

 burrito

 v1.2.0

 Table of contents

 	Burrito 🌯

 	Modules

 	Burrito

 	Burrito.Builder

 	Burrito.Builder.Context

 	Burrito.Builder.Log

 	Burrito.Builder.Step

 	Burrito.Builder.Target

 	Burrito.Steps.Build.CopyRelease

 	Burrito.Steps.Build.PackAndBuild

 	Burrito.Steps.Fetch.FetchMusl

 	Burrito.Steps.Fetch.Init

 	Burrito.Steps.Fetch.ResolveERTS

 	Burrito.Steps.Patch.CopyERTS

 	Burrito.Steps.Patch.RecompileNIFs

 	Burrito.Util

 	Burrito.Util.Args

 	Burrito.Util.DefaultERTSResolver

 	Burrito.Util.ERTSResolver

 	Burrito.Util.ERTSUniversalMachineFetcher

 	Burrito.Util.FileCache

 	Burrito.Versions.ReleaseFile

Burrito 🌯

[image: Hex version badge]

 Cross-Platform Elixir Deployments

	What Is It?	Background
	Feature Overview
	Technical Component Overview
	End-To-End Overview

	Quick Start	Experimental Disclaimer
	Preparation and Requirements
	Mix Project Setup
	Mix Release Config Options
	Build-Time Environment Variables
	Application Entry Point
	Maintenance Commands

	Advanced Build Configuration	Build Steps and Phases
	Build Targets and Qualifiers
	Using custom ERTS builds

	Known Limitations and Issues	Phoenix Applications
	Runtime Requirements

	Contributing	Welcome!

 What Is It?

Background
Burrito is our answer to the problem of distributing Elixir CLI applications across varied environments, where we cannot guarantee that the Erlang runtime is installed, and where we lack the permissions to install it ourselves. In particular, we have CLI tooling that must be deployed on-premise, by consultants, into customer environments that may be running MacOS, Linux, or Windows.
Furthermore, these tools depend on NIFs that we need to cross-compile for any of the environments that we support, from one common build server, running in our CI environment.
We were heavily inspired by Bakeware, which lays a lot of the ground work for our approach. Ultimately we implemented and expanded upon many of Bakeware's ideas using Zig.
Feature Overview
	Builds a self-extracting archive for a Mix project, targeting Windows, MacOS, and Linux, containing:	Your compiled BEAM code
	The required ERTS for your project
	Compilation artifacts for any elixir-make based NIFs used by the project

	Provides a "plugin" interface for injecting Zig code into your application's boot sequence	We use this to perform automatic updates and licensing checks (see lib/versions/release_file.ex for details)

	Automatically uninstalls old versions of the payload if a new version is run.

Supported Versions:
We provide pre-compiled Erlang/OTP distributions starting from OTP-25.3 onwards for MacOS, Linux, and Windows targets.
If you require an older version, please refer to the section about (providing custom Erlang/OTP builds)[#using-custom-erts-builds].
Technical Component Overview
Burrito is composed of a few different components:
	Mix Release Module - A module that is executed as a Mix release step. This module takes care of packing up the files, downloading and copying in different Erlang VM Runtime files, and launching the Zig Archiver and Wrapper.
	Zig Archiver - A small Zig library that packs up an entire directory into a tar-like blob. This is known as the "payload" -- which will contain all the compiled BEAM code for your release, and the ERTS for the target platform. This is Gzip compressed and then embedded directly into the wrapper program.
	Zig Wrapper - This is portable cross-platform Zig code that wraps around the payload generated during the Mix release process. Erlang is launched in Embedded Mode (for more details see System Principles) directly from Zig using execve() (on Windows we use a child process).

 Burrito Produced Binary
┌────────────────────────────────┐
│ │
│ Zig Wrapper Binary │ <---- Compiled from `wrapper.zig`
│ │
├────────────────────────────────┤
│ Payload Archive │
│ ┌────────────────────────────┐ │
│ │ │ │
│ │ ERTS Native Binaries │ <------ If cross-compiling, this is downloaded from a build server
│ │ │ │
│ └────────────────────────────┘ │
│ │ <---- This bottom payload portion is generated by `archiver.zig`
│ ┌────────────────────────────┐ │
│ │ │ │
│ │ Application BEAM Code │ │
│ │ │ │
│ └────────────────────────────┘ │
│ │
└────────────────────────────────┘
End To End Overview
	You build a Burrito wrapped binary of your application and send it to an end-user
	The end-user launches your binary like any other native application on their system
	In the background (first-run only) the payload is extracted into a well defined location on the system. (AppData, Application Support, etc.)
	The wrapper executes the Erlang runtime in the background, and transparently launches your application within the same process
	Subsequent runs of the same version of that application will use the previously extracted payload

 Quick Start

Disclaimer
Burrito was built with our specific use case in mind, and while we've found success with deploying applications packaged using Burrito to a number of production environments, the approach we're taking is still experimental.
That being said, we're excited by our early use of the tooling, and are eager to accept community contributions that improve the reliability of Burrito, or that add support for additional platforms.
Preparation and Requirements
NOTE: Due to current limitations of Zig, some platforms are less suited as build machines than others: we've found the most success building from Linux and MacOS. The matrix below outlines which build targets are currently supported by each host.
	Target	Host	Host	Host	Host
		Windows x64	Linux	MacOS (x86_64)	MacOS (Apple Silicon)
	Windows x64	❌	✅	✅	✅
	Linux	❌	✅	✅	✅
	MacOS (x86_64)	❌	✅	✅	✅
	MacOS (Apple Silicon)	❌	✅	✅	✅

We support targeting Windows (x8664) from MacOS and Linux, we _do not officially support building ON Windows, it's recommended you use WSL if your development machine is Windows.

You must have the following installed and in your PATH:
	Zig (0.13.0) -- zig
	XZ -- xz
	7z -- 7z (For Windows Targets)

Mix Project Setup
	Add burrito to your list of dependencies:
 defp deps do
 [{:burrito, "~> 1.0"}]
 end

	Create a releases function in your mix.exs, add and configure the following for your project:
 def releases do
 [
 example_cli_app: [
 steps: [:assemble, &Burrito.wrap/1],
 burrito: [
 targets: [
 macos: [os: :darwin, cpu: :x86_64],
 linux: [os: :linux, cpu: :x86_64],
 windows: [os: :windows, cpu: :x86_64]
]
]
]
]
 end

(See the Mix Release Config Options for additional options)
	Add the releases function into your project function:

 def project do
 [
 # ... other project configuration
 releases: releases()
]
 end
	To build a release for all the targets defined in your mix.exs file: MIX_ENV=prod mix release
	You can also build a single target by setting the BURRITO_TARGET environment variable to the alias for that target (e.g. Setting BURRITO_TARGET=macos builds only the macos target defined above.)

NOTE: In order to speed up iteration times during development, if the Mix environment is not set to prod, the binary will always extract its payload, even if that version of the application has already been unpacked on the target machine.
Mix Release Config Options
	targets - A list of atoms, the targets you want to build for (:darwin, :win64, :linux, :linux_musl) whenever you run a mix release command -- if not defined, defaults to native host platform only.
	debug - Boolean, will produce a debug build if set to true. (Default: false)
	no_clean - Boolean, will not clean up after building if set to true. (Default: false)
	plugin - String, a path to a Zig file that contains a function burrito_plugin_entry() which will be called before unpacking the payload at runtime. See the example application for details.

Build-Time Environment Variables
	BURRITO_TARGET - Override the list of targets provided in your release configuration. (ex: BURRITO_TARGET=win64, BURRITO_TARGET=linux,darwin)

Application Entry Point
For Burrito to work properly you must define a :mod in your project's Mix config:
def application do
 [
 mod: {MyEntryModule, []}
]
end
This module must implement the callbacks defined by the Application module, as stated in the Mix documentation:
defmodule MyEntryModule do
 def start(_, _) do
 # Returning `{:ok, pid}` will prevent the application from halting.
 # Use System.halt(exit_code) to terminate the VM when required
 end
end
If you wish you retrieve the argv passed to your program by Burrito use this snippet:
args = Burrito.Util.Args.argv() # this returns a list of strings
Maintenance Commands
Binaries built by Burrito include a built-in set of commands for performing maintenance operations against the included application:
	./my-binary maintenance uninstall - Will prompt to uninstall the unpacked payload on the host machine.

	./my-binary maintenance directory- Will print the path to the installation directory for the unpacked payload on the host machine.

	./my-binary maintenance meta - Will print the metadata for binary.

 Advanced Build Configuration

Build Steps and Phases
Burrito runs the mix release task in three "Phases". Each of these phases contains a number of "Steps", and a context struct containing the current state of the build, which is passed between each step.
The three phases of the Burrito build pipeline are:
	Fetch - This phase is responsible for downloading or locally locating any replacement ERTS builds for cross-build targets.
	Patch - This phase copies replacement ERTS files, and re-compiles NIFs (if any). This phase is also where any custom files should be copied into the build directory before being archived.
	Build - This is the final phase in the build flow, it produces the final wrapper binary with the payload embedded inside.

 You can add your own steps before and after phases execute. Your custom steps will also receive the build context struct, and can return a modified one to customize a build to your liking.
 An example of adding a step before the fetch phase, and after the build phase:
 # ... mix.exs file
 def releases do
 [
 my_app: [
 steps: [:assemble, &Burrito.wrap/1],
 burrito: [
 # ... other Burrito configuration
 extra_steps: [
 fetch: [pre: [MyCustomStepModule, AnotherCustomStepModule]],
 build: [post: [CustomStepAgain, YetAnotherCustomStepModule]]
]
]
]
]
 end
 You can override default steps or phases by setting the phases option.
 If your build phase's requirements are different to Burrito's, specify your own assemble step that calls Burrito.Builder.build(release).
 # ... mix.exs file
 def releases do
 [
 my_app: [
 steps: [:assemble, &MyProject.wrap/1],
 burrito: [
 # ... other Burrito configuration
 phases: [
 build: [MyProject.CustomBuildStep1, MyProject.CustomBuildStep2]
]
]
]
]
 end
 defmodule MyProject
 def wrap(%Mix.Release{} = release) do
 pre_check(release)
 Burrito.Builder.build(release)
 end

 defp pre_check(release) do
 # checks specific to your build.
 end
 end
Build Targets and Qualifiers
A Burrito build target is a keyword list that contains an operating system, a CPU architecture, and extra build options (called Qualifiers).
Here's a definition for a build target configured for Linux x86-64 that adds extra CFLAGS to the NIF recompile step:
targets: [
 linux: [os: :linux, cpu: :x86_64, nif_cflags: "-DSOME_DEFINE"]
]
Build qualifiers are a simple way to pass specific flags into the Burrito build pipeline. Here is a list of the supported qualifiers:
	custom_erts - binary() or URI.t() that points to a custom tar.gz. See Using custom ERTS builds for more info.
	nif_cflags - binary() String that is appended to the end of CFLAGS when recompiling NIFs for another target.
	nif_cxxflags - binary() String that is appended to the end of CXXFLAGS when recompiling NIFs for another target.
	nif_env - list(tuple()) List of 2-tuples (strings) that define environment variables when recompiling NIFs for another target.
	nif_make_args - binary() String that is appended to the make call when Elixir make is invoked for recompiling NIFs.
	skip_nifs - boolean() Boolean value, defaults to false, if set to true NIFs will NOT be recompiled. Use this if you want to copy in NIFs that you recompiled yourself in combination with extra/custom build steps.

Tip: You can use these qualifiers as a way to pass per-target information into your custom build steps.
Using Custom ERTS Builds
The Burrito project provides precompiled builds of Erlang for the following platforms:
[os: :darwin, cpu: :x86_64],
[os: :darwin, cpu: :aarch64],
[os: :linux, cpu: :x86_64],
[os: :linux, cpu: :aarch64],
[os: :windows, cpu: :x86_64]
If you require a custom build of ERTS, you're able to override the precompiled binaries on a per target basis by setting custom_erts to the path of your ERTS build:
targets: [
 linux_arm: [
 os: :linux,
 cpu: :aarch64,
 custom_erts: "/path/to/my_custom_erts.tar.gz"
]
]
The custom_erts value should be a path to a local .tar.gz of a release from the Erlang source tree. The structure inside the archive should mirror:
. (TAR Root)
└─ otp-A.B.C-OS-ARCH
 ├─ erts-X.Y.Z/
 ├─ releases/
 ├─ lib/
 ├─ misc/
 ├─ usr/
 └─ Install
You can easily build an archive like this by doing the following commands inside the official Erlang source code:
configure and build Erlang as you require...
...

export RELEASE_ROOT=$(pwd)/release/otp-A.B.C-OS-ARCH
make release
cd release
tar czf my_custom_erts.tar.gz otp-A.B.C-OS-ARCH

 Known Limitations and Issues

Phx Tips
In order to run a Phoenix app with Burrito, you may need to edit your runtime.exs file to ensure it will always start up the server:
This is the default line in runtime.exs, you can remove the if statement wrapping this config line, or check for other conditions:
if System.get_env("PHX_SERVER") do
 config :phx_app, PhxAppWeb.Endpoint, server: true
end
If you do not want to edit runtime.exs just ensure the environment variable PHX_SERVER is set to 1 when you launch your burrito wrapped binary. Otherwise it will simply exit without starting your server application.
Additionally, you should take care to ensure you compile your assets BEFORE you wrap your application with Burrito.
Runtime Requirements
Minimizing the runtime dependencies of the package binaries is an explicit design goal, and the requirements for each platform are as follows:
Windows
	MSVC Runtime for the Erlang version you are shipping
	Windows 10 Build 1511 or later (for ANSI color support)

Linux
	No runtime dependencies.

MacOS
	No runtime dependencies. however a security exemption must be set in MacOS Gatekeeper unless the binary undergoes code-signing.

 Contributing

Welcome!
We are happy to review and accept pull requests to improve Burrito, and ask that you follow the established code formatting present in the repo!
Everything in this repo is licensed under The MIT License, see LICENSE for the full license text.

Burrito

 Summary

 Functions

 register_erts_resolver(module)

 wrap(release)

 Functions

 Link to this function

 register_erts_resolver(module)

 Link to this function

 wrap(release)

 @spec wrap(Mix.Release.t()) :: Mix.Release.t()

Burrito.Builder

Burrito builds in "phases". Each phase contains any number of "steps" which are executed one after another.
There are 3 phases:
:fetch - This phase is responsible for downloading or copying in any replacement ERTS builds for cross-build targets.
:patch - The patch phase injects custom scripts into the build directory, this phase is also where any custom files should be copied into the build directory before being archived.
:build - This is the final phase in the build flow, it produces the final wrapper binary with a payload embedded inside.
You can add your own steps before and after phases execute. Your custom steps will also receive the build context struct, and can return a modified one to customize a build to your liking.
An example of adding a step before the fetch phase, and after the build phase:
... mix.exs file
def releases do
 [
 my_app: [
 steps: [:assemble, &Burrito.wrap/1],
 burrito: [
 # ... other Burrito configuration
 extra_steps: [
 fetch: [pre: [MyCustomStepModule, AnotherCustomStepModule]],
 build: [post: [CustomStepAgain, YetAnotherCustomStepModule]]
 # ...
]
]
]
]
end
...

 Summary

 Functions

 build(release)

 raise_invalid_target(target)

 Functions

 Link to this function

 build(release)

 Link to this function

 raise_invalid_target(target)

Burrito.Builder.Context

 Summary

 Types

 erts_location()

 t()

 Types

 Link to this type

 erts_location()

 @type erts_location() ::
 nil | {:release | :local | :url | :unpacked | :unresolved, term()}

 Link to this type

 t()

 @type t() :: %Burrito.Builder.Context{
 extra_build_env: [{String.t(), String.t()}],
 halted: boolean(),
 mix_release: Mix.Release.t(),
 self_dir: String.t(),
 target: Burrito.Builder.Target.t(),
 work_dir: String.t()
}

Burrito.Builder.Log

 Summary

 Functions

 error(type, message)

 info(type, message)

 success(type, message)

 warning(type, message)

 Functions

 Link to this function

 error(type, message)

 Link to this function

 info(type, message)

 Link to this function

 success(type, message)

 Link to this function

 warning(type, message)

Burrito.Builder.Step behaviour

 Summary

 Callbacks

 execute(t)

 This function is called when the step is to be executed by the build phase.
It should return a context to be passed along to the next build step or phase.

 Callbacks

 Link to this callback

 execute(t)

 @callback execute(Burrito.Builder.Context.t()) :: Burrito.Builder.Context.t()

This function is called when the step is to be executed by the build phase.
It should return a context to be passed along to the next build step or phase.

Burrito.Builder.Target

 Summary

 Types

 erts_source()

 t()

 Functions

 init_target(target_alias, definition)

 make_triplet(target)

 Types

 Link to this type

 erts_source()

 @type erts_source() ::
 {:unresolved | :runtime | :precompiled | :local | :local_unpacked | :url,
 keyword() | atom()}

 Link to this type

 t()

 @type t() :: %Burrito.Builder.Target{
 alias: atom(),
 cpu: atom(),
 cross_build: boolean(),
 debug?: boolean(),
 erts_source: erts_source(),
 os: atom(),
 qualifiers: keyword()
}

 Functions

 Link to this function

 init_target(target_alias, definition)

 Link to this function

 make_triplet(target)

 @spec make_triplet(t()) :: String.t()

Burrito.Steps.Build.CopyRelease

Burrito.Steps.Build.PackAndBuild

Burrito.Steps.Fetch.FetchMusl

Burrito.Steps.Fetch.Init

Burrito.Steps.Fetch.ResolveERTS

Burrito.Steps.Patch.CopyERTS

This step copies the new ERTS bins into the release, as well as replaces built-in NIFs.

Burrito.Steps.Patch.RecompileNIFs

 Summary

 Functions

 nif_sniff()

 Functions

 Link to this function

 nif_sniff()

Burrito.Util

 Summary

 Functions

 get_current_cpu()

 get_current_os()

 get_otp_version()

 running_standalone?()

 Checks if the application is currently running as a standalone Burrito release, or via some other mechanism,
such as an escript.

 Functions

 Link to this function

 get_current_cpu()

 Link to this function

 get_current_os()

 @spec get_current_os() :: :darwin | :linux | :windows

 Link to this function

 get_otp_version()

 @spec get_otp_version() :: String.t()

 Link to this function

 running_standalone?()

 @spec running_standalone?() :: boolean()

Checks if the application is currently running as a standalone Burrito release, or via some other mechanism,
such as an escript.

Burrito.Util.Args

This module provides a method to help fetch CLI arguments, whether passed down
from the Zig wrapper binary or from the the system.

 Summary

 Functions

 argv()

 Get the arguments from the CLI, regardless if run under Burrito or not.

 get_arguments()

 Get CLI arguments passed down from the Zig wrapper binary. Do note that this will get OTP
runtime arguments when called outside of a Burrito-built context. You may consider
argv/0 as a more general alternative.

 get_bin_path()

 Returns the path of the wrapper binary that launched this application.
If not currently inside a Burrito wrapped application, returns :not_in_burrito.

 Functions

 Link to this function

 argv()

 @spec argv() :: [String.t()]

Get the arguments from the CLI, regardless if run under Burrito or not.

 Link to this function

 get_arguments()

 @spec get_arguments() :: [String.t()]

Get CLI arguments passed down from the Zig wrapper binary. Do note that this will get OTP
runtime arguments when called outside of a Burrito-built context. You may consider
argv/0 as a more general alternative.

 Link to this function

 get_bin_path()

 @spec get_bin_path() :: binary() | :not_in_burrito

Returns the path of the wrapper binary that launched this application.
If not currently inside a Burrito wrapped application, returns :not_in_burrito.

Burrito.Util.DefaultERTSResolver

Burrito.Util.ERTSResolver behaviour

A module that implements the ERTSResolver behaviour is responsible for returning a target with
a fully resolved :erts_source field.
You can register your ERTS resolver as the default one by calling Burrito.register_erts_resolver/1,
otherwise Burrito will use the Burrito.Util.DefaultERTSResolver module.

 Summary

 Callbacks

 do_resolve(t)

 Functions

 resolve(target)

 Callbacks

 Link to this callback

 do_resolve(t)

 @callback do_resolve(Burrito.Builder.Target.t()) :: Burrito.Builder.Target.t()

 Functions

 Link to this function

 resolve(target)

 @spec resolve(Burrito.Builder.Target.t()) :: Burrito.Builder.Target.t()

Burrito.Util.ERTSUniversalMachineFetcher

 Summary

 Functions

 fetch_version(os, libc, cpu, otp_version)

 Functions

 Link to this function

 fetch_version(os, libc, cpu, otp_version)

 @spec fetch_version(atom(), atom(), atom(), String.t()) :: URI.t() | {:error, atom()}

Burrito.Util.FileCache

 Summary

 Functions

 clear_cache()

 fetch(key)

 put_if_not_exist(key, data)

 Functions

 Link to this function

 clear_cache()

 @spec clear_cache() :: :ok | {:error, term()}

 Link to this function

 fetch(key)

 @spec fetch(binary()) :: {:hit, binary()} | {:error, term()} | :miss

 Link to this function

 put_if_not_exist(key, data)

 @spec put_if_not_exist(binary(), binary()) :: :ok | {:error, term()}

Burrito.Versions.ReleaseFile

This module provides some helpful functions for requesting, parsing and sorting release files.
A release file is a simplistic JSON format that contains the releases of an app, where to fetch them, and some release notes.
(And any other information you want to store in there!)
Example Release File:
{
 "app_name": "example_cli_app",
 "releases": [
 {
 "version": "0.2.0",
 "notes": "This new version is new and exciting, we promise!",
 "urls": {
 "win64": "https://example.com/releases/0.2.0/example_cli_app_win64.exe",
 "darwin": "https://example.com/releases/0.2.0/example_cli_app_linux",
 "linux": "https://example.com/releases/0.2.0/example_cli_app_darwin"
 }
 },
 {
 "version": "0.1.5",
 "notes": "This new version is new and exciting, we promise!",
 "urls": {
 "win64": "https://example.com/releases/0.1.5/example_cli_app_win64.exe",
 "darwin": "https://example.com/releases/0.1.5/example_cli_app_linux",
 "linux": "https://example.com/releases/0.1.5/example_cli_app_darwin"
 }
 }
]
}
The only required parts of a release JSON file is:
	"app_name" and "releases" keys must be present at the top-level object
	"releases" must be a list of objects that have a "version" key that contains a semver string

Here's the minimal JSON Schema for a release file:
{
 "$schema": "http://json-schema.org/draft-07/schema",
 "required": [
 "app_name",
 "releases"
],
 "type": "object",
 "properties": {
 "app_name": {
 "type": "string"
 },
 "releases": {
 "type": "array",
 "additionalItems": true,
 "items": {
 "anyOf": [
 {
 "default": {},
 "required": [
 "version"
],
 "type": "object",
 "properties": {
 "version": {
 "title": "The version schema",
 "type": "string"
 }
 },
 "additionalProperties": true
 }
]
 }
 }
 },
 "additionalProperties": true
}
You can customize everything else to your liking!
To use the functions in this module, you simply upload this to some HTTP server, and call
{:ok, release_map} = fetch_releases_from_url(release_url)
maybe_new_release = get_new_version(release_map, current_semver_version_string)
Which will return either the release map data of a newer release, or nil if there is no newer release.

 Summary

 Functions

 fetch_releases_from_url(url, req_options \\ [])

 get_new_version(release_map, current_version_string)

 Functions

 Link to this function

 fetch_releases_from_url(url, req_options \\ [])

 Link to this function

 get_new_version(release_map, current_version_string)

 @spec get_new_version(map(), String.t()) :: map() | nil

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

