

 ByteCount

 v1.0.0

 Table of contents

 	ByteCount

 	ByteCount Changelog

 	
 Modules

 	ByteCount

 ByteCount

✓ 100% test coverage • ✓ IEC/SI Formatting • HexDocs
ByteCount is a tiny, dependency-free Elixir library for working with byte counts across multiple unit systems:
	SI: kB -> kilobytes, MB -> megabytes, GB, etc.
	IEC KiB -> kibibytes, MiB -> mebibytes, GiB, etc.

Features
	Construction helpers: parse/1, kb/1, kib/1, ...
	Formatting helpers: format/2
	Arithmetic helpers: add/2, subtract/2, ...
	No dependencies & 100% test coverage

Installation
Update your dependencies in mix.exs:
def deps do
 [
 {:byte_count, "~> 1.0"}
]
end
Reference
	Area	Function	Example
	C	parse/1	ByteCount.parse("10kb")
		parse!/1	
	C	b/1, kb/1, mb/1, gb/1, tb/1, pb/1	ByteCount.kb(1).bytes == 1000
		eb/1, zb/1, yb/1, rb/1, qb/1	
	C	kib/1, mib/1, gib/1, tib/1, pib/1	ByteCount.kib(1).bytes == 1024
		eib/1, zib/1, yib/1, rib/1, qib/1	
	F	format/1, format/2, to_integer/1	ByteCount.format(byte_count)
	A	add/2, subtract/2, multiply/2, divide/2	ByteCount.add(bc1, bc2)

C = Construction, F = Formatting, A = Arithmethic.
Examples
	Construction - Construct byte count structs using the SI and IEC helpers:

International System of Units (SI) -> powers of 10 (decimal).

iex> ByteCount.kb(4)
%ByteCount{bytes: 4000}

iex> ByteCount.parse!("4kb")
%ByteCount{bytes: 4000}
International Electrotechnical Commission (IEC) -> power of 2 (binary).

iex> ByteCount.kib(4)
%ByteCount{bytes: 4096}

iex> ByteCount.mib(4)
%ByteCount{bytes: 1048576}

iex> ByteCount.parse!("4kib")
%ByteCount{bytes: 4096}
	Formatting - Display human-friendly byte counts:

iex(1)> ByteCount.kb(4) |> ByteCount.format()
"3.9 KiB"

iex(1)> ByteCount.kb(4) |> ByteCount.format(short: true)
"3.9K"

iex> ByteCount.kb(4) |> ByteCount.format(style: :si, short: true, precision: 2)
"4.0k"
	Arithmetic - Perform arithmetic operations:

iex> ByteCount.add(ByteCount.kb(4), ByteCount.kb(6))
%ByteCount{bytes: 10000}
License
ByteCount is open source software licensed under the Apache 2.0 License.

 ByteCount Changelog

v1.0.0 - November 11, 2025
	Initial release.

ByteCount

Human-friendly byte sizes – construct, parse, format, and do math.
Examples
iex> ByteCount.gib(523) |> to_string()
"523.0 GiB"

iex> ByteCount.kib(42) |> ByteCount.format(style: :si, short: true)
"43.0k"

 Summary

 Types

 format_opts()

 t()

 Functions

 add(byte_count, byte_count_or_integer)

 Add two ByteCount structs or byte count to an existing struct.

 b(bytes)

 Alias for new/1. Creates a %ByteCount{} from raw bytes.

 divide(byte_count, byte_count_or_integer)

 Divide two ByteCount structs or byte count to an existing struct.

 eb(n)

 Creates a %ByteCount{} from exabytes (1 EB = 10¹⁸ bytes).

 eib(n)

 Creates a %ByteCount{} from exbibytes (1 EiB = 2⁶⁰ bytes).

 format(struct)

 Return a human-readable string using the IEC style and default options.

 format(struct, opts)

 Return a human-readable string representing of the byte count customizable
using the following options

 gb(n)

 Creates a %ByteCount{} from gigabytes (1 GB = 10⁹ bytes).

 gib(n)

 Creates a %ByteCount{} from gibibytes (1 GiB = 2³⁰ bytes).

 kb(n)

 Creates a %ByteCount{} from kilobytes (1 KB = 10³ bytes).

 kib(n)

 Creates a %ByteCount{} from kibibytes (1 KiB = 2¹⁰ bytes).

 mb(n)

 Creates a %ByteCount{} from megabytes (1 MB = 10⁶ bytes).

 mib(n)

 Creates a %ByteCount{} from mebibytes (1 MiB = 2²⁰ bytes).

 multiply(byte_count, byte_count_or_integer)

 Multiply two ByteCount structs or byte count to an existing struct.

 new(bytes)

 Construct a new struct from given byte count integer.

 parse(string)

 Parse byte count given as string.

 parse!(string)

 Parse byte count or raise on error.

 pb(n)

 Creates a %ByteCount{} from petabytes (1 PB = 10¹⁵ bytes).

 pib(n)

 Creates a %ByteCount{} from pebibytes (1 PiB = 2⁵⁰ bytes).

 qb(n)

 Creates a %ByteCount{} from quettabytes (1 QB = 10³⁰ bytes).

 qib(n)

 Creates a %ByteCount{} from quebibytes (1 QiB = 2¹⁰⁰ bytes).

 rb(n)

 Creates a %ByteCount{} from ronnabytes (1 RB = 10²⁷ bytes).

 rib(n)

 Creates a %ByteCount{} from robibytes (1 RiB = 2⁹⁰ bytes).

 subtract(byte_count, byte_count_or_integer)

 Subtract two ByteCount structs or byte count to an existing struct.

 tb(n)

 Creates a %ByteCount{} from terabytes (1 TB = 10¹² bytes).

 tib(n)

 Creates a %ByteCount{} from tebibytes (1 TiB = 2⁴⁰ bytes).

 to_integer(struct)

 Return byte count as an integer

 yb(n)

 Creates a %ByteCount{} from yottabytes (1 YB = 10²⁴ bytes).

 yib(n)

 Creates a %ByteCount{} from yobibytes (1 YiB = 2⁸⁰ bytes).

 zb(n)

 Creates a %ByteCount{} from zettabytes (1 ZB = 10²¹ bytes).

 zib(n)

 Creates a %ByteCount{} from zebibytes (1 ZiB = 2⁷⁰ bytes).

 Types

 format_opts()

 @type format_opts() :: [
 style: :iec | :si,
 short: boolean(),
 precision: non_neg_integer()
]

 t()

 @type t() :: %ByteCount{bytes: non_neg_integer()}

 Functions

 add(byte_count, byte_count_or_integer)

 @spec add(t(), t() | integer()) :: t()

Add two ByteCount structs or byte count to an existing struct.
Examples
iex> ByteCount.add(ByteCount.kb(1), ByteCount.b(23))
%ByteCount{bytes: 1023}

iex> ByteCount.add(ByteCount.kb(1), 1)
%ByteCount{bytes: 1001}

 b(bytes)

 @spec b(non_neg_integer()) :: t()

Alias for new/1. Creates a %ByteCount{} from raw bytes.
Examples
iex> ByteCount.b(512)
%ByteCount{bytes: 512}

 divide(byte_count, byte_count_or_integer)

 @spec divide(t(), t() | integer()) :: t()

Divide two ByteCount structs or byte count to an existing struct.
Examples
iex> ByteCount.divide(ByteCount.kb(1), ByteCount.kb(1))
%ByteCount{bytes: 1}

iex> ByteCount.divide(ByteCount.kb(1), 1000)
%ByteCount{bytes: 1}

 eb(n)

 @spec eb(non_neg_integer()) :: t()

Creates a %ByteCount{} from exabytes (1 EB = 10¹⁸ bytes).

 eib(n)

 @spec eib(non_neg_integer()) :: t()

Creates a %ByteCount{} from exbibytes (1 EiB = 2⁶⁰ bytes).

 format(struct)

 @spec format(t()) :: String.t()

Return a human-readable string using the IEC style and default options.
To customize formating see format/2.

 format(struct, opts)

 @spec format(t(), format_opts()) :: String.t()

Return a human-readable string representing of the byte count customizable
using the following options:
Options:
	style: :iec | :si (default is :iec)

	short: true | false (default is false) → "43.0k" instead of "43.0 KiB"

	precision: 1 | 2 | ... (default is 1)

Examples
iex> ByteCount.kib(4) |> ByteCount.format()
"4.0 KiB"

iex> ByteCount.kb(4) |> ByteCount.format(style: :si, short: true, precision: 0)
"4k"

 gb(n)

 @spec gb(non_neg_integer()) :: t()

Creates a %ByteCount{} from gigabytes (1 GB = 10⁹ bytes).

 gib(n)

 @spec gib(non_neg_integer()) :: t()

Creates a %ByteCount{} from gibibytes (1 GiB = 2³⁰ bytes).

 kb(n)

 @spec kb(non_neg_integer()) :: t()

Creates a %ByteCount{} from kilobytes (1 KB = 10³ bytes).

 kib(n)

 @spec kib(non_neg_integer()) :: t()

Creates a %ByteCount{} from kibibytes (1 KiB = 2¹⁰ bytes).

 mb(n)

 @spec mb(non_neg_integer()) :: t()

Creates a %ByteCount{} from megabytes (1 MB = 10⁶ bytes).

 mib(n)

 @spec mib(non_neg_integer()) :: t()

Creates a %ByteCount{} from mebibytes (1 MiB = 2²⁰ bytes).

 multiply(byte_count, byte_count_or_integer)

 @spec multiply(t(), t() | integer()) :: t()

Multiply two ByteCount structs or byte count to an existing struct.
Examples
iex> ByteCount.multiply(ByteCount.kb(1), ByteCount.b(2))
%ByteCount{bytes: 2000}

iex> ByteCount.multiply(ByteCount.kb(1), 2)
%ByteCount{bytes: 2000}

 new(bytes)

 @spec new(non_neg_integer()) :: t()

Construct a new struct from given byte count integer.
Examples
iex> ByteCount.new(1024)
%ByteCount{bytes: 1024}

 parse(string)

 @spec parse(String.t()) :: {:ok, t()} | {:error, any()}

Parse byte count given as string.
Examples
iex> ByteCount.parse("10")
{:ok, %ByteCount{bytes: 10}}

iex> ByteCount.parse("10 kb")
{:ok, %ByteCount{bytes: 10000}}

iex> ByteCount.parse("10k")
{:ok, %ByteCount{bytes: 10000}}

 parse!(string)

 @spec parse!(String.t()) :: t() | no_return()

Parse byte count or raise on error.
Examples
iex> ByteCount.parse!("10")
%ByteCount{bytes: 10}

 pb(n)

 @spec pb(non_neg_integer()) :: t()

Creates a %ByteCount{} from petabytes (1 PB = 10¹⁵ bytes).

 pib(n)

 @spec pib(non_neg_integer()) :: t()

Creates a %ByteCount{} from pebibytes (1 PiB = 2⁵⁰ bytes).

 qb(n)

 @spec qb(non_neg_integer()) :: t()

Creates a %ByteCount{} from quettabytes (1 QB = 10³⁰ bytes).

 qib(n)

 @spec qib(non_neg_integer()) :: t()

Creates a %ByteCount{} from quebibytes (1 QiB = 2¹⁰⁰ bytes).

 rb(n)

 @spec rb(non_neg_integer()) :: t()

Creates a %ByteCount{} from ronnabytes (1 RB = 10²⁷ bytes).

 rib(n)

 @spec rib(non_neg_integer()) :: t()

Creates a %ByteCount{} from robibytes (1 RiB = 2⁹⁰ bytes).

 subtract(byte_count, byte_count_or_integer)

 @spec subtract(t(), t() | integer()) :: t()

Subtract two ByteCount structs or byte count to an existing struct.
Examples
iex> ByteCount.subtract(ByteCount.kb(3), ByteCount.kb(3))
%ByteCount{bytes: 0}

iex> ByteCount.subtract(ByteCount.kb(3), 3000)
%ByteCount{bytes: 0}

 tb(n)

 @spec tb(non_neg_integer()) :: t()

Creates a %ByteCount{} from terabytes (1 TB = 10¹² bytes).

 tib(n)

 @spec tib(non_neg_integer()) :: t()

Creates a %ByteCount{} from tebibytes (1 TiB = 2⁴⁰ bytes).

 to_integer(struct)

 @spec to_integer(t()) :: integer()

Return byte count as an integer
Examples
iex> ByteCount.kb(1) |> ByteCount.to_integer()
1000

 yb(n)

 @spec yb(non_neg_integer()) :: t()

Creates a %ByteCount{} from yottabytes (1 YB = 10²⁴ bytes).

 yib(n)

 @spec yib(non_neg_integer()) :: t()

Creates a %ByteCount{} from yobibytes (1 YiB = 2⁸⁰ bytes).

 zb(n)

 @spec zb(non_neg_integer()) :: t()

Creates a %ByteCount{} from zettabytes (1 ZB = 10²¹ bytes).

 zib(n)

 @spec zib(non_neg_integer()) :: t()

Creates a %ByteCount{} from zebibytes (1 ZiB = 2⁷⁰ bytes).

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

