

 cabbage

 v0.4.1

 Table of contents

 	Modules

 	Cabbage

 	Cabbage.Feature

 	Cabbage.Feature.Loader

 	Cabbage.Feature.MissingStepError

Cabbage

 Summary

 Functions

 base_path()

 global_tags()

Functions

 Link to this function

 base_path()

 View Source

 Link to this function

 global_tags()

 View Source

Cabbage.Feature

An extension on ExUnit to be able to execute feature files.

 Configuration

In config/test.exs
config :cabbage,
 # Default is "test/features/"
 features: "my/path/to/features/"
 # Default is []
 global_tags: :integration
	features - Allows you to specify the location of your feature files. They can be anywhere, but typically are located within the test folder.
	global_tags - Allow you to specify ex unit tag assigned to all cabbage generated tests

 Features

Given a feature file, create a corresponding feature module which references it. Heres an example:
defmodule MyApp.SomeFeatureTest do
 use Cabbage.Feature, file: "some_feature.feature"

 defgiven ~r/I am given a given statement/, _matched_data, _current_state do
 assert 1 + 1 == 2
 {:ok, %{new: :state}}
 end

 defwhen ~r/I when execute it/, _matched_data, _current_state do
 # Nothing to do, don't need to return anything if we don't want to
 nil
 end

 defthen ~r/everything is ok/, _matched_data, _current_state do
 assert true
 end
end
This translates loosely into:
defmodule MyApp.SomeFeatureTest do
 use ExUnit.Case

 test "The name of the scenario here" do
 assert 1 + 1 == 2
 nil
 assert true
 end
end

 Extracting Matched Data

You'll likely have data within your feature statements which you want to extract. The second parameter to each of defgiven/4, defwhen/4 and defthen/4 is a pattern in which specifies what you want to call the matched data, provided as a map.
For example, if you want to match on a number:
NOTICE THE `number` VARIABLE IS STILL A STRING!!
defgiven ~r/^there (is|are) (?<number>�+) widget(s?)$/, %{number: number}, _state do
 assert String.to_integer(number) >= 1
end
For every named capture, you'll have a key as an atom in the second parameter. You can then use those variables you create within your block.

 Modifying State

You'll likely have to keep track of some state in between statements. The third parameter to each of defgiven/4, defwhen/4 and defthen/4 is a pattern in which specifies what you want to call your state in the same way that the ExUnit.Case.test/3 macro works.
You can setup initial state using plain ExUnit setup/1 and setup_all/1. Whatever state is provided via the test/3 macro will be your initial state.
To update the state, simply return {:ok, %{new: :state}}. Note that a Map.merge/2 will be performed for you so only have to specify the keys you want to update. For this reason, only a map is allowed as state.
Heres an example modifying state:
defwhen ~r/^I am an admin$/, _, %{user: user} do
 {:ok, %{user: User.promote_to_admin(user)}}
end
All other statements do not need to return (and should be careful not to!) the {:ok, state} pattern.

 Organizing Features

You may want to reuse several statements you create, especially ones that deal with global logic like users and logging in.
Feature modules can be created without referencing a file. This makes them do nothing except hold translations between steps in a scenario and test code to be included into a test. These modules must be compiled prior to running the test suite, so for that reason you must add them to the elixirc_paths in your mix.exs file, like so:
defmodule MyApp.Mixfile do
 use Mix.Project

 def project do
 [
 app: :my_app,
 ... # Add this to your project function
 elixirc_paths: elixirc_paths(Mix.env),
 ...
]
 end

 # Specifies which paths to compile per environment.
 defp elixirc_paths(:test), do: ["lib", "test/support"]
 defp elixirc_paths(_), do: ["lib"]

 ...
end
If you're using Phoenix, this should already be setup for you. Simply place a file like the following into test/support.
defmodule MyApp.GlobalFeatures do
 use Cabbage.Feature

 # Write your `defgiven/4`, `defthen/4` and `defwhen/4`s here
end
Then inside the test file (the .exs one) add a import_feature MyApp.GlobalFeatures line after the use Cabbage.Feature line lke so:
defmodule MyApp.SomeFeatureTest do
 use Cabbage.Feature, file: "some_feature.feature"
 import_feature MyApp.GlobalFeatures

 # Omitted the rest
end
Keep in mind that if you'd like to be more explicit about what you bring into your test, you can use the macros import_steps/1 and import_tags/1. This will allow you to be more selective about whats getting included into your integration tests. The import_feature/1 macro simply calls both the import_steps/1 and import_tags/1 macros.

 Summary

 Functions

 compile_step(step, steps, scenario_name)

 defgiven(regex, vars, state, list)

 defthen(regex, vars, state, list)

 defwhen(regex, vars, state, list)

 expose_metadata(env)

 import_feature(module)

 Brings in all the functionality available from the supplied module. Module must use Cabbage.Feature (with or without a :file).

 import_steps(module)

 Brings in all the step definitions from the supplied module. Module must use Cabbage.Feature (with or without a :file).

 import_tags(module)

 Brings in all the tag definitions from the supplied module. Module must use Cabbage.Feature (with or without a :file).

 tag(tag, list)

 Add an ExUnit setup/1 callback that only fires for the scenarios that are tagged. Can be
used inside of Cabbage.Features that don't relate to a file and then imported with import_feature/1.

Functions

 Link to this function

 compile_step(step, steps, scenario_name)

 View Source

 Link to this macro

 defgiven(regex, vars, state, list)

 View Source

 (macro)

 Link to this macro

 defthen(regex, vars, state, list)

 View Source

 (macro)

 Link to this macro

 defwhen(regex, vars, state, list)

 View Source

 (macro)

 Link to this macro

 expose_metadata(env)

 View Source

 (macro)

 Link to this macro

 import_feature(module)

 View Source

 (macro)

Brings in all the functionality available from the supplied module. Module must use Cabbage.Feature (with or without a :file).
Same as calling both import_steps/1 and import_tags/1.

 Link to this macro

 import_steps(module)

 View Source

 (macro)

Brings in all the step definitions from the supplied module. Module must use Cabbage.Feature (with or without a :file).

 Link to this macro

 import_tags(module)

 View Source

 (macro)

Brings in all the tag definitions from the supplied module. Module must use Cabbage.Feature (with or without a :file).

 Link to this macro

 tag(tag, list)

 View Source

 (macro)

Add an ExUnit setup/1 callback that only fires for the scenarios that are tagged. Can be
used inside of Cabbage.Features that don't relate to a file and then imported with import_feature/1.
Example usage:
defmodule MyTest do
 use Cabbage.Feature

 tag @some_tag do
 IO.puts "Do this before the @some_tag scenario"
 on_exit fn ->
 IO.puts "Do this after the @some_tag scenario"
 end
 end
end

Cabbage.Feature.Loader

 Summary

 Functions

 load_from_file(path)

 load_from_string(string)

Functions

 Link to this function

 load_from_file(path)

 View Source

 Link to this function

 load_from_string(string)

 View Source

Cabbage.Feature.MissingStepError exception

Raises an error, because a feature step is missing its implementation.
The message of the error will give the user a useful code snippet where
variables in feature steps are converted to regex capture groups.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

