.3

Bumblebee.Vision.ResNet

ResNet model family.

 Architectures

	:base - plain ResNet without any head on top

	:for_image_classification - ResNet with a classification head.
The head consists of a single dense layer on top of the pooled
features and it returns logits corresponding to possible classes

 Inputs

	"pixel_values" - {batch_size, height, width, num_channels}
Featurized image pixel values (224x224).

 Configuration

	:num_channels - the number of channels in the input. Defaults to 3

	:embedding_size - the dimensionality of the embedding layer. Defaults to 64

	:hidden_sizes - the dimensionality of hidden layers at each stage. Defaults to [256, 512, 1024, 2048]

	:depths - the depth (number of residual blocks) at each stage. Defaults to [3, 4, 6, 3]

	:residual_block_type - the residual block to use, either :basic (used for smaller models, like ResNet-18 or ResNet-34)
or :bottleneck (used for larger models like ResNet-50 and above)
. Defaults to :bottleneck

	:activation - the activation function. Defaults to :relu

	:downsample_in_first_stage - whether the first stage should downsample the inputs using a stride of 2. Defaults to false

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 Bumblebee.Vision.Vit - Bumblebee v0.5.3

Bumblebee.Vision.Vit

ViT model family.

 Architectures

	:base - plain ViT without any head on top

	:for_image_classification - ViT with a classification head.
The head consists of a single dense layer on top of the pooled
features

	:for_masked_image_modeling - ViT with a language modeling
head on top for predicting visual tokens

 Inputs

	"pixel_values" - {batch_size, image_size, image_size, num_channels}
Featurized image pixel values.

	"patch_mask" - {batch_size, num_patches}
Mask to nullify selected embedded patches.

 Configuration

	:image_size - the size of the input spatial dimensions. Defaults to 224

	:num_channels - the number of channels in the input. Defaults to 3

	:patch_size - the size of the patch spatial dimensions. Defaults to 16

	:hidden_size - the dimensionality of hidden layers. Defaults to 768

	:num_blocks - the number of Transformer blocks in the encoder. Defaults to 12

	:num_attention_heads - the number of attention heads for each attention layer in the encoder. Defaults to 12

	:use_qkv_bias - whether to use bias in query, key, and value projections. Defaults to true

	:activation - the activation function. Defaults to :gelu

	:dropout_rate - the dropout rate for encoder and decoder. Defaults to 0.0

	:attention_dropout_rate - the dropout rate for attention weights. Defaults to 0.0

	:layer_norm_epsilon - the epsilon used by the layer normalization layers. Defaults to 1.0e-12

	:initializer_scale - the standard deviation of the normal initializer used for initializing kernel parameters. Defaults to 0.02

	:output_hidden_states - whether the model should return all hidden states. Defaults to false

	:output_attentions - whether the model should return all attentions. Defaults to false

	:num_labels - the number of labels to use in the last layer for the classification task. Defaults to 2

	:id_to_label - a map from class index to label. Defaults to %{}

 References

	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

 Bumblebee.Audio.WhisperFeaturizer - Bumblebee v0.5.3

Bumblebee.Audio.WhisperFeaturizer

Whisper featurizer for audio data.

 Configuration

	:feature_size - the dimension of the extracted features. This corresponds to the number of Mel bins. Defaults to 80

	:sampling_rate - the sampling rate at which the audio files should be digitally expressed in Hertz. Defaults to 16000

	:num_seconds - the maximum duration of the audio sequence. This implies that the the maximum length of the
input sequence is :num_seconds * :sampling_rate
. Defaults to 30

	:hop_length - the hop between consecutive overlapping windows for the STFT used to obtain Mel Frequency coefficients. Defaults to 160

	:fft_length - the size of the fourier transform. Defaults to 400

	:padding_value - the value used to pad the audio. Should correspond to silence. Defaults to 0.0

 Bumblebee.Text.PreTrainedTokenizer - Bumblebee v0.5.3

Bumblebee.Text.PreTrainedTokenizer

Wraps a pre-trained tokenizer from the Tokenizers library.

 Configuration

	:add_special_tokens - whether to add special tokens during tokenization. Defaults to true

	:length - applies fixed length padding or truncation to the given input if set. Can be either
a specific number or a list of numbers. When a list is given, the smallest number
that exceeds all input lengths is used as the padding length

	:pad_direction - the padding direction, either :right or :left. Defaults to :right

	:truncate_direction - the truncation direction, either :right or :left. Defaults to :right

	:return_attention_mask - whether to return attention mask for encoded sequence. The mask is a boolean tensor
indicating which tokens are padding and should effectively be ignored by the model
. Defaults to true

	:return_token_type_ids - whether to return token type ids for encoded sequence. Defaults to true

	:return_special_tokens_mask - whether to return special tokens mask for encoded sequence. The mask is a boolean
tensor indicating which tokens are special
. Defaults to false

	:return_offsets - whether to return token offsets for encoded sequence. This tensor includes a list of
position pairs that map tokens to the input text
. Defaults to false

	:return_length - whether to return the sequence length. The length is the effective number of tokens,
so it is calculated after truncation, but does not include padding
. Defaults to false

 Bumblebee.Vision.BitFeaturizer - Bumblebee v0.5.3

Bumblebee.Vision.BitFeaturizer

BiT featurizer for image data.

 Configuration

	:resize - whether to resize the input to the given :size. Defaults to true

	:size - the size to resize the input to, either %{height: ..., width: ...} or %{shortest_edge: ...}.
Only has an effect if :resize is true
. Defaults to %{shortest_edge: 448}

	:resize_method - the resizing method, either of :nearest, :bilinear, :bicubic, :lanczos3, :lanczos5. Defaults to :bicubic

	:center_crop - whether to crop the input at the center. If the input size is smaller than :crop_size along
any edge, the image is padded with zeros and then center cropped
. Defaults to true

	:crop_size - the size to center crop the image to, given as %{height: ..., width: ...}. Only has an effect
if :center_crop is true
. Defaults to %{width: 448, height: 448}

	:rescale - whether to rescale the input by the given :rescale_factor. Defaults to true

	:rescale_factor - the factor by which to rescale the input. A single number
Only has an effect if :rescale is true
. Defaults to 0.00392156862745098

	:normalize - whether or not to normalize the input with mean and standard deviation. Defaults to true

	:image_mean - the sequence of mean values for each channel, to be used when normalizing images. Defaults to [0.5, 0.5, 0.5]

	:image_std - the sequence of standard deviations for each channel, to be used when normalizing images. Defaults to [0.5, 0.5, 0.5]

 Bumblebee.Vision.BlipFeaturizer - Bumblebee v0.5.3

Bumblebee.Vision.BlipFeaturizer

BLIP featurizer for image data.

 Configuration

	:resize - whether to resize the input to the given :size. Defaults to true

	:size - the size to resize the input to, given as %{height: ..., width: ...}. Only has
an effect if :resize is true
. Defaults to %{width: 384, height: 384}

	:resize_method - the resizing method, either of :nearest, :bilinear, :bicubic, :lanczos3, :lanczos5. Defaults to :bicubic

	:normalize - whether or not to normalize the input with mean and standard deviation. Defaults to true

	:image_mean - the sequence of mean values for each channel, to be used when normalizing images. Defaults to [0.48145466, 0.4578275, 0.40821073]

	:image_std - the sequence of standard deviations for each channel, to be used when normalizing images. Defaults to [0.26862954, 0.26130258, 0.27577711]

 Bumblebee.Vision.ClipFeaturizer - Bumblebee v0.5.3

Bumblebee.Vision.ClipFeaturizer

CLIP featurizer for image data.

 Configuration

	:resize - whether to resize the input to the given :size. Defaults to true

	:size - the size to resize the input to, either %{height: ..., width: ...} or %{shortest_edge: ...}.
Only has an effect if :resize is true
. Defaults to %{shortest_edge: 224}

	:resize_method - the resizing method, either of :nearest, :bilinear, :bicubic, :lanczos3, :lanczos5. Defaults to :bicubic

	:center_crop - whether to crop the input at the center. If the input size is smaller than :crop_size along
any edge, the image is padded with zeros and then center cropped
. Defaults to true

	:crop_size - the size to center crop the image to, given as %{height: ..., width: ...}. Only has an effect
if :center_crop is true
. Defaults to %{width: 224, height: 224}

	:normalize - whether or not to normalize the input with mean and standard deviation. Defaults to true

	:image_mean - the sequence of mean values for each channel, to be used when normalizing images. Defaults to [0.485, 0.456, 0.406]

	:image_std - the sequence of standard deviations for each channel, to be used when normalizing images. Defaults to [0.229, 0.224, 0.225]

 Bumblebee.Vision.ConvNextFeaturizer - Bumblebee v0.5.3

Bumblebee.Vision.ConvNextFeaturizer

ConvNeXT featurizer for image data.

 Configuration

	:resize - whether to resize (and optionally center crop) the input to the given :size. Defaults to true

	:size - the size to resize the input to. If 384 or larger, the image is resized to (:size, :size).
Otherwise, the shorter edge of the image is matched to :size / :crop_percentage, then image
is cropped to :size. Only has an effect if :resize is true
. Defaults to 224

	:resize_method - the resizing method, either of :nearest, :bilinear, :bicubic, :lanczos3, :lanczos5. Defaults to :bicubic

	:crop_percentage - the percentage of the image to crop. Only has an effect if :resize is true and :size < 384. Defaults to 0.875

	:normalize - whether or not to normalize the input with mean and standard deviation. Defaults to true

	:image_mean - the sequence of mean values for each channel, to be used when normalizing images. Defaults to [0.485, 0.456, 0.406]

	:image_std - the sequence of standard deviations for each channel, to be used when normalizing images. Defaults to [0.229, 0.224, 0.225]

 Bumblebee.Vision.DeitFeaturizer - Bumblebee v0.5.3

Bumblebee.Vision.DeitFeaturizer

DeiT featurizer for image data.

 Configuration

	:resize - whether to resize the input to the given :size. Defaults to true

	:size - the size to resize the input to, given as %{height: ..., width: ...}. Only has
an effect if :resize is true
. Defaults to %{width: 256, height: 256}

	:resize_method - the resizing method, either of :nearest, :bilinear, :bicubic, :lanczos3, :lanczos5. Defaults to :bicubic

	:center_crop - whether to crop the input at the center. If the input size is smaller than :crop_size along
any edge, the image is padded with zeros and then center cropped
. Defaults to true

	:crop_size - the size to center crop the image to, given as %{height: ..., width: ...}. Only has an effect
if :center_crop is true
. Defaults to %{width: 224, height: 224}

	:normalize - whether or not to normalize the input with mean and standard deviation. Defaults to true

	:image_mean - the sequence of mean values for each channel, to be used when normalizing images. Defaults to [0.485, 0.456, 0.406]

	:image_std - the sequence of standard deviations for each channel, to be used when normalizing images. Defaults to [0.229, 0.224, 0.225]

 Bumblebee.Vision.VitFeaturizer - Bumblebee v0.5.3

Bumblebee.Vision.VitFeaturizer

ViT featurizer for image data.

 Configuration

	:resize - whether to resize the input to the given :size. Defaults to true

	:size - the size to resize the input to, given as %{height: ..., width: ...}. Only has
an effect if :resize is true
. Defaults to %{width: 224, height: 224}

	:resize_method - the resizing method, either of :nearest, :bilinear, :bicubic, :lanczos3, :lanczos5. Defaults to :bilinear

	:normalize - whether or not to normalize the input with mean and standard deviation. Defaults to true

	:image_mean - the sequence of mean values for each channel, to be used when normalizing images. Defaults to [0.5, 0.5, 0.5]

	:image_std - the sequence of standard deviations for each channel, to be used when normalizing images. Defaults to [0.5, 0.5, 0.5]

 Bumblebee.Diffusion.DdimScheduler - Bumblebee v0.5.3

Bumblebee.Diffusion.DdimScheduler

Denoising diffusion implicit models (DDIMs).
This sampling method was proposed as a follow up to the original
denoising diffusion probabilistic models (DDPMs) in order to heavily
reduce the number of steps during inference. DDPMs model the diffusion
process as a Markov chain; DDIMs generalize this considering
non-Markovian diffusion processes that lead to the same objective.
This enables a reverse process with many less samples, as compared
to DDPMs, while using the same denoising model.
DDIMs were shown to be a simple variant of pseudo numerical methods
for diffusion models (PNDMs), see Bumblebee.Diffusion.PndmScheduler
and the corresponding paper for more details.

 Configuration

	:num_train_steps - the number of diffusion steps used to train the model. Defaults to 1000

	:beta_schedule - the beta schedule type, a mapping from a beta range to a sequence of betas for stepping the model.
Either of :linear, :quadratic, or :squared_cosine
. Defaults to :linear

	:beta_start - the start value for the beta schedule. Defaults to 0.0001

	:beta_end - the end value for the beta schedule. Defaults to 0.02

	:prediction_type - prediction type of the denoising model. Either of:
	:noise (default) - the model predicts the noise of the diffusion process

	:angular_velocity - the model predicts velocity in angular parameterization.
See Section 2.4 in Imagen Video: High Definition Video Generation with Diffusion Models,
then Section 4 in Progressive Distillation for Fast Sampling of Diffusion Models
and Appendix D

. Defaults to :noise

	:alpha_clip_strategy - each step t uses the values of $\bar{\alpha}_t$ and $\bar{\alpha}_{t-1}$,
however for $t = 0$ there is no previous alpha. The strategy can be either
:one ($\bar{\alpha}_{t-1} = 1$) or :alpha_zero ($\bar{\alpha}_{t-1} = \bar{\alpha}_0$)
. Defaults to :one

	:timesteps_offset - an offset added to the inference steps. You can use a combination of timesteps_offset: 1 and
alpha_clip_strategy: :alpha_zero, so that the last step $t = 1$ uses $\bar{\alpha}_1$
and $\bar{\alpha}_0$, as done in stable diffusion
. Defaults to 0

	:clip_denoised_sample - whether to clip the predicted denoised sample (x_0 in Equation (12)) into $[-1, 1]$
for numerical stability
. Defaults to true

	:rederive_noise - whether the noise (output of the denoising model) should be re-derived at each step based on the
predicted denoised sample (x_0) and the current sample. This technique is used in OpenAI GLIDE
. Defaults to false

	:eta - a weight for the noise added in a denoising diffusion step. This scales the value of σ_t
in Equation (12) in the original paper, as per Equation (16)
. Defaults to 0.0

 References

	Denoising Diffusion Implicit Models

 Bumblebee.Diffusion.LcmScheduler - Bumblebee v0.5.3

Bumblebee.Diffusion.LcmScheduler

Latent Consistency Model (LCM) sampling.
This sampling method should be used in combination with LCM. LCM is
a model distilled from a regular diffusion model to predict the
final denoised sample in a single step. The sample quality can be
improved by alternating a couple denoising and noise injection
steps (multi-step sampling), as per Appendix B.

 Configuration

	:num_train_steps - the number of diffusion steps used to train the model. Defaults to 1000

	:beta_schedule - the beta schedule type, a mapping from a beta range to a sequence of betas for stepping the model.
Either of :linear, :quadratic, or :squared_cosine
. Defaults to :quadratic

	:beta_start - the start value for the beta schedule. Defaults to 8.5e-4

	:beta_end - the end value for the beta schedule. Defaults to 0.012

	:prediction_type - prediction type of the denoising model. Either of:
	:noise (default) - the model predicts the noise of the diffusion process

	:angular_velocity - the model predicts velocity in angular parameterization.
See Section 2.4 in Imagen Video: High Definition Video Generation with Diffusion Models,
then Section 4 in Progressive Distillation for Fast Sampling of Diffusion Models
and Appendix D

. Defaults to :noise

	:alpha_clip_strategy - each step t uses the values of $\bar{\alpha}_t$ and $\bar{\alpha}_{t-1}$,
however for $t = 0$ there is no previous alpha. The strategy can be either
:one ($\bar{\alpha}_{t-1} = 1$) or :alpha_zero ($\bar{\alpha}_{t-1} = \bar{\alpha}_0$)
. Defaults to :one

	:clip_denoised_sample - whether to clip the predicted denoised sample (x_0 in Equation (12)) into $[-1, 1]$
for numerical stability
. Defaults to false

	:num_original_steps - the number of denoising steps used during Latent Consistency Distillation (LCD).
The LCD procedure distills a base diffusion model, but instead of sampling all
:num_train_steps it skips steps and uses another scheduler accordingly. See
Section 4.3
. Defaults to 50

	:boundary_condition_timestep_scale - the scaling factor used in the consistency function coefficients. In the original
LCM implementation the authors use the formulation
$$
c_{skip}(t) = \frac{\sigma_{data}^2}{(st)^2 + \sigma_{data}^2}, \quad
c_{out}(t) = \frac{st}{\sqrt{(st)^2 + \sigma_{data}^2}}
$$
where $\sigma_{data} = 0.5$ and s is the scaling factor. Increasing the scaling
factor will decrease approximation error, although the approximation error at the
default of 10.0 is already pretty small
. Defaults to 10.0

 References

	Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference
	Consistency Models

 Bumblebee.Diffusion.PndmScheduler - Bumblebee v0.5.3

Bumblebee.Diffusion.PndmScheduler

Pseudo numerical methods for diffusion models (PNDMs).
The sampling is based on two numerical methods for solving ODE: the
Runge-Kutta method (RK) and the linear multi-step method (LMS). The
gradient at each step is computed according to either of these methods,
however the transfer part (approximating the next sample based on
current sample and gradient) is non-linear. Because of this property,
the authors of the paper refer to them as pseudo numerical methods,
denoted as PRK and PLMS respectively.

 Configuration

	:num_train_steps - the number of diffusion steps used to train the model. Defaults to 1000

	:beta_schedule - the beta schedule type, a mapping from a beta range to a sequence of betas for stepping the model.
Either of :linear, :quadratic, or :squared_cosine
. Defaults to :linear

	:beta_start - the start value for the beta schedule. Defaults to 0.0001

	:beta_end - the end value for the beta schedule. Defaults to 0.02

	:prediction_type - prediction type of the denoising model. Either of:
	:noise (default) - the model predicts the noise of the diffusion process

	:angular_velocity - the model predicts velocity in angular parameterization.
See Section 2.4 in Imagen Video: High Definition Video Generation with Diffusion Models,
then Section 4 in Progressive Distillation for Fast Sampling of Diffusion Models
and Appendix D

. Defaults to :noise

	:alpha_clip_strategy - each step t uses the values of $\bar{\alpha}_t$ and $\bar{\alpha}_{t-1}$,
however for $t = 0$ there is no previous alpha. The strategy can be either
:one ($\bar{\alpha}_{t-1} = 1$) or :alpha_zero ($\bar{\alpha}_{t-1} = \bar{\alpha}_0$)
. Defaults to :alpha_zero

	:timesteps_offset - an offset added to the inference steps. You can use a combination of timesteps_offset: 1 and
alpha_clip_strategy: :alpha_zero, so that the last step $t = 1$ uses $\bar{\alpha}_1$
and $\bar{\alpha}_0$, as done in stable diffusion
. Defaults to 0

	:reduce_warmup - when true, the first few samples are computed using lower-order linear multi-step,
rather than the Runge-Kutta method. This results in less forward passes of the model
. Defaults to false

 References

	Pseudo Numerical Methods for Diffusion Models on Manifolds

 Bumblebee.Configurable - Bumblebee v0.5.3

Bumblebee.Configurable behaviour

An interface for configurable entities.
A module implementing this behaviour is expected to define a struct
with configuration.

 Summary

 Types

 t()

 Callbacks

 config t, keyword

 Configures the struct.

 Types

 Link to this type

 t()

 View Source

 @type t() :: struct()

 Callbacks

 Link to this callback

 config t, keyword

 View Source

 @callback config(
 t(),
 keyword()
) :: t()

Configures the struct.

 Bumblebee.Featurizer - Bumblebee v0.5.3

Bumblebee.Featurizer behaviour

An interface for configuring and applying featurizers.
A featurizer is used to convert raw data into model input.
Every module implementing this behaviour is expected to also define
a configuration struct.

 Summary

 Types

 t()

 Callbacks

 batch_template(t, batch_size)

 Returns an input template for process_batch/2.

 process_batch(t, input)

 Optional batch processing stage.

 process_input(t, input)

 Converts the given input to a batched tensor (or a tensor container).

 Functions

 batch_template(featurizer, batch_size)

 Returns an input template for process_batch/2.

 process_batch(featurizer, batch)

 Optional batch processing stage.

 process_input(featurizer, input)

 Converts the given input to a batched tensor (or a tensor container).

 Types

 Link to this type

 t()

 View Source

 @type t() :: Bumblebee.Configurable.t()

 Callbacks

 Link to this callback

 batch_template(t, batch_size)

 View Source

 (optional)

 @callback batch_template(t(), batch_size :: pos_integer()) :: Nx.t() | Nx.Container.t()

Returns an input template for process_batch/2.
The shape is effectively the same as the result of process_input/2,
except for the batch size.

 Link to this callback

 process_batch(t, input)

 View Source

 (optional)

 @callback process_batch(t(), input :: Nx.t() | Nx.Container.t()) ::
 Nx.t() | Nx.Container.t()

Optional batch processing stage.
This is a numerical function. It receives the result of process_input/2,
except the batch size may differ.
When using featurizer as part of Nx.Serving, the batch stage can
be merged with the model computation and compiled together.

 Link to this callback

 process_input(t, input)

 View Source

 @callback process_input(t(), input :: any()) :: Nx.t() | Nx.Container.t()

Converts the given input to a batched tensor (or a tensor container).
Numerical batch processing should be moved to process_batch/2
whenever possible.

 Functions

 Link to this function

 batch_template(featurizer, batch_size)

 View Source

 @spec batch_template(t(), pos_integer()) :: Nx.t() | Nx.Container.t() | nil

Returns an input template for process_batch/2.
If the featurizer does not define batch processing, nil is returned.

 Link to this function

 process_batch(featurizer, batch)

 View Source

 @spec process_batch(t(), Nx.t() | Nx.Container.t()) :: Nx.t() | Nx.Container.t()

Optional batch processing stage.
This is a numerical function. It receives the result of process_input/2,
except the batch size may differ.
If the featurizer does not define batch processing, the input is
returned as is.

 Link to this function

 process_input(featurizer, input)

 View Source

 @spec process_input(t(), any()) :: Nx.t() | Nx.Container.t()

Converts the given input to a batched tensor (or a tensor container).

 Bumblebee.ModelSpec - Bumblebee v0.5.3

Bumblebee.ModelSpec behaviour

An interface for configuring and building models based on the same
architecture.
Every module implementing this behaviour is expected to also define
a configuration struct.

 Summary

 Types

 t()

 Callbacks

 architectures()

 Returns the list of supported model architectures.

 input_template(t)

 Builds a template input for the model.

 model(t)

 Builds an Axon model according to the given configuration.

 Types

 Link to this type

 t()

 View Source

 @type t() :: Bumblebee.Configurable.t()

 Callbacks

 Link to this callback

 architectures()

 View Source

 @callback architectures() :: [atom()]

Returns the list of supported model architectures.

 Link to this callback

 input_template(t)

 View Source

 @callback input_template(t()) :: map()

Builds a template input for the model.
The template is used to compile the model when initializing parameters.

 Link to this callback

 model(t)

 View Source

 @callback model(t()) :: Axon.t()

Builds an Axon model according to the given configuration.

 Bumblebee.Scheduler - Bumblebee v0.5.3

Bumblebee.Scheduler behaviour

An interface for configuring and using schedulers.
A scheduler defines a sampling method, usually used for multi-step
denoising process, as in stable diffusion.
Every module implementing this behaviour is expected to also define
a configuration struct.

 Context

Imagine a denoising model trained in 1000 steps. During training,
we take some original data and add random noise 1000 times, this
way we obtain 1000 steps with increasing level of noise. Then, the
model learns to predict noise at each timestep, given data at that
step (sample) and the timestep.
Once such model is trained, we can obtain brand new data (such as
image) by generating random data and denoising it with our model in
1000 steps.
Doing 1000 forward passes of the model for a single generation can
be expensive, hence multiple methods have been developed to reduce
the number of steps during denoising, with no changes to the model.
Each method specifies a subset of the original timesteps, at each
timestep we need to do a forward pass of the model (or possibly a
few), then the method extrapolates the sample to the next selected
timestep, possibly skipping a lot of timesteps in between.

 Note on wording

Throughout the docs and APIs the word "steps" refers to diffusion
steps, whereas "timesteps" is more specific and refers to the exact
values t (points in time).

 Summary

 Types

 state()

 t()

 Callbacks

 init(t, num_steps, sample_template, prng_key)

 Initializes state for a new scheduler loop.

 step(t, state, sample, prediction)

 Predicts sample at the previous timestep.

 Types

 Link to this type

 state()

 View Source

 @type state() :: Nx.Container.t()

 Link to this type

 t()

 View Source

 @type t() :: Bumblebee.Configurable.t()

 Callbacks

 Link to this callback

 init(t, num_steps, sample_template, prng_key)

 View Source

 @callback init(
 t(),
 num_steps :: pos_integer(),
 sample_template :: Nx.Tensor.t(),
 prng_key :: Nx.Tensor.t()
) :: {state :: map(), timesteps :: Nx.Tensor.t()}

Initializes state for a new scheduler loop.
Returns a pair of {state, timesteps}, where state is an opaque
Nx.Container and timesteps is a tensor with the subsequent
timesteps for model forward pass.

 Link to this callback

 step(t, state, sample, prediction)

 View Source

 @callback step(
 t(),
 state(),
 sample :: Nx.Tensor.t(),
 prediction :: Nx.Tensor.t()
) :: {state :: map(), prev_sample :: Nx.Tensor.t()}

Predicts sample at the previous timestep.
Takes the current sample and prediction (usually noise) returned
by the model at the current timestep. Returns {state, prev_sample},
where state is the updated state and prev_sample is the predicted
sample at the previous timestep.

 Bumblebee.Text.Generation - Bumblebee v0.5.3

Bumblebee.Text.Generation behaviour

An interface for language models supporting sequence generation.

 Summary

 Types

 cache()

 Callbacks

 extra_config_module(spec)

 Returns a configuration module for extra model-specific generation
attributes to extend the base Bumblebee.Text.GenerationConfig.

 init_cache(spec, batch_size, max_length, inputs)

 Initializes an opaque cache input for iterative inference.

 traverse_cache(spec, cache, function)

 Traverses all batched tensors in the cache.

 Functions

 build_generate(model, spec, config, opts \\ [])

 Builds a numerical definition that generates sequences of tokens using
the given language model.

 extra_config_module(spec)

 Returns a configuration module for extra model-specific generation
attributes to extend the base Bumblebee.Text.GenerationConfig.

 init_cache(spec, batch_size, max_length, inputs)

 Initializes an opaque cache input for iterative inference.

 traverse_cache(spec, cache, fun)

 Calls fun for every batched tensor in the cache.

 Types

 Link to this type

 cache()

 View Source

 @type cache() :: Nx.Tensor.t() | Nx.Container.t()

 Callbacks

 Link to this callback

 extra_config_module(spec)

 View Source

 (optional)

 @callback extra_config_module(spec :: Bumblebee.ModelSpec.t()) :: module()

Returns a configuration module for extra model-specific generation
attributes to extend the base Bumblebee.Text.GenerationConfig.

 Link to this callback

 init_cache(spec, batch_size, max_length, inputs)

 View Source

 @callback init_cache(
 spec :: Bumblebee.ModelSpec.t(),
 batch_size :: pos_integer(),
 max_length :: pos_integer(),
 inputs :: map()
) :: cache()

Initializes an opaque cache input for iterative inference.

 Link to this callback

 traverse_cache(spec, cache, function)

 View Source

 @callback traverse_cache(
 spec :: Bumblebee.ModelSpec.t(),
 cache(),
 (Nx.Tensor.t() -> Nx.Tensor.t())
) :: cache()

Traverses all batched tensors in the cache.
This function is used when the cache needs to be inflated or
deflated for a different batch size.

 Functions

 Link to this function

 build_generate(model, spec, config, opts \\ [])

 View Source

 @spec build_generate(
 Axon.t(),
 Bumblebee.ModelSpec.t(),
 Bumblebee.Text.GenerationConfig.t(),
 keyword()
) ::
 (params :: map(), inputs :: map() ->
 %{token_ids: Nx.Tensor.t(), length: Nx.Tensor.t()}
 | (ignored :: Nx.Tensor.t()))

Builds a numerical definition that generates sequences of tokens using
the given language model.
The model should be either a decoder or an encoder-decoder. The tokens
are generated by iterative inference using the decoder (autoregression),
until the termination criteria are met.
In case of encoder-decoder models, the corresponding encoder is run
only once and the intermediate state is reused during all iterations.
The generation is controlled by a number of options given as
%Bumblebee.Text.GenerationConfig{}, see the corresponding docs
for more details.
Returns a defn JIT-compatible anonymous function, which expects the
model params as the first argument and inputs map as the second
argument. Note that the inputs map should additionally include a
"seed" tensor, with one value per input in the batch.

 Streaming

This function sets up a hook that is invoked after every generated
token. The hook receives a map with the following attributes:
	:token_id - the newly generated token

	:finished? - a boolean indicating if the sequence is finished

	:length - the current length of the generated sequence. Once
the sequence is finished, the length does not increase

Each of the attributes is a tensor with a leading batch dimension.
When streaming you may not care about the output result, in which
case you can enable :ignore_output to reduce the output size.

 Options

	:logits_processors - a list of numerical functions to modify
predicted scores at each generation step. The functions are
applied in order, after all default processors

	:ignore_output - if true, returns a dummy tensor that should
be ignored. This is useful when you consume the generated tokens
in a stream fashion via the hook, so that the full output does
not need to be transferred unnecessarily after the computation.
Defaults to false

 Link to this function

 extra_config_module(spec)

 View Source

 @spec extra_config_module(Bumblebee.ModelSpec.t()) :: module() | nil

Returns a configuration module for extra model-specific generation
attributes to extend the base Bumblebee.Text.GenerationConfig.

 Link to this function

 init_cache(spec, batch_size, max_length, inputs)

 View Source

 @spec init_cache(Bumblebee.ModelSpec.t(), pos_integer(), pos_integer(), map()) ::
 cache()

Initializes an opaque cache input for iterative inference.

 Link to this function

 traverse_cache(spec, cache, fun)

 View Source

 @spec traverse_cache(
 Bumblebee.ModelSpec.t(),
 cache(),
 (Nx.Tensor.t() -> Nx.Tensor.t())
) :: cache()

Calls fun for every batched tensor in the cache.

 Bumblebee.Tokenizer - Bumblebee v0.5.3

Bumblebee.Tokenizer behaviour

An interface for configuring and applying tokenizers.
A tokenizer is used to convert raw text data into model input.
Every module implementing this behaviour is expected to also define
a configuration struct.

 Summary

 Types

 input()

 special_token_type()

 A type corresponding to a special token in the vocabulary.

 t()

 token()

 token_id()

 Callbacks

 additional_special_tokens(t)

 Returns a list with extra special tokens, in addition to the named
special_tokens/1.

 apply(t, arg2)

 Performs tokenization and encoding on the given input.

 decode(t, arg2)

 Decodes a list of token ids into a sentence.

 id_to_token(t, token_id)

 Converts the given token id the corresponding token.

 special_tokens(t)

 Returns a map with special tokens.

 token_to_id(t, token)

 Converts the given token into the corresponding numeric id.

 Functions

 all_special_tokens(tokenizer)

 Returns all special tokens, including any extra tokens.

 decode(tokenizer, ids)

 Decodes a list of token ids into a sentence.

 id_to_token(tokenizer, id)

 Converts the given token id the corresponding token.

 special_token(tokenizer, type)

 Returns a special token by name.

 special_token_id(tokenizer, type)

 Returns id of a special token by name.

 token_to_id(tokenizer, token)

 Converts the given token into the corresponding numeric id.

 Types

 Link to this type

 input()

 View Source

 @type input() :: String.t() | {String.t(), String.t()}

 Link to this type

 special_token_type()

 View Source

 @type special_token_type() :: atom()

A type corresponding to a special token in the vocabulary.

 Common types

	:bos - a token representing the beginning of a sentence

	:eos - a token representing the end of a sentence

	:unk - a token representing an out-of-vocabulary token

	:sep - a token separating two different sentences in the same
input

	:pad - a token added when processing a batch of sequences with
different length

	:cls - a token representing the class of the input

	:mask - a token representing a masked token, used for masked
language modeling tasks

 Link to this type

 t()

 View Source

 @type t() :: struct()

 Link to this type

 token()

 View Source

 @type token() :: String.t()

 Link to this type

 token_id()

 View Source

 @type token_id() :: non_neg_integer()

 Callbacks

 Link to this callback

 additional_special_tokens(t)

 View Source

 @callback additional_special_tokens(t()) :: MapSet.t(token())

Returns a list with extra special tokens, in addition to the named
special_tokens/1.

 Link to this callback

 apply(t, arg2)

 View Source

 @callback apply(t(), input() | [input()]) :: any()

Performs tokenization and encoding on the given input.

 Link to this callback

 decode(t, arg2)

 View Source

 @callback decode(t(), [token_id()] | [[token_id()]]) :: String.t()

Decodes a list of token ids into a sentence.

 Link to this callback

 id_to_token(t, token_id)

 View Source

 @callback id_to_token(t(), token_id()) :: token()

Converts the given token id the corresponding token.

 Link to this callback

 special_tokens(t)

 View Source

 @callback special_tokens(t()) :: %{required(special_token_type()) => token()}

Returns a map with special tokens.

 Link to this callback

 token_to_id(t, token)

 View Source

 @callback token_to_id(t(), token()) :: token_id()

Converts the given token into the corresponding numeric id.

 Functions

 Link to this function

 all_special_tokens(tokenizer)

 View Source

 @spec all_special_tokens(t()) :: [token_id()]

Returns all special tokens, including any extra tokens.

 Link to this function

 decode(tokenizer, ids)

 View Source

 @spec decode(
 t(),
 token() | [token_id()] | [[token_id()]] | Nx.Tensor.t()
) :: String.t()

Decodes a list of token ids into a sentence.

 Link to this function

 id_to_token(tokenizer, id)

 View Source

Converts the given token id the corresponding token.

 Link to this function

 special_token(tokenizer, type)

 View Source

 @spec special_token(t(), special_token_type()) :: token() | nil

Returns a special token by name.

 Link to this function

 special_token_id(tokenizer, type)

 View Source

 @spec special_token_id(t(), special_token_type()) :: token_id() | nil

Returns id of a special token by name.

 Link to this function

 token_to_id(tokenizer, token)

 View Source

 @spec token_to_id(t(), token()) :: token_id()

 @spec token_to_id(t(), token_id()) :: token()

Converts the given token into the corresponding numeric id.

 Bumblebee.Text.GenerationConfig - Bumblebee v0.5.3

Bumblebee.Text.GenerationConfig

A set of configuration options controlling text generation.
This struct is expected by Bumblebee.Text.Generation.build_generate/3.

 Configuration

 Options controlling length

	:max_new_tokens - the maximum number of tokens to be generated, ignoring the number of tokens in the prompt. Defaults to 20

	:min_new_tokens - the minimum number of tokens to be generated, ignoring the number of tokens in the prompt

	:max_length - the maximum length of the sequence to be generated. Note that this length includes the
length of the input prompt (including padding). In general, prefer :max_new_tokens,
which ignores the number of tokens in the prompt

	:min_length - the minimum length of the sequence to be generated. Note that this length includes the
length of the input prompt (including padding). In general, prefer :min_new_tokens,
which ignores the number of tokens in the prompt

 Options controlling strategy

	:strategy - the method deciding how tokens are selected, it has a significant impact on the quality
of the generated sequence. Should be a map with :type and strategy-specific options.
	:greedy_search - the most straightforward approach, where in
every iteration the most probable token (as given by the model)
is taken.
Example: %{type: :greedy_search}.

	:contrastive_search - state-of-the-art decoding method, capable
of producing high quality, coherent sequences. The results are
deterministic. See this article
for more details.
	:top_k (required) - the number of highest probability vocabulary tokens considered
as a continuation

	:alpha (required) - the weight of degeneration penalty. It balances the model
confidence and the penalty

Example: %{type: :contrastive_search, top_k: 4, alpha: 0.6}.

	:multinomial_sampling - this method samples tokens according to the probability
distribution given by the model. The results are nondeterministic, unless a seed
is specified.
	:top_k (optional) - when specified, restricts sampling to top-k most probable
candidates

	:top_p (optional) - when specified, restricts sampling to tokens which probabilities
add up to top-p

. Defaults to %{type: :greedy_search}

 Options controlling generated tokens

	:decoder_start_token_id - the id of the initial token when generating from scratch, in case of encoder-decoder models

	:forced_bos_token_id - the id of the token to force as the first generated token

	:forced_eos_token_id - the id of the token to force as the last generated token when :max_length is reached

	:forced_token_ids - a list of {index, token_id} pairs forcing token_id to appear at index in the generated sequence. Defaults to []

	:suppressed_token_ids - a list of token ids to suppress during generation. Defaults to []

	:no_repeat_ngram_length - when set, n-grams of the given length can occur only once in the generated sequence

	:temperature - enables exponential scaling of the output probability distribution. The temperature value effectively
determines the randomness of the predicted tokens. Values smaller than 1.0 decrease the randomness,
while bigger values increase it. Note that this is only relevant for generation :strategy that does
sampling based on the output probability distribution

 Special tokens used during generation

	:bos_token_id - the id of the beginning-of-sequence token

	:eos_token_id - the id of the end-of-sequence token

	:pad_token_id - the id of the padding token

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Bumblebee.Text.GenerationConfig{
 bos_token_id: term(),
 decoder_start_token_id: term(),
 eos_token_id: term(),
 extra_config: term(),
 forced_bos_token_id: term(),
 forced_eos_token_id: term(),
 forced_token_ids: term(),
 max_length: term(),
 max_new_tokens: term(),
 min_length: term(),
 min_new_tokens: term(),
 no_repeat_ngram_length: term(),
 pad_token_id: term(),
 strategy: term(),
 suppressed_token_ids: term(),
 temperature: term()
}

 Bumblebee.Text.WhisperGenerationConfig - Bumblebee v0.5.3

Bumblebee.Text.WhisperGenerationConfig

A set of Whisper-specific configuration options controlling text
generation.
This struct is used in the Bumblebee.Text.GenerationConfig struct
under the :extra_config attribute.

 Configuration

	:no_timestamps_token_id - the id of the no-timestamps token

	:language_to_token_id - a map from language code to token id corresponding to that language. Defaults to %{}

	:task_to_token_id - a map from task to token id corresponding to that task. Defaults to %{}

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Bumblebee.Text.WhisperGenerationConfig{
 language_to_token_id: term(),
 no_timestamps_token_id: term(),
 task_to_token_id: term()
}

OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSetti