

 CCM

 v0.1.3

 Table of contents

 	CCM

 	LICENSE

 	Convergent Cross Mapping (CCM) Analysis

 	CHANGELOG

 	
 Modules

 	CCM

 	CoupledLogisticMapsGenerator

 	CoupledSeriesGenerator

 CCM

Elixir module that implements Convergent Cross Mapping (CCM) for time series data.
CCM tests whether variable X causally influences variable Y by examining if historical values of Y contain information about X due to their coupling.
Installation
The package can be installed by adding ccm to your list of dependencies in mix.exs:
def deps do
 [
 {:ccm, "~> 0.1.3"}
]
end
Key Features
	Time-delay embedding - Reconstructs the attractor from univariate time series
	Cross-mapping - Predicts one variable from another's reconstructed state space
	Convergence testing - Checks if prediction skill improves with library size
	Bidirectional analysis - Tests causality in both directions
	Bootstrap sampling - Improves statistical reliability

Main Functions
	CCM.new/3 - Creates a new CCM analysis structure
	cross_map/2 - Performs unidirectional CCM analysis
	bidirectional_ccm/1 - Tests causality in both directions

Usage
Generate test data
{x_series, y_series} = CoupledLogisticMapsGenerator.run(300, 0.15)

Perform analysis
ccm = CCM.new(x_series, y_series, embedding_dim: 3, tau: 1, num_samples: 50)
results = CCM.bidirectional_ccm(ccm)
How CCM Works
Correlation-based inference is widely used to deal with causal relationships. Unfortunately, these methods are not suitable to deal with nonlinear systems, since even a simple nonlinear process can produce "mirage correlations" [Sugihara et al. 2012] where variables appear to be correlated, but this correlation may vanish or even change sign over different time periods. Such transient correlations can produce the appearance of non-stationarity that can obscure any statistical association, and more importantly they can suggest that coupled variables are not causally related at all. Thus, in a linear system, just as "correlation does not imply causation", in a nonlinear system lack of correlation does not imply lack of causation.
Convergent Cross Mapping (CCM) [Sugihara et al., 2012] is a technique based on dynamical systems theory. Its main purpose is to assess causal relationship between variables. The general idea of CCM is reconstructing system attractors from time series data [Takens, 1981], [Abarbanel, 1996], [Sauer et al. 1991], [Deyle and Sugihara 2011].
CCM works by constructing a shadow manifold from time series data of variables, one for each variable. These shadow manifolds are approximations of the original attractors. According to Taken's theorem, when different variables are present in the same dynamical system, their shadow manifolds are diffeomorphic to the original attractor (there is a 1:1 mapping between them). It means that if a variable influences to another variable, the shadow manifold of the dependent variable can be used to estimate values of the independent variable. This estimate is the cross-map.
Takens' idea
Briefly, the state of a dynamical system can be thought of as a location in a state space, whose coordinate axes are the relevant interacting variables. The system state changes and evolves in time according to the rules/equations that describe the system dynamics, and this traces out a trajectory. The collection of these time-series trajectories forms a geometric object known as an attractor manifold, which describes empirically how variables relate to each other in time.
Each variable can be thought of as a projection of the system state onto a particular coordinate axis. In other words, a time series is simply the projection of the motion of the system onto a particular axis, and recorded over time. As such, each time series contains information about the underlying system dynamics. In fact, Takens’ embedding theorem shows that each variable contains information about all the others, which allows systems to be studied from just a single time-series [Takens, 1981] by taking time-lag coordinates of the single variable as proxies for the other variables.
Lag value
Time delay τ (lag) is a required parameter to create the embedding of the time series. Since we represent time by the index of elements in the time series, τ should be an integer between 1 and the maximum lag value specified in the 'max_lag' parameter, where 0 < max_lag < length of the time series. We use some heuristics and estimate it using the first minimum of mutual information [Kantz and Schreiber, 1997] between the time series and a shifted version of itself. Since it is a heuristic estimate, it will not be the best choice for every kind of application. To skip this estimation, the lag value can be given as a parameter.
Embedding
A dynamical system is the tuple (M, f, T), where M is a manifold (in our case, an Euclidean space), T is time domain and f is an evolution rule $t → f^t (t ∈ T)$ such that f^t is a diffeomorphism of the manifold to itself. In other terms, f(t) is a diffeomorphism, for every time t in the domain T Wikipedia. We define this f function as a transformation to represent the temporal distance of data points as spatial distance of states.
According to Takens' theorem [Takens, 1981], we can predict a causal relationship between time series by analysing their shadow manifolds [Sugihara et al., 2012]. It means that we can estimate the original attractor by embedding the original 1D time series, using time-delayed surrogate copies of it [Sugihara et al., 1990]. Or, in a more formal way, we can construct an E-dimensional shadow manifold M_x from the original one-dimensional time series X as follows:
$$
M_x = (x_t, x_{t−τ}, x_{t−2τ}, ... x_{t−(E−1)τ})
$$
Embedding dimensions
To ensure the embedding will be topologically correct, the value of E should be chosen carefully. Too low values cause crossings in the dynamics and too high values cause the dynamics unfold several times.
According to Whitney's strong embedding theorem [Whitney, 1992], E ≤ 2n for n = 1, 2. There are proofs for E ≤ 2n − 1 unless n is a power of 2 [Haefliger, Hirsch], [Wall].
Often a best guess is enough (using the value which gives the best forecast skill) to estimate its value.
Although closed-form function is not known to determine the best value of E for all integers, its value can be estimated using the False Nearest Neighbor algorithm [Abarbanel, 1996].
Separating chaos from noise
Separating chaos from noise in a 1D time series is almost impossible without additional transformations, but embeddings make it possible. Only by looking the evolution of states (in a plot), we can see the difference. If the plot exhibits some kind of a structure, it is a sign of a non-linear, but deterministic system. If the points are completely random, it is a stochastic noise.
Prediction
The estimation of causal relationship is based on the idea of information sharing. It basically means that if variable Y depends on variable X, Y should contain information about X. This information can be used to predict future states of Y based on prior states of X. [Granger, 1969].
Since we are about to estimate future state based on past states, we treat it as a regression problem.
First we need to split both embedded time series to training and test sets. Each training set describes past states and used to train a regression model. Test sets will be prediction targets and will be extracted from the end of each time series. Since temporal ordering is important, we do not shuffle the datasets before splitting them.
To find a cross-mapped estimate of $x_t | M_y$ we need to identify the corresponding y_t in M_y. Since M_y is diffeomorphic to M_x, the nearest neighbors around y_t can be used to estimate x_t. To form a bounding simplex around an E-dimensional point, we need to find E+1 nearest neighbor. We use these points ($y_{t_1}, y_{t_2}, ... y_{t_E+1}$) to estimate x_t as follows:
$$
x̂_t | M_y = ∑^{E+1}_{i=1}(w_i * x_{t_i})
$$
where weight w_i are exponentially weighted with the Euclidean-distance of y_t and its nearest neighbors:
$$
w_i = u_i / ∑^{E+1}_{j=1}u_j, u_i = exp(−(||y_t − y_{t_i}|| / ||y_t - y_{t_1}||)
$$
The above estimation will be repeated for L consecutive slices of the training set of X. The list of these consecutive slices of a time series is called library, where each slice is longer than the previous, and the increment size is constant. As we discussed before, estimation is a regression problem, so we need more than one data points, that's the reason why we use libraries.
We use these estimations to check convergence. In this case, convergence means that the estimates will improve as the library becomes larger, because the longer the library, the more precise the representation of the attractor, as the nearest neighbors of a point will be closer.
The above steps were performed on to find a cross-mapped estimate of $x_t | M_y$, so they will be repeated to find the estimate of $ŷ_t |M_x$ as well.
The next step is to calculate Pearson-correlation between L estimates of X and L values from X, and similarly, L estimates of Y and L values of Y. These correlations will be the indicators of the strength of causal relationship between X and Y.
The best indication of a causal relationship is that the Forecast Skill of one (unidirectional coupling) or both (bi-directional coupling) variables are high and converging.
Citations
	Haefliger, A., & Hirsch, M. (1963). On the existence and classification of differentiable embeddings. Topology, 2, 129-135.
	Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica. 37 (3): 424–438. doi:10.2307/1912791. JSTOR 1912791.
	Takens F. (1981) Detecting strange attractors in turbulence. In: Rand D., Young LS. (eds) Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in * Sugihara, George; May M., Robert. (19 April 1990). Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, Vol. 344, No. 6268, pp. 734-741
	Sauer, T., Yorke, J. and Casdagli, M. (1991) Embedology. Journal of Statistical Physics, 65, 579. doi:10.1007/BF01053745
	Whitney, Hassler (1992), Eells, James; Toledo, Domingo (eds.), Collected Papers, Boston: Birkhäuser, ISBN 0-8176-3560-2
	Abarbanel, H.D.I. (1996) Analysis of Observed Chaotic Data. Springer-Verlag, New York, 272.
Mathematics, vol 898., doi:10.1007/BFb0091924
	Deyle ER, Sugihara G (2011) Generalized Theorems for Nonlinear State Space Reconstruction. PLoS ONE 6(3): e18295. doi:10.1371/journal.pone.0018295
	Sugihara, George; et al. (26 October 2012). Detecting Causality in Complex Ecosystems. Science. 338 (6106): 496–500., doi:10.1126/science.1227079

 LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 Convergent Cross Mapping (CCM) Analysis

Mix.install([
 {:kino, "~> 0.12.0"},
 {:vega_lite, "~> 0.1.8"},
 {:kino_vega_lite, "~> 0.1.11"},
 {:ccm, "~> 0.1.2"}
])

alias VegaLite, as: Vl
Introduction
Convergent Cross Mapping (CCM) is a powerful method for detecting causality in coupled nonlinear dynamical systems. Unlike traditional correlation-based methods, CCM can distinguish between correlation and causation by examining the information content in reconstructed state spaces.
This LiveBook demonstrates the CCM implementation with interactive examples and visualizations.
Example 1: Coupled Logistic Maps
Let's start with a simple example using coupled logistic maps where we know the causal relationship.
Generate coupled logistic maps where Y influences X
{x_series, y_series} = CoupledLogisticMapsGenerator.run(300, 0.01)
Create time series data for plotting
time_points = 1..length(x_series) |> Enum.to_list()
time_series_data = Enum.zip([time_points, x_series, y_series])
|> Enum.map(fn {t, x, y} -> %{time: t, x: x, y: y} end)

Plot the time series
Vl.new(width: 800, height: 400, title: "Coupled Logistic Maps Time Series")
|> Vl.layers([
 Vl.new()
 |> Vl.data_from_values(time_series_data)
 |> Vl.mark(:line, color: "blue")
 |> Vl.encode_field(:x, "time", type: :quantitative, title: "Time")
 |> Vl.encode_field(:y, "x", type: :quantitative, title: "X Value", scale: [domain: [0, 1]])
 |> Vl.resolve(:scale, y: :independent),
 Vl.new()
 |> Vl.data_from_values(time_series_data)
 |> Vl.mark(:line, color: "red")
 |> Vl.encode_field(:x, "time", type: :quantitative)
 |> Vl.encode_field(:y, "y", type: :quantitative, title: "Y Value", scale: [domain: [0, 1]])
])
Now let's perform CCM analysis on this data:
Create CCM analysis
ccm = CCM.new(x_series, y_series, embedding_dim: 3, tau: 1, num_samples: 30)

Perform bidirectional CCM analysis
IO.puts("Performing CCM analysis...")
results = CCM.bidirectional_ccm(ccm)

Display results
IO.puts("\n=== CCM Analysis Results ===")
IO.puts("Y causes X (should be strong and convergent):")
Enum.each(results.y_causes_x.results, fn {lib_size, corr} ->
 IO.puts(" Library size #{lib_size}: correlation = #{Float.round(corr, 4)}")
end)
IO.puts(" Convergent: #{results.y_causes_x.convergent}")

IO.puts("\nX causes Y (should be weak):")
Enum.each(results.x_causes_y.results, fn {lib_size, corr} ->
 IO.puts(" Library size #{lib_size}: correlation = #{Float.round(corr, 4)}")
end)
IO.puts(" Convergent: #{results.x_causes_y.convergent}")
Let's visualize the CCM convergence:
Prepare data for convergence plot
y_causes_x_data = results.y_causes_x.results
|> Enum.map(fn {lib_size, corr} -> %{library_size: lib_size, correlation: corr, direction: "Y → X"} end)

x_causes_y_data = results.x_causes_y.results
|> Enum.map(fn {lib_size, corr} -> %{library_size: lib_size, correlation: corr, direction: "X → Y"} end)

convergence_data = y_causes_x_data ++ x_causes_y_data

Create convergence plot
convergence_plot = Vl.new(width: 600, height: 400, title: "CCM Convergence Analysis")
|> Vl.data_from_values(convergence_data)
|> Vl.mark(:line, point: true)
|> Vl.encode_field(:x, "library_size", type: :quantitative, title: "Library Size")
|> Vl.encode_field(:y, "correlation", type: :quantitative, title: "Cross-Map Correlation")
|> Vl.encode_field(:color, "direction", type: :nominal, title: "Causal Direction")
|> Vl.encode_field(:stroke_dash, "direction", type: :nominal)

Kino.VegaLite.new(convergence_plot)
Understanding CCM Results
CCM analysis provides several key insights:
	Convergence: If cross-map correlation increases with library size, it suggests a causal relationship
	Asymmetry: CCM can detect asymmetric causality (X causes Y but not vice versa)
	Strength: Higher correlation values indicate stronger causal coupling

Key Principles:
	True causality shows convergence: correlation improves with more data
	Spurious correlations don't converge: correlation stays flat or decreases
	Bidirectional analysis reveals the direction of causality

Advanced Example: Custom Data Analysis
You can also use CCM with your own time series data:
Example: Create your own time series data
custom_data_input = Kino.Input.textarea("Custom Time Series Data",
 default: "1.0, 1.2, 1.5, 1.8, 2.0, 2.3, 2.1, 1.9, 1.6, 1.4\n0.5, 0.8, 1.1, 1.4, 1.6, 1.8, 1.7, 1.5, 1.2, 1.0",
 placeholder: "Enter two time series separated by newline, values comma-separated")

analyze_button = Kino.Control.button("Analyze Custom Data")

Kino.render(custom_data_input)
Kino.render(analyze_button)

Kino.Control.stream(analyze_button)
|> Kino.listen(fn _event ->
 data_text = Kino.Input.read(custom_data_input)

 try do
 lines = String.split(data_text, "\n")
 |> Enum.map(&String.trim/1)
 |> Enum.filter(&(&1 != ""))

 if length(lines) >= 2 do
 [x_line, y_line] = Enum.take(lines, 2)

 x_data = String.split(x_line, ",")
 |> Enum.map(&String.trim/1)
 |> Enum.map(&String.to_float/1)

 y_data = String.split(y_line, ",")
 |> Enum.map(&String.trim/1)
 |> Enum.map(&String.to_float/1)

 if length(x_data) == length(y_data) and length(x_data) >= 10 do
 ccm = CCM.new(x_data, y_data, embedding_dim: 3, tau: 1, num_samples: 20)
 results = CCM.bidirectional_ccm(ccm)

 IO.puts("=== Custom Data CCM Analysis ===")
 IO.puts("Data length: #{length(x_data)} points")
 IO.puts("X causes Y: #{results.x_causes_y.convergent}")
 IO.puts("Y causes X: #{results.y_causes_x.convergent}")

 # Show final correlation values
 final_x_causes_y = results.x_causes_y.results |> List.last() |> elem(1)
 final_y_causes_x = results.y_causes_x.results |> List.last() |> elem(1)

 IO.puts("Final X→Y correlation: #{Float.round(final_x_causes_y, 4)}")
 IO.puts("Final Y→X correlation: #{Float.round(final_y_causes_x, 4)}")
 else
 IO.puts("Error: Both time series must have the same length and at least 10 points")
 end
 else
 IO.puts("Error: Please provide two time series separated by newlines")
 end
 rescue
 e -> IO.puts("Error parsing data: #{Exception.message(e)}")
 end
end)
Summary
This LiveBook demonstrates the key capabilities of the CCM module:
	Causal detection in nonlinear coupled systems
	Convergence analysis to distinguish correlation from causation
	Bidirectional testing to determine causal direction
	Parameter exploration to understand sensitivity
	Custom data analysis for real-world applications

CCM is particularly powerful for:
	Ecological systems (predator-prey relationships)
	Climate data (temperature-precipitation coupling)
	Financial markets (asset price interactions)
	Neuroscience (brain region connectivity)
	Any coupled nonlinear dynamical system

The method's strength lies in its ability to detect causality even when traditional correlation methods fail, making it invaluable for understanding complex systems where experimental manipulation isn't possible.

 CHANGELOG

[0.1.3] - 2025-10-21
Fixed
- Validate inputs in `CCM.new/3` (embedding_dim, tau, num_samples) and clamp computed library size for short series.
- Make weighting scheme deterministic and numerically stable: use inverse-distance normalized weights; exact matches dominate.

Added
- Test-only wrapper `CCM.predict_point_for_tests/3` to allow unit testing of internal prediction logic.
- New unit tests covering edge cases and prediction weighting behavior.

[0.1.2] - 2025-08-24
Changed
- Minor performance optimisation
- Changed the format of math expressions in README.md

[0.1.1] - 2025-08-21
Changed
- Minor refactor

[0.1.0] - 2025-08-07
Added
- Initial release

CCM

Convergent Cross Mapping (CCM) implementation for detecting causality in coupled nonlinear
dynamical systems.

 Summary

 Functions

 bidirectional_ccm(ccm)

 Performs bidirectional CCM analysis.

 cross_map(ccm, direction \\ :x_causes_y)

 Performs CCM analysis to test if X causes Y.
Returns a map with correlation coefficients for each library size.

 new(x_series, y_series, opts \\ [])

 Creates a new CCM analysis structure.

 Functions

 bidirectional_ccm(ccm)

Performs bidirectional CCM analysis.

 cross_map(ccm, direction \\ :x_causes_y)

Performs CCM analysis to test if X causes Y.
Returns a map with correlation coefficients for each library size.

 new(x_series, y_series, opts \\ [])

Creates a new CCM analysis structure.
Parameters
	x_series: List of numeric values for variable X
	y_series: List of numeric values for variable Y
	embedding_dim: Embedding dimension (default: 3)
	tau: Time delay (default: 1)
	lib_sizes: List of library sizes to test (default: auto-generated)
	num_samples: Number of bootstrap samples (default: 100)

CoupledLogisticMapsGenerator

Generates coupled logistic maps for testing.

 Summary

 Functions

 run(length, coupling_strength \\ 0.02)

 Functions

 run(length, coupling_strength \\ 0.02)

CoupledSeriesGenerator

Generates coupled time series where X forces Y for testing CCM implementation.

 Summary

 Functions

 generate_coupled_series(length \\ 50, opts \\ [])

 Generates a driving time series X and driven time series Y.
X follows a chaotic logistic map, Y is forced by X with some coupling strength.

 generate_test_cases()

 Generates test data with known causality for CCM validation.

 print_series(map)

 Pretty prints the generated series for inspection.

 run(coupling \\ 0.03)

 Functions

 generate_coupled_series(length \\ 50, opts \\ [])

Generates a driving time series X and driven time series Y.
X follows a chaotic logistic map, Y is forced by X with some coupling strength.

 generate_test_cases()

Generates test data with known causality for CCM validation.

 print_series(map)

Pretty prints the generated series for inspection.

 run(coupling \\ 0.03)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

