

    

        capture_logger

        v1.0.0



    


  

    Table of contents

    
      



      	CaptureLogger


      	Contributing


      	Code of Conduct


      	CHANGELOG


      	Licence


      	Apache License, version 2.0


      	Developer Certificate of Origin





        	
          Modules
          


      	CaptureLogger





        



      

    

  

    CaptureLogger

	code :: https://github.com/halostatue/capture_logger
	issues :: https://github.com/halostatue/capture_logger/issues

CaptureLogger is variant of ExUnit.CaptureLog that allows specification of a
variant formatter to be specified.
Usage
CaptureLogger is intended to be used in the same way as ExUnit.CaptureLog.

Installation
CaptureLogger can be installed by adding capture_logger to your list of
dependencies in mix.exs:
def deps do
  [
    {:capture_logger, "~> 1.0"}
  ]
end
Documentation is found on HexDocs.
Semantic Versioning
CaptureLogger follows Semantic Versioning 2.0.


  

    Contributing

Contribution to CaptureLogger is encouraged: bug reports, discussions, feature
requests, or code contributions. New features should be proposed and discussed
in an issue.
Before contributing patches, please read the Licence.
CaptureLogger is governed under the
Contributor Covenant Code of Conduct.
Code Guidelines
I have several guidelines to contributing code through pull requests:
	All code changes require tests. In most cases, this will be added or updated
unit tests. I use ExUnit.

	I use code formatters, static analysis tools, and linting to ensure consistent
styles and formatting. There should be no warnings output from compile or test
run processes. I use mix compile --warnings-as-errors, Credo, and
mix format (with Quokka).

	Proposed changes should be on a thoughtfully-named topic branch and organized
into logical commit chunks as appropriate.

	Use Conventional Commits with our
conventions.

	Versions must not be updated in pull requests.

	Documentation should be added or updated as appropriate for new or updated
functionality.

	New dependencies are discouraged and their addition must be discussed,
regardless whether it is a development dependency, optional dependency, or
runtime dependency.

	All GitHub Actions checks marked as required must pass before a pull request
may be accepted and merged.


LLM-Generated Contribution Policy
CaptureLogger contributions must be well understood by the submitter and that,
especially for pull requests, the developer can attest to the
Developer Certificate of Origin for each pull request (see
LICENCE).
If LLM assistance is used in writing pull requests, this must be documented in
the commit message and pull request. If there is evidence of LLM assistance
without such declaration, the pull request will be declined.
Any contribution (bug, feature request, or pull request) that uses unreviewed
LLM output will be rejected.
Commit Conventions
CaptureLogger has adopted a variation of the Conventional Commits format for
commit messages. The following types are permitted:
	Type	Purpose
	feat	A new feature
	fix	A bug fix
	chore	A code change that is neither a bug fix nor a feature
	docs	Documentation updates
	deps	Dependency updates, including GitHub Actions.

I encourage the use of Tim Pope's or Chris Beam's
guidelines on the writing of commit messages
I require the use of git trailers for specific
additional metadata and strongly encourage it for others. The conditionally
required metadata trailers are:
	Breaking-Change: if the change is a breaking change. Do not use the
shorthand form (feat!(scope)) or BREAKING CHANGE.

	Signed-off-by: this is required for all developers except me, as outlined in
the Licence.

	Fixes or Resolves: If a change fixes one or more open issues,
that issue must be included in the Fixes or Resolves trailer. Multiple
issues should be listed comma separated in the same trailer:
Fixes: #1, #5, #7, but may appear in separate trailers. While both Fixes
and Resolves are synonyms, only one should be used in a given commit or
pull request.

	Related to: If a change does not fix an issue, those issue references should
be included in this trailer.


Contributors
ExUnit.CaptureLog and ExUnit.CaptureServer were created by Plataformatec and The
Elixir Team. Austin Ziegler modified it to allow capturing with alternative log
formatters.


  

    Contributor Covenant Code of Conduct

Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
	Demonstrating empathy and kindness toward other people
	Being respectful of differing opinions, viewpoints, and experiences
	Giving and gracefully accepting constructive feedback
	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:
	The use of sexualized language or imagery, and sexual attention or advances of
any kind
	Trolling, insulting or derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or email address,
without their explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official email address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at [INSERT CONTACT
METHOD]. All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
1. Correction
Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
2. Warning
Community Impact: A violation through a single incident or series of
actions.
Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
3. Temporary Ban
Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.
Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within the
community.
Attribution
This Code of Conduct is adapted from the Contributor Covenant,
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.
Community Impact Guidelines were inspired by
Mozilla's code of conduct enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.


  

    CaptureLogger Changelog

1.0.0 / 2025-11-13
	Initial implementation based on ExUnit.CaptureLog.



  

    Licence

	SPDX-License-Identifier: Apache-2.0

CaptureLogger is copyright 2025 Austin Ziegler and is licensed under the
Apache License, version 2.0. It is adapted from
ExUnit.CaptureLog and ExUnit.CaptureServer modules in Elixir.
Developer Certificate of Origin
All contributors must certify they are willing and able to provide their
contributions under the terms of this project's licences with the certification
of the Developer Certificate of Origin (Version 1.1).
Such certification is provided by ensuring that a Signed-off-by
commit trailer is present on every commit:
Signed-off-by: FirstName LastName <email@example.org>
The Signed-off-by trailer can be automatically added by git with the -s or
--signoff option on git commit:
git commit --signoff



  

    Apache License, version 2.0


Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities
that control, are controlled by, or are under common control with that entity.
For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising
permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included
in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an
original work of authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit
on behalf of the copyright owner. For the purposes of this definition,
"submitted" means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for
the purpose of discussing and improving the Work, but excluding communication
that is conspicuously marked or otherwise designated in writing by the copyright
owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
of whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including
a cross-claim or counterclaim in a lawsuit) alleging that the Work or
a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

- You must give any other recipients of the Work or Derivative Works a copy of
  this License; and
- You must cause any modified files to carry prominent notices stating that You
  changed the files; and
- You must retain, in the Source form of any Derivative Works that You
  distribute, all copyright, patent, trademark, and attribution notices from the
  Source form of the Work, excluding those notices that do not pertain to any
  part of the Derivative Works; and
- If the Work includes a "NOTICE" text file as part of its distribution, then
  any Derivative Works that You distribute must include a readable copy of the
  attribution notices contained within such NOTICE file, excluding those notices
  that do not pertain to any part of the Derivative Works, in at least one of
  the following places: within a NOTICE text file distributed as part of the
  Derivative Works; within the Source form or documentation, if provided along
  with the Derivative Works; or, within a display generated by the Derivative
  Works, if and wherever such third-party notices normally appear. The contents
  of the NOTICE file are for informational purposes only and do not modify the
  License. You may add Your own attribution notices within Derivative Works that
  You distribute, alongside or as an addendum to the NOTICE text from the Work,
  provided that such additional attribution notices cannot be construed as
  modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding
such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the
Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License or
out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to
offer, and charge a fee for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent with this License. However,
in accepting such obligations, You may act only on Your own behalf and on Your
sole responsibility, not on behalf of any other Contributor, and only if You
agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS



  

    Developer Certificate of Origin


Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.


Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
    have the right to submit it under the open source license
    indicated in the file; or

(b) The contribution is based upon previous work that, to the best
    of my knowledge, is covered under an appropriate open source
    license and I have the right under that license to submit that
    work with modifications, whether created in whole or in part
    by me, under the same open source license (unless I am
    permitted to submit under a different license), as indicated
    in the file; or

(c) The contribution was provided directly to me by some other
    person who certified (a), (b) or (c) and I have not modified
    it.

(d) I understand and agree that this project and the contribution
    are public and that a record of the contribution (including all
    personal information I submit with it, including my sign-off) is
    maintained indefinitely and may be redistributed consistent with
    this project or the open source license(s) involved.



  

    
CaptureLogger 
    



      
Functionality to capture logs for testing.
Examples
defmodule AssertionTest do
  use ExUnit.Case

  import CaptureLogger
  require Logger

  test "example" do
    {result, log} =
      with_log([formatter: LoggerJSON.Basic.new())], fn ->
        Logger.error("log msg")
        2 + 2
      end)

    assert result == 4
    assert Jason.decode!(log)["message"] == "log msg"
  end

  test "check multiple captures concurrently" do
    fun = fn ->
      for msg <- ["hello", "hi"] do
        log = assert capture_log(
          [formatter: LoggerJSON.Basic.new()],
          fn -> Logger.error(msg) end
        )
        assert Jason.decode!(log) message == msg
      end

      Logger.debug("testing")
    end

    assert capture_log(fun) =~ "hello"
    assert capture_log(fun) =~ "\"message\":\"testing\""
  end
end

      


      
        Summary


  
    Types
  


    
      
        capture_log_opts()

      


    





  
    Functions
  


    
      
        capture_log(opts \\ [], fun)

      


        Captures Logger messages generated when evaluating fun.



    


    
      
        start()

      


        Starts the CaptureLogger server under a supervisor. This should be called with
ExUnit.start/1.



    


    
      
        with_log(opts \\ [], fun)

      


        Invokes the given fun and returns the result and captured log.



    





      


      
        Types


        


  
    
      
    
    
      capture_log_opts()



        
          
        

    

  


  

      

          @type capture_log_opts() :: [
  {:level, Logger.level() | nil}
  | {:formatter, {module(), term()} | module() | nil}
  | {atom(), term() | nil}
]


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      capture_log(opts \\ [], fun)



        
          
        

    

  


  

      

          @spec capture_log(capture_log_opts(), (-> any())) :: String.t()


      


Captures Logger messages generated when evaluating fun.
Returns the binary which is the captured output.
This function mutes the default logger handler and captures any log messages sent to
Logger from the calling processes. It is possible to ensure explicit log messages from
other processes are captured by waiting for their exit or monitor signal.
Note that when the async is set to true on use ExUnit.Case, messages from other
tests might be captured. This is OK as long you consider such cases in your assertions,
typically by using the =~/2 operator to perform partial matches.
To get the result of the evaluation along with the captured log, use with_log/2.
Options
	:level: Configure the level to capture with :level, which will set the capturing
level for the duration of the capture. For instance, if the log level is set to
:error, then any message with a lower level will be ignored. The default level is
nil, which will capture all messages.
Note this setting does not override the overall Logger.level/0 value. Therefore, if
Logger.level/0 is set to a higher level than the one configured in this function, no
message will be captured. The behaviour is undetermined if async tests change Logger
level.

	:formatter: The formatter to use for formatting log messages. May be provided either
as module/0 or as {module, options}. If provided as a module, it must respond to
new/1 and the remaining options will be provided as configuration to the formatter
module.
If not provided, defaults to Logger.default_formatter/1 with any other options
forwarded as a configuration to the default formatter.
The default formatter may also be set with the :formatter configuration key for
:capture_logger. When set in a compile-time configuration file (config/test.exs),
it should be provided as a {module, options} tuple. When set in config/runtime.exs
or test/test_helper.exs, it may be possible to call module.new(options).



  



  
    
      
    
    
      start()



        
          
        

    

  


  

Starts the CaptureLogger server under a supervisor. This should be called with
ExUnit.start/1.

  



    

  
    
      
    
    
      with_log(opts \\ [], fun)



        
          
        

    

  


  

      

          @spec with_log(capture_log_opts(), (-> result)) :: {result, log :: String.t()}
when result: any()


      


Invokes the given fun and returns the result and captured log.
It accepts the same arguments and options as capture_log/2.
Examples
{result, log} =
  with_log(fn ->
    Logger.error("log msg")
    2 + 2
  end)

assert result == 4
assert log =~ "log msg"

  


        

      


  OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();




