

 caravan

 v1.0.1

 Table of contents

 	
 Modules

 	Caravan

 	Caravan.Cluster.Config

 	Caravan.Cluster.DnsStrategy

 	Caravan.DnsClient

 	Caravan.Epmd

 	Caravan.Epmd.Client

 	Caravan.Epmd.Dist_dist

Caravan

Tools for running Distributed Elixir/Erlang with Nomad and Consul
Caravan
The built-in Erlang distribution mechanisms are prefaced on using the Erlang
Port Mapper Daemon(EPMD), a process that is started with the VM and communicates with
remote EPMD instances to determine what ports to send data on.
While this method can work in some cloud environments, container scheduling technologies make it
difficult to pick a single port to use globally or to run multiple processes in a continer.
Also, the built-in method for forming a cluster is to use a plaintext .hosts file with
resolvable node names, which is very difficult to make work in a dynamic environment where
nodes can leave a cluster frequently.
There are several libraries and strategies for using the Kubernetes API to
build a distributed cluster, but Consul provides us with a clean DNS api to
retrieve information, while Nomad handles monitoring and scheduling services.
Caravan is split into two parts: The first is a set of modules that remove the
need for epmd by determing node ports by the node name. The idea and much of
the code is from the excellent article Erlang (and Elixir) distribution
without
epmd.
It's worth the read, and should explain what we're trying to accomplish with
the Caravan.Epmd module.
The second part utilizes libcluster
to help with forming clusters automatically based on DNS SRV queries to
Consul.

 Getting started with custom Erlang distribution

Erlang has some command line options to overwrite the default distribution
mechanism. To use Caravan's implementations, you would do something similar to
this
iex --erl "-proto_dist Elixir.Caravan.Epmd.Dist -start_epmd false -epmd_module Elixir.Caravan.Epmd.Client" --sname "node3434" -S mix
For testing locally, you'll either have to run elixirc on the above
modules to create the required .beam files, or you can pass an additional
flag to --erl:
-pa _build/dev/lib/caravan/ebin
Note: building a release with Distillery will not require the -pa flag.

Caravan.Cluster.Config

Config for Caravan.Cluster.DnsStrategy.
	topology: topology name passed to Cluster.Strategy.connect_nodes/4
	query: The name to query for SRV records. Something like: prod-likes-service-dist-consul
	dns_client: module implementing Caravan.DnsClient. Defaults to Caravan.DnsClient.InetRes.
	node_sname: the base of a node name. App name is a good candidate.
	connect: Override to use a different transport mechanism. Uses :libcluster defaults otherwise.
	disconnect: Override to use a different transport mechanism. Uses :libcluster defaults otherwise.
	list_nodes: Override to use a different transport mechanism. Uses :libcluster defaults otherwise.
	poll_interval: poll the dns server on this interval. Defaults to 5_000

 Summary

 Types

 t()

 Functions

 new(state)

 Takes a Cluster.Strategy.State and returns a Config struct

 Types

 t()

 @type t() :: %Caravan.Cluster.Config{
 connect: {:atom, :atom, list()},
 disconnect: {:atom, :atom, list()},
 dns_client: atom(),
 list_nodes: {:atom, :atom, list()},
 node_sname: String.t(),
 poll_interval: integer(),
 query: String.t(),
 topology: atom()
}

 Functions

 new(state)

 @spec new(state :: Cluster.Strategy.State.t()) :: t()

Takes a Cluster.Strategy.State and returns a Config struct

Caravan.Cluster.DnsStrategy

Implements a libcluster strategy for node distribution based on Consul DNS. By
default it uses :inet_res to query the nameservers, though it can be configured to use any
module conforming to the Caravan.DnsClient behaviour.

 Prerequisites

First things first, is that you'll need to have Consul setup and configured as a nameserver either
in your hosts file or via an erl_inetrc file You'll
need to create a service that will return SRV records with the hostname and
distribution port. The Consul documentation
has directions on what needs to be setup and how to test with dig.
Let's look at an example:
'likes-service-3434@prod.socialmedia.consul`
Above, likes-service is an app name. It will correspond with the :node_sname
config option. The port is the last integer to the left of the '@'. You'll
need this because our nodes will be using Caravan.Epmd.Client and
Caravan.Epmd.Dist_dist to use the port number of the node name instead of
being assigned a port randomly by epmd.
Also note that the hostname of cluster nodes returned by Consul must be the
same as that in the nodes -name parameter

 Configuration

Here's a sample configuration
config :libcluster,
 topologies: [
 caravan: [
 # The selected clustering strategy. Required.
 strategy: Caravan.Cluster.DnsStrategy,
 config: [
 #service name that returns the distribution port in a SRV record
 query: "likes-service-dist.service.consul",
 #forms the base of the node name. App name is a good one.
 node_sname: "profile-service",
 #The poll interval for the Consul service in milliseconds. Defaults to 5s
 poll_interval: 5_000
 #The module of the DNS client to use.
 dns_client: Caravan.DnsClient
],
]
]

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 find_nodes(state)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 find_nodes(state)

Caravan.DnsClient behaviour

A client for fetching SRV records from DNS and returning.

 Summary

 Callbacks

 get_nodes(name)

 Accepts a valid dns record name. Returns a list of {port, host} which can then be used to
construct a node name.

 Callbacks

 get_nodes(name)

 @callback get_nodes(name :: binary()) :: [{integer(), binary()}]

Accepts a valid dns record name. Returns a list of {port, host} which can then be used to
construct a node name.

Caravan.Epmd

Shared logic for determining the Erlang distribution port from the node name.

 Summary

 Functions

 dist_port(name)

 Returns the Erlang Distribution port based on a node name.

 Functions

 dist_port(name)

Returns the Erlang Distribution port based on a node name.

 Examples

iex> Caravan.Epmd.dist_port(:"app-name3434@example.net")
3434

iex> Caravan.Epmd.dist_port(:"app-name-4834@example.net")
4834

Caravan.Epmd.Client

Implementation of the epmd client logic. Meant for use with the -epmd_module
flag
It will return a port from Caravan.Epmd.dist_port/1 as opposed to calling
out to the epmd daemon and having it assign us one.

 Summary

 Functions

 address_please(name, host, address_family)

 names(hostname)

 port_please(name, ip)

 register_node(name, port)

 register_node(name, port, family)

 start_link()

 Functions

 address_please(name, host, address_family)

 names(hostname)

 port_please(name, ip)

 register_node(name, port)

 register_node(name, port, family)

 start_link()

Caravan.Epmd.Dist_dist

Implements the Erlang distribution protocol. Forwards most calls to
:inet_tcp_dist with the exception of listen/1 which uses Caravan.Epmd
to get the distribution port instead of calling out to epmd. The _dist
part of the module name is required for it to work, but will be used like this
-proto_dist Caravan.Epmd.Dist

 Summary

 Functions

 accept(listen)

 accept_connection(accept_pid, socket, my_node, allowed, setup_time)

 close(listen)

 is_node_name(node)

 listen(name)

 select(node)

 setup(node, type, my_node, long_or_short_names, setup_time)

 Functions

 accept(listen)

 accept_connection(accept_pid, socket, my_node, allowed, setup_time)

 close(listen)

 is_node_name(node)

 listen(name)

 select(node)

 setup(node, type, my_node, long_or_short_names, setup_time)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

