

 Cachex

 v4.1.0

 Table of contents

 	Getting Started

 	General

 	Batching Actions

 	Local Persistence

 	Streaming Records

 	Management

 	Limiting Caches

 	Expiring Records

 	Gathering Statistics

 	Routing

 	Cache Routers

 	Distributed Caches

 	Warming

 	Reactive Warming

 	Proactive Warming

 	Extensions

 	Custom Commands

 	Execution Lifecycle

 	Migration

 	Migrating to v4.x

 	Migrating to v3.x

 	Migrating to v2.x

 	

 	Modules

 	Cachex

 	Cachex.Hook

 	Cachex.Limit.Accessed

 	Cachex.Limit.Evented

 	Cachex.Limit.Scheduled

 	Cachex.Provision

 	Cachex.Query

 	Cachex.Router

 	Cachex.Router.Jump

 	Cachex.Router.Local

 	Cachex.Router.Mod

 	Cachex.Router.Ring

 	Cachex.Spec

 	Cachex.Stats

 	Cachex.Warmer

 	Exceptions

 	Cachex.Error

Getting Started

Cachex is an extremely fast in-memory key/value store with support for many useful features:
	Time-based key expirations
	Maximum size protection
	Pre/post execution hooks
	Proactive/reactive cache warming
	Transactions and row locking
	Asynchronous write operations
	Distribution across app nodes
	Syncing to a local filesystem
	Idiomatic cache streaming
	Batched write operations
	User command invocation
	Statistics gathering

All of these features are optional and are off by default so you can pick and choose those you wish to enable.

 Setting Up

To get started, please add Cachex to your mix.exs list of dependencies and then pull it using mix deps.get:
def deps do
 [{:cachex, "~> 4.0"}]
end
Depending on what you're trying to do, there are a couple of different ways you might want to go about starting a cache. If you're testing out Cachex inside iex, you can call Cachex.start_link/2 manually:
Cachex.start_link(:my_cache) # with default options
Cachex.start_link(:my_cache, []) # with custom options
In other cases, you might want to start a cache within an existing supervision tree. If you created your project via mix with the --sup flag, this should be available to you inside lib/my_app/application.ex:
children = [
 {Cachex, [:my_cache]}, # with default options
 {Cachex, [:my_cache, []]} # with custom options
]
Both of these approaches work the same way; your options are parsed and your cache is started as a child under the appropriate parent process. The latter is recommended for production applications, as it will ensure your cache is managed correctly inside your application.

 Basic Examples

Working with a cache is pretty straightforward, and basically everything is provided by the core Cachex module. You can make calls to a cache using the name you registered it under at startup time.
Let's take a quick look at some basic calls you can make to a cache in a quick iex session:
create a default cache in our shell session
{:ok, _pid} = Cachex.start_link(:my_cache)

place a "my_value" string against the key "my_key"
{:ok, true} = Cachex.put(:my_cache, "my_key", "my_value")

verify that the key exists under the key name
{:ok, true} = Cachex.exists?(:my_cache, "my_key")

verify that "my_value" is returned when we retrieve
{:ok, "my_value"} = Cachex.get(:my_cache, "my_key")

remove the "my_key" key from the cache
{:ok, true} = Cachex.del(:my_cache, "my_key")

verify that the key no longer exists
{:ok, false} = Cachex.exists?(:my_cache, "my_key")

verify that "my_value" is no longer returned
{:ok, nil} = Cachex.get(:my_cache, "my_key")
It's worth noting here that the actions supported by the Cachex API have an automatically generated "unsafe" equivalent (i.e. appended with !). These options will unpack the returned tuple, and return values directly:
calling by default will return a tuple
{:ok, nil} = Cachex.get(:my_cache, "key")

calling with `!` unpacks the tuple
nil = Cachex.get!(:my_cache, "key")

causing an error will return an error tuple value
{:error, :no_cache} = Cachex.get(:missing_cache, "key")

but calling with `!` raises the error
Cachex.get!(:missing_cache, "key")
** (Cachex.Error) Specified cache not running
 (cachex) lib/cachex.ex:249: Cachex.get!/3
The ! version of functions exists for convenience, in particular to make chaining and assertions easier in unit testing. For production use cases it's recommended to avoid ! wrappers, and instead explicitly handle the different response types.

 Advanced Examples

Beyond the typical get/set semantics of a cache, Cachex offers many additional features to help with typical use cases and access patterns a developer may meet during their day-to-day.
While the list is too long to properly cover everything in detail here, let's take a look at some of the most common cache actions:
create a default cache in our shell session
{:ok, _pid} = Cachex.start_link(:my_cache)

place some values in a single batch call
{:ok, true} = Cachex.put_many(:my_cache, [
 {"key1", 1},
 {"key2", 2},
 {"key3", 3}
])

now let's do an atomic update operation against the key in the cache
{:commit, 2} = Cachex.get_and_update(:my_cache, "key1", fn value ->
 value + 1
end)

we can also do this via `Cachex.incr/2`
{:ok, 2} = Cachex.incr(:my_cache, "key2")

and of course the inverse via `Cachex.decr/2`
{:ok, 0} = Cachex.decr(:my_cache, "key3")

we can also lazily compute keys if they're missing from the cache
{:commit, "nazrat"} = Cachex.fetch(:my_cache, "tarzan", fn key ->
 {:commit, String.reverse(key)}
end)

we can also write keys with a time expiration (in milliseconds)
{:ok, true} = Cachex.put(:my_cache, "secret_mission", "...", expire: 1)

and if we pull it back after expiration, it's not there!
{:ok, nil} = Cachex.get(:my_cache, "secret_mission")
These are just some of the conveniences made available by Cachex's API, but there's still a bunch of other fun stuff in the Cachex API, covering a broad range of patterns and use cases.
For further information or examples on supported features and options, please see the Cachex documentation where there are several guides on specific features and workflows.
All of the hosted documentation is also available in raw form in the repository.

Batching Actions

It's sometimes the case that you need to execute several cache actions in a row. Although you can do this in the normal, this is actually somewhat inefficient as each call has to do various management (such as looking up cache states). For this reason Cachex offers several mechanisms for making multiple calls in sequence.

 Submitting Batches

The simplest way to make several cache calls together is Cachex.execute/3. This API allows the caller to provide a function which will be provided with a pre-validated cache state which can be used (instead of the cache name) to execute cache actions. This will skip all of the cache management overhead you'd see typically:
standard way to execute several actions
r1 = Cachex.get!(:my_cache, "key1")
r2 = Cachex.get!(:my_cache, "key2")
r3 = Cachex.get!(:my_cache, "key3")

using Cachex.execute/3 to optimize the batch of calls
{r1, r2, r3} =
 Cachex.execute!(:my_cache, fn cache ->
 # execute our batch of actions
 r1 = Cachex.get!(cache, "key1")
 r2 = Cachex.get!(cache, "key2")
 r3 = Cachex.get!(cache, "key3")

 # pass back all results as a tuple
 {r1, r2, r3}
 end)
Although this syntax might look a little more complicated at a glance, it should be fairly straightforward to get used to. The small change in approach here gives a fairly large boost to cache throughput. To compare the two examples above, we can use a tool like Benchee for a rough comparison:
Name ips average deviation median 99th %
grouped 1.72 M 580.68 ns ±3649.68% 500 ns 750 ns
individually 1.31 M 764.02 ns ±2335.25% 625 ns 958 ns
We can clearly see the time saving when using the batched approach, even if there is a large deviation in the numbers above. Somewhat intuitively, the time saving scales to the number of actions you're executing in your batch, even if it is unlikely that anyone is doing more than a few calls at once.
It's important to note that even though you're executing a batch of actions, other processes can access and modify keys at any time during your Cachex.execute/3 call. These calls still occur your calling process; they're not sent through any kind of arbitration process. To demonstrate this, here's a quick example:
start our execution block
Cachex.execute!(:my_cache, fn cache ->
 # set a base value in the cache
 Cachex.put!(cache, "key", "value")

 # we're paused but other changes can happen
 :timer.sleep(5000)

 # this may have have been set elsewhere
 Cachex.get!(cache, "key")
end)
As we wait 5 seconds before reading the value back, the value may have been modified or even removed by other processes using the cache (such as TTL cleanup or other places in your application). If you want to guarantee that nothing is modified between your interactions, you should consider a transactional block instead.

 Transactional Batches

A transactional block will guarantee that your actions against a cache key will happen with zero interaction from other processes. Transactions look almost exactly the same as Cachex.execute/3, except that they require a list of keys to lock for the duration of their execution.
The entry point to a Cachex transaction is (unsurprisingly) Cachex.transaction/4. If we take the example from the previous section, let's look at how we can guarantee consistency between our cache calls:
start our execution block
Cachex.transaction!(:my_cache, ["key"], fn cache ->
 # set a base value in the cache
 Cachex.put!(cache, "key", "value")

 # we're paused but other changes will not happen
 :timer.sleep(5000)

 # this will be guaranteed to return "value"
 Cachex.get!(cache, "key")
end)
It's critical to provide the keys you wish to lock when calling Cachex.transaction/4, as any keys not specified will still be available to be written by other processes during your function's execution. If you're making a simple cache call, the transactional flow will only be taken if there is a simultaneous transaction happening against the same key. This enables caches to stay lightweight whilst allowing for these batches when they really matter.
Another pattern which may prove useful is providing an empty list of keys, which will guarantee that your transaction runs at a time when no keys in the cache are currently locked. For example, the following code will guarantee that no keys are locked when purging expired records:
Cachex.transaction!(:my_cache, [], fn cache ->
 Cachex.purge!(cache)
end)
Transactional flows are only enabled the first time you call Cachex.transaction/4, so you shouldn't see any peformance penalty in the case you're not actively using transactions. This also has the benefit of not requiring transaction support to be configured inside the cache options, as was the case in earlier versions of Cachex.
The last major difference between Cachex.execute/3 and Cachex.transaction/4 is where they run; transactions are executed inside a secondary worker process, so each transaction will run only after the previous has completed. As such there is a minor performance overhead when working with transactions, so use them only when you need to.

Local Persistence

Cachex ships with basic support for saving a cache to a local file using the External Term Format. These files can then be used to seed data into a new instance of a cache to persist values between cache instances. As it stands all persistence must be handled manually via the Cachex API, although additional features may be added in future to add convenience around this.

 Writing to Disk

To save a cache to a file on disk, you can use the Cachex.save/3 function. This function will handle compression automatically and populate the path on disk with a file you can import later. It should be noted that the internal format of this file should not be relied upon.
{ :ok, true } = Cachex.save(:my_cache, "/tmp/my_cache.dat")
The above demonstrates how simple it is to save your cache to a location on disk (in this case /tmp/my_cache.dat). Any options can be provided as a Keyword list as an optional third parameter.

 Loading from Disk

To seed a cache from an existing file, you can use Cachex.restore/3. This will merge the file into your cache, overwriting and clashing keys and maintaining any keys which existed in the cache beforehand. If you want a direct match of the file inside your cache, you should use Cachex.clear/2 before loading your data.
optionally clean your cache first
{ :ok, _amt } = Cachex.clear(:my_cache)

then you can load the existing save into your cache
{ :ok, true } = Cachex.restore(:my_cache, "/tmp/my_cache.dat")
Please note that loading from an existing file will maintain all existing expirations, and records which have already expired will not be added to the cache table. This should not be surprising, but it is worth calling out.

Streaming Records

Cachex provides the ability to create an Elixir Stream seeded by the contents of a cache, using an ETS table continuation and Stream.resource/3. This then allows the developer to use any of the Enum or Stream module functions against the entries in cache, which can be a very powerful and flexible tool.

 Basic Streams

By default, Cachex.stream/3 will return a Stream over all entries in a cache which are yet to expire (at the time of stream creation). These cache entries will be streamed as Cachex.Spec.entry records, so you can use pattern matching to pull any of the entry fields assuming you have Cachex.Spec imported:
store some values in the cache
Cachex.start(:my_cache)
Cachex.put(:my_cache, "one", 1)
Cachex.put(:my_cache, "two", 2)
Cachex.put(:my_cache, "three", 3)

create our cache stream of all records
{ :ok, stream } = Cachex.stream(:my_cache)

sum up all the cache record values, which == 6
Enum.reduce(stream, 0, fn entry(value: value), total ->
 total + value
end)

 Efficient Querying

While the Enum module provides the ability to filter records easily, we can do better by pre-filtering using a match specification. Under the hood these matches are as defined by the Erlang documentation, and can be passed as the second argument to Cachex.stream/3.
To avoid having to handle Cachex implementation details directly, the Cachex.Query module exposes a few functions designed to assist with creation of new queries. If we take our example above, we can use a query to sum only the odd numbers in the table without having to filter on the Elixir side:
for matching
import Cachex.Spec

store some values in the cache
Cachex.start(:my_cache)
Cachex.put(:my_cache, "one", 1)
Cachex.put(:my_cache, "two", 2)
Cachex.put(:my_cache, "three", 3)

generate our filter to find odd values
filter = {:==, {:rem, :value, 2}, 1}

generate the query using the filter, only return `:value
query = Cachex.Query.build(where: filter, output: :value)

== 4
:my_cache
|> Cachex.stream!(query)
|> Enum.sum()
Rather than retrieve and handle the whole cache entry, here we're using :output to choose only the :value column from each entry. This lets us skip out on Enum.reduce/3 and go directly to Enum.sum/1, much easier!
It's important to note here is that cache queries do not distinguish between expired records in a cache; they match across all records within a cache. This is a change in Cachex v4.x to provide more flexibility in other areas of the Cachex library. If you want to filter out expired records, you can use the Cachex.Query.expired/1 convenience function:
store some values in the cache
Cachex.start(:my_cache)
Cachex.put(:my_cache, "one", 1)
Cachex.put(:my_cache, "two", 2)
Cachex.put(:my_cache, "three", 3)

generate our filter to find odd values
filter = {:==, {:rem, :value, 2}, 1}

wrap our filter to filter expired values
filter = Cachex.Query.expired(filter)

generate the query using the filter, only return `:value
query = Cachex.Query.build(where: filter, output: :value)

== 4
:my_cache
|> Cachex.stream!(query)
|> Enum.sum()
This function accepts a query guard and wraps it with clauses to filter out expired records. The returned guard can then be passed to Cachex.Query.build/1 to return only the expired records which match your query. This is all fairly simple, but it's definitely something to keep in mind when working with Cachex.Query!

Limiting Caches

Cache limits are restrictions on a cache to ensure that it stays within given bounds. The limits currently shipped inside Cachex are based around the number of entries inside a cache, but there are plans to add new policies in future (for example basing the limits on memory spaces). You even even write your own!

 Manual Pruning

The main entrypoint to cache limitation included in Cachex is Cachex.prune/3, which provides a Least Recently Written (LRW) implementation of pruning a cache. This means that we calculate the oldest entries, and remove them from the cache in order to make room for new entries. It should be noted that "oldest" in this context means "those written or updated longest ago".
You can trigger a pruning manually via Cachex.prune/3, passing the maximum size of a cache to shrink to:
start a new cache
Cachex.start(:my_cache)

insert 100 keys
for i <- 1..100 do
 Cachex.put!(:my_cache, i, i)
end

guarantee we have 100 keys in the cache
{ :ok, 100 } = Cachex.size(:my_cache)

trigger a pruning down to 50 keys only
{ :ok, true } = Cachex.prune(:my_cache, 50, reclaim: 0)

verify that we're down to 50 keys
{ :ok, 50 } = Cachex.size(:my_cache)
The :reclaim option can be used to reduce thrashing, by evicting an additional number of entries. In the case above the next write would cause the cache to once again need pruning, and then so on. The :reclaim option accepts a percentage (as a decimal) of extra keys to evict, which gives us a buffer between pruning of a cache.
To demonstrate this we can run the same example as above, except using a :reclaim of 0.1 (the default). This time we'll be left with 45 keys instead of 50, as we reclaimed an extra 10% of the table (50 * 0.1 = 5):
start a new cache
Cachex.start(:my_cache)

insert 100 keys
for i <- 1..100 do
 Cachex.put!(:my_cache, i, i)
end

guarantee we have 100 keys in the cache
{ :ok, 100 } = Cachex.size(:my_cache)

trigger a pruning down to 50 keys, reclaiming 10%
{ :ok, true } = Cachex.prune(:my_cache, 50, reclaim: 0.1)

verify that we're down to 45 keys
{ :ok, 45 } = Cachex.size(:my_cache)
It is almost never a good idea to set reclaim: 0 unless you have very specific use cases, so if you don't it's recommended to leave :reclaim at the default value - it was only used above for example purposes.

 Lifecycle Pruning

Although you can manually prune a cache, in reality this isn't particularly useful as you want to be able to continually monitor a cache's size. For this reason, Cachex includes several lifecycle hooks to trigger Cachex.Limit automatically. This will give you a monitored cache size, easily configured at cache startup:
include records
import Cachex.Spec

maximum 500 entries, LRW eviction, default trim
Cachex.start(:my_cache,
 hooks: [
 hook(module: Cachex.Limit.Scheduled, args: {
 500, # setting cache max size
 [], # options for `Cachex.prune/3`
 [] # options for `Cachex.Limit.Scheduled`
 })
]
)
This will spawn a cache hook to continually prune your cache periodically, based on the options you provided. You can pass options for Cachex.prune/3 as the second element of the args tuple, and customize the hook itself in the third element. Currently the only supported parameter for the hook is :frequency, which defaults to 1000 (one second). Please see the documentation for an updated list of supported configuration.
If you need more exact timing you can opt to use Cachex.Limit.Evented rather than Cachex.Limit.Scheduled, which will react to hook events inside a cache instead of running on a schedule:
include records
import Cachex.Spec

maximum 500 entries, LRW eviction, default trim
Cachex.start(:my_cache,
 hooks: [
 hook(module: Cachex.Limit.Evented, args: {
 500, # setting cache max size
 [] # options for `Cachex.prune/3`
 })
]
)
This is a much more accurate policy, but has a much higher memory and CPU overhead due to hooking into the main lifecycle events. If you can, it's recommended to use the scheduling approach for this reason.
It should be hopefully be evident from the above, but lifecycle pruning is not instant - in general it is extremely quick, however if you have a cache limit of 500 keys and you add 500,000 keys, the cleanup does take a few hundred milliseconds to occur (that's a lot to clean). This shouldn't affect most users, but it is something to point out and be aware of.

 LRU Style Pruning

In addition to the two lifecycle controls for LRW based caching, Cachex v4.x also includes a naive solution for those who wish to use Least Recently Used (LRU) based approaches via Cachex.Limit.Accessed.
This is done as an extension of LRW caching by attaching a small lifecycle hook to update the access time of each record, thus making the existing LRW hooks able to handle them as usual. Due to this you can freely choose either of the two LRW approaches above, by placing the LRW access hook before it in the cache initialization:
include records
import Cachex.Spec

maximum 500 entries, LRW eviction, default trim
Cachex.start(:my_cache,
 hooks: [
 hook(module: Cachex.Limit.Accessed),
 hook(module: Cachex.Limit.Scheduled, args: {
 500, # setting cache max size
 [], # options for `Cachex.prune/3`
 [] # options for `Cachex.Limit.Scheduled`
 })
]
)
As you might expect, there is a fair cost to this as Cachex.Limit.Accessed must listen to and act on cache events when a key is accessed. This can result in heavy read/write activity within a cache. For this reason it's recommended to operate using LRW when possible, and LRU only as absolutely necessary.

Expiring Records

Cachex implements several different ways to work with key expiration, with each operating with slightly different behaviour. The two main techniques in use currently are background expiration and lazy expiration. Although there are cases where you may wish to only use one of these approaches, you'll generally want a combination of both to ensure correctness of your cache. By default Cachex will combine both approaches to provide more intuitive behaviour for the developer.

 Janitor Services

The Cachex Janitor is a background process used to purge the internal cache tables periodically. The Janitor operates using a full table sweep of records to ensure consistency and correctness. As such, a Janitor sweep will run somewhat less frequently - by default only once every few seconds. This frequency can be controlled by the developer, and can be controlled on a per-cache basis.
In the current version of Cachex, the Janitor is pretty well optimized as most of the work happens in the ETS layer. As a rough benchmark, it can check and purge 500,000 expired records in around a second (where the removal is a majority of the work). Keep in mind that the frequency of the Janitor execution has an impact on the memory being held by the expired keyset in your cache. For most use cases the default frequency should be just fine. If you need to, you can customize the frequency on which the Janitor runs:
import Cachex.Spec

Cachex.start(:my_cache, [
 expiration: expiration(interval: :timer.seconds(3))
])
The Janitor is the only feature which is enabled by default, as it was misleading for users when it was not running by default. To disable the Janitor completely, you can set the :interval option to nil. In this case you will either be fully reliant on lazy expirations, or have to implement your own expiration handling.
Please note that this is rolling interval that is set to trigger after completion of a run, meaning that if you schedule a Janitor every 5s it will be 5s after a successful run rather than 5s after the last trigger fired to start a run.

 Lazily Expiring Keys

A cache record contains an internal modification time, as well as an associated expiration time. These values do not change unless explicitly modified by a cache call. This means that we have access to these values when fetching a key, which allows us to quickly check expirations on retrieval.
If a key is retrieved after the expiration has passed, the key will be removed at that time and return nil to the caller just as if the key did not exist in the cache. This provides guarantees of consistency even if the Janitor hasn't run recently; you can still never accidentally fetch an expired key. In turn this allows us to run the Janitor a little less frequently as we don't have to be scared of stale values.
There is a very minimal overhead to this lazy checking, and there are cases where you don't need to be as accurate. For these reasons you can easily disable this behaviour by setting the :lazy option to false at cache startup:
import Cachex.Spec

Cachex.start(:my_cache, [
 expiration: expiration(lazy: false)
])
Another advantage of disabling this checking is that the execution times of your read operations become more uniform; there's no longer a case where a deletion may make a read take a little longer. That being said, the overhead is so small that it's recommended to leave this enabled unless you absolutely know you don't need it.
Naturally this technique cannot stand alone as it only evicts on key retrieval; if you never touch a record again, it would never be expired and thus your cache would just keep growing. For this reason the Janitor is enabled by default when an expiration is set to protect the user from memory errors in their application. It should also be noted that this approach only applies to single key retrieval; it does not activate on batch reads (such as Cachex.stream/3).

 Providing Key Expirations

There are a number of ways to provide expirations for entries inside a cache:
	Setting a default expiration for a cahe via Cachex.start_link/2
	Setting an expiration manually via Cachex.expire/4 or Cachex.expire_at/4
	Setting the :expire option within calls to Cachex.put/4 or Cachex.put_many/3
	Setting the :expire option within return tuples in Cachex.fetch/4 or Cachex.get_and_update/4

Each of these approches is handled the same way internally, they just provide sugar for various use cases. In general you should visit the appropriate functions for the documentation of how to use them, but here are some examples:
import Cachex.Spec

default for all entries
Cachex.start(:my_cache, [
 expiration: expiration(default: :timer.seconds(60))
])

setting an expiration manually
Cachex.put(:my_cache, "key", "value")
Cachex.expire(:my_cache, "key", :timer.seconds(60))

using the `Cachex.put/4` shorthand rather than setting manually
Cachex.put(:my_cache, "key", "value", expire: :timer.seconds(60))

setting expiration on lazily computed values
Cachex.fetch(:my_cache, "key", fn ->
 { :commit, "value", expire: :timer.seconds(60) }
end)
There is no strong recommendation as to which you use, most of it falls to developer preference. The overhead of setting expirations is quite minimal, so feel free to take your pick. If you want the absolute fastest, inlining the :expire option against Cachex.put/4 will be your best option.

Gathering Statistics

Cachex includes basic support for tracking statistics in a cache, so you can look at things like throughput and hit/miss rates. This is provided via the Cachex.Stats hook implementation.

 Configuration

As of Cachex v4.x this is configured as a hook during cache initialization:
include records
import Cachex.Spec

create a cache with stats
Cachex.start(:my_cache,
 hooks: [
 hook(module: Cachex.Stats)
]
)

insert 100 keys
for i <- 1..100 do
 Cachex.put!(:my_cache, i, i)
end

generate both a cache hit and a miss
{ :ok, 1 } = Cachex.get(:my_cache, 1)
{ :ok, nil } = Cachex.get(:my_cache, 101)

print stats
:my_cache
|> Cachex.stats!()
|> IO.inspect
Running this will give you a map of various statistics based on the actions and operations taken by your cache.

 Example Statistics

The statistics map returned by Cachex.stats/2 should look something like the example below (at the time of writing):
%{
 meta: %{creation_date: 1726777631670},
 hits: 1,
 misses: 1,
 hit_rate: 50.0,
 miss_rate: 50.0,
 calls: %{get: 2, put: 100},
 operations: 102,
 writes: 100
}
As you can see, we see the breakdown of calls to the cache, the hit/miss rate, the total writes to a cache, etc. This is useful when gauging how much time your cache is actually saving and allows you to determine that everything is working as intended.
It should be noted that the output format of Cachex.stats/2 is not considered part of the Public API for backwards compatibility; the shape of this may change as and when it's necessary to do so.

Cache Routers

New in Cachex v4.x, routing provides the developer the ability to determine how keys are assigned to nodes in a distributed caching cluster.
In previous versions of Cachex (namely v3.x) although there was support for routing within a cluster, the routing algorithm was neither configurable nor flexible. This lead to scenarios where it was simply insufficient, such as dynamically scaling caches. The new Cachex.Router module hopes to provide more flexibility to the developer, enabling them to choose the routing algorithm which best fits their use case.

 Default Routers

Cachex ships with several routers included, in an attempt to handle the most common use cases easily. The current set of included routers is as follows (at the time of writing):
	Module	Description
	Cachex.Router.Local	Routes keys to the local node only (the default)
	Cachex.Router.Mod	Routes keys to a node using basic modulo hashing (i.e. hash(key) % len(nodes))
	Cachex.Router.Jump	Routes keys to a node using the Jump Consistent hash algorithm
	Cachex.Router.Ring	Routes keys to a node using Discord's hash ring implementation

Each of these routers has different strengths and weaknesses, so it's up to you to choose which best fits your use case. As a rule of thumb:
	If you are using a single node, use Cachex.Router.Local
	If you are using a statically sized cluster, use Cachex.Router.Mod or Cachex.Router.Jump
	If you are using a dynamically sized cluster, use Cachex.Router.Ring
	If you want the same behaviour as Cachex v3.x, use Cachex.Router.Jump

Once you know which router you want, you can configure it in your cache's options.

 Selecting a Router

To select a router for your cache, you should provide the :router option when starting your cache:
for records
import Cachex.Spec

create a cache with a router
Cachex.start(:my_cache, [
 router: router(module: Cachex.Router.Local)
])
You can also provide options to pass to the router during initialization, in the case your router supports different configurations:
for records
import Cachex.Spec

create a cache with a router
Cachex.start(:my_cache, [
 router: router(
 module: Cachex.Router.Jump,
 options: [
 nodes: [self()]
]
)
])
Please see the module documentation for each router for further information, including options which may be used to customize the behaviour of the router.

 Implementing Routers

Although Cachex's included routers should be sufficient for many cases, they likely won't be enough for every case. For this reason it's possible for a developer to write their own router to have more control over a cache.
A router is defined by the behaviour Cachex.Router. Implementing this behaviour in your own router will allow you to provide it as a module to the :router option at cache startup, and Cachex will automatically plug into it when routing keys in a cluster. The behaviour looks something like this:
@doc """
Initialize a routing state for a cache.
"""
@callback init(cache :: Cachex.t(), options :: Keyword.t()) :: any

@doc """
Retrieve the list of nodes from a routing state.
"""
@callback nodes(state :: any) :: [atom]

@doc """
Route a key to a node in a routing state.
"""
@callback route(state :: any, key :: any) :: atom

@doc """
Create a child specification to back a routing state.
"""
@callback children(cache :: Cachex.t(), options :: Keyword.t()) :: Supervisor.child_spec()
As a demonstration let's walk through implementing a router using the logic that Redis follows.
At the time of writing Redis will generate a CRC16 for a key, and then route it to one of 16384 hash slots distributed around a cluster. Hash slots are assigned in groups, so a 3 node cluster would look like this:
	Node A contains hash slots from 0 to 5500.
	Node B contains hash slots from 5501 to 11000.
	Node C contains hash slots from 11001 to 16383.

Using this information, we can create a Cachex.Router implementation to do something similar. We'll use the crc package to generate our CRC16 values:
defmodule MyCustomRouter do
 @moduledoc """
 A very simple demonstration router based on Redis.
 """
 use Cachex.Router

 # our available slots
 @max_slots 16384

 @doc """
 Initialize the router state.

 This will return a list of connected nodes in our cluster.
 """
 def init(_cache, _options),
 do: [node() | :erlang.nodes(:connected)]

 @doc """
 Retrieve the nodes in our router state.

 As our state is just a list of nodes, this is returned as-is.
 """
 def nodes(nodes),
 do: nodes

 @doc """
 Routes a key to a node in the router state.

 This will implement our main logic, returning the name of a
 node that the provided key should be routed over to.
 """
 def route(nodes, key) do
 # generate our CRC16 value
 crc_for_key = CRC.crc_16(key)

 # calculate the number of slots per node
 slots_per_node = trunc(16384 / length(nodes))

 # create groups of slots to compare with
 slots_for_nodes =
 0..(@max_slots - 1)
 |> Enum.chunk_every(slots_per_node)
 |> Enum.with_index()

 # convert our CRC16 to a slot in the cluster
 slot_for_key = rem(crc_for_key, @max_slots)

 # locate the group which contains our slot
 {_group, idx} =
 Enum.find(slots_for_nodes, fn {slots, _idx} ->
 Enum.member?(slots, slot_for_key)
 end)

 # return the node name
 Enum.at(nodes, idx)
 end
end
This is obviously a very naive implementation for demonstration purposes; it could definitely be improved. That being said, hopefully this shows how easy it is to create our own router for our own requirements.
You may have noticed that we didn't need to implement children/2; this is because we can determine our key routing without need of any child processes. More complicated routers are able to spawn child processes under the main cache supervision tree in order to handle more complicated operations which require extra state management.
With our completed router, we can now create a cache and pass it in at startup:
for records
import Cachex.Spec

create a cache with our router
Cachex.start(:my_cache, [
 router: router(module: MyCustomRouter)
])
Routing will now be managed by our custom routing logic, instead of the default Cachex router; we no longer have to rely on routing implementations to be included alongside Cachex!

Distributed Caches

A distributed cache is a cache spanning multiple nodes which allows each individual node to store less data in memory, while maintaining the ability to access data stored on other nodes. This is all pretty transparent; in general you shouldn't have to think too much about it.
To demonstrate how this works, let's walk through a simple scenario:
	Let's say you have a cluster of 3 nodes
	You write 100 keys to a cache in your application
	You can expect e.g. ~30 keys stored on each node
	Writing a key on Node A may actually store the value on Node B
	Searching for that key on Node C will know to fetch it from Node B

The idea is that your cache is readily warm on each node in your cluster, even if the call to populate the key didn't occur on that node. If someone does an action when connected to Node A, it's placed in a hot layer accessible by both Node B and Node C even though no action was taken on either of those nodes.
It is important to be aware that the data is not replicated to every node; Cachex is a caching library, not a database. A cache provides an ephemeral data layer for an application; if you need data persistence across a cluster, you should another tool.
For further information on why Cachex should not be treated as a database, please see the additional context provided in the related issue.

 Cluster Routers

Distributed caches are controleld by the Cachex.Router implementation being used by a cache. The default router will only use the local node for key storage/retrieval, so we have to select a more appropriate router.
Cachex v4.x includes a new router based on Discord's ex_hash_ring library; this is a good router to get started with when using a distributed cache. It supports addition and removal of nodes based on OTP events, allowing for common use cases like Docker and Kubernetes.
To use this router at startup, provide the :router option when you call Cachex.start_link/2:
for records
import Cachex.Spec

create a cache with a ring router
Cachex.start(:my_cache, [
 router: router(module: Cachex.Router.Ring)
])
If you wish to customize the behaviour of the router, you can see the supported options at Cachex.Router.Ring.init/2. These options can be provided in the same router record under the :options key.
For example to create a ring router which listens for addition/removal of nodes, we can set the :monitor option:
for records
import Cachex.Spec

create a cache with a ring router
Cachex.start(:my_cache, [
 router: router(module: Cachex.Router.Ring, options: [
 monitor: true
])
])
This option will listen to :nodeup and :nodedown events and redistribute keys around your cluster automatically; you will generally always want this enabled if you're planning to dynamically add and remove nodes from your cluster.
You can also visit the Cache Routers documentation for further information on this topic.

 Distribution Rules

There are a number of behavioural changes when a cache is in distributed state, and it's important to be aware of them. I realise this is a lot of information, but it's good to have it all documented.
Calling other nodes is very simple when it's just retrieving a key, but there are other actions which require more handling. As an example of this, Node A may have 3 keys while Node B may have 2 keys. In this instance, a Cachex.size/2 call will return a count of 5 automatically by merging the results from both nodes. This is transparent for convenience, and applies to all cache actions. There are cases where you may with to run something like Cachex.size/2 on a specific node, instead of the whole cluster. For this case, all cache actions also support the :local option which, when set to true, will return only the result from the local node.
In the case you're using an action which is based on multiple keys (such as Cachex.put_many/3 or Cachex.transaction/3), all keys within a single call must live on the same destination node. This should not be surprising, and is similar to the likes of Redis where this is also the case (at the time of writing). If you attempt to use these types of calls with keys which slot to different nodes, you will receive a :cross_slot error. As it's typically difficult to guarantee that your keys will slot to the same node, it's generally recommended to only call these functions with a single key when used in a distributed cache (and so put_many/3 is then redundant).
There are a small number of actions which are simply unavailable when called in a distributed environment. An example of this is Cachex.stream/3, where there really is no logical approach to a sane implementation. These functions can not be run inside a distributed cache, although you can still opt into running them locally via :local.

 Referencing Functions

There are several actions within Cachex which accept a function as an argument. In these cases it's necessary to provide a reference to a function which is guaranteed to exist on all nodes in a cluster.
To expand on this, providing an inline function such as fn x -> x * 2 end will not work as expected, because it exists only on the local node. If this action is then delegated to a different node, the function no longer exists. Fortunately this is simple to work around, by instead naming the function within a module and providing it via &MyModule.my_fun/1.
This is mainly due ot the naming conventions of anonymous functions, meaning that they cannot be guaranteed to be exactly the same on different OTP nodes. In the case of a named function, even though the anonymous binding is different, it's only passing through to a known function we can guarantee is consistent.
If this doesn't make sense, just remember to use module functions rather than inlined functions!

 Locally Available Actions

There are a few cache actions which will always execute locally, regardless of the state of the cache. This is due to either the semantics of their execution, or simply restrictions in their implementation. A good example of this is Cachex.inspect/3, which is used to debug the local cache. This wouldn't make sense in a distributed cache, so it doesn't even try.
Another pair of actions with this limitation are Cachex.save/3 and Cachex.restore/3. Locally running these functions means that all filesystem interaction happens on the local node only, however these functions still provide save/restore functionality in a distributed cache due to how they're written internally.
When saving a cache to disk, Cachex.save/3 makes use of Cachex.export/2 which is available as a distributed action. When restoring a cache from disk, the Cachex.restore/3 function uses Cachex.put/4 internally, which is also available across nodes. This may be confusing at first, but after much consideration it was determined that this was the most sane design (even if it's quite odd).
It should also be noted that Cachex.save/3 supports the :local option, and will pass it through to Cachex.export/2, making it possible to save only the data on the local node.

Reactive Warming

Warming a cache reactively is essentially lazily loading a missing key on access. Put another way, Cachex will "react" to a missing key by attempting to load it from elsewhere (and then place it in the cache). This is a fairly common need, and lends itself well to a couple of different situations:
	Sporadic calls may result in a saving of resources:	As data is warmed "on demand", we only use cache memory when necessary.
	There is no wasted cache operation time warming data needlessly.

	Parameterized calls may result in a short lived window of hot data, such as:	A user session focuses on specific resources often for a brief period of time.
	A window of data which is relevant for a brief period of time (i.e. last 60 minutes).

As data is loaded lazily, this is a very effective approach for data which remains active for only a short period of time. This also means that reactive warmers are very memory efficieny by default, because they load data as it's needed instead of eagerly in anticipation of it being needed.

 Defining a Warmer

To provide this type of warming, Cachex provides the interface function Cachex.fetch/4. When calling this action, the developer provides a function containing the code to run in case of a cache miss. The result of this function is used to populate the key in the cache.
There are several formats you can use to return values from a warming function. The snippet below demonstrates the various recognised return types from a warming function inside Cachex.fetch/4.
start an empty cache
Cachex.start(:cache)

defining a function alias using shorthand syntax
{ :commit, 4 } = Cachex.fetch(:cache, "key1", &String.length/1)
{ :ok, 4 } = Cachex.fetch(:cache, "key1", &String.length/1)

defining an inline function using `:commit` syntax
{ :commit, 4 } = Cachex.fetch(:cache, "key2", fn key ->
 { :commit, String.length(key) }
end)

defining an inline function using `:commit` syntax, with options
{ :commit, 4 } = Cachex.fetch(:cache, "key3", fn key ->
 { :commit, String.length(key), expire: :timer.seconds(60) }
end)

define a function which doesn't save the result (i.e. in case of error)
{ :ignore, 4 } = Cachex.fetch(:cache, "key4", fn key ->
 { :ignore, String.length(key) }
end)
There are a few things to point out here explicitly. Firstly, the return value of a call to Cachex.fetch/4 will contain :commit only if the value was loaded by that specific call. If the value already exists in the table, the :ok value will be returned instead. As we can see above, we loaded key1 twice and so the second call received :ok as it was already populated.
In the case of key3 we're providing options alongside our commit tuple. This is a recent feature which allows us to pass options directly through to Cachex.put/4 (which Cachex.fetch/4 uses internally). This means that you're now able to define things like expiration as a function of a lazily loaded value, which is a very flexible model.
Finally the use of :ignore in the return tuple allows the developer to opt out of placing the value in the cache. This is useful when handling errors, or cases where data isn't ready for consumption yet. You can still pass a value back to the outer code flow here, it just won't be placed inside the cache.
In previous versions of Cachex it was possible to store fallback :state within a cache (accessible as a second parameter to a fallback function). This has been removed as of v4.x to simplify Cachex.fetch/4 handling and as it was a lesser used feature. It's possible this feature will be re-added in future if there is enough demand for it.

 Example Use Cases

The use of these warmers allows you to build very simple bindings to reduce overhead on your backing systems. A very common use case is using a Cachex instance with reactive warming from a remote system, in order to lower the number of network jumps. With effective use of other cache features such as expiration, you can ensure that your application finds a good balance between avoiding stale data and minimization of network overhead.
As an example, let's look an application containing an API to retrieve a list of packages in a database. As creation of a package is infrequent, we can avoid calling our remote database every time and instead retrieve a cached value from memory:
need our records
import Cachex.Spec

initialize our cache with expiration set
Cachex.start_link(:cache, [
 expiration: expiration(default: :timer.minutes(5))
])

retrieve a list of packages to serve via our API
Cachex.fetch(:cache, "/api/v1/packages", fn ->
 { :commit, Repo.all(from p in Package) }
end)
The combination of options here (even in this small snippet) means that we'll only call our database at most once every 5 minutes. This allows you to easily lower the pressure on backing systems with very little code; a few lines can improve your API performance dramatically!

 Warmer Contention

One of the most common missteps with warming reactive like this is how an application behaves when a missing key is read concurrently from two places. Cachex makes sure to take these cases into account to guarantee consistency in your application. For a moment, let's forget that Cachex.fetch/4 exists and instead write a manual example which demonstrates a couple of issues:
start a new cache
Cachex.start(:cache)

lazily load a missing value
case Cachex.get(:cache, "key") do
 {:ok, nil} ->
 value = call_database_with_network_delay("key")
 Cachex.put(:cache, "key", value)
 value

 value ->
 value
end
At a glance this might look fine, but there's one big problem with this approach. As call_database_with_network_delay/1 takes a long time to run, there's still a period of time in which our key is missing from a cache. This has the nasty side effect that any calls made to this same code between the initial call and the time when call_database_with_network_delay/1 first returns will spawn additional calls to the database!
Fortunately Cachex's design will ensure that only the first warmer executed will fire for a given key, even if more processes ask for the same key before the code completes. The internal Cachex Courier service will queue these requests up, and then resolve them all with the result produced by the first. This ensures that you don't have stray processes calling for the same thing (which is especially bad if they're talking to a database, etc.).
You can think of this as a per-key queue at a high level, with a short circuit involved to avoid executing too often. To see this in action, let's attempt to fetch a key ten times using both our manual approach, as well as using Cachex.fetch/4:
start a new cache
Cachex.start(:cache)

run manually
for _ <- 1..10 do
 spawn(fn ->
 case Cachex.get(:cache, "key1") do
 {:ok, nil} ->
 IO.puts("Running warmer after get/2")
 value = :timer.sleep(1000)
 Cachex.put(:cache, "key1", value)
 value

 value ->
 value
 end
 end)
end

run via fetch/4
for _ <- 1..10 do
 spawn(fn ->
 Cachex.fetch(:cache, "key2", fn key ->
 IO.puts("Running warmer in fetch/4")
 value = :timer.sleep(1000)
 value
 end)
 end)
end
If you run this code, you'll see the log of the first loop emit 10 times as each call overlaps and you end up with :timer.sleep/1 called 10 times. In the second loop you'll only see the log emit a single time, as Cachex knows to queue the subsequent calls to resolve with the result of the first.

Proactive Warming

Introduced alongside Cachex v3, cache warmers act as an eager way to populate a cache. Rather than waiting for a cache miss to retrieve a value, values will be pulled up front to ensure that there is never a miss. This can be viewed as being proactive, whereas Cachex.fetch/4 can be seen as reactive. As such, this is a better tool for those who know what data will be requested, rather than those dealing with arbitrary data.

 Defining a Warmer

To implement this type of warming, Cachex introduced the Cachex.Warmer behaviour. This behaviour can be implemented on a module to define the logic you want to run periodically in order to refresh your data from a source. Let's look at defining a very typical proactive warmer, which fetches rows from a database and maps them into a cache table using the id field as the cache key:
defmodule MyProject.DatabaseWarmer do
 @moduledoc """
 Dummy warmer which caches database rows.
 """
 use Cachex.Warmer

 @doc """
 Executes this cache warmer with a connection.
 """
 def execute(connection) do
 connection
 |> Database.query
 |> handle_results
 end

 # ignores the warmer result in case of error
 defp handle_results({ :error, _reason }),
 do: :ignore

 # maps the results into pairs to store
 defp handle_results({ :ok, rows }) do
 { :ok, Enum.map(rows, fn(row) ->
 { row.id, row }
 end) }
 end
end
This simple warmer will ensure that if you look for a row identifier in your cache, it's always going to be readily available (assuming it exists in the database). The format of the result value must be provided as either { :ok, pairs } or { :ok, pairs, options }. These pairs and options should match the same format you'd use when calling Cachex.put_many/3.
To make use of a warmer, a developer needs to assign it within the :warmers option during cache startup. This is where we can also control the frequency with which the warmer is run by setting the :interval option (which can also be nil):
for warmer()
import Cachex.Spec

define the cache with our warmer
Cachex.start_link(:cache, [
 warmers: [
 warmer(
 state: connection,
 module: MyProject.DatabaseWarmer,
 interval: :timer.seconds(30),
 required: true
)
]
])
The :warmers option accepts a list of :warmer records, which include information about the module, the warmer's state, and various other options. If your cache warmer is necessary for your application, you can flag it as :required. This will ensure that your cache supervision tree is not considered "started" until your warmer has run successfully at least once.

 Example Use Cases

To demonstrate this in an application, we'll use the same examples from the Reactive Warming documentation, which is acting as a cache of an API call to retrieve a list of packages from a database. In the case of a cache miss, reactive warming would call the database and place the result in the cache for future calls.
With proactive warming, we can go a lot further. As creation of a package is infrequent, we can load the entire list into memory to guarantee we have everything accessible in our cache right from application startup:
defmodule MyProject.PackageWarmer do
 @moduledoc """
 Module to warm the packages API.
 """
 use Cachex.Warmer

 @doc """
 Executes this cache warmer.
 """
 def execute(_) do
 # load all of the packages from the database
 packages = Repo.all(from p in Package)

 # create pairs from the API path and the package
 package_pairs = Enum.map(packages, fn(package) ->
 { "/api/v1/packages/#{package.id}", package }
 end)

 # return pairs for the root, as well as all single packages
 { :ok, [{ "/api/v1/packages", packages } | package_pairs] }
 end
end
We then just provide our warmer during initialization of our cache, and define that it needs to be completed prior to startup via the :required flag. The :interval option is used to specify that it will refresh every 5 minutes:
need our records
import Cachex.Spec

initialize our cache
Cachex.start_link(:cache, [
 warmers: [
 warmer(
 module: MyProject.PackageWarmer,
 interval: :timer.minutes(5),
 required: true
)
]
])
As a result of being able to populate many keys at once we have not only populated "/api/v1/packages" to return the list of packages, but we have also populated the entire API "/api/v1/packages/{id}". This is a much more optimized solution for this type of caching, as you can explode out your key writes with a single cache action, while requiring no extra database requests.
Somewhat obviously these warmers can only be used if you know what types of data you're expecting to be cached. If you're dealing with seeded data (i.e. from a user) you probably can't use proactive warming, and should be looking at reactive warming instead. You must also consider how relevant the data is that you're caching; if you only care about it for a short period of time, you likely don't want a warmer as they run for the lifetime of the cache.

 Triggered Warming

In addition to having your warmers managed by Cachex, it's now also possible to manually warm a cache. As of Cachex v4.x, the interface now includes Cachex.warm/2 for this purpose. Calling this function will execute all warmers attached to a cache, or a subset of warmers you select at call time:
warm the cache manually
Cachex.warm(:my_cache)

warm the cache manually and block until complete
Cachex.warm(:my_cache, wait: true)

warm the cache manually, but only with specific warmers
Cachex.warm(:my_cache, only: [MyProject.PackageWarmer])
This is extremely helpful for things like evented cache invalidation and debugging. The Cachex internal management actually delegates through to this under the hood, meaning that there should be no surprising inconsistencies between managed vs. manual warming. It should be noted that Cachex.warm/2 can be run either with or without an :interval set in your warmer record.

Custom Commands

Cachex allows for custom commands to be attached to a cache, in order to simplify common logic without having to channel all of your cache calls through a specific block of code or a specific module. Cache commands are the solution for extending Cachex with operations or verbiage specific to your application and/or domain without bloating Cachex itself.
Commands operate in such a way that they're marginally quicker than hand-writing your own wrapper functions, but only very slightly. As a rule of thumb you should aim to set only very general actions as commands on a cache, and keep very specific actions outside of the caching layer. It's possible that in future Cachex may ship with some additional built-in commands for very common functionality (perhaps as a separate library).

 Defining a Command

Commands are defined on a per-cache basis via the :commands flag inside the Cachex.start_link/2 options.
There are two types of command, either :read or :write. As you might guess the former will return a modified value from within a cache, while the latter will modify the value inside the cache before returning it.
Let's consider some basic List operations, and assume that we're storing some List types in a cache. In this case we might wish to have some typical List operations attached to our cache, rather than defining them externally.
Two perfect examples for us to look at are retrieving the last item in a list (List.last/1), and also popping the first item from a list (List.pop_at/3 with index 0). As the former does not need to modify the List, it would be classed as a :read command. In contrast the latter does need to modify the List, and so it would be classed as a :write command.
Let's look at how we can define simple versions of these commands and attach them to a cache at startup:
need the records
import Cachex.Spec

define some custom commands
last = &List.last/1
lpop = fn
 ([head | tail]) ->
 { head, tail }
 ([] = list) ->
 { nil, list }
end

attach them to the cache
Cachex.start_link(:my_cache, [
 commands: [
 last: command(type: :read, execute: last),
 lpop: command(type: :write, execute: lpop)
]
])
Each command receives a cache value to operate on and return. A command flagged as :read (such as :last above) will simply transforms the cache value before the final command return occurs, allowing the cache to mask complicated logic from the calling module. Commands flagged as :write are a little more complicated, but still fairly easy to grasp. These commands must return a 2-element tuple, with the return value in index 0 and the new cache value in index 1.
It is important to note that custom cache commands will receive nil values in the cache of a missing cache key. If you're using a :write command and receive a misisng value, your returned modified value will only be written back to the cache if it's no longer nil. This allows the developer to implement logic such as lazy loading, but also escape the situation where you're cornered into writing to the cache.

 Invoking Commands

The entry point to command invocation is via the Cachex.invoke/4 interface function. This function accepts a command name and the key it should be called on. All value retrieval is handled automatically, and errors like invalid command names will result in an error as expected.
Let's look at some examples of calling the new :last and :lpop commands we defined above, after populating an example list in our cache.
place a new list into our cache of 3 elements
{ :ok, true } = Cachex.put(:my_cache, "my_list", [1, 2, 3])

check the last value in the list stored under "my_list"
{ :ok, 3 } = Cachex.invoke(:my_cache, :last, "my_list")

pop all values from the list stored under "my_list"
{ :ok, 1 } = Cachex.invoke(:my_cache, :lpop, "my_list")
{ :ok, 2 } = Cachex.invoke(:my_cache, :lpop, "my_list")
{ :ok, 3 } = Cachex.invoke(:my_cache, :lpop, "my_list")
{ :ok, nil } = Cachex.invoke(:my_cache, :lpop, "my_list")

check the last value in the list stored under "my_list"
{ :ok, nil } = Cachex.invoke(:my_cache, :last, "my_list")
We can see how both commands are doing their job and we're left with an empty list at the end of this snippet. At the time of writing there are no options recognised by Cachex.invoke/4 even though there is an optional fourth parameter for options, it's simply future proofing.
This example does highlight one shortcoming that custom commands do have currently; it's not possible to remove an entry from the table inside a custom command yet. This may be supported in future but there's currently no real demand, and adding it would complicate the interface so it's on pause for now.

Execution Lifecycle

Sometimes it might be beneficial to hook into when cache actions occur, and so Cachx provides a way to do so. This is avaiable via the hook system, which allows the developer to specify execution hooks which are notified when actions are carried out. These execution hooks receive messages in the form of tuples, which represent the action taken by the cache and also potentially the result of the action.

 Creating a Hook

Cachex provides a behaviour Cachex.Hook which provides a small abstraction over GenServer, with a few tweaks around synchronous execution and argument handling. All cache notifications can be received via handle_notify/3, but you still have access to all of the usual GenServer callbacks in case you want to add any additional logic to your hook (which is very common).
Hooks can become quite complicated, but let's look at a simple example of logging all cache actions to :stdout and keeping track of the last cache action executed. As stated above we have access to all the usual GenServer callbacks, so we can define a handle_call/3 callback to retrieve any data we need:
defmodule MyProject.MyHook do
 @moduledoc """
 A small hook to log all actions and store the most recent.
 """
 use Cachex.Hook

 # Initialization.
 def init(_),
 do: { :ok, nil }

 # Log the action and result, then store the action.
 def handle_notify(action, result, _last) do
 IO.puts("Action: #{action}")
 IO.puts("Result: #{result}")
 { :ok, action }
 end

 # Provide access to the last executed cache action.
 def handle_call(:last_action, _ctx, last),
 do: { :reply, last, last }
end
Once you have your Cachex.Hook definition, you can attach it to a cache a startup using the :hooks option on the Cachex.start_link/2 interface. This option accepts a list of Cachex.Spec.hook records and attaches them to the cache on launch:
need the records
import Cachex.Spec

create a cache with our hook
Cachex.start_link(:my_cache, [
 hooks: [
 hook(module: MyProject.MyHook)
]
])
A minimal hook record will contain just the name of the module implementing the Cachex.Hook behaviour, but you can also provide an initial :state (defaults to nil) and a custom :name for the hook process (which defaults to the process identifier). Please see the Cachex.Hook documentation for the optional callbacks which can be implemented to configure your hook.

 Notification Types

Each hook notification consists of the name of the cache action being executed, and the list of arguments it was called with. These notifications are of the form { action, args } where action is an atom action name and args is a list of execution arguments.
Below is an example just to show this in context of a cache call, assuming we're doing a simple Cachex.get/3 call:
given this cache call and result
{ :ok, "value" } = Cachex.get(:my_cache, "key")

you would receive these notification params
{ :get, [:my_cache, "key"] }, { :ok, "value" }
Using this pattern makes it simple to hook into specific actions or specific cases (such as error cases), which is a powerful tool enabled by a very simple interface.

 Provisioning Hooks

There are some specific values which cannot be provided to your hook on startup as they have not yet been created. The best and most useful example of this is the cache's inner state, as it allows cache calls without the overhead of looking up the cache location each time.
The provisions/0 callback can be used to gain access to such values, by returning a List of atoms to signal which items should be provided to your hook. This option will cause your hook to be provided with an instance of what you're asking for, via the handle_provision/2 callback. An example of this pattern looks like this:
defmodule MyProject.MyHook do
 use Cachex.Hook

 # Initialization.
 def init(_),
 do: { :ok, nil }

 # Request the cache state as a provision.
 def provisions,
 do: [:cache]

 # Receive a cache state and store it for later.
 def handle_provision({ :cache, cache }, _cache),
 do: { :noreply, cache }
end
The message received inside handle_provision/2 will be of the form { type, value } where type is equal to the atom you've requested (in this case :cache). Be aware that this modification event may be fired multiple times if the provided value is modified elsewhere, in order to keep hooks in sync with internal changes. Please see Cachex.Provision for details on the provisioning behaviour and the available options.

 Performance Overhead

Although hooks have been fairly well optimized at this point, there is still a minimal overhead to defining a hook.
If you are using an asynchronous hook, the overhead to the main cache execution flow is only the cost of passing a message to the backing hook process. This is extremely minimal and should pale in comparison to your main application logic, and likely be near irrelevant. In the case of synchronous hooks, we still have this same message passing overhead but of course the logic taken inside the hook itself has an impact on the execution flow.
As the typical use case for cache hooks is only one or two asynchronous hooks, the notification flow is optimized for this scenario. For this reason it's important to note that hooks are always notified sequentially, as spawning a process per hook would be a dramatic slowdown for asynchronous hoks. This should be kept in mind when using synchronous hooks, as (for example) 5 synchronous hooks each taking 1 second to run would result in a 5 second execution time for a cache call. This isn't necessarily bad if your usage pattern allows for it, but it's something to be aware of.

Migrating to v4.x

The release of Cachex v4.x includes a lot of internal cleanup and restructuring. As such, there are quite a few breaking changes to be aware of.
Some of them are simple (like changing names) and others require more involved migration. This page will go through everything and hopefully make it easy for you to upgrade!

 Cache Options

There are a number of changes to the options provided at cache startup in Cachex.start_link/2.
The :fallback option has been removed. This was introduced in earlier versions of Cachex before Cachex.fetch/4 existed, and it doesn't serve nearly as much purpose anymore. Removing this cleaned up a lot of the internals and removes a lot of hidden magic, so it was time to go. To align with this change, the function parameter of Cachex.fetch/4 has been changed to be required rather than optional.
Both the :stats and :limit options have been removed, in favour of explicitly providing the hooks that back them. These flags were sugar in the past but caused noise and confusion, and it's now much better to have people getting used to using :hooks:
behaviour in Cachex v3
Cachex.start_link(:my_cache, [
 stats: true,
 limit: limit(
 size: 500,
 policy: Cachex.Policy.LRW,
 reclaim: 0.5,
 options: []
)
])

behaviour in Cachex v4
Cachex.start_link(:my_cache, [
 hooks: [
 hook(module: Cachex.Stats),
 hook(module: Cachex.Limit.Scheduled, args: {
 500, # setting cache max size
 [], # options for `Cachex.prune/3`
 [] # options for `Cachex.Limit.Scheduled`
 })
]
])
Both of these features have had additional documentation written, so you can double check the relevant documentation in Gathering Stats and Limiting Caches as necessary. Limits in particular have had quite a shakeup in Cachex v4, so it's definitely worth a visit to the documentation if you're using those!
In the example above, you can also see that the :state option of a hook definition has been replaced with :args in Cachex v4.x. As a hook controls the state during execution, this is to separate it from warmers where :state is static.
The :nodes option has also been removed, in favour of the new approach to routing in a distributed cache. It's possible to keep the same semantics as Cachex v3 using the Cachex.Router.Jump module implementation:
behaviour in Cachex v3
Cachex.start_link(:my_cache, [
 nodes: [
 :node1,
 :node2,
 :node3
]
])

behaviour in Cachex v4
Cachex.start_link(:my_cache, [
 router: router(module: Cachex.Router.Jump, options: [
 nodes: [
 :node1,
 :node2,
 :node3
]
])
])
This is covered in much more detail in the corresponding documentation of Cache Routers and Distributed Caches; it's heavily recommended you take a look through those pages if you were using :nodes in the past.
Last but not least, the :transactional flag has been renamed to :transactions. Ironically this used to be the name in the Cachex v2 days, but it turned out that it was a mistake to change it in Cachex v3!

 Warming Changes

There are some minor changes to cache warmers in Cachex v4, which require only a couple of minutes to update.
The :async field inside a warmer record has been replaced with the new :required field. This is basically equivalent to the inverse of whatever you would have set :async to in the past. As cache warmers can now be fired as either async or sync on the fly, this option didn't make much sense anymore. Instead the new :required field dictates that a warmer is required to have run before a cache is considered fully started.
The other change affecting cache warmers is the removal of interval/0 function from the Cachex.Warmer behaviour. The interval is something you might want to change dynamically, and so it didn't make sense to be defined in the code itself. It has been moved to the :interval field in the Cachex warmer record, and behaves exactly as before.

 Function Parameters

There are several naming changes to options passed to functions across the Cachex API. There are no functional differences, so these should be quick cosmetic things to change as needed.
First of all the :ttl option has been renamed to :expire in all places it was supported (mainly Cachex.put/4 and various wrappers). It was strange to refer to expiration as "expiration" all over and have the setting be :ttl, so this just makes things more consistent.
The :initial option for Cachex.incr/4 and Cachex.decr/4 has been renamed to :default. This makes way more sense and is much more intuitive; it was probably just a misnaming all those years ago that stuck. Time to make it better!
For all of the functions which support :batch_size, namely Cachex.stream/3 and functions which use it, this has now been renamed to :buffer. The previous name was too close to the underlying implementation, whereas the new name is much more generic (and shorter to type!).

 Removed & Renamed APIs

There are several changes to the main Cachex API, including removal of some functions and naming changes of others.
The count/2 function has been removed in favour of Cachex.size/2. These two functions did almost the same thing, the only difference was that Cachex.size/2 would return the size of the cache including unpurged expired records, while count/2 would filter them out. Instead of two functions for this, you can now opt into this via Cachex.size/2:
total cache entry count
Cachex.size(:my_cache)
Cachex.size(:my_cache, expired: true)

ignores expired but unremoved entries
Cachex.size(:my_cache, expired: false)
This should hopefully feel more intuitive, while allowing us to trim a bunch of the Cachex internals. The underlying implementations are identical, so it should be easy to migrate if you need to.
Both functions dump/3 and load/3 have been renamed in Cachex v4. These names were terrible to begin with, so it's about time they're changed! Instead we now have Cachex.save/3 and Cachex.restore/3, which behave in exactly the same way (aside from being a bit cleaner in implementation!). The only major difference here is that Cachex.restore/3 will return a count of restored documents, rather than simply true.
Finally the two deprecated functions set/4 and set_many/3 have finally been removed. If you were using these, please use Cachex.put/4 and Cachex.put_many/3 instead from now on.

 Other Miscellaneous Changes

There are a few other small changes which don't really need much explanation, but do need to be noted for reference.
The minimum supported Elixir version has been raised from Elixir 1.5 to Elixir 1.7. In reality there are probably very few people out there still using Elixir 1.7 and it could be raised further, but there's also nothing really compelling enough to make this happen at this time.
A lot of the record types in Cachex v4 had their orders changed, so if anyone was matching directly (instead of using record syntax) they should adapt to using entry(entry, :field) instead.
The former ExecutionError has been replaced with Cachex.Error, which is a combination of several smaller modules. This is just a naming difference to hopefully make it easier to type and remember!

Migrating to v3.x

There are many breaking changes bundled up in v3, and so this guide serves as a quick overview of what you'll probably need to check out during adoption. This won't focus on every change, just the user facing ones that can affect how your application code interacts with a cache. It also doesn't serve as a guide on how to change things, just pointing out on which areas the new documentation should be consulted on.

 Startup Options

In order to reduce a lot of the option parsing involved in Cachex, the options given to start_link/1 and start/1 have changed pretty drastically. The easiest way to see the differences is to look again at the documentation for these functions, but here's a very high level summary of changes (if these are things you use, please do check the docs):
	The :commands option now expects a list of command records.
	The :default_ttl, :disable_ode and :ttl_interval are now passed as an expiration record in the :expiration option (and have had their names changed).
	The :ets_opts option has been completely removed.
	The :fallback option now expects a fallback record.
	The :hooks option now expects a list of hook records.
	The :limit option now expect a limit record rather than a %Cachex.Limit{} (the shorthand of an integer is still valid).
	The :record_stats option has had the name changed simply to :stats.
	The :transactions option has also been renamed to :transactional.

All of these changes are based around improvements to the internal cache states and should also make it easier to understand the structures being passed around, whereas previously there were a lot of loose Keyword definitions. Please see either the module documentation, or guides for the feature you're using, for examples on how to use the new options.

 Fallbacks

Fallback caching has changed quite significantly in v3; there is no longer a :fallback option on calls to get/3, or any other calls which previously supported it. There are a few reasons for this, but the general one being that it was not always intuitive which calls did in fact support fallbacks. People consistently requested a feature that already existed, which means that it needed to be made more obvious. Due to this there will be a new fetch/4 function in the main interface which replaces the behaviour. Going forward, the root term "fetch" will be used as synonymous to "fallback".
Here is an example of the previous v2.x branch vs. the same behaviour in the v3.x branch:
v2.x using the `:fallback` option to `get/3`.
Cachex.get(:my_cache, "key", fallback: &String.reverse/1)

v3.x using the `fetch/4` signature.
Cachex.fetch(:my_cache, "key", &String.reverse/1)
The signature change allows for an explicit function in the API dedicated to lazy evaluation, and should hopefully be more approachable to those new to the project. It should be noted that the function being passed to fetch/4 is optional if you have set a default fallback function in the main cache options.

 Hooks

 Interface

Hooks have changed pretty drastically, and yet they should be pretty close to what already exists. The main difference as of Cachex v3 is that Hooks are now driven by the behaviour a lot more than previously. When registering a hook on a cache, you now provide a hook record rather than a struct. These records consist of purely the hook module, the hook state, and an optional name to use to register the hook with. Everything else is now driven by behaviour functions in the module registered. This decision was taken as hooks remain fairly constant for a specific job, and so moving into the module definition makes a lot of sense.
Rather than define the changes here, please see the documentation for Hooks going forward. Generally the options from the old %Cachex.Hook{} struct have moved to have analogous functions in the module behaviour, but please check to be certain.

 Provisions

Nothing much to say here other than the previous :worker provision has been renamed over to :cache as the notion of cache workers is now redundant (and has been for a long time at this point). You can still use the received provision in the same way, it's just a tag change to make it clearer as to what is being delivered.

 Streams

Cache streams no longer accept the :of option, as it was oversimplifying exactly what was happening (and thus prone to error). However, you can now pass an ETS match specification as the second argument to filter internally in ETS before entering the stream. This is a small optimization, but also makes the developer think about matching more, rather than not appreciating exactly what was happening.
A happy side effect of this is that a stream will now respect the expiration time of records (at stream creation time), whereas before you could still receive expired records in the stream output (and would, regularly).

 Miscellaneous

 Automatic Janitor

The Janitor is enabled by default as of Cachex v3. It seems that explicitly turning it off is preferable to explicitly turning it on for the developer experience, as you tend to assume it's just running by default - and then you panic when nothing is being removed. Minor change, but technically incompatible so worth mentioning.

 Incr & Decr

Previously the :amount option dictated how much the value should be incremented/decremented by, but at this point it's an extra argument (the third parameter), which will default to 1.

 Set vs. Put

This is a minor change, but worth mentioning. Going forward set/4 has been replaced with put/4. This is nothing more than a name change, as @fishcakez rightfully pointed out that put/4 is a better naming convention for Elixir. The old set/4 has been deprecated and simply forwards to put/4, so you should likely migrate to avoid that extra function hop :).

 Statistics

The format of the map being returned from Cachex.stats/2 has been modified due to some normalization which took place; this will look much clearer and adopts snake_case over camelCase (etc). It also correctly tracks custom invocations at this point, rather than ignoring them (like it did previously).

 Missing Values

In earlier versions of Cachex, { :missing, nil } would be returned to signal that a value did not exist in the cache. This has been removed to simply return { :ok, nil } because (believe it or not) the overhead of figuring out if something was missing was actually quite large in some cases. If you need the same behaviour, you should avoid setting nil explicitly in your cache and put something else in instead - that way { :ok, nil } is semantically the same as { :missing, nil }.

Migrating to v2.x

If anything is not covered in here, or there are any issues with anything written in here, please file an issue and I'll get it taken care of.

 Distribution

We'll start with the big one;
In the v1.x line of Cachex, there was a notion of remote Cachex instances which have been removed in v2.x onwards. This is a design decision due to the limitations of supporting remote instances and the complexities involved, specifically with regards to discovery and eviction policies.
In order to migrate away from this, you should now implement a backing datastore such as Redis or Memcached as your master copy and make use of the Cachex fallback behaviour to replicate the data to your local nodes. To handle the removal of data from remote nodes, you should set a TTL on your data and it will periodically and flush automatically. This should support most cases that people were using the distributed nature of Cachex for, but with the main difference that the consistency is now guaranteed and will remain eventually consistent on the local nodes.
The decision to remove the remote interface does not come lightly; I have spent many weeks trying to conjure something which satisfies the desire of both speed and distribution and the sad truth is that it's quite simply hard to do well. The consistency issues which plague the land of distributed data are just not possible to handle whilst keeping Cachex as fast as it is (and at the end of the day, a cache is supposed to be fast). The final tipping point was the concept of building LRU style caches in a remote context; it's simply not possible to guarantee the consistency of your data without a huge performance hit (we're talking upwards of 1000x slower) due to Cachex operating in the realm of a microsecond.
Do not despair though; if you were totally set on using a native Elixir/Erlang datastore without having to have something separate such as Redis, I'm planning on writing a separate library which is dedicated more to handling the distributed nature as opposed to the feature set that Cachex offers. At the end of the day, I see caching as a different use case to remote data replication - I believe remote Cachex was closer to a distributed state table, rather than a local mirror of data.
In addition, you can obviously keep on using Cachex v1.x as long as you need - it's still on Hex.pm and has a tag on the repo. I can't promise anything new will be added to that codebase, but for what it's worth I do intend to answer any issues reporting bugs on that branch, so file issues as you see fit - just make sure to flag that you're talking about v1.x.

 Fallbacks

The options and interface for fallback functions have changed a little bit in order to optimize their efficiency and just remove some bloat from the fallback flow.
In the v1.x branch of Cachex, there were two cache options related to fallbacks; :default_fallback and :fallback_args. This was a little clumsy looking, and so this has been unified in v2.x to only be a simple :fallback option. This can either be a function, or list of fallback options. Below are some examples:
fallback with no state
[fallback: fn(key) -> do_fallback(key) end]
[fallback: [action: fn(key) -> do_fallback(key) end]]

fallback with a state
[
 fallback: [
 state: db_client,
 action: fn(key, client) ->
 retrieve_from_db(client, key)
 end
]
]

provide a state but no default fallback
[fallback: [state: db_client]]
It should be noted that the state is passed in as a second argument in the case that the state provided is not nil. This is another change to previously where you would provide a list and have arbitrarily long arguments. This change was made as it's a more efficient way of calling a fallback and lessens the overhead involved.

 Hook Interface

Hooks have undergone a bit of tweaking in v2 simply because they were built back when I wasn't fully familiar with the Gen* models. The changes are easy to adopt and shouldn't take you much more than a few minutes to modify your codebase:

 Callbacks

The biggest change made to Hooks is that we have migrated from GenEvent to GenServer. This means that if you're implementing Hooks, you need to respect the return formats of the GenServer module rather than that of GenEvent. This only affects the Gen* callbacks, such as handle_call/2 and handle_info/2, so if you haven't used them you're going to be fine in this respect.
The handle_call/2 callback should become handle_call/3, with a new second parameter which is simply the context of the call (and you likely won't ever use). In addition, the return type now becomes { :reply, reply, new_state } instead of { :ok, reply, new_state } - so just a few characters to tweak there. The same applies for handle_info/2 in that you need to change { :ok, new_state } to { :noreply, new_state }.
The reason the change was made is that your hooks now live in the Supervision tree alongside the cache, rather than under a GenEvent process. This allows shutdown to run more smoothly, and just generally lays out the tree much better. In addition, you now gain access to handle_cast/2 from the GenServer module and it's a much more familiar interface to deal with as opposed to GenEvent, which is falling more and more out of use by most Elixir developers.

 Defaults

The only big change here is that the :type option of a hook previously defaulted to being a :pre hook. This has now changed to default to a :post hook.
The reasoning behind this is that post hooks are a more common use case - you typically don't want to react to the desire to do something, you want to react to something happening. It was also quite easy to become confused when trying to play with results and receiving nothing. This sucked, because it meant that an entirely different function would be called because of the arity changes when requesting results.
This is a very easy thing to update, and you can always make sure to specify :type on your Hooks in future to avoid relying on this default (I imagine most people have done that anyway, so good job!).

 Message Format

After talking to a couple of people on the Slack channels, it dawned on me that the current Hook message implementation is quite bad - in the sense that there's a performance hit, and it's awkward to use. The currently pattern behaves as a Tuple of action arguments, so Cachex.get(:cache, "key", opts) would forward as { :get, "key", opts }.
At a glance it looks like there's nothing wrong with this, but it makes pattern matching difficult and there's clearly a Tuple construction to create that message. Going forward, it is now guaranteed that a message will be a two-element Tuple, with the action as a tag and a list of arguments - so the above would become { :get, ["key", opts]}.
This change makes it super easy to pattern match on the action name (for example, the new LRW hook only activates on write actions), and gives you the guarantee that your message will always be the same form as opposed to having arbitrarily long Tuples (which is pretty much always the wrong thing to do).

 Results

The decision has been made to always provide results to a post hook, in order to keep the backing logic simple and remove some conditions. It's cheap to forward the results, so there's no real overhead to doing this. Previously the intent was to separate the concerns, but it just led to confusing message handling due to having to use both handle_notify/2 and handle_notify/3. Going forward, you will only ever use handle_notify/3 (because handle_notify/2 has been removed). This means that results are also given to your :pre hooks, but they're always nil inside a pre hook and can just be ignored. You should note that if you were previously using results: true in your Hook, you shouldn't need to change anything. Examples below:
old format
def handle_notify(msg, state)

new format
def handle_notify(msg, result, state)
Obviously because this is always enabled there's no need for an option, and so the :results option has been removed from the Hook struct - so you need to drop it from any Hook definitions you have.

 Options

There are a few minor tweaks to the options when starting a cache:
	The first change is that the previously deprecated :name option has been removed. You should now use start_link/3 or start/3 and pass the cache name as the first argument. This is to remove some complexity with name validation (in that it's easier to pick out now without parsing options first).

	The :ttl_interval could previously be disabled if set to false. This has changed as it's required to be numeric at this point for other reasons, so going forward you should pass -1 if you wish to disable the interval.

	This is a small change, but it bothered me often enough to make it. The :default_fallback option has been simply renamed to :fallback, as it's much easier to write and it's more consistent with the same option inside a get/3 call (which is also :fallback). Long gone are the days in which you pass :fallback to a cache only to have it ignored.

 Transactions

As of Cachex v2.x, Mnesia has been removed in favour of direct ETS integration. As a result of this, there are several changes in the way transactions work.
The first change is down to optimizations of key locking, and requires that you now pass a list of keys to lock as your second parameter to a transaction/3 call. This is part of the new locking implementation which allows for several optimizations by being explicit with your locks. This optimization provides roughly a 5x speedup, so it's much more efficient than previously. This is pretty easy to adopt:
Cachex.transaction(:my_cache, ["key1"], fn(state) ->
 old_val = Cachex.get!("key1")
 new_val = do_something(old_val)
 Cachex.put!("key1", new_val)
end)
If you write to a key which has not been defined in the keys parameter, please be aware that it will not be locked and may be written by other processes during your transaction. It also goes without saying that nested transactions should only operate on a subset of keys in an outer transaction.
The second change is that there is no longer support for abort/1 from within a transaction, meaning that all writes happen immediately even within your transaction. I don't believe this should be difficult to adopt, as I would imagine that abort/1 is only used infrequently. It should not be hard to simply rework your transaction flow to exit as needed.
The final thing to note here is that transactions are all handled by a lock process, which means you should try to avoid causing a bottleneck in your transactions. For example, if you need to check list membership or create new Tuples, try do this outside your transaction first and simply pass it through - this will lessen the time spent in the transaction process and improve performance with transactions. This isn't always possible, but try to optimize like this when applicable.

Cachex

Cachex provides a straightforward interface for in-memory key/value storage.
Cachex is an extremely fast, designed for caching but also allowing for more
general in-memory storage. The main goal of Cachex is achieve a caching
implementation with a wide array of options, without sacrificing performance.
Internally, Cachex is backed by ETS, allowing for an easy-to-use interface
sitting upon extremely well tested tools.
Cachex comes with support for all of the following (amongst other things):
	Time-based key expirations
	Maximum size protection
	Pre/post execution hooks
	Proactive/reactive cache warming
	Transactions and row locking
	Asynchronous write operations
	Distribution across app nodes
	Syncing to a local filesystem
	Idiomatic cache streaming
	Batched write operations
	User command invocation
	Statistics gathering

All features are optional to allow you to tune based on the throughput needed.
Please see Cachex.start_link/2 inside the Cachex documentation
for further details about how to configure these options and example usage.

 Summary

 Types

 Cachex.Hook - Cachex v4.1.0

Cachex.Hook behaviour

Module controlling hook behaviour definitions.
This module defines the hook implementations for Cachex, allowing the user to
add hooks into the command execution. This means that users can build plugin
style listeners in order to do things like logging. Hooks can be registered
to execute either before or after the Cachex command, and can be blocking as
needed.

 Summary

 Callbacks

 Cachex.Limit.Accessed - Cachex v4.1.0

Cachex.Limit.Accessed

Access based touch tracking for LRW pruning.
This module can be used to adapt Cachex.prune/3 for LRU purposes instead of
the typical LRW. This hook will update the modification time of a cache entry
upon access by a read operation. This is a very basic way to provide LRU policies,
but it should suffice for most cases.
At the time of writing modification times are not updated when executing
commands on multiple keys, such as Cachex.keys/2 and Cachex.stream/3, for
performance reasons. Again, this may change in future if necessary.

 Summary

 Functions

 Cachex.Limit.Evented - Cachex v4.1.0

Cachex.Limit.Evented

Evented least recently written eviction policy for Cachex.
This module implements an evented LRW eviction policy for Cachex, using a hook
to listen for new key additions to a cache and enforcing bounds in a reactive
way. This policy enforces cache bounds and limits far more accurately than other
scheduled implementations, but comes at a higher memory cost (due to the message
passing between hooks).

 Initialization

hook(module: Cachex.Limit.Evented, args: {
 500, # setting cache max size
 [] # options for `Cachex.prune/3`
})

 Summary

 Functions

 Cachex.Limit.Scheduled - Cachex v4.1.0

Cachex.Limit.Scheduled

Scheduled least recently written eviction policy for Cachex.
This module implements a scheduled LRW eviction policy for Cachex, using a basic
timer to trigger bound enforcement in a repeatable way. This has the same bound
accuracy as Cachex.Policy.LRW.Evented, but has potential for some delay. The
main advantage of this implementation is a far lower memory cost due to not
using hook messages.

 Initialization

hook(module: Cachex.Limit.Scheduled, args: {
 500, # setting cache max size
 [], # options for `Cachex.prune/3`
 [] # options for `Cachex.Limit.Scheduled`
})

 Options

	:frequency
The polling frequency for this hook to use when scheduling cache pruning.
This should be an non-negative number of milliseconds. Defaults to 1000,
which is once per second.

 Summary

 Functions

 Cachex.Provision - Cachex v4.1.0

Cachex.Provision behaviour

Module controlling provisioning behaviour definitions.
This module defines the provisioning implementation for Cachex, allowing
components such as hooks and warmers to tap into state changes in the cache
table. By implementing handle_provision/2 these components can be provided
with new versions of state as they're created.

 Summary

 Callbacks

 Cachex.Query - Cachex v4.1.0

Cachex.Query

Utility module based around creation of cache queries.
Queries are essentially just some minor convenience wrappers around the
internal match specification used by ETS. This module is exposed to make
it easier to query a cache (via Cachex.stream/3) without having to take
care of filtering for expirations by hand.
Note that there is almost no validation in here, so test thoroughly and
store compile-time versions of your queries when possible (as performance
is not taken into account inside this module; it can be slow to generate).

 Summary

 Functions

 Cachex.Router - Cachex v4.1.0

Cachex.Router behaviour

Module cont