

 Ch

 v0.7.0

 Table of contents

 	Ch

 	Changelog

 	
 Modules

 	Ch

 	Ch.Query

 	Ch.Result

 	Ch.RowBinary

 	Ch.Types

 	Exceptions

 	Ch.Error

 Ch

[image: Documentation badge]
[image: Hex.pm badge]
Minimal HTTP ClickHouse client for Elixir.
Used in Ecto ClickHouse adapter.
Key features
	RowBinary
	Native query parameters
	Per query settings
	Minimal API

Your ideas are welcome here.
Installation
defp deps do
 [
 {:ch, "~> 0.7.0"}
]
end
Usage
Start DBConnection pool
defaults = [
 scheme: "http",
 hostname: "localhost",
 port: 8123,
 database: "default",
 settings: [],
 pool_size: 1,
 timeout: :timer.seconds(15)
]

note that starting in ClickHouse 25.1.3.23 `default` user doesn't have
network access by default in the official Docker images
see https://github.com/ClickHouse/ClickHouse/pull/75259
{:ok, pid} = Ch.start_link(defaults)
Select rows
{:ok, pid} = Ch.start_link()

{:ok, %Ch.Result{rows: [[0], [1], [2]]}} =
 Ch.query(pid, "SELECT * FROM system.numbers LIMIT 3")

{:ok, %Ch.Result{rows: [[0], [1], [2]]}} =
 Ch.query(pid, "SELECT * FROM system.numbers LIMIT {$0:UInt8}", [3])

{:ok, %Ch.Result{rows: [[0], [1], [2]]}} =
 Ch.query(pid, "SELECT * FROM system.numbers LIMIT {limit:UInt8}", %{"limit" => 3})
Note on datetime encoding in query parameters:
	%NaiveDateTime{} is encoded as text to make it assume the column's or ClickHouse server's timezone
	%DateTime{} is encoded as unix timestamp and is treated as UTC timestamp by ClickHouse

Select rows (lots of params, reverse proxy)
[!NOTE]
Support for multipart requests was added in v0.6.2

For queries with many parameters the resulting URL can become too long for some reverse proxies, resulting in a 414 Request-URI Too Large error.
To avoid this, you can use the multipart: true option to send the query and parameters in the request body.
{:ok, pid} = Ch.start_link()

Moves parameters from the URL to a multipart/form-data body
%Ch.Result{rows: [[[1, 2, 3 | _rest]]]} =
 Ch.query!(pid, "SELECT {ids:Array(UInt64)}", %{"ids" => Enum.to_list(1..10_000)}, multipart: true)
[!NOTE]
multipart: true is currently required on each individual query. Support for pool-wide configuration is planned for a future release.

Insert rows
{:ok, pid} = Ch.start_link()

Ch.query!(pid, "CREATE TABLE IF NOT EXISTS ch_demo(id UInt64) ENGINE Null")

%Ch.Result{num_rows: 2} =
 Ch.query!(pid, "INSERT INTO ch_demo(id) VALUES (0), (1)")

%Ch.Result{num_rows: 2} =
 Ch.query!(pid, "INSERT INTO ch_demo(id) VALUES ({$0:UInt8}), ({$1:UInt32})", [0, 1])

%Ch.Result{num_rows: 2} =
 Ch.query!(pid, "INSERT INTO ch_demo(id) VALUES ({a:UInt16}), ({b:UInt64})", %{"a" => 0, "b" => 1})

%Ch.Result{num_rows: 2} =
 Ch.query!(pid, "INSERT INTO ch_demo(id) SELECT number FROM system.numbers LIMIT {limit:UInt8}", %{"limit" => 2})
Insert rows as RowBinary (efficient)
{:ok, pid} = Ch.start_link()

Ch.query!(pid, "CREATE TABLE IF NOT EXISTS ch_demo(id UInt64) ENGINE Null")

types = ["UInt64"]
or
types = [Ch.Types.u64()]
or
types = [:u64]

%Ch.Result{num_rows: 2} =
 Ch.query!(pid, "INSERT INTO ch_demo(id) FORMAT RowBinary", [[0], [1]], types: types)
Note that RowBinary format encoding requires :types option to be provided.
Similarly, you can use RowBinaryWithNamesAndTypes which would additionally do something like a type check.
sql = "INSERT INTO ch_demo FORMAT RowBinaryWithNamesAndTypes"
opts = [names: ["id"], types: ["UInt64"]]
rows = [[0], [1]]

%Ch.Result{num_rows: 2} = Ch.query!(pid, sql, rows, opts)
Insert rows in custom format
{:ok, pid} = Ch.start_link()

Ch.query!(pid, "CREATE TABLE IF NOT EXISTS ch_demo(id UInt64) ENGINE Null")

csv = [0, 1] |> Enum.map(&to_string/1) |> Enum.intersperse(?\n)

%Ch.Result{num_rows: 2} =
 Ch.query!(pid, "INSERT INTO ch_demo(id) FORMAT CSV", csv, encode: false)
Insert rows as chunked RowBinary stream
{:ok, pid} = Ch.start_link()

Ch.query!(pid, "CREATE TABLE IF NOT EXISTS ch_demo(id UInt64) ENGINE Null")

stream = Stream.repeatedly(fn -> [:rand.uniform(100)] end)
chunked = Stream.chunk_every(stream, 100)
encoded = Stream.map(chunked, fn chunk -> Ch.RowBinary.encode_rows(chunk, _types = ["UInt64"]) end)
ten_encoded_chunks = Stream.take(encoded, 10)

%Ch.Result{num_rows: 1000} =
 Ch.query(pid, "INSERT INTO ch_demo(id) FORMAT RowBinary", ten_encoded_chunks, encode: false)
This query makes a transfer-encoding: chunked HTTP request while unfolding the stream resulting in lower memory usage.
Query with custom settings
{:ok, pid} = Ch.start_link()

settings = [async_insert: 1]

%Ch.Result{rows: [["async_insert", "Bool", "0"]]} =
 Ch.query!(pid, "SHOW SETTINGS LIKE 'async_insert'")

%Ch.Result{rows: [["async_insert", "Bool", "1"]]} =
 Ch.query!(pid, "SHOW SETTINGS LIKE 'async_insert'", [], settings: settings)
Caveats
NULL in RowBinary
It's the same as in ch-go
At insert time, Nil can be passed for both the normal and Nullable version of a column. For the former, the default value for the type will be persisted, e.g., an empty string for string. For the nullable version, a NULL value will be stored in ClickHouse.

{:ok, pid} = Ch.start_link()

Ch.query!(pid, """
CREATE TABLE ch_nulls (
 a UInt8 NULL,
 b UInt8 DEFAULT 10,
 c UInt8 NOT NULL
) ENGINE Memory
""")

types = ["Nullable(UInt8)", "UInt8", "UInt8"]
inserted_rows = [[nil, nil, nil]]
selected_rows = [[nil, 0, 0]]

%Ch.Result{num_rows: 1} =
 Ch.query!(pid, "INSERT INTO ch_nulls(a, b, c) FORMAT RowBinary", inserted_rows, types: types)

%Ch.Result{rows: ^selected_rows} =
 Ch.query!(pid, "SELECT * FROM ch_nulls")
Note that in this example DEFAULT 10 is ignored and 0 (the default value for UInt8) is persisted instead.
However, input() can be used as a workaround:
sql = """
INSERT INTO ch_nulls
 SELECT * FROM input('a Nullable(UInt8), b Nullable(UInt8), c UInt8')
 FORMAT RowBinary\
"""

Ch.query!(pid, sql, inserted_rows, types: ["Nullable(UInt8)", "Nullable(UInt8)", "UInt8"])

%Ch.Result{rows: [[0], [10]]} =
 Ch.query!(pid, "SELECT b FROM ch_nulls ORDER BY b")
UTF-8 in RowBinary
When decoding String columns non UTF-8 characters are replaced with � (U+FFFD). This behaviour is similar to toValidUTF8 and JSON format.
{:ok, pid} = Ch.start_link()

Ch.query!(pid, "CREATE TABLE ch_utf8(str String) ENGINE Memory")

bin = "\x61\xF0\x80\x80\x80b"
utf8 = "a�b"

%Ch.Result{num_rows: 1} =
 Ch.query!(pid, "INSERT INTO ch_utf8(str) FORMAT RowBinary", [[bin]], types: ["String"])

%Ch.Result{rows: [[^utf8]]} =
 Ch.query!(pid, "SELECT * FROM ch_utf8")

%Ch.Result{rows: %{"data" => [[^utf8]]}} =
 pid |> Ch.query!("SELECT * FROM ch_utf8 FORMAT JSONCompact") |> Map.update!(:rows, &Jason.decode!/1)
To get raw binary from String columns use :binary type that skips UTF-8 checks.
%Ch.Result{rows: [[^bin]]} =
 Ch.query!(pid, "SELECT * FROM ch_utf8", [], types: [:binary])
Timezones in RowBinary
Decoding non-UTC datetimes like DateTime('Asia/Taipei') requires a timezone database.
Mix.install([:ch, :tz])

:ok = Calendar.put_time_zone_database(Tz.TimeZoneDatabase)

{:ok, pid} = Ch.start_link()

%Ch.Result{rows: [[~N[2023-04-25 17:45:09]]]} =
 Ch.query!(pid, "SELECT CAST(now() as DateTime)")

%Ch.Result{rows: [[~U[2023-04-25 17:45:11Z]]]} =
 Ch.query!(pid, "SELECT CAST(now() as DateTime('UTC'))")

%Ch.Result{rows: [[%DateTime{time_zone: "Asia/Taipei"} = taipei]]} =
 Ch.query!(pid, "SELECT CAST(now() as DateTime('Asia/Taipei'))")

"2023-04-26 01:45:12+08:00 CST Asia/Taipei" = to_string(taipei)
Encoding non-UTC datetimes works but might be slow due to timezone conversion:
Mix.install([:ch, :tz])

:ok = Calendar.put_time_zone_database(Tz.TimeZoneDatabase)

{:ok, pid} = Ch.start_link()

Ch.query!(pid, "CREATE TABLE ch_datetimes(name String, datetime DateTime) ENGINE Memory")

naive = NaiveDateTime.utc_now()
utc = DateTime.utc_now()
taipei = DateTime.shift_zone!(utc, "Asia/Taipei")

rows = [["naive", naive], ["utc", utc], ["taipei", taipei]]

Ch.query!(pid, "INSERT INTO ch_datetimes(name, datetime) FORMAT RowBinary", rows, types: ["String", "DateTime"])

%Ch.Result{
 rows: [
 ["naive", ~U[2024-12-21 05:24:40Z]],
 ["utc", ~U[2024-12-21 05:24:40Z]],
 ["taipei", ~U[2024-12-21 05:24:40Z]]
]
} =
 Ch.query!(pid, "SELECT name, CAST(datetime as DateTime('UTC')) FROM ch_datetimes")
Benchmarks
See nightly CI runs for latest results.

 Changelog

0.7.0 (2026-01-13)
	use disconnect_and_retry (added in DBConnection v2.9.0) instead of disconnect for connection errors https://github.com/plausible/ch/pull/292

0.6.2 (2026-01-03)
	added support for multipart/form-data in queries: https://github.com/plausible/ch/pull/290 -- which allows bypassing URL length limits sometimes imposed by reverse proxies when sending queries with many parameters.
⚠️ This is currently opt-in per query ⚠️
Global support for the entire connection pool is planned for a future release.
Usage
Pass multipart: true in the options list for Ch.query/4
Example usage
Ch.query(pool, "SELECT {a:String}, {b:String}", %{"a" => "A", "b" => "B"}, multipart: true)
<details>
<summary>View raw request format reference</summary>
POST / HTTP/1.1
content-length: 387
host: localhost:8123
user-agent: ch/0.6.2-dev
x-clickhouse-format: RowBinaryWithNamesAndTypes
content-type: multipart/form-data; boundary="ChFormBoundaryZZlfchKTcd8ToWjEvn66i3lAxNJ_T9dw"

--ChFormBoundaryZZlfchKTcd8ToWjEvn66i3lAxNJ_T9dw
content-disposition: form-data; name="param_a"

A
--ChFormBoundaryZZlfchKTcd8ToWjEvn66i3lAxNJ_T9dw
content-disposition: form-data; name="param_b"

B
--ChFormBoundaryZZlfchKTcd8ToWjEvn66i3lAxNJ_T9dw
content-disposition: form-data; name="query"

select {a:String}, {b:String}
--ChFormBoundaryZZlfchKTcd8ToWjEvn66i3lAxNJ_T9dw--
</details>

0.6.1 (2025-12-04)
	handle disconnect during stream https://github.com/plausible/ch/pull/283

0.6.0 (2025-11-26)
	added automatic decoding to Ch.stream/4 when using RowBinaryWithNamesAndTypes format: https://github.com/plausible/ch/pull/277.
 Previously, this function returned raw bytes.
 To restore the previous behavior (raw bytes/no automatic decoding), pass decode: false in the options (fourth argument).
 Example of required change to preserve the previous behavior
 # before, no decoding by default
 DBConnection.run(pool, fn conn ->
 conn
 |> Ch.stream("select number from numbers(10)")
 |> Enum.into([])
 end)

 # after, to keep the same behaviour add `decode: false` option
 DBConnection.run(pool, fn conn ->
 conn
 |> Ch.stream("select number from numbers(10)", _params = %{}, decode: false)
 |> Enum.into([])
 end)
Queries using other explicit formats like CSVWithNames are unaffected and can remain as they are.
Examples of unaffected queries
DBConnection.run(pool, fn conn ->
 conn
 |> Ch.stream("select number from numbers(10) format CSVWithNames")
 |> Enum.into([])
end)

DBConnection.run(pool, fn conn ->
 conn
 |> Ch.stream("select number from numbers(10)", _params = %{}, format: "CSVWithNames")
 |> Enum.into([])
end)

0.5.7 (2025-11-26)
	fix type decoding for strings containing newlines https://github.com/plausible/ch/pull/278

0.5.6 (2025-08-26)
	fix internal type ordering in Variant https://github.com/plausible/ch/pull/275

0.5.5 (2025-08-26)
	fix version check for adding JSON settings https://github.com/plausible/ch/pull/274

0.5.4 (2025-07-22)
	allow nil in params https://github.com/plausible/ch/pull/268

0.5.2 (2025-07-21)
	make Dynamic usable in Ecto schemas https://github.com/plausible/ch/pull/267

0.5.1 (2025-07-20)
	add partial Dynamic type support https://github.com/plausible/ch/pull/266

0.5.0 (2025-07-17)
	add Time and Time64 types support https://github.com/plausible/ch/pull/260
	add Variant type support https://github.com/plausible/ch/pull/263
	add JSON type support https://github.com/plausible/ch/pull/262

0.4.1 (2025-07-07)
	fix column decoding when count exceeds 127 https://github.com/plausible/ch/pull/257

0.4.0 (2025-06-19)
	restrict to Ecto v3.13

0.3.4 (2025-07-07)
	fix column decoding when count exceeds 127 https://github.com/plausible/ch/pull/257

0.3.3 (2025-06-19)
	restrict to Ecto v3.12

0.3.2 (2025-02-25)
	fix type decoding when type name exceeds 127 bytes https://github.com/plausible/ch/pull/248

0.3.1 (2025-02-08)
	add column names to %Ch.Result{} https://github.com/plausible/ch/pull/243

0.3.0 (2025-02-03)
	gracefully handle connection: closed response from server https://github.com/plausible/ch/pull/211
	allow non-UTC DateTime.t() in query params https://github.com/plausible/ch/pull/223
	allow non-UTC DateTime.t() when encoding RowBinary https://github.com/plausible/ch/pull/225
	add :types to query_option typespec https://github.com/plausible/ch/pull/234
	handle missing written_rows in insert https://github.com/plausible/ch/pull/236

0.2.10 (2025-02-03)
	handle missing written_rows in insert https://github.com/plausible/ch/pull/236 (backported)

0.2.9 (2024-11-04)
	catch all errors in connect/1 to avoid triggering Supervisor https://github.com/plausible/ch/pull/209

0.2.8 (2024-09-06)
	support named tuples https://github.com/plausible/ch/pull/197

0.2.7 (2024-08-15)
	raise on invalid UInt8 and Int8 when encoding RowBinary https://github.com/plausible/ch/pull/180
	adapt to Ecto v3.12 https://github.com/plausible/ch/pull/195

0.2.6 (2024-05-30)
	fix query encoding for datetimes where the microseconds value starts with zeroes ~U[****-**-** **:**:**.0*****] https://github.com/plausible/ch/pull/175

0.2.5 (2024-03-05)
	add :data in %Ch.Result{} https://github.com/plausible/ch/pull/159
	duplicate Ch.Result.data in Ch.Result.rows for backwards compatibility https://github.com/plausible/ch/pull/160
	make Ch.stream emit Ch.Result.t instead of Mint.Types.response https://github.com/plausible/ch/pull/161
	make Ch.stream collectable https://github.com/plausible/ch/pull/162

0.2.4 (2024-01-29)
	use ch-#{version} as user-agent https://github.com/plausible/ch/pull/154
	fix query string escaping for \t, \\, and \n https://github.com/plausible/ch/pull/155

0.2.3 (2024-01-29)
	fix socket leak on failed handshake https://github.com/plausible/ch/pull/153

0.2.2 (2023-12-23)
	fix query encoding for datetimes with zeroed microseconds ~U[****-**-** **:**:**.000000] https://github.com/plausible/ch/pull/138

0.2.1 (2023-08-22)
	fix array casts with Ch subtype https://github.com/plausible/ch/pull/118

0.2.0 (2023-07-28)
	move loading and dumping from Ch type to the adapter https://github.com/plausible/ch/pull/112

0.1.14 (2023-05-24)
	simplify types, again...

0.1.13 (2023-05-24)
	refactor types in Ch.RowBinary https://github.com/plausible/ch/pull/88

0.1.12 (2023-05-24)
	replace {:raw, data} with encode: false option, add :decode option https://github.com/plausible/ch/pull/42

0.1.11 (2023-05-19)
	improve Enum error message invalid values during encoding: https://github.com/plausible/ch/pull/85
	fix \t and \n in query params https://github.com/plausible/ch/pull/86

0.1.10 (2023-05-05)
	support :raw option in Ch type https://github.com/plausible/ch/pull/84

0.1.9 (2023-05-02)
	relax deps versions

0.1.8 (2023-05-01)
	fix varint encoding

0.1.7 (2023-04-24)
	support RowBinaryWithNamesAndTypes

0.1.6 (2023-04-24)
	add Map(K,V) support in Ch Ecto type

0.1.5 (2023-04-23)
	fix query param encoding like Array(Date)
	add more types support in Ch Ecto type: tuples, ipv4, ipv6, geo

0.1.4 (2023-04-23)
	actually support negative Enum values

0.1.3 (2023-04-23)
	support negative Enum values, fix Enum16 encoding

0.1.2 (2023-04-23)
	support Enum8 and Enum16 encoding

0.1.1 (2023-04-23)
	cleanup published docs

Ch

Minimal HTTP ClickHouse client.

 Summary

 Types

 common_option()

 Options shared by both connection startup and query execution.

 query_option()

 Options for executing a query.

 start_option()

 Options for starting the connection pool.

 Functions

 child_spec(opts)

 Returns a supervisor child specification for a connection pool.

 query(conn, statement, params \\ [], opts \\ [])

 Runs a query and returns the result as {:ok, %Ch.Result{}} or
{:error, Exception.t()} if there was a database error.

 query!(conn, statement, params \\ [], opts \\ [])

 Runs a query and returns the result or raises Ch.Error if
there was an error. See query/4.

 start_link(opts \\ [])

 Start the connection pool process.

 Types

 common_option()

 @type common_option() ::
 {:database, String.t()}
 | {:username, String.t()}
 | {:password, String.t()}
 | {:settings, Keyword.t()}
 | {:timeout, timeout()}

Options shared by both connection startup and query execution.
	:database - Database, defaults to "default"
	:username - Username
	:password - User password
	:settings - Keyword list of ClickHouse settings
	:timeout - HTTP request/receive timeout in milliseconds

 query_option()

 @type query_option() ::
 common_option()
 | {:command, Ch.Query.command()}
 | {:headers, [{String.t(), String.t()}]}
 | {:format, String.t()}
 | {:types, [String.t() | atom() | tuple()]}
 | {:encode, boolean()}
 | {:decode, boolean()}
 | {:multipart, boolean()}
 | DBConnection.connection_option()

Options for executing a query.
Includes all keys from common_option/0 and DBConnection.connection_option/0 plus:
	:command - Command tag for the query
	:headers - Custom HTTP headers for the request
	:format - Custom response format for the request
	:decode - Whether to automatically decode the response
	:multipart - Whether to send the query as multipart/form-data

 start_option()

 @type start_option() ::
 common_option()
 | {:scheme, String.t()}
 | {:hostname, String.t()}
 | {:port, :inet.port_number()}
 | {:transport_opts, [:gen_tcp.connect_option() | :ssl.tls_client_option()]}
 | DBConnection.start_option()

Options for starting the connection pool.
Includes all keys from common_option/0 and DBConnection.start_option/0 plus:
	:scheme - HTTP scheme, defaults to "http"
	:hostname - server hostname, defaults to "localhost"
	:port - HTTP port, defaults to 8123
	:transport_opts - options to be given to the transport being used. See Mint.HTTP1.connect/4 for more info

 Functions

 child_spec(opts)

 @spec child_spec([start_option()]) :: :supervisor.child_spec()

Returns a supervisor child specification for a connection pool.
See start_option/0 for supported options.

 query(conn, statement, params \\ [], opts \\ [])

 @spec query(DBConnection.conn(), iodata(), params, [query_option()]) ::
 {:ok, Ch.Result.t()} | {:error, Exception.t()}
when params: map() | [term()] | [row :: [term()]] | iodata() | Enumerable.t()

Runs a query and returns the result as {:ok, %Ch.Result{}} or
{:error, Exception.t()} if there was a database error.
See query_option/0 for available options.

 query!(conn, statement, params \\ [], opts \\ [])

 @spec query!(DBConnection.conn(), iodata(), params, [query_option()]) :: Ch.Result.t()
when params: map() | [term()] | [row :: [term()]] | iodata() | Enumerable.t()

Runs a query and returns the result or raises Ch.Error if
there was an error. See query/4.

 start_link(opts \\ [])

 @spec start_link([start_option()]) :: GenServer.on_start()

Start the connection pool process.
See start_option/0 for available options.

Ch.Query

Query struct wrapping the SQL statement.

 Summary

 Types

 command()

 Atom representing the type of SQL command.

 t()

 The Query struct.

 Types

 command()

 @type command() ::
 :undrop
 | :move
 | :watch
 | :use
 | :truncate
 | :set
 | :exchange
 | :rename
 | :optimize
 | :kill
 | :exists
 | :drop
 | :detach
 | :describe
 | :check
 | :attach
 | :update
 | :revoke
 | :explain
 | :grant
 | :select
 | :show
 | :system
 | :delete
 | :alter
 | :create
 | :insert
 | :select

Atom representing the type of SQL command.
Derived automatically from the start of the SQL statement (e.g., "SELECT ..." -> :select),
or provided explicitly via options.

 t()

 @type t() :: %Ch.Query{
 command: command(),
 decode: boolean(),
 encode: boolean(),
 multipart: boolean(),
 statement: iodata()
}

The Query struct.
Fields
	:statement - The SQL statement to be executed (as iodata/0).
	:command - The detected or enforced SQL command type (e.g., :select, :insert).
	:encode - Whether to encode parameters (defaults to true).
	:decode - Whether to decode the response (defaults to true).
	:multipart - Whether to use multipart/form-data for the request (defaults to false).

Ch.Result

Result struct returned from any successful query.

 Summary

 Types

 t()

 The Result struct.

 Types

 t()

 @type t() :: %Ch.Result{
 columns: [String.t()] | nil,
 command: Ch.Query.command() | nil,
 data: iodata(),
 headers: Mint.Types.headers(),
 num_rows: non_neg_integer() | nil,
 rows: [[term()]] | iodata() | nil
}

The Result struct.
Fields
	:command - An atom of the query command, for example: :select, :insert
	:columns - A list of column names
	:rows - A list of lists (each inner list corresponding to a row, each element in the inner list corresponds to a column)
	:num_rows - The number of fetched or affected rows
	:headers - The HTTP response headers
	:data - The raw iodata from the response

Ch.RowBinary

Helpers for working with ClickHouse RowBinary format.

 Summary

 Functions

 decode_names_and_rows(row_binary_with_names_and_types)

 Same as decode_rows/1 but the first element is a list of column names.

 decode_rows(row_binary_with_names_and_types)

 Decodes RowBinaryWithNamesAndTypes into rows.

 decode_rows(row_binary, types)

 Decodes RowBinary into rows.

 encode_row(row, types)

 Encodes a single row to RowBinary as iodata.

 encode_rows(rows, types)

 Encodes multiple rows to RowBinary as iodata.

 Functions

 decode_names_and_rows(row_binary_with_names_and_types)

Same as decode_rows/1 but the first element is a list of column names.
Example:
iex> decode_names_and_rows(<<1, 3, "1+1"::bytes, 5, "UInt8"::bytes, 2>>)
[["1+1"], [2]]

 decode_rows(row_binary_with_names_and_types)

Decodes RowBinaryWithNamesAndTypes into rows.
Example:
iex> decode_rows(<<1, 3, "1+1"::bytes, 5, "UInt8"::bytes, 2>>)
[[2]]

 decode_rows(row_binary, types)

Decodes RowBinary into rows.
Example:
iex> decode_rows(<<1>>, ["UInt8"])
[[1]]

 encode_row(row, types)

Encodes a single row to RowBinary as iodata.
Examples:
iex> encode_row([], [])
[]

iex> encode_row([1], ["UInt8"])
[1]

iex> encode_row([3, "hello"], ["UInt8", "String"])
[3, [5 | "hello"]]

 encode_rows(rows, types)

Encodes multiple rows to RowBinary as iodata.
Examples:
iex> encode_rows([], [])
[]

iex> encode_rows([[1]], ["UInt8"])
[1]

iex> encode_rows([[3, "hello"], [4, "hi"]], ["UInt8", "String"])
[3, [5 | "hello"], 4, [2 | "hi"]]

Ch.Types

Helpers to turn ClickHouse types into Elixir terms for easier processing.

 Summary

 Functions

 array(type)

 Helper for Array(T) ClickHouse type

 boolean()

 Helper for Bool ClickHouse type

 date32()

 Helper for Date32 ClickHouse type

 date()

 Helper for Date ClickHouse type

 datetime64(precision)

 Helper for DateTime64(precision) ClickHouse type

 datetime64(precision, timezone)

 Helper for DateTime64(precision, timezone) ClickHouse type

 datetime()

 Helper for DateTime ClickHouse type

 datetime(timezone)

 Helper for DateTime(timezone) ClickHouse type

 decimal32(scale)

 Helper for Decimal32(S) ClickHouse type

 decimal64(scale)

 Helper for Decimal64(S) ClickHouse type

 decimal128(scale)

 Helper for Decimal128(S) ClickHouse type

 decimal256(scale)

 Helper for Decimal256(S) ClickHouse type

 decimal(precision, scale)

 Helper for Decimal(P, S) ClickHouse type

 decode(type)

 Decodes a ClickHouse type into an intermediary Elixir term.

 encode(type)

 Encodes a type from Elixir atom / tuple to proper ClickHouse name.

 enum8(mapping)

 Helper for Enum8 ClickHouse type

 enum16(mapping)

 Helper for Enum16 ClickHouse type

 f32()

 Helper for Float32 ClickHouse type

 f64()

 Helper for Float64 ClickHouse type

 fixed_string(n)

 Helper for FixedString(n) ClickHouse type

 i8()

 Helper for Int8 ClickHouse type

 i16()

 Helper for Int16 ClickHouse type

 i32()

 Helper for Int32 ClickHouse type

 i64()

 Helper for Int64 ClickHouse type

 i128()

 Helper for Int128 ClickHouse type

 i256()

 Helper for Int256 ClickHouse type

 ipv4()

 Helper for IPv4 ClickHouse type

 ipv6()

 Helper for IPv6 ClickHouse type

 json()

 Helper for JSON ClickHouse type

 low_cardinality(type)

 Helper for LowCardinality(T) ClickHouse type

 map(key_type, value_type)

 Helper for Map(K, V) ClickHouse type

 multipolygon()

 Helper for MultiPolygon ClickHouse type

 nothing()

 Helper for Nothing ClickHouse type

 nullable(type)

 Helper for Nullable(T) ClickHouse type

 point()

 Helper for Point ClickHouse type

 polygon()

 Helper for Polygon ClickHouse type

 ring()

 Helper for Ring ClickHouse type

 simple_aggregate_function(name, type)

 Helper for SimpleAggregateFunction(name, type) ClickHouse type

 string()

 Helper for String ClickHouse type

 time64(precision)

 Helper for Time64(precision) ClickHouse type

 time()

 Helper for Time ClickHouse type

 tuple(types)

 Helper for Tuple(T1, T2, ...) ClickHouse type

 u8()

 Helper for UInt8 ClickHouse type

 u16()

 Helper for UInt16 ClickHouse type

 u32()

 Helper for UInt32 ClickHouse type

 u64()

 Helper for UInt64 ClickHouse type

 u128()

 Helper for UInt128 ClickHouse type

 u256()

 Helper for UInt256 ClickHouse type

 uuid()

 Helper for UUID ClickHouse type

 variant(types)

 Helper for Variant(T1, T2, ...) ClickHouse type

 Functions

 array(type)

Helper for Array(T) ClickHouse type:
iex> array(u64())
{:array, :u64}

iex> to_string(encode(array(u64())))
"Array(UInt64)"

iex> decode("Array(UInt64)")
array(u64())

 boolean()

Helper for Bool ClickHouse type:
iex> boolean()
:boolean

iex> encode(boolean())
"Bool"

iex> decode("Bool")
boolean()

 date32()

Helper for Date32 ClickHouse type:
iex> date32()
:date32

iex> encode(date32())
"Date32"

iex> decode("Date32")
date32()

 date()

Helper for Date ClickHouse type:
iex> date()
:date

iex> encode(date())
"Date"

iex> decode("Date")
date()

 datetime64(precision)

Helper for DateTime64(precision) ClickHouse type:
iex> datetime64(3)
{:datetime64, 3}

iex> to_string(encode(datetime64(3)))
"DateTime64(3)"

iex> decode("DateTime64(3)")
datetime64(3)

 datetime64(precision, timezone)

Helper for DateTime64(precision, timezone) ClickHouse type:
iex> datetime64(3, "UTC")
{:datetime64, 3, "UTC"}

iex> to_string(encode(datetime64(3, "UTC")))
"DateTime64(3, 'UTC')"

iex> decode("DateTime64(3, 'UTC')")
datetime64(3, "UTC")

 datetime()

Helper for DateTime ClickHouse type:
iex> datetime()
:datetime

iex> to_string(encode(datetime()))
"DateTime"

iex> decode("DateTime")
datetime()

 datetime(timezone)

Helper for DateTime(timezone) ClickHouse type:
iex> datetime("Europe/Vienna")
{:datetime, "Europe/Vienna"}

iex> to_string(encode(datetime("UTC")))
"DateTime('UTC')"

iex> decode("DateTime('UTC')")
datetime("UTC")

 decimal32(scale)

Helper for Decimal32(S) ClickHouse type:
iex> decimal32(4)
{:decimal32, 4}

iex> to_string(encode(decimal32(4)))
"Decimal(9, 4)"

iex> decode("Decimal32(4)")
{:decimal32, 4}

 decimal64(scale)

Helper for Decimal64(S) ClickHouse type:
iex> decimal64(4)
{:decimal64, 4}

iex> to_string(encode(decimal64(4)))
"Decimal(18, 4)"

iex> decode("Decimal64(4)")
{:decimal64, 4}

 decimal128(scale)

Helper for Decimal128(S) ClickHouse type:
iex> decimal128(4)
{:decimal128, 4}

iex> to_string(encode(decimal128(4)))
"Decimal(38, 4)"

iex> decode("Decimal128(4)")
{:decimal128, 4}

 decimal256(scale)

Helper for Decimal256(S) ClickHouse type:
iex> decimal256(4)
{:decimal256, 4}

iex> to_string(encode(decimal256(4)))
"Decimal(76, 4)"

iex> decode("Decimal256(4)")
{:decimal256, 4}

 decimal(precision, scale)

Helper for Decimal(P, S) ClickHouse type:
iex> decimal(18, 4)
{:decimal, 18, 4}

iex> to_string(encode(decimal(18, 4)))
"Decimal(18, 4)"

iex> decode("Decimal(18, 4)")
decimal(18, 4)

 decode(type)

Decodes a ClickHouse type into an intermediary Elixir term.
iex> decode("String")
:string

iex> decode("Array(String)")
{:array, :string}

iex> decode("Enum8('hello' = 1, 'world' = 2)")
{:enum8, [{"hello", 1}, {"world", 2}]}

iex> decode("Nullable(Decimal(18, 4))")
{:nullable, {:decimal, 18, 4}}

 encode(type)

Encodes a type from Elixir atom / tuple to proper ClickHouse name.
iex> encode(:string)
"String"

iex> IO.iodata_to_binary(encode({:nullable, :i8}))
"Nullable(Int8)"

 enum8(mapping)

Helper for Enum8 ClickHouse type:
iex> enum8([{"hello", 1}, {"world", 2}])
{:enum8, [{"hello", 1}, {"world", 2}]}

iex> to_string(encode(enum8([{"hello", 1}, {"world", 2}])))
"Enum8('hello' = 1, 'world' = 2)"

iex> decode("Enum8('hello' = 1, 'world' = 2)")
enum8([{"hello", 1}, {"world", 2}])

 enum16(mapping)

Helper for Enum16 ClickHouse type:
iex> enum16([{"hello", 1}, {"world", 2}])
{:enum16, [{"hello", 1}, {"world", 2}]}

iex> to_string(encode(enum16([{"hello", 1}, {"world", 2}])))
"Enum16('hello' = 1, 'world' = 2)"

iex> decode("Enum16('hello' = 1, 'world' = 2)")
enum16([{"hello", 1}, {"world", 2}])

 f32()

Helper for Float32 ClickHouse type:
iex> f32()
:f32

iex> encode(f32())
"Float32"

iex> decode("Float32")
f32()

 f64()

Helper for Float64 ClickHouse type:
iex> f64()
:f64

iex> encode(f64())
"Float64"

iex> decode("Float64")
f64()

 fixed_string(n)

Helper for FixedString(n) ClickHouse type:
iex> fixed_string(3)
{:fixed_string, 3}

iex> to_string(encode(fixed_string(16)))
"FixedString(16)"

iex> decode("FixedString(16)")
fixed_string(16)

 i8()

Helper for Int8 ClickHouse type:
iex> i8()
:i8

iex> encode(i8())
"Int8"

iex> decode("Int8")
i8()

 i16()

Helper for Int16 ClickHouse type:
iex> i16()
:i16

iex> encode(i16())
"Int16"

iex> decode("Int16")
i16()

 i32()

Helper for Int32 ClickHouse type:
iex> i32()
:i32

iex> encode(i32())
"Int32"

iex> decode("Int32")
i32()

 i64()

Helper for Int64 ClickHouse type:
iex> i64()
:i64

iex> encode(i64())
"Int64"

iex> decode("Int64")
i64()

 i128()

Helper for Int128 ClickHouse type:
iex> i128()
:i128

iex> encode(i128())
"Int128"

iex> decode("Int128")
i128()

 i256()

Helper for Int256 ClickHouse type:
iex> i256()
:i256

iex> encode(i256())
"Int256"

iex> decode("Int256")
i256()

 ipv4()

Helper for IPv4 ClickHouse type:
iex> ipv4()
:ipv4

iex> encode(ipv4())
"IPv4"

iex> decode("IPv4")
ipv4()

 ipv6()

Helper for IPv6 ClickHouse type:
iex> ipv6()
:ipv6

iex> encode(ipv6())
"IPv6"

iex> decode("IPv6")
ipv6()

 json()

Helper for JSON ClickHouse type:
iex> json()
:json

iex> encode(json())
"JSON"

iex> decode("JSON")
json()

 low_cardinality(type)

Helper for LowCardinality(T) ClickHouse type:
iex> low_cardinality(string())
{:low_cardinality, :string}

iex> to_string(encode(low_cardinality(string())))
"LowCardinality(String)"

iex> decode("LowCardinality(String)")
low_cardinality(string())

 map(key_type, value_type)

Helper for Map(K, V) ClickHouse type:
iex> map(string(), array(string()))
{:map, :string, {:array, :string}}

iex> to_string(encode(map(string(), array(string()))))
"Map(String, Array(String))"

iex> decode("Map(String, Array(String))")
map(string(), array(string()))

 multipolygon()

Helper for MultiPolygon ClickHouse type:
iex> multipolygon()
:multipolygon

iex> encode(multipolygon())
"MultiPolygon"

iex> decode("MultiPolygon")
multipolygon()

 nothing()

Helper for Nothing ClickHouse type:
iex> nothing()
:nothing

iex> encode(nothing())
"Nothing"

iex> decode("Nothing")
nothing()

 nullable(type)

Helper for Nullable(T) ClickHouse type:
iex> nullable(array(boolean()))
{:nullable, {:array, :boolean}}

iex> to_string(encode(nullable(array(boolean()))))
"Nullable(Array(Bool))"

iex> decode("Nullable(Array(Bool))")
nullable(array(boolean()))

 point()

Helper for Point ClickHouse type:
iex> point()
:point

iex> encode(point())
"Point"

iex> decode("Point")
point()

 polygon()

Helper for Polygon ClickHouse type:
iex> polygon()
:polygon

iex> encode(polygon())
"Polygon"

iex> decode("Polygon")
polygon()

 ring()

Helper for Ring ClickHouse type:
iex> ring()
:ring

iex> encode(ring())
"Ring"

iex> decode("Ring")
ring()

 simple_aggregate_function(name, type)

Helper for SimpleAggregateFunction(name, type) ClickHouse type:
iex> simple_aggregate_function("any", u8())
{:simple_aggregate_function, "any", :u8}

iex> to_string(encode(simple_aggregate_function("any", u8())))
"SimpleAggregateFunction(any, UInt8)"

iex> decode("SimpleAggregateFunction(any, UInt8)")
simple_aggregate_function("any", u8())

 string()

Helper for String ClickHouse type:
iex> string()
:string

iex> encode(string())
"String"

iex> decode("String")
string()

 time64(precision)

Helper for Time64(precision) ClickHouse type:
iex> time64(3)
{:time64, 3}

iex> to_string(encode(time64(3)))
"Time64(3)"

iex> decode("Time64(3)")
time64(3)

 time()

Helper for Time ClickHouse type:
iex> time()
:time

iex> encode(time())
"Time"

iex> decode("Time")
time()

 tuple(types)

Helper for Tuple(T1, T2, ...) ClickHouse type:
iex> tuple([u64(), array(string())])
{:tuple, [:u64, {:array, :string}]}

iex> to_string(encode(tuple([u64(), array(string())])))
"Tuple(UInt64, Array(String))"

iex> decode("Tuple(UInt64, Array(String))")
tuple([u64(), array(string())])

 u8()

Helper for UInt8 ClickHouse type:
iex> u8()
:u8

iex> encode(u8())
"UInt8"

iex> decode("UInt8")
u8()

 u16()

Helper for UInt16 ClickHouse type:
iex> u16()
:u16

iex> encode(u16())
"UInt16"

iex> decode("UInt16")
u16()

 u32()

Helper for UInt32 ClickHouse type:
iex> u32()
:u32

iex> encode(u32())
"UInt32"

iex> decode("UInt32")
u32()

 u64()

Helper for UInt64 ClickHouse type:
iex> u64()
:u64

iex> encode(u64())
"UInt64"

iex> decode("UInt64")
u64()

 u128()

Helper for UInt128 ClickHouse type:
iex> u128()
:u128

iex> encode(u128())
"UInt128"

iex> decode("UInt128")
u128()

 u256()

Helper for UInt256 ClickHouse type:
iex> u256()
:u256

iex> encode(u256())
"UInt256"

iex> decode("UInt256")
u256()

 uuid()

Helper for UUID ClickHouse type:
iex> uuid()
:uuid

iex> encode(uuid())
"UUID"

iex> decode("UUID")
uuid()

 variant(types)

Helper for Variant(T1, T2, ...) ClickHouse type:
iex> variant([u64(), string(), array(u64())])
{:variant, [{:array, :u64}, :string, :u64]}

iex> to_string(encode(variant([u64(), string(), array(u64())])))
"Variant(Array(UInt64), String, UInt64)"

iex> decode("Variant(UInt64, String, Array(UInt64))")
variant([array(u64()), u64(), string()])

Ch.Error exception

Error struct wrapping ClickHouse error responses.

 Summary

 Types

 t()

 The Error struct.

 Types

 t()

 @type t() :: %Ch.Error{
 __exception__: true,
 code: pos_integer() | nil,
 message: String.t()
}

The Error struct.
Fields
	:code - The ClickHouse numeric error code
	:message - The error message returned by the server

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

