

 checker_cab

 v1.3.0

 Table of contents

 	CheckerCab

 	Changelog

 	LICENSE

 	

 	Modules

 	CheckerCab

 	CheckerCab.MatchTypes

CheckerCab

assert_values_for and friends.
View the full documentation on
Hex.

 Explanation

 What is Checker Cab?

Checker Cab facilitates deep map comparisons within unit tests.

 How Will Checker Cab Improve My Unit Tests?

Checker Cab helps alleviate tedium in these testing scenarios:
	Selective comparison on fields between maps.
	Phoenix Controller tests where expected input is an atom-keyed map such as a
struct and expected output is a string-keyed map such as a JSON response, but
keys are otherwise the same name.
	Comparisons between DateTime values and ISO-8601-formatted strings as values
in otherwise-equivalent maps.
	Identify exactly which value did not match between maps with many keys.
	Update tests to account for new values added to a struct (or map used as a
record).

When relying on this library for unit tests, it becomes easier to write more
thorough tests with the same amount of effort or less.

 Example

Assuming a User struct and a Factory module that may build parameters, a
controller test may look like this:
 test "success: it returns a 200 and a newly updated `User`", %{conn: conn, user: %User{id: id}} do
 %User{} = expected_updates = MyApp.Factory.build(:user, id: id)

 conn = post(conn, Routes.user_path(conn, :update), user: expected_user)
 assert %{"id" => ^id} = json_response(conn, 200)["data"]
 end
This is a nice basis for a test to exercise HTTP response codes, but this does
not assert that actual values have been set. The assertions could be added
individually, with an assertion made for each field in the User struct.
However, this can bloat a test over time at the expense of test clarity. Let's
see it with Checker Cab instead.
 test "success: it returns a 200 and a newly updated `User`", %{conn: conn, user: %User{id: id}} do
 %User{} = expected_updates = MyApp.Factory.build(:user, id: id)

 conn = post(conn, Routes.user_path(conn, :update), user: expected_user)
 ## new stuff
 assert returned_user = %{"id" => ^id} = json_response(conn, 200)["data"]

 ## note: assert_values_for/1 and fields_for/1 are provided by CheckerCab.
 assert_values_for(
 expected: expected_updates,
 actual: {returned_user, :string_keys},
 fields: fields_for(User)
)
 end
Regardless of how many fields the User struct may have or have added to it,
the assertions lock down that the returned user will have all fields in the
User struct and the values will be the same. The test is self-updating and
will assist in catching regressions if the update function begins to set other
values or if the view code does not capture newly-added fields to the User
schema.
For the sake of example, if the controller action under test returned a User
with the same keys and values differing only with the value for id, then the
test would fail and the output may look like the example below:
 1) test success: it returns a 200 and a newly updated User (UserControllerTest)
 test/user_controller_test.exs:294
 There were issues with the comparison:

 Values did not match for:
 field: :id
 expected: "1ee3e9c4-fa81-4612-a13a-c554e5a3d438"
 actual: "a2ab48fa-96fb-41e5-8f2d-2f94f47fef91"
 code: assert_values_for(expected: expected_updates, actual: {returned_user :string_keys}, fields: fields_for(User))
 stacktrace:
 ## stacktrace here
As a different example, lets assume the same unit test. While adding a new
feature, we add a new_key field to our User struct, but forget to add
new_key to our Factory module. Checker Cab should detect the mismatch and
alert the developer with following output:
 1) test success: it returns a 200 and a newly updated User (UserControllerTest)
 test/user_controller_test.exs:294
 There were issues with the comparison:

 Key(s) missing:
 field: :new_key didn't exist in expected
 code: assert_values_for(expected: expected_updates, actual: {returned_user :string_keys}, fields: fields_for(User))
 stacktrace:
 ## stacktrace here

 Installation

Add it to your deps.
def deps do
 [
 ## check hex.pm for the latest version
 {:checker_cab, "~> 1.0.1", runtime: false, only: [:test]},
]
end

 Custom Type Matching

The default implementation to compare values in CheckerCab is to use ==/2.
If you need to compare types where that won't work, you can add additional
implementations for the CheckerCab.MatchTypes in your application.
defimpl CheckerCab.MatchTypes, for: Decimal do
 def values_match?(expected, actual) do
 Decimal.equal?(expected, actual)
 end
end
You can then use assert_values_for/1 as you normally would:
 test "success: with equivalent Decimal values" do
 expected = %{key1: Decimal.new("1.10")}
 actual = %{key1: Decimal.new("1.1")}

 input = [expected: expected, actual: actual, fields: Map.keys(expected)]

 assert :ok == CheckerCab.assert_values_for(input)
 end

 Integrating into a test suite

Import CheckerCab to your test case file:
test/support/test_case.ex
defmodule YourApp.TestCase do
 use ExUnit.CaseTemplate

 using do
 quote do
 import CheckerCab
 end
 end
end
Ensure the test case file is compiled for the test environment:
mix.exs
defmodule YourApp.MixProject
 use Mix.Project

 def project do
 [
 app: :your_app,
 version: "0.1.0",
 elixir: "~> 1.13",
 start_permanent: Mix.env() == :prod,
 deps: deps(),
 elixirc_paths: elixirc_paths(Mix.env()),
]
 end

 ## skipping for brevity

 defp elixirc_paths(:test), do: ["lib", "test/support"]
 defp elixirc_paths(_), do: ["lib"]
end
And finally, ensure the test case file is used in a test:
test/your_app/contrived_example_test
defmodule YourApp.ContrivedExampleTest do
 use YourApp.TestCase

 ## tests go here.
end

That's it. You're ready to take advantage of the splendors of CheckerCab. Honk Honk 🚕

 Contributing

 Releasing a new version

To release a new version of this library, you have to
	Bump the version
	Update the changelog
	Release on Hex

Updating version and changelog
To bump the version, update it in mix.exs. We use semantic versioning (MAJOR.MINOR.PATCH) which means:
	Bump the MAJOR version only if there are breaking changes (first get approval from the maintainers)
	Bump the MINOR version if you introduced new features
	Bump the PATCH version if you fixed bugs

In the same code change that updates the version (such as a PR), also update the CHANGELOG.md file with a new entry.

Changelog

 [1.3.0] - 2024-02-11

	Add protocol to allow custom type matching rules
	Update README with example

 [1.2.1] - 2024-02-11

	Update documentation config for better hex_doc experience

 [1.2.0] - 2024-02-07

	Update all dependencies
	Support Elixir 1.15.x and 1.16.x
	Support OTP 26
	Update testing approach to work with newer Elixir and OTP

 [1.1.0] - 2022-12-12

	Support Elixir 1.14.x and OTP 25
	Increase test output to show all issues from call to assert_values_for/1.

 [1.0.1] - 2022-11-17

	Add improved failure output: catch and batch failures

 [1.0.0] - 2022-10-20

	Update README
	Make public

 [0.2.1] - 2021-12-16

	Update documentation
	Rename test file from cookie_cutter_test.exs to checker_cab_test.exs.

 [0.2.0] - 2021-12-03

	Update fields_for to strip virtual fields for Ecto schemas.

 [0.1.1] - 2021-12-02

	Add a LICENSE.
	Add package metadata.

 [0.1.0] - 2021-12-02

	Update README
	Add a CHANGELOG.md
	Add assert_values_for/1 and helper functions.

LICENSE

Copyright (c) 2021 Shimmur, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

CheckerCab

Documentation for CheckerCab.
This documentation assumes these functions are used in the context of unit
tests.

 Summary

 Types

 comparable_input()

 inputs()

 option()

 Functions

 assert_values_for(all_the_things)

 Compares the values of two maps for specified keys.

 fields_for(schema_name)

 Returns the keys of a map or struct.

 Types

 Link to this type

 comparable_input()

 @type comparable_input() :: map() | {map(), :string_keys | :atom_keys}

 Link to this type

 inputs()

 @type inputs() :: [
 expected: comparable_input(),
 actual: comparable_input(),
 fields: [atom()],
 skip_fields: [atom()],
 opts: [option()]
]

 Link to this type

 option()

 @type option() :: {:convert_dates, boolean()}

 Functions

 Link to this function

 assert_values_for(all_the_things)

 @spec assert_values_for(inputs()) :: :ok | no_return()

Compares the values of two maps for specified keys.
When values do not match, this function will flunk the current test with
explicit information about the first value that did not match.
This function also accepts a list of fields to not compare, and can be mixed
with the fields to compare.
This function assumes keys are atoms unless specified as :string_keys, and
will convert keys into a common type before comparing values (can compare
atom-keyed and string-keyed maps with same-named keys). Additionally,
:atom_keys can be provided to be more explicit.

 Options

	:convert_dates
When true, will convert date-representing values to ISO-8601 formatted
strings.

 Examples

your_unit_test.exs
expected = %{key1: :value, key2: :value, key3: :value}
actual = %{"key1" => :value, "key2" => :value, "key3" => :value}

returns :ok when expected and actual match
assert_values_for(
 expected: expected,
 actual: {actual, :string_keys},
 fields: [:key1, :key2, :key3]
)
With dates:
expected = %{date: ~U[2021-12-17 03:08:36.579609Z], key2: :value, key3: :value}
actual = %{"date" => "2021-12-17T03:08:36.579609Z", "key2" => :value, "key3" => :value}

Will not flunk for different types of dates if they both convert to the
same ISO 8601 string

assert_values_for(
 expected: expected,
 actual: {actual, :string_keys},
 fields: [:date, :key2, :key3],
 opts: [convert_dates: true]
)
Using :skip_fields:
expected = %{key1: :value, key2: :value, key3: :value, value_that_wont_match: "Panama"}
actual = %{key1: :value, key2: :value, key3: :value, value_that_wont_match: "Manimal"}

Returns :ok when expected and actual match. Can exclude fields anticipated
to be different.
assert_values_for(
 expected: expected,
 actual: actual,
 fields: [:key1, :key2, :key3],
 skip_fields: [:value_that_wont_match]
)

 Link to this function

 fields_for(schema_name)

 @spec fields_for(map() | struct() | Ecto.Schema.t() | module()) :: [
 atom() | String.t()
]

Returns the keys of a map or struct.

 Examples

iex> fields_for(%{"string_key1" => :value, "string_key2" => :value})
["string_key1", "string_key2"]

iex> fields_for(%{atom_key1: :value, atom_key2: :value})
[:atom_key1, :atom_key2]
Returns a list of defined keys from struct arguments (:__struct__ is not
returned)
iex> fields_for(%StructModule{})
[:key1, :key2, :key3]
Returns a list of defined keys from Ecto.Schema arguments, but does not
return virtual fields.
iex> fields_for(%EctoSchemaModule{})
[:id, :field1, :field2, :field3]
Additionally, the function accepts the module name of an Ecto.Schema.
This does not work with structs.
iex> fields_for(EctoSchemaModule)
[:id, :field1, :field2, :field3]

CheckerCab.MatchTypes protocol

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 values_match?(expected, actual)

 Types

 Link to this type

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 values_match?(expected, actual)

 @spec values_match?(any(), any()) :: boolean()

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

