chunky v0.11.4 Chunky.Sequence.OEIS.Factors View Source
OEIS Sequences dealing with Factors, Factorization, and properties of integer factors.
Available Sequences
- A000037 - Numbers that are not squares -
:a000037
-create_sequence_a000037/1
- A000977 - Numbers that are divisible by at least three different primes -
:a000977
-create_sequence_a000977/1
- A001414 - Integer log of n: sum of primes dividing n (with repetition). Also called sopfr(n). -
:a001414
-create_sequence_a001414/1
- A001597 - Perfect Powers -
:a001597
-create_sequence_a001597/1
- A001694 - Powerful Numbers -
:a001694
-create_sequence_a001694/1
- A002182 - Highly composite numbers: numbers with record value -
:a002182
-create_sequence_a002182/1
- A002473 - 7-smooth Numbers -
:a002473
-create_sequence_a03586/1
- A003586 - 3-smooth Numbers -
:a003586
-create_sequence_a03586/1
- A004709 - Cubefree numbers: numbers that are not divisible by any cube > 1 -
:a004709
-create_sequence_a004709/1
- A005361 - Product of Expoenents of prime factors of N -
:a005361
-create_sequence_a005361/1
- A005934 - Highly powerful numbers: numbers with record value -
:a005934
-create_sequence_a005934/1
- A006881 - Squarefree semiprimes: Numbers that are the product of two distinct primes -
:a006881
-create_sequence_a006881/1
- A007018 - a(n) = a(n-1)^2 + a(n-1), a(0)=1 -
:a007018
-create_sequence_a007018/1
- A007304 - Sphenic numbers: products of 3 distinct primes -
:a007304
-create_sequence_a007304/1
- A007412 - The noncubes: n + [ (n + [ n^{1/3} ])^{1/3} ] -
:a007412
-create_sequence_a007412/1
- A007434 - Jordan function J_2(n) -
:a007434
-create_sequence_a007434/1
- A007774 - Numbers that are divisible by exactly 2 different primes -
:a007774
-create_sequence_a007774/1
- A007947 - Largest squarefree number dividing n -
:a007947
-create_sequence_a007947/1
- A008966 - 1 if n is squarefree, else 0. -
:a008966
-create_sequence_a008966/1
- A013929 - Numbers that are not squarefree. -
:a013929
-create_sequence_a013929/1
- A014612 - Numbers that are the product of exactly three primes, including multiplicity. -
:a014612
-create_sequence_a014612/1
- A014613 - Numbers that are products of 4 primes -
:a014613
-create_sequence_a014613/1
- A014614 - Numbers that are products of 5 primes -
:a014614
-create_sequence_a014614/1
- A001826 - Number of divisors of n of form 4k+1 -
:a001826
-create_sequence_a001826/1
- A001842 - Expansion of Sum_{n>=0} x^(4n+3)/(1 - x^(4n+3)) -
:a001842
-create_sequence_a001842/1
- A018253 - Divisors of 24. -
:a018253
-create_sequence_a018253/1
- A018256 - Divisors of 36. -
:a018256
-create_sequence_a018256/1
- A018261 - Divisors of 48. -
:a018261
-create_sequence_a018261/1
- A018266 - Divisors of 60. -
:a018266
-create_sequence_a018266/1
- A018293 - Divisors of 120. -
:a018293
-create_sequence_a018293/1
- A018321 - Divisors of 180. -
:a018321
-create_sequence_a018321/1
- A018350 - Divisors of 240. -
:a018350
-create_sequence_a018350/1
- A018412 - Divisors of 360. -
:a018412
-create_sequence_a018412/1
- A018609 - Divisors of 720. -
:a018609
-create_sequence_a018609/1
- A018676 - Divisors of 840. -
:a018676
-create_sequence_a018676/1
- A030513 - Numbers with 4 divisors -
:a030513
-create_sequence_a030513/1
- A030515 - Numbers with exactly 6 divisors -
:a030515
-create_sequence_a030515/1
- A033273 - Number of nonprime divisors of n -
:a033273
-create_sequence_a033273/1
- A033942 - At least 3 prime factors (counted with multiplicity). -
:a033942
-create_sequence_a033942/1
- A033987 - Numbers that are divisible by at least 4 primes (counted with multiplicity) -
:a033987
-create_sequence_a033987/1
- A033992 - Numbers that are divisible by exactly three different primes -
:a033992
-create_sequence_a033992/1
- A033993 - Numbers that are divisible by exactly four different primes -
:a033993
-create_sequence_a033993/1
- A036537 - Numbers whose number of divisors is a power of 2. -
:a036537
-create_sequence_a036537/1
- A037143 - Numbers with at most 2 prime factors (counted with multiplicity). -
:a037143
-create_sequence_a037143/1
- A038109 - Divisible exactly by the square of a prime. -
:a038109
-create_sequence_a038109/1
- A039956 - Even squarefree numbers. -
:a039956
-create_sequence_a039956/1
- A046099 - Numbers that are not cubefree. Numbers divisible by a cube greater than 1. -
:a046099
-create_sequence_a046099/1
- A046306 - Numbers that are divisible by exactly 6 primes with multiplicity. -
:a046306
-create_sequence_a046306/1
- A046308 - Numbers that are divisible by exactly 7 primes counting multiplicity. -
:a046308
-create_sequence_a046308/1
- A046310 - Numbers that are divisible by exactly 8 primes counting multiplicity -
:a046310
-create_sequence_a046310/1
- A046312 - Numbers that are divisible by exactly 9 primes with multiplicity -
:a046312
-create_sequence_a046312/1
- A046314 - Numbers that are divisible by exactly 10 primes with multiplicity -
:a046314
-create_sequence_a046314/1
- A046321 - Odd numbers divisible by exactly 8 primes (counted with multiplicity) -
:a046321
-create_sequence_a046321/1
- A046386 - Products of four distinct primes -
:a046386
-create_sequence_a046386/1
- A046387 - Products of 5 distinct primes -
:a046387
-create_sequence_a046387/1
- A046660 - Excess of n = Ω(n) - ω(n) -
:a046660
-create_sequence_a046660/1
- A048272 - Number of odd divisors of n minus number of even divisors of n -
:a048272
-create_sequence_a048272/1
- A051037 - 5-smooth Numbers -
:a051037
-create_sequence_a03586/1
- A051038 - 11-smooth Numbers -
:a051038
-create_sequence_a03586/1
- A051270 - Numbers that are divisible by exactly 5 different primes -
:a051270
-create_sequence_a051270/1
- A052486 - Achilles numbers - powerful but imperfect -
:a052486
-create_sequence_a052486/1
- A056911 - Odd squarefree numbers. -
:a056911
-create_sequence_a056911/1
- A059269 - Numbers n for which tau(n) is divisible by 3. -
:a059269
-create_sequence_a059269/1
- A059376 - Jordan function J_3(n) -
:a059376
-create_sequence_a059376/1
- A059377 - Jordan function J_4(n) -
:a059377
-create_sequence_a059377/1
- A059378 - Jordan function J_5(n) -
:a059378
-create_sequence_a059378/1
- A065958 - a(n) = n^2*Product_{distinct primes p dividing n} (1+1/p^2) -
:a065958
-create_sequence_a065958/1
- A065959 - a(n) = n^3*Product_{distinct primes p dividing n} (1+1/p^3) -
:a065959
-create_sequence_a065959/1
- A065960 - a(n) = n^4*Product_{distinct primes p dividing n} (1+1/p^4) -
:a065960
-create_sequence_a065960/1
- A067259 - Cubefree numbers which are not squarefree -
:a067259
-create_sequence_a067259/1
- A067885 - Product of 6 distinct primes -
:a067885
-create_sequence_a067885/1
- A069091 - Jordan function J_6(n) -
:a069091
-create_sequence_a069091/1
- A069092 - Jordan function J_7(n) -
:a069092
-create_sequence_a069092/1
- A069093 - Jordan function J_8(n) -
:a069093
-create_sequence_a069093/1
- A069094 - Jordan function J_9(n) -
:a069094
-create_sequence_a069094/1
- A069095 - Jordan function J_10(n) -
:a069095
-create_sequence_a069095/1
- A069272 - 11-almost primes (generalization of semiprimes) -
:a069272
-create_sequence_a069272/1
- A069273 - 12-almost primes (generalization of semiprimes) -
:a069273
-create_sequence_a069273/1
- A069274 - 13-almost primes (generalization of semiprimes) -
:a069274
-create_sequence_a069274/1
- A069275 - 14-almost primes (generalization of semiprimes) -
:a069275
-create_sequence_a069275/1
- A069276 - 15-almost primes (generalization of semiprimes) -
:a069276
-create_sequence_a069276/1
- A069277 - 16-almost primes (generalization of semiprimes) -
:a069277
-create_sequence_a069277/1
- A069278 - 17-almost primes (generalization of semiprimes) -
:a069278
-create_sequence_a069278/1
- A069279 - Products of exactly 18 primes (generalization of semiprimes) -
:a069279
-create_sequence_a069279/1
- A069280 - 19-almost primes (generalization of semiprimes) -
:a069280
-create_sequence_a069280/1
- A069281 - 20-almost primes (generalization of semiprimes) -
:a069281
-create_sequence_a069281/1
- A074969 - Numbers with six distinct prime divisors -
:a074969
-create_sequence_a074969/1
- A076479 - a(n) = mu(rad(n)), where mu is the Moebius-function -
:a076479
-create_sequence_a076479/1
- A080197 - 13-smooth Numbers -
:a080197
-create_sequence_a03586/1
- A080681 - 17-smooth Numbers -
:a080681
-create_sequence_a03586/1
- A080682 - 29-smooth Numbers -
:a080682
-create_sequence_a03586/1
- A080683 - 23-smooth Numbers -
:a080683
-create_sequence_a03586/1
- A117805 - Start with 3. Square the previous term and subtract it. -
:a117805
-create_sequence_a117805/1
- A123321 - Products of 7 distinct primes -
:a123321
-create_sequence_a123321/1
- A123322 - Products of 8 distinct primes -
:a123322
-create_sequence_a123322/1
- A130897 - Numbers that are not exponentially squarefree. -
:a130897
-create_sequence_a130897/1
- A160889 - a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 4 -
:a160889
-create_sequence_a160889/1
- A160891 - a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 5 -
:a160891
-create_sequence_a160891/1
- A160893 - a(n) = Sum_{d|n} Möbius(n/d)*d^5/phi(n) -
:a160893
-create_sequence_a160893/1
- A160895 - a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 7 -
:a160895
-create_sequence_a160895/1
- A160897 - a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 8 -
:a160897
-create_sequence_a160897/1
- A160908 - a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 9 -
:a160908
-create_sequence_a160908/1
- A160953 - a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 10 -
:a160953
-create_sequence_a160953/1
- A160957 - a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 11 -
:a160957
-create_sequence_a160957/1
- A160960 - a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 12 -
:a160960
-create_sequence_a160960/1
- A162643 - Numbers such that their number of divisors is not a power of 2. -
:a162643
-create_sequence_a162643/1
- A165412 - Divisors of 2520. -
:a165412
-create_sequence_a165412/1
- A178858 - Divisors of 5040. -
:a178858
-create_sequence_a178858/1
- A178859 - Divisors of 7560. -
:a178859
-create_sequence_a178859/1
- A178860 - Divisors of 10080. -
:a178860
-create_sequence_a178860/1
- A178861 - Divisors of 15120. -
:a178861
-create_sequence_a178861/1
- A178862 - Divisors of 20160. -
:a178862
-create_sequence_a178862/1
- A178863 - Divisors of 25200. -
:a178863
-create_sequence_a178863/1
- A178864 - Divisors of 27720. -
:a178864
-create_sequence_a178864/1
- A178877 - Divisors of 1260. -
:a178877
-create_sequence_a178877/1
- A178878 - Divisors of 1680. -
:a178878
-create_sequence_a178878/1
- A209061 - Exponentially squarefree numbers -
:a209061
-create_sequence_a209061/1
- A211337 - Numbers n for which the number of divisors, tau(n), is congruent to 1 modulo 3 -
:a211337
-create_sequence_a211337/1
- A211338 - Numbers n for which the number of divisors, tau(n), is congruent to 2 modulo 3 -
:a211338
-create_sequence_a211338/1
Link to this section Summary
Functions
OEIS Sequence A000037
- Numbers that are not squares (or, the nonsquares).
OEIS Sequence A000977
- Numbers that are divisible by at least three different primes.
OEIS Sequence A001414
- Integer log of n: sum of primes dividing n (with repetition). Also called sopfr(n).
OEIS Sequence A001597
- Perfect Powers
OEIS Sequence A001694
- Powerful Numbers
OEIS Sequence A001826
- Number of divisors of n of form 4k+1.
OEIS Sequence A001842
- Expansion of Sum_{n>=0} x^(4n+3)/(1 - x^(4n+3)).
OEIS Sequence A002182
- Highly composite numbers: numbers with record value
OEIS Sequence A002473
- 7-smooth Numbers
OEIS Sequence A003586
- 3-smooth Numbers
OEIS Sequence A004709
- Cubefree numbers: numbers that are not divisible by any cube > 1.
OEIS Sequence A005361
- Product of Expoenents of prime factors of N
OEIS Sequence A005934
- Highly powerful numbers: numbers with record value
OEIS Sequence A006881
- Squarefree semiprimes: Numbers that are the product of two distinct primes.
OEIS Sequence A007018
- a(n) = a(n-1)^2 + a(n-1), a(0)=1.
OEIS Sequence A007304
- Sphenic numbers: products of 3 distinct primes.
OEIS Sequence A007412
- The noncubes: n + [ (n + [ n^{1/3} ])^{1/3} ].
OEIS Sequence A007434
- Jordan function J_2(n)
OEIS Sequence A007774
- Numbers that are divisible by exactly 2 different primes.
OEIS Sequence A007947
- Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.
OEIS Sequence A008966
- 1 if n is squarefree, else 0.
OEIS Sequence A013929
- Numbers that are not squarefree. Numbers that are divisible by a square greater than 1. The complement of A005117.
OEIS Sequence A014612
- Numbers that are the product of exactly three primes.
OEIS Sequence A014613
- Numbers that are products of 4 primes
OEIS Sequence A014614
- Numbers that are products of 5 primes
OEIS Sequence A018253
- Divisors of 24.
OEIS Sequence A018256
- Divisors of 36.
OEIS Sequence A018261
- Divisors of 48.
OEIS Sequence A018266
- Divisors of 60.
OEIS Sequence A018293
- Divisors of 120.
OEIS Sequence A018321
- Divisors of 180.
OEIS Sequence A018350
- Divisors of 240.
OEIS Sequence A018412
- Divisors of 360.
OEIS Sequence A018609
- Divisors of 720.
OEIS Sequence A018676
- Divisors of 840.
OEIS Sequence A030513
- Numbers with 4 divisors.
OEIS Sequence A030515
- Numbers with exactly 6 divisors.
OEIS Sequence A033273
- Number of nonprime divisors of n.
OEIS Sequence A033942
- At least 3 prime factors (counted with multiplicity).
OEIS Sequence A033987
- Numbers that are divisible by at least 4 primes (counted with multiplicity).
OEIS Sequence A033992
- Numbers that are divisible by exactly three different primes.
OEIS Sequence A033993
- Numbers that are divisible by exactly four different primes.
OEIS Sequence A036537
- Numbers whose number of divisors is a power of 2.
OEIS Sequence A037143
- Numbers with at most 2 prime factors (counted with multiplicity).
OEIS Sequence A038109
- Divisible exactly by the square of a prime.
OEIS Sequence A039956
- Even squarefree numbers.
OEIS Sequence A046099
- Numbers that are not cubefree. Numbers divisible by a cube greater than 1. Complement of A004709.
OEIS Sequence A046306
- Numbers that are divisible by exactly 6 primes with multiplicity.
OEIS Sequence A046308
- Numbers that are divisible by exactly 7 primes counting multiplicity.
OEIS Sequence A046310
- Numbers that are divisible by exactly 8 primes counting multiplicity.
OEIS Sequence A046312
- Numbers that are divisible by exactly 9 primes with multiplicity.
OEIS Sequence A046314
- Numbers that are divisible by exactly 10 primes with multiplicity.
OEIS Sequence A046321
- Odd numbers divisible by exactly 8 primes (counted with multiplicity).
OEIS Sequence A046386
- Products of four distinct primes.
OEIS Sequence A046387
- Products of 5 distinct primes.
OEIS Sequence A046660
- Excess of n = number of prime divisors (with multiplicity) - number of prime divisors (without multiplicity).
OEIS Sequence A048272
- Number of odd divisors of n minus number of even divisors of n.
OEIS Sequence A051037
- 5-smooth Numbers
OEIS Sequence A051038
- 11-smooth Numbers
OEIS Sequence A051270
- Numbers that are divisible by exactly 5 different primes.
OEIS Sequence A052486
- Achilles numbers - powerful but imperfect
OEIS Sequence A056911
- Odd squarefree numbers.
OEIS Sequence A059269
- Numbers n for which the number of divisors, tau(n), is divisible by 3.
OEIS Sequence A059376
- Jordan function J_3(n).
OEIS Sequence A059377
- Jordan function J_4(n).
OEIS Sequence A059378
- Jordan function J_5(n).
OEIS Sequence A065958
- a(n) = n^2*Product_{distinct primes p dividing n} (1+1/p^2).
OEIS Sequence A065959
- a(n) = n^3*Product_{distinct primes p dividing n} (1+1/p^3).
OEIS Sequence A065960
- a(n) = n^4*Product_{distinct primes p dividing n} (1+1/p^4).
OEIS Sequence A067259
- Cubefree numbers which are not squarefree.
OEIS Sequence A067885
- Product of 6 distinct primes.
OEIS Sequence A069091
- Jordan function J_6(n).
OEIS Sequence A069092
- Jordan function J_7(n).
OEIS Sequence A069093
- Jordan function J_8(n).
OEIS Sequence A069094
- Jordan function J_9(n).
OEIS Sequence A069095
- Jordan function J_10(n).
OEIS Sequence A069272
- 11-almost primes (generalization of semiprimes).
OEIS Sequence A069273
- 12-almost primes (generalization of semiprimes).
OEIS Sequence A069274
- 13-almost primes (generalization of semiprimes).
OEIS Sequence A069275
- 14-almost primes (generalization of semiprimes).
OEIS Sequence A069276
- 15-almost primes (generalization of semiprimes).
OEIS Sequence A069277
- 16-almost primes (generalization of semiprimes).
OEIS Sequence A069278
- 17-almost primes (generalization of semiprimes).
OEIS Sequence A069279
- Products of exactly 18 primes (generalization of semiprimes).
OEIS Sequence A069280
- 19-almost primes (generalization of semiprimes).
OEIS Sequence A069281
- 20-almost primes (generalization of semiprimes).
OEIS Sequence A074969
- Numbers with six distinct prime divisors.
OEIS Sequence A076479
- a(n) = mu(rad(n)), where mu is the Moebius-function
OEIS Sequence A080197
- 13-smooth Numbers
OEIS Sequence A080681
- 17-smooth Numbers
OEIS Sequence A080682
- 19-smooth Numbers
OEIS Sequence A080683
- 23-smooth Numbers
OEIS Sequence A117805
- Start with 3. Square the previous term and subtract it.
OEIS Sequence A123321
- Products of 7 distinct primes (squarefree 7-almost primes).
OEIS Sequence A123322
- Products of 8 distinct primes (squarefree 8-almost primes).
OEIS Sequence A130897
- Numbers that are not exponentially squarefree.
OEIS Sequence A160889
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 4.
OEIS Sequence A160891
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 5.
OEIS Sequence A160893
- a(n) = Sum_{d|n} Möbius(n/d)*d^5/phi(n).
OEIS Sequence A160895
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 7.
OEIS Sequence A160897
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 8.
OEIS Sequence A160908
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 9.
OEIS Sequence A160953
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 10.
OEIS Sequence A160957
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 11.
OEIS Sequence A160960
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 12.
OEIS Sequence A162643
- Numbers such that their number of divisors is not a power of 2.
OEIS Sequence A165412
- Divisors of 2520.
OEIS Sequence A178858
- Divisors of 5040.
OEIS Sequence A178859
- Divisors of 7560.
OEIS Sequence A178860
- Divisors of 10080.
OEIS Sequence A178861
- Divisors of 15120.
OEIS Sequence A178862
- Divisors of 20160.
OEIS Sequence A178863
- Divisors of 25200.
OEIS Sequence A178864
- Divisors of 27720.
OEIS Sequence A178877
- Divisors of 1260.
OEIS Sequence A178878
- Divisors of 1680.
OEIS Sequence A209061
- Exponentially squarefree numbers.
OEIS Sequence A211337
- Numbers n for which the number of divisors, tau(n), is congruent to 1 modulo 3.
OEIS Sequence A211338
- Numbers n for which the number of divisors, tau(n), is congruent to 2 modulo 3.
Link to this section Functions
OEIS Sequence A000037
- Numbers that are not squares (or, the nonsquares).
From OEIS A000037:
Numbers that are not squares (or, the nonsquares). (Formerly M0613 N0223)
Sequence IDs: :a000037
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a000037) |> Sequence.take!(90)
[2,3,5,6,7,8,10,11,12,13,14,15,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99]
OEIS Sequence A000977
- Numbers that are divisible by at least three different primes.
From OEIS A000977:
Numbers that are divisible by at least three different primes.
Sequence IDs: :a000977
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a000977) |> Sequence.take!(50)
[30,42,60,66,70,78,84,90,102,105,110,114,120,126,130,132,138,140,150,154,156,165,168,170,174,180,182,186,190,195,198,204,210,220,222,228,230,231,234,238,240,246,252,255,258,260,264,266,270,273]
OEIS Sequence A001414
- Integer log of n: sum of primes dividing n (with repetition). Also called sopfr(n).
From OEIS A001414:
Integer log of n: sum of primes dividing n (with repetition). Also called sopfr(n). (Formerly M0461 N0168)
Sequence IDs: :a001414
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a001414) |> Sequence.take!(78)
[0,2,3,4,5,5,7,6,6,7,11,7,13,9,8,8,17,8,19,9,10,13,23,9,10,15,9,11,29,10,31,10,14,19,12,10,37,21,16,11,41,12,43,15,11,25,47,11,14,12,20,17,53,11,16,13,22,31,59,12,61,33,13,12,18,16,67,21,26,14,71,12,73,39,13,23,18,18]
OEIS Sequence A001597
- Perfect Powers
From OEIS A001597:
Perfect powers: m^k where m > 0 and k >= 2. (Formerly M3326 N1336)
Sequence IDs: :a001597
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a001597) |> Sequence.take!(20)
[1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, 216]
OEIS Sequence A001694
- Powerful Numbers
From OEIS A001694:
Powerful numbers, definition (1): if a prime p divides n then p^2 must also divide n (also called squareful, square full, square-full or 2-powerful numbers). (Formerly M3325 N1335)
Sequence IDs: :a001694
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a001694) |> Sequence.take!(20)
[1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169]
OEIS Sequence A001826
- Number of divisors of n of form 4k+1.
From OEIS A001826:
Number of divisors of n of form 4k+1. (Formerly )
Sequence IDs: :a001826
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a001826) |> Sequence.take!(105)
[1,1,1,1,2,1,1,1,2,2,1,1,2,1,2,1,2,2,1,2,2,1,1,1,3,2,2,1,2,2,1,1,2,2,2,2,2,1,2,2,2,2,1,1,4,1,1,1,2,3,2,2,2,2,2,1,2,2,1,2,2,1,3,1,4,2,1,2,2,2,1,2,2,2,3,1,2,2,1,2,3,2,1,2,4,1,2,1,2,4,2,1,2,1,2,1,2,2,3,3,2,2,1,2,4]
OEIS Sequence A001842
- Expansion of Sum_{n>=0} x^(4n+3)/(1 - x^(4n+3)).
From OEIS A001842:
Expansion of Sum_{n>=0} x^(4n+3)/(1 - x^(4n+3)). (Formerly )
Sequence IDs: :a001842
Finite: False
Offset: 0
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a001842) |> Sequence.take!(87)
[0,0,0,1,0,0,1,1,0,1,0,1,1,0,1,2,0,0,1,1,0,2,1,1,1,0,0,2,1,0,2,1,0,2,0,2,1,0,1,2,0,0,2,1,1,2,1,1,1,1,0,2,0,0,2,2,1,2,0,1,2,0,1,3,0,0,2,1,0,2,2,1,1,0,0,3,1,2,2,1,0,2,0,1,2,0,1]
OEIS Sequence A002182
- Highly composite numbers: numbers with record value
From OEIS A002182:
Highly composite numbers, definition (1): where d(n), the number of divisors of n (A000005), increases to a record. (Formerly M1025 N0385)
Sequence IDs: :a002182
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a002182) |> Sequence.take!(20)
[1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560]
OEIS Sequence A002473
- 7-smooth Numbers
From OEIS A002473:
7-smooth numbers: positive numbers whose prime divisors are all <= 7. (Formerly M0477 N0177)
Sequence IDs: :a002473
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a002473) |> Sequence.drop(20) |> Sequence.take!(20)
[28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80]
OEIS Sequence A003586
- 3-smooth Numbers
From OEIS A003586:
3-smooth numbers: numbers of the form 2^i*3^j with i, j >= 0.
Sequence IDs: :a003586
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a003586) |> Sequence.drop(20) |> Sequence.take!(20)
[108, 128, 144, 162, 192, 216, 243, 256, 288, 324, 384, 432, 486, 512, 576, 648, 729, 768, 864, 972]
OEIS Sequence A004709
- Cubefree numbers: numbers that are not divisible by any cube > 1.
From OEIS A004709:
Cubefree numbers: numbers that are not divisible by any cube > 1. (Formerly )
Sequence IDs: :a004709
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a004709) |> Sequence.take!(72)
[1,2,3,4,5,6,7,9,10,11,12,13,14,15,17,18,19,20,21,22,23,25,26,28,29,30,31,33,34,35,36,37,38,39,41,42,43,44,45,46,47,49,50,51,52,53,55,57,58,59,60,61,62,63,65,66,67,68,69,70,71,73,74,75,76,77,78,79,82,83,84,85]
OEIS Sequence A005361
- Product of Expoenents of prime factors of N
From OEIS A005361:
Product of exponents of prime factorization of n. (Formerly M0063)
Sequence IDs: :a005361
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a005361) |> Sequence.take!(20)
[1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2]
OEIS Sequence A005934
- Highly powerful numbers: numbers with record value
From OEIS A005934:
Highly powerful numbers: numbers with record value of the product of the exponents in prime factorization (A005361). (Formerly M3333)
Sequence IDs: :a005934
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a005934) |> Sequence.take!(20)
[1, 4, 8, 16, 32, 64, 128, 144, 216, 288, 432, 864, 1296, 1728, 2592, 3456, 5184, 7776, 10368, 15552]
OEIS Sequence A006881
- Squarefree semiprimes: Numbers that are the product of two distinct primes.
From OEIS A006881:
Squarefree semiprimes: Numbers that are the product of two distinct primes. (Formerly M4082)
Sequence IDs: :a006881
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a006881) |> Sequence.take!(60)
[6,10,14,15,21,22,26,33,34,35,38,39,46,51,55,57,58,62,65,69,74,77,82,85,86,87,91,93,94,95,106,111,115,118,119,122,123,129,133,134,141,142,143,145,146,155,158,159,161,166,177,178,183,185,187,194,201,202,203,205]
OEIS Sequence A007018
- a(n) = a(n-1)^2 + a(n-1), a(0)=1.
From OEIS A007018:
a(n) = a(n-1)^2 + a(n-1), a(0)=1. (Formerly M1713)
Sequence IDs: :a007018
Finite: False
Offset: 0
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a007018) |> Sequence.take!(9)
[1,2,6,42,1806,3263442,10650056950806,113423713055421844361000442,12864938683278671740537145998360961546653259485195806]
OEIS Sequence A007304
- Sphenic numbers: products of 3 distinct primes.
From OEIS A007304:
Sphenic numbers: products of 3 distinct primes. (Formerly M5207)
Sequence IDs: :a007304
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a007304) |> Sequence.take!(53)
[30,42,66,70,78,102,105,110,114,130,138,154,165,170,174,182,186,190,195,222,230,231,238,246,255,258,266,273,282,285,286,290,310,318,322,345,354,357,366,370,374,385,399,402,406,410,418,426,429,430,434,435,438]
OEIS Sequence A007412
- The noncubes: n + [ (n + [ n^{1/3} ])^{1/3} ].
From OEIS A007412:
The noncubes: n + [ (n + [ n^{1/3} ])^{1/3} ]. (Formerly M0493)
Sequence IDs: :a007412
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a007412) |> Sequence.take!(54)
[2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57]
OEIS Sequence A007434
- Jordan function J_2(n)
From OEIS A007434:
Jordan function J_2(n) (a generalization of phi(n)). (Formerly M2717)
Sequence IDs: :a007434
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a007434) |> Sequence.take!(48)
[1,3,8,12,24,24,48,48,72,72,120,96,168,144,192,192,288,216,360,288,384,360,528,384,600,504,648,576,840,576,960,768,960,864,1152,864,1368,1080,1344,1152,1680,1152,1848,1440,1728,1584,2208,1536]
OEIS Sequence A007774
- Numbers that are divisible by exactly 2 different primes.
From OEIS A007774:
Numbers that are divisible by exactly 2 different primes.
Sequence IDs: :a007774
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a007774) |> Sequence.take!(65)
[6,10,12,14,15,18,20,21,22,24,26,28,33,34,35,36,38,39,40,44,45,46,48,50,51,52,54,55,56,57,58,62,63,65,68,69,72,74,75,76,77,80,82,85,86,87,88,91,92,93,94,95,96,98,99,100,104,106,108,111,112,115,116,117,118]
OEIS Sequence A007947
- Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.
From OEIS A007947:
Largest squarefree number dividing n: the squarefree kernel of n, rad(n), radical of n.
Sequence IDs: :a007947
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a007947) |> Sequence.take!(78)
[1,2,3,2,5,6,7,2,3,10,11,6,13,14,15,2,17,6,19,10,21,22,23,6,5,26,3,14,29,30,31,2,33,34,35,6,37,38,39,10,41,42,43,22,15,46,47,6,7,10,51,26,53,6,55,14,57,58,59,30,61,62,21,2,65,66,67,34,69,70,71,6,73,74,15,38,77,78]
OEIS Sequence A008966
- 1 if n is squarefree, else 0.
From OEIS A008966:
1 if n is squarefree, else 0. (Formerly )
Sequence IDs: :a008966
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a008966) |> Sequence.take!(100)
[1,1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,1,0,1,0,1,1,1,0,1,1,0,0,1,1,1,0,1,1,1,0,1,1,0,0,1,1,1,0,0,1,1,0,1,1,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
OEIS Sequence A013929
- Numbers that are not squarefree. Numbers that are divisible by a square greater than 1. The complement of A005117.
From OEIS A013929:
Numbers that are not squarefree. Numbers that are divisible by a square greater than 1. The complement of A005117.
Sequence IDs: :a013929
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a013929) |> Sequence.take!(62)
[4,8,9,12,16,18,20,24,25,27,28,32,36,40,44,45,48,49,50,52,54,56,60,63,64,68,72,75,76,80,81,84,88,90,92,96,98,99,100,104,108,112,116,117,120,121,124,125,126,128,132,135,136,140,144,147,148,150,152,153,156,160]
OEIS Sequence A014612
- Numbers that are the product of exactly three primes.
From OEIS A014612:
Numbers that are the product of exactly three (not necessarily distinct) primes. (Formerly )
Sequence IDs: :a014612
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a014612) |> Sequence.take!(57)
[8,12,18,20,27,28,30,42,44,45,50,52,63,66,68,70,75,76,78,92,98,99,102,105,110,114,116,117,124,125,130,138,147,148,153,154,164,165,170,171,172,174,175,182,186,188,190,195,207,212,222,230,231,236,238,242,244]
OEIS Sequence A014613
- Numbers that are products of 4 primes
From OEIS A014613:
Numbers that are products of 4 primes (these numbers are sometimes called "4-almost primes", a generalization of semiprimes).
Sequence IDs: :a014613
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a014613) |> Sequence.take!(54)
[16,24,36,40,54,56,60,81,84,88,90,100,104,126,132,135,136,140,150,152,156,184,189,196,198,204,210,220,225,228,232,234,248,250,260,276,294,296,297,306,308,315,328,330,340,342,344,348,350,351,364,372,375,376]
OEIS Sequence A014614
- Numbers that are products of 5 primes
From OEIS A014614:
Numbers that are products of 5 primes (or 5-almost primes, a generalization of semiprimes).
Sequence IDs: :a014614
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a014614) |> Sequence.take!(52)
[32,48,72,80,108,112,120,162,168,176,180,200,208,243,252,264,270,272,280,300,304,312,368,378,392,396,405,408,420,440,450,456,464,468,496,500,520,552,567,588,592,594,612,616,630,656,660,675,680,684,688,696]
OEIS Sequence A018253
- Divisors of 24.
From OEIS A018253:
Divisors of 24. (Formerly )
Sequence IDs: :a018253
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a018253) |> Sequence.take!(8)
[1,2,3,4,6,8,12,24]
OEIS Sequence A018256
- Divisors of 36.
From OEIS A018256:
Divisors of 36. (Formerly )
Sequence IDs: :a018256
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a018256) |> Sequence.take!(9)
[1,2,3,4,6,9,12,18,36]
OEIS Sequence A018261
- Divisors of 48.
From OEIS A018261:
Divisors of 48. (Formerly )
Sequence IDs: :a018261
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a018261) |> Sequence.take!(10)
[1,2,3,4,6,8,12,16,24,48]
OEIS Sequence A018266
- Divisors of 60.
From OEIS A018266:
Divisors of 60. (Formerly )
Sequence IDs: :a018266
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a018266) |> Sequence.take!(12)
[1,2,3,4,5,6,10,12,15,20,30,60]
OEIS Sequence A018293
- Divisors of 120.
From OEIS A018293:
Divisors of 120. (Formerly )
Sequence IDs: :a018293
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a018293) |> Sequence.take!(16)
[1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120]
OEIS Sequence A018321
- Divisors of 180.
From OEIS A018321:
Divisors of 180. (Formerly )
Sequence IDs: :a018321
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a018321) |> Sequence.take!(18)
[1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180]
OEIS Sequence A018350
- Divisors of 240.
From OEIS A018350:
Divisors of 240. (Formerly )
Sequence IDs: :a018350
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a018350) |> Sequence.take!(20)
[1,2,3,4,5,6,8,10,12,15,16,20,24,30,40,48,60,80,120,240]
OEIS Sequence A018412
- Divisors of 360.
From OEIS A018412:
Divisors of 360. (Formerly )
Sequence IDs: :a018412
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a018412) |> Sequence.take!(24)
[1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,45,60,72,90,120,180,360]
OEIS Sequence A018609
- Divisors of 720.
From OEIS A018609:
Divisors of 720. (Formerly )
Sequence IDs: :a018609
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a018609) |> Sequence.take!(30)
[1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,30,36,40,45,48,60,72,80,90,120,144,180,240,360,720]
OEIS Sequence A018676
- Divisors of 840.
From OEIS A018676:
Divisors of 840. (Formerly )
Sequence IDs: :a018676
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a018676) |> Sequence.take!(32)
[1,2,3,4,5,6,7,8,10,12,14,15,20,21,24,28,30,35,40,42,56,60,70,84,105,120,140,168,210,280,420,840]
OEIS Sequence A030513
- Numbers with 4 divisors.
From OEIS A030513:
Numbers with 4 divisors. (Formerly )
Sequence IDs: :a030513
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a030513) |> Sequence.take!(58)
[6,8,10,14,15,21,22,26,27,33,34,35,38,39,46,51,55,57,58,62,65,69,74,77,82,85,86,87,91,93,94,95,106,111,115,118,119,122,123,125,129,133,134,141,142,143,145,146,155,158,159,161,166,177,178,183,185,187]
OEIS Sequence A030515
- Numbers with exactly 6 divisors.
From OEIS A030515:
Numbers with exactly 6 divisors.
Sequence IDs: :a030515
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a030515) |> Sequence.take!(52)
[12,18,20,28,32,44,45,50,52,63,68,75,76,92,98,99,116,117,124,147,148,153,164,171,172,175,188,207,212,236,242,243,244,245,261,268,275,279,284,292,316,325,332,333,338,356,363,369,387,388,404,412]
OEIS Sequence A033273
- Number of nonprime divisors of n.
From OEIS A033273:
Number of nonprime divisors of n.
Sequence IDs: :a033273
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a033273) |> Sequence.take!(104)
[1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,4,1,4,1,4,2,2,1,6,2,2,3,4,1,5,1,5,2,2,2,7,1,2,2,6,1,5,1,4,4,2,1,8,2,4,2,4,1,6,2,6,2,2,1,9,1,2,4,6,2,5,1,4,2,5,1,10,1,2,4,4,2,5,1,8,4,2,1,9,2,2,2,6,1,9,2,4,2,2,2,10,1,4,4,7,1,5,1,6]
OEIS Sequence A033942
- At least 3 prime factors (counted with multiplicity).
From OEIS A033942:
At least 3 prime factors (counted with multiplicity).
Sequence IDs: :a033942
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a033942) |> Sequence.take!(61)
[8,12,16,18,20,24,27,28,30,32,36,40,42,44,45,48,50,52,54,56,60,63,64,66,68,70,72,75,76,78,80,81,84,88,90,92,96,98,99,100,102,104,105,108,110,112,114,116,117,120,124,125,126,128,130,132,135,136,138,140,144]
OEIS Sequence A033987
- Numbers that are divisible by at least 4 primes (counted with multiplicity).
From OEIS A033987:
Numbers that are divisible by at least 4 primes (counted with multiplicity).
Sequence IDs: :a033987
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a033987) |> Sequence.take!(55)
[16,24,32,36,40,48,54,56,60,64,72,80,81,84,88,90,96,100,104,108,112,120,126,128,132,135,136,140,144,150,152,156,160,162,168,176,180,184,189,192,196,198,200,204,208,210,216,220,224,225,228,232,234,240,243]
OEIS Sequence A033992
- Numbers that are divisible by exactly three different primes.
From OEIS A033992:
Numbers that are divisible by exactly three different primes.
Sequence IDs: :a033992
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a033992) |> Sequence.take!(53)
[30,42,60,66,70,78,84,90,102,105,110,114,120,126,130,132,138,140,150,154,156,165,168,170,174,180,182,186,190,195,198,204,220,222,228,230,231,234,238,240,246,252,255,258,260,264,266,270,273,276,280,282,285]
OEIS Sequence A033993
- Numbers that are divisible by exactly four different primes.
From OEIS A033993:
Numbers that are divisible by exactly four different primes. (Formerly )
Sequence IDs: :a033993
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a033993) |> Sequence.take!(46)
[210,330,390,420,462,510,546,570,630,660,690,714,770,780,798,840,858,870,910,924,930,966,990,1020,1050,1092,1110,1122,1140,1155,1170,1190,1218,1230,1254,1260,1290,1302,1320,1326,1330,1365,1380,1386,1410,1428]
OEIS Sequence A036537
- Numbers whose number of divisors is a power of 2.
From OEIS A036537:
Numbers whose number of divisors is a power of 2. (Formerly )
Sequence IDs: :a036537
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a036537) |> Sequence.take!(70)
[1,2,3,5,6,7,8,10,11,13,14,15,17,19,21,22,23,24,26,27,29,30,31,33,34,35,37,38,39,40,41,42,43,46,47,51,53,54,55,56,57,58,59,61,62,65,66,67,69,70,71,73,74,77,78,79,82,83,85,86,87,88,89,91,93,94,95,97,101,102]
OEIS Sequence A037143
- Numbers with at most 2 prime factors (counted with multiplicity).
From OEIS A037143:
Numbers with at most 2 prime factors (counted with multiplicity).
Sequence IDs: :a037143
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a037143) |> Sequence.take!(69)
[1,2,3,4,5,6,7,9,10,11,13,14,15,17,19,21,22,23,25,26,29,31,33,34,35,37,38,39,41,43,46,47,49,51,53,55,57,58,59,61,62,65,67,69,71,73,74,77,79,82,83,85,86,87,89,91,93,94,95,97,101,103,106,107,109,111,113,115,118]
OEIS Sequence A038109
- Divisible exactly by the square of a prime.
From OEIS A038109:
Divisible exactly by the square of a prime.
Sequence IDs: :a038109
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a038109) |> Sequence.take!(58)
[4,9,12,18,20,25,28,36,44,45,49,50,52,60,63,68,72,75,76,84,90,92,98,99,100,108,116,117,121,124,126,132,140,144,147,148,150,153,156,164,169,171,172,175,180,188,196,198,200,204,207,212,220,225,228,234,236,242]
OEIS Sequence A039956
- Even squarefree numbers.
From OEIS A039956:
Even squarefree numbers. (Formerly )
Sequence IDs: :a039956
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a039956) |> Sequence.take!(54)
[2,6,10,14,22,26,30,34,38,42,46,58,62,66,70,74,78,82,86,94,102,106,110,114,118,122,130,134,138,142,146,154,158,166,170,174,178,182,186,190,194,202,206,210,214,218,222,226,230,238,246,254,258,262]
OEIS Sequence A046099
- Numbers that are not cubefree. Numbers divisible by a cube greater than 1. Complement of A004709.
From OEIS A046099:
Numbers that are not cubefree. Numbers divisible by a cube greater than 1. Complement of A004709. (Formerly )
Sequence IDs: :a046099
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a046099) |> Sequence.take!(55)
[8,16,24,27,32,40,48,54,56,64,72,80,81,88,96,104,108,112,120,125,128,135,136,144,152,160,162,168,176,184,189,192,200,208,216,224,232,240,243,248,250,256,264,270,272,280,288,296,297,304,312,320,324,328,336]
OEIS Sequence A046306
- Numbers that are divisible by exactly 6 primes with multiplicity.
From OEIS A046306:
Numbers that are divisible by exactly 6 primes with multiplicity.
Sequence IDs: :a046306
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a046306) |> Sequence.take!(49)
[64,96,144,160,216,224,240,324,336,352,360,400,416,486,504,528,540,544,560,600,608,624,729,736,756,784,792,810,816,840,880,900,912,928,936,992,1000,1040,1104,1134,1176,1184,1188,1215,1224,1232,1260,1312,1320]
OEIS Sequence A046308
- Numbers that are divisible by exactly 7 primes counting multiplicity.
From OEIS A046308:
Numbers that are divisible by exactly 7 primes counting multiplicity. (Formerly )
Sequence IDs: :a046308
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a046308) |> Sequence.take!(44)
[128,192,288,320,432,448,480,648,672,704,720,800,832,972,1008,1056,1080,1088,1120,1200,1216,1248,1458,1472,1512,1568,1584,1620,1632,1680,1760,1800,1824,1856,1872,1984,2000,2080,2187,2208,2268,2352,2368,2376]
OEIS Sequence A046310
- Numbers that are divisible by exactly 8 primes counting multiplicity.
From OEIS A046310:
Numbers that are divisible by exactly 8 primes counting multiplicity.
Sequence IDs: :a046310
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a046310) |> Sequence.take!(43)
[256,384,576,640,864,896,960,1296,1344,1408,1440,1600,1664,1944,2016,2112,2160,2176,2240,2400,2432,2496,2916,2944,3024,3136,3168,3240,3264,3360,3520,3600,3648,3712,3744,3968,4000,4160,4374,4416,4536,4704,4736]
OEIS Sequence A046312
- Numbers that are divisible by exactly 9 primes with multiplicity.
From OEIS A046312:
Numbers that are divisible by exactly 9 primes with multiplicity.
Sequence IDs: :a046312
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a046312) |> Sequence.take!(42)
[512,768,1152,1280,1728,1792,1920,2592,2688,2816,2880,3200,3328,3888,4032,4224,4320,4352,4480,4800,4864,4992,5832,5888,6048,6272,6336,6480,6528,6720,7040,7200,7296,7424,7488,7936,8000,8320,8748,8832,9072,9408]
OEIS Sequence A046314
- Numbers that are divisible by exactly 10 primes with multiplicity.
From OEIS A046314:
Numbers that are divisible by exactly 10 primes with multiplicity.
Sequence IDs: :a046314
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a046314) |> Sequence.take!(38)
[1024,1536,2304,2560,3456,3584,3840,5184,5376,5632,5760,6400,6656,7776,8064,8448,8640,8704,8960,9600,9728,9984,11664,11776,12096,12544,12672,12960,13056,13440,14080,14400,14592,14848,14976,15872,16000,16640]
OEIS Sequence A046321
- Odd numbers divisible by exactly 8 primes (counted with multiplicity).
From OEIS A046321:
Odd numbers divisible by exactly 8 primes (counted with multiplicity).
Sequence IDs: :a046321
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a046321) |> Sequence.take!(33)
[6561,10935,15309,18225,24057,25515,28431,30375,35721,37179,40095,41553,42525,47385,50301,50625,56133,59535,61965,63423,66339,66825,67797,69255,70875,78975,80919,83349,83835,84375,86751,88209,89667]
OEIS Sequence A046386
- Products of four distinct primes.
From OEIS A046386:
Products of four distinct primes. (Formerly )
Sequence IDs: :a046386
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a046386) |> Sequence.take!(45)
[210,330,390,462,510,546,570,690,714,770,798,858,870,910,930,966,1110,1122,1155,1190,1218,1230,1254,1290,1302,1326,1330,1365,1410,1430,1482,1518,1554,1590,1610,1722,1770,1785,1794,1806,1830,1870,1914,1938,1974]
OEIS Sequence A046387
- Products of 5 distinct primes.
From OEIS A046387:
Products of 5 distinct primes. (Formerly )
Sequence IDs: :a046387
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a046387) |> Sequence.take!(38)
[2310,2730,3570,3990,4290,4830,5610,6006,6090,6270,6510,6630,7410,7590,7770,7854,8610,8778,8970,9030,9282,9570,9690,9870,10010,10230,10374,10626,11130,11310,11730,12090,12210,12390,12558,12810,13090,13110]
OEIS Sequence A046660
- Excess of n = number of prime divisors (with multiplicity) - number of prime divisors (without multiplicity).
From OEIS A046660:
Excess of n = number of prime divisors (with multiplicity) - number of prime divisors (without multiplicity).
Sequence IDs: :a046660
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a046660) |> Sequence.take!(111)
[0,0,0,1,0,0,0,2,1,0,0,1,0,0,0,3,0,1,0,1,0,0,0,2,1,0,2,1,0,0,0,4,0,0,0,2,0,0,0,2,0,0,0,1,1,0,0,3,1,1,0,1,0,2,0,2,0,0,0,1,0,0,1,5,0,0,0,1,0,0,0,3,0,0,1,1,0,0,0,3,3,0,0,1,0,0,0,2,0,1,0,1,0,0,0,4,0,1,1,2,0,0,0,2,0,0,0,3,0,0,0]
OEIS Sequence A048272
- Number of odd divisors of n minus number of even divisors of n.
From OEIS A048272:
Number of odd divisors of n minus number of even divisors of n.
Sequence IDs: :a048272
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a048272) |> Sequence.take!(93)
[1,0,2,-1,2,0,2,-2,3,0,2,-2,2,0,4,-3,2,0,2,-2,4,0,2,-4,3,0,4,-2,2,0,2,-4,4,0,4,-3,2,0,4,-4,2,0,2,-2,6,0,2,-6,3,0,4,-2,2,0,4,-4,4,0,2,-4,2,0,6,-5,4,0,2,-2,4,0,2,-6,2,0,6,-2,4,0,2,-6,5,0,2,-4,4,0,4,-4,2,0,4,-2,4]
OEIS Sequence A051037
- 5-smooth Numbers
From OEIS A051037:
5-smooth numbers, i.e., numbers whose prime divisors are all <= 5
Sequence IDs: :a051037
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a051037) |> Sequence.drop(20) |> Sequence.take!(20)
[40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144]
OEIS Sequence A051038
- 11-smooth Numbers
From OEIS A051038:
11-smooth numbers: numbers whose prime divisors are all <= 11.
Sequence IDs: :a051038
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a051038) |> Sequence.drop(20) |> Sequence.take!(20)
[25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63]
OEIS Sequence A051270
- Numbers that are divisible by exactly 5 different primes.
From OEIS A051270:
Numbers that are divisible by exactly 5 different primes.
Sequence IDs: :a051270
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a051270) |> Sequence.take!(40)
[2310,2730,3570,3990,4290,4620,4830,5460,5610,6006,6090,6270,6510,6630,6930,7140,7410,7590,7770,7854,7980,8190,8580,8610,8778,8970,9030,9240,9282,9570,9660,9690,9870,10010,10230,10374,10626,10710,10920,11130]
OEIS Sequence A052486
- Achilles numbers - powerful but imperfect
From OEIS A052486:
Achilles numbers - powerful but imperfect: if n = Product(p_i^e_i) then all e_i > 1 (i.e., powerful), but the highest common factor of the e_i is 1, i.e., not a perfect power.
Sequence IDs: :a052486
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a052486) |> Sequence.take!(20)
[72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1800]
OEIS Sequence A056911
- Odd squarefree numbers.
From OEIS A056911:
Odd squarefree numbers. (Formerly )
Sequence IDs: :a056911
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a056911) |> Sequence.take!(62)
[1,3,5,7,11,13,15,17,19,21,23,29,31,33,35,37,39,41,43,47,51,53,55,57,59,61,65,67,69,71,73,77,79,83,85,87,89,91,93,95,97,101,103,105,107,109,111,113,115,119,123,127,129,131,133,137,139,141,143,145,149,151]
OEIS Sequence A059269
- Numbers n for which the number of divisors, tau(n), is divisible by 3.
From OEIS A059269:
Numbers n for which the number of divisors, tau(n), is divisible by 3. (Formerly )
Sequence IDs: :a059269
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a059269) |> Sequence.take!(59)
[4,9,12,18,20,25,28,32,36,44,45,49,50,52,60,63,68,72,75,76,84,90,92,96,98,99,100,108,116,117,121,124,126,132,140,144,147,148,150,153,156,160,164,169,171,172,175,180,188,196,198,200,204,207,212,220,224,225,228]
OEIS Sequence A059376
- Jordan function J_3(n).
From OEIS A059376:
Jordan function J_3(n). (Formerly )
Sequence IDs: :a059376
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a059376) |> Sequence.take!(39)
[1,7,26,56,124,182,342,448,702,868,1330,1456,2196,2394,3224,3584,4912,4914,6858,6944,8892,9310,12166,11648,15500,15372,18954,19152,24388,22568,29790,28672,34580,34384,42408,39312,50652,48006,57096]
OEIS Sequence A059377
- Jordan function J_4(n).
From OEIS A059377:
Jordan function J_4(n). (Formerly )
Sequence IDs: :a059377
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a059377) |> Sequence.take!(33)
[1,15,80,240,624,1200,2400,3840,6480,9360,14640,19200,28560,36000,49920,61440,83520,97200,130320,149760,192000,219600,279840,307200,390000,428400,524880,576000,707280,748800,923520,983040,1171200]
OEIS Sequence A059378
- Jordan function J_5(n).
From OEIS A059378:
Jordan function J_5(n). (Formerly )
Sequence IDs: :a059378
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a059378) |> Sequence.take!(29)
[1,31,242,992,3124,7502,16806,31744,58806,96844,161050,240064,371292,520986,756008,1015808,1419856,1822986,2476098,3099008,4067052,4992550,6436342,7682048,9762500,11510052,14289858,16671552,20511148]
OEIS Sequence A065958
- a(n) = n^2*Product_{distinct primes p dividing n} (1+1/p^2).
From OEIS A065958:
a(n) = n^2*Product_{distinct primes p dividing n} (1+1/p^2).
Sequence IDs: :a065958
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a065958) |> Sequence.take!(47)
[1,5,10,20,26,50,50,80,90,130,122,200,170,250,260,320,290,450,362,520,500,610,530,800,650,850,810,1000,842,1300,962,1280,1220,1450,1300,1800,1370,1810,1700,2080,1682,2500,1850,2440,2340,2650,2210]
OEIS Sequence A065959
- a(n) = n^3*Product_{distinct primes p dividing n} (1+1/p^3).
From OEIS A065959:
a(n) = n^3*Product_{distinct primes p dividing n} (1+1/p^3). (Formerly )
Sequence IDs: :a065959
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a065959) |> Sequence.take!(39)
[1,9,28,72,126,252,344,576,756,1134,1332,2016,2198,3096,3528,4608,4914,6804,6860,9072,9632,11988,12168,16128,15750,19782,20412,24768,24390,31752,29792,36864,37296,44226,43344,54432,50654,61740,61544]
OEIS Sequence A065960
- a(n) = n^4*Product_{distinct primes p dividing n} (1+1/p^4).
From OEIS A065960:
a(n) = n^4*Product_{distinct primes p dividing n} (1+1/p^4).
Sequence IDs: :a065960
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a065960) |> Sequence.take!(33)
[1,17,82,272,626,1394,2402,4352,6642,10642,14642,22304,28562,40834,51332,69632,83522,112914,130322,170272,196964,248914,279842,356864,391250,485554,538002,653344,707282,872644,923522,1114112,1200644]
OEIS Sequence A067259
- Cubefree numbers which are not squarefree.
From OEIS A067259:
Cubefree numbers which are not squarefree.
Sequence IDs: :a067259
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a067259) |> Sequence.take!(51)
[4,9,12,18,20,25,28,36,44,45,49,50,52,60,63,68,75,76,84,90,92,98,99,100,116,117,121,124,126,132,140,147,148,150,153,156,164,169,171,172,175,180,188,196,198,204,207,212,220,225,228]
OEIS Sequence A067885
- Product of 6 distinct primes.
From OEIS A067885:
Product of 6 distinct primes. (Formerly )
Sequence IDs: :a067885
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a067885) |> Sequence.take!(32)
[30030,39270,43890,46410,51870,53130,62790,66990,67830,71610,72930,79170,81510,82110,84630,85470,91770,94710,98670,99330,101010,102102,103530,106590,108570,110670,111930,114114,115710,117390,122430,123690]
OEIS Sequence A069091
- Jordan function J_6(n).
From OEIS A069091:
Jordan function J_6(n).
Sequence IDs: :a069091
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a069091) |> Sequence.take!(27)
[1,63,728,4032,15624,45864,117648,258048,530712,984312,1771560,2935296,4826808,7411824,11374272,16515072,24137568,33434856,47045880,62995968,85647744,111608280,148035888,187858944,244125000,304088904,386889048]
OEIS Sequence A069092
- Jordan function J_7(n).
From OEIS A069092:
Jordan function J_7(n).
Sequence IDs: :a069092
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a069092) |> Sequence.take!(24)
[1,127,2186,16256,78124,277622,823542,2080768,4780782,9921748,19487170,35535616,62748516,104589834,170779064,266338304,410338672,607159314,893871738,1269983744,1800262812,2474870590,3404825446,4548558848]
OEIS Sequence A069093
- Jordan function J_8(n).
From OEIS A069093:
Jordan function J_8(n).
Sequence IDs: :a069093
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a069093) |> Sequence.take!(21)
[1,255,6560,65280,390624,1672800,5764800,16711680,43040160,99609120,214358880,428236800,815730720,1470024000,2562493440,4278190080,6975757440,10975240800,16983563040,25499934720,37817088000]
OEIS Sequence A069094
- Jordan function J_9(n).
From OEIS A069094:
Jordan function J_9(n).
Sequence IDs: :a069094
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a069094) |> Sequence.take!(20)
[1,511,19682,261632,1953124,10057502,40353606,133955584,387400806,998046364,2357947690,5149441024,10604499372,20620692666,38441386568,68585259008,118587876496,197961811866,322687697778,510999738368]
OEIS Sequence A069095
- Jordan function J_10(n).
From OEIS A069095:
Jordan function J_10(n).
Sequence IDs: :a069095
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a069095) |> Sequence.take!(19)
[1,1023,59048,1047552,9765624,60406104,282475248,1072693248,3486725352,9990233352,25937424600,61855850496,137858491848,288972178704,576640565952,1098437885952,2015993900448,3566920035096,6131066257800]
OEIS Sequence A069272
- 11-almost primes (generalization of semiprimes).
From OEIS A069272:
11-almost primes (generalization of semiprimes).
Sequence IDs: :a069272
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a069272) |> Sequence.take!(34)
[2048,3072,4608,5120,6912,7168,7680,10368,10752,11264,11520,12800,13312,15552,16128,16896,17280,17408,17920,19200,19456,19968,23328,23552,24192,25088,25344,25920,26112,26880,28160,28800,29184,29696]
OEIS Sequence A069273
- 12-almost primes (generalization of semiprimes).
From OEIS A069273:
12-almost primes (generalization of semiprimes).
Sequence IDs: :a069273
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a069273) |> Sequence.take!(34)
[4096,6144,9216,10240,13824,14336,15360,20736,21504,22528,23040,25600,26624,31104,32256,33792,34560,34816,35840,38400,38912,39936,46656,47104,48384,50176,50688,51840,52224,53760,56320,57600,58368,59392]
OEIS Sequence A069274
- 13-almost primes (generalization of semiprimes).
From OEIS A069274:
13-almost primes (generalization of semiprimes).
Sequence IDs: :a069274
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a069274) |> Sequence.take!(32)
[8192,12288,18432,20480,27648,28672,30720,41472,43008,45056,46080,51200,53248,62208,64512,67584,69120,69632,71680,76800,77824,79872,93312,94208,96768,100352,101376,103680,104448,107520,112640,115200]
OEIS Sequence A069275
- 14-almost primes (generalization of semiprimes).
From OEIS A069275:
14-almost primes (generalization of semiprimes).
Sequence IDs: :a069275
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a069275) |> Sequence.take!(5)
[16384,24576,36864,40960,55296]
OEIS Sequence A069276
- 15-almost primes (generalization of semiprimes).
From OEIS A069276:
15-almost primes (generalization of semiprimes).
Sequence IDs: :a069276
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a069276) |> Sequence.take!(5)
[32768,49152,73728,81920,110592]
OEIS Sequence A069277
- 16-almost primes (generalization of semiprimes).
From OEIS A069277:
16-almost primes (generalization of semiprimes).
Sequence IDs: :a069277
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a069277) |> Sequence.take!(5)
[65536,98304,147456,163840,221184]
OEIS Sequence A069278
- 17-almost primes (generalization of semiprimes).
From OEIS A069278:
17-almost primes (generalization of semiprimes).
Sequence IDs: :a069278
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a069278) |> Sequence.take!(3)
[131072,196608,294912]
OEIS Sequence A069279
- Products of exactly 18 primes (generalization of semiprimes).
From OEIS A069279:
Products of exactly 18 primes (generalization of semiprimes).
Sequence IDs: :a069279
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a069279) |> Sequence.take!(2)
[262144,393216]
OEIS Sequence A069280
- 19-almost primes (generalization of semiprimes).
From OEIS A069280:
19-almost primes (generalization of semiprimes).
Sequence IDs: :a069280
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a069280) |> Sequence.take!(1)
[524288]
OEIS Sequence A069281
- 20-almost primes (generalization of semiprimes).
From OEIS A069281:
20-almost primes (generalization of semiprimes).
Sequence IDs: :a069281
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a069281) |> Sequence.take!(1)
[1048576]
OEIS Sequence A074969
- Numbers with six distinct prime divisors.
From OEIS A074969:
Numbers with six distinct prime divisors.
Sequence IDs: :a074969
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a074969) |> Sequence.take!(32)
[30030,39270,43890,46410,51870,53130,60060,62790,66990,67830,71610,72930,78540,79170,81510,82110,84630,85470,87780,90090,91770,92820,94710,98670,99330,101010,102102,103530,103740,106260,106590,108570]
OEIS Sequence A076479
- a(n) = mu(rad(n)), where mu is the Moebius-function
From OEIS A076479:
a(n) = mu(rad(n)), where mu is the Moebius-function (A008683) and rad is the radical or squarefree kernel (A007947).
Sequence IDs: :a076479
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a076479) |> Sequence.take!(87)
[1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,1,1,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,1,1,1,-1,-1,-1,1,1,1,-1,1,-1,1,1,1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1]
OEIS Sequence A080197
- 13-smooth Numbers
From OEIS A080197:
13-smooth numbers: numbers whose prime divisors are all <= 13.
Sequence IDs: :a080197
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a080197) |> Sequence.drop(20) |> Sequence.take!(20)
[24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 52, 54]
OEIS Sequence A080681
- 17-smooth Numbers
From OEIS A080681:
17-smooth numbers: numbers whose prime divisors are all <= 17.
Sequence IDs: :a080681
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a080681) |> Sequence.drop(20) |> Sequence.take!(20)
[22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50]
OEIS Sequence A080682
- 19-smooth Numbers
From OEIS A080682:
19-smooth numbers: numbers whose prime divisors are all <= 19.
Sequence IDs: :a080682
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a080682) |> Sequence.drop(20) |> Sequence.take!(20)
[21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 48]
OEIS Sequence A080683
- 23-smooth Numbers
From OEIS A080683:
23-smooth numbers: numbers whose prime divisors are all <= 23.
Sequence IDs: :a080683
Finite: False
Offset: 1
Example
iex> Sequence.create(Sequence.OEIS.Factors, :a080683) |> Sequence.drop(20) |> Sequence.take!(20)
[21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45]
OEIS Sequence A117805
- Start with 3. Square the previous term and subtract it.
From OEIS A117805:
Start with 3. Square the previous term and subtract it.
Sequence IDs: :a117805
Finite: False
Offset: 0
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a117805) |> Sequence.take!(9)
[3,6,30,870,756030,571580604870,326704387862983487112030,106735757048926752040856495274871386126283608870,11392521832807516835658052968328096177131218666695418950023483907701862019030266123104859068030]
OEIS Sequence A123321
- Products of 7 distinct primes (squarefree 7-almost primes).
From OEIS A123321:
Products of 7 distinct primes (squarefree 7-almost primes).
Sequence IDs: :a123321
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a123321) |> Sequence.take!(2)
[510510,570570]
OEIS Sequence A123322
- Products of 8 distinct primes (squarefree 8-almost primes).
From OEIS A123322:
Products of 8 distinct primes (squarefree 8-almost primes).
Sequence IDs: :a123322
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a123322) |> Sequence.take!(1)
[9699690]
OEIS Sequence A130897
- Numbers that are not exponentially squarefree.
From OEIS A130897:
Numbers that are not exponentially squarefree.
Sequence IDs: :a130897
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a130897) |> Sequence.take!(43)
[16,48,80,81,112,144,162,176,208,240,256,272,304,324,336,368,400,405,432,464,496,512,528,560,567,592,624,625,648,656,688,720,752,768,784,810,816,848,880,891,912,944,976]
OEIS Sequence A160889
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 4.
From OEIS A160889:
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 4.
Sequence IDs: :a160889
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a160889) |> Sequence.take!(49)
[1,7,13,28,31,91,57,112,117,217,133,364,183,399,403,448,307,819,381,868,741,931,553,1456,775,1281,1053,1596,871,2821,993,1792,1729,2149,1767,3276,1407,2667,2379,3472,1723,5187,1893,3724,3627,3871,2257,5824,2793]
OEIS Sequence A160891
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 5.
From OEIS A160891:
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 5.
Sequence IDs: :a160891
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a160891) |> Sequence.take!(39)
[1,15,40,120,156,600,400,960,1080,2340,1464,4800,2380,6000,6240,7680,5220,16200,7240,18720,16000,21960,12720,38400,19500,35700,29160,48000,25260,93600,30784,61440,58560,78300,62400,129600,52060,108600,95200]
OEIS Sequence A160893
- a(n) = Sum_{d|n} Möbius(n/d)*d^5/phi(n).
From OEIS A160893:
a(n) = Sum_{d|n} Möbius(n/d)*d^5/phi(n).
Sequence IDs: :a160893
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a160893) |> Sequence.take!(33)
[1,31,121,496,781,3751,2801,7936,9801,24211,16105,60016,30941,86831,94501,126976,88741,303831,137561,387376,338921,499255,292561,960256,488125,959171,793881,1389296,732541,2929531,954305,2031616,1948705]
OEIS Sequence A160895
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 7.
From OEIS A160895:
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 7. (Formerly )
Sequence IDs: :a160895
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a160895) |> Sequence.take!(30)
[1,63,364,2016,3906,22932,19608,64512,88452,246078,177156,733824,402234,1235304,1421784,2064384,1508598,5572476,2613660,7874496,7137312,11160828,6728904,23482368,12206250,25340742,21493836,39529728,21243690,89572392]
OEIS Sequence A160897
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 8.
From OEIS A160897:
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 8.
Sequence IDs: :a160897
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a160897) |> Sequence.take!(26)
[1,127,1093,8128,19531,138811,137257,520192,796797,2480437,1948717,8883904,5229043,17431639,21347383,33292288,25646167,101193219,49659541,158747968,150021901,247487059,154764793,568569856,305171875,664088461]
OEIS Sequence A160908
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 9.
From OEIS A160908:
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 9.
Sequence IDs: :a160908
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a160908) |> Sequence.take!(24)
[1,255,3280,32640,97656,836400,960800,4177920,7173360,24902280,21435888,107059200,67977560,245004000,320311680,534773760,435984840,1829206800,943531280,3187491840,3151424000,5466151440,3559590240,13703577600]
OEIS Sequence A160953
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 10.
From OEIS A160953:
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 10.
Sequence IDs: :a160953
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a160953) |> Sequence.take!(21)
[1,511,9841,130816,488281,5028751,6725601,33488896,64566801,249511591,235794769,1287360256,883708281,3436782111,4805173321,8573157376,7411742281,32993635311,17927094321,63874967296,66186639441]
OEIS Sequence A160957
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 11.
From OEIS A160957:
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 11.
Sequence IDs: :a160957
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a160957) |> Sequence.take!(20)
[1,1023,29524,523776,2441406,30203052,47079208,268173312,581120892,2497558338,2593742460,15463962624,11488207654,48162029784,72080070744,137304735744,125999618778,594486672516,340614792100,1278749869056]
OEIS Sequence A160960
- a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 12.
From OEIS A160960:
a(n) = Sum_{d|n} Moebius(n/d)*d^(b-1)/phi(n) for b = 12.
Sequence IDs: :a160960
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a160960) |> Sequence.take!(18)
[1,2047,88573,2096128,12207031,181308931,329554457,2146435072,5230147077,24987792457,28531167061,185660345344,149346699503,674597973479,1081213356763,2197949513728,2141993519227,10706111066619]
OEIS Sequence A162643
- Numbers such that their number of divisors is not a power of 2.
From OEIS A162643:
Numbers such that their number of divisors is not a power of 2.
Sequence IDs: :a162643
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a162643) |> Sequence.take!(60)
[4,9,12,16,18,20,25,28,32,36,44,45,48,49,50,52,60,63,64,68,72,75,76,80,81,84,90,92,96,98,99,100,108,112,116,117,121,124,126,132,140,144,147,148,150,153,156,160,162,164,169,171,172,175,176,180,188,192,196,198]
OEIS Sequence A165412
- Divisors of 2520.
From OEIS A165412:
Divisors of 2520. (Formerly )
Sequence IDs: :a165412
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a165412) |> Sequence.take!(48)
[1,2,3,4,5,6,7,8,9,10,12,14,15,18,20,21,24,28,30,35,36,40,42,45,56,60,63,70,72,84,90,105,120,126,140,168,180,210,252,280,315,360,420,504,630,840,1260,2520]
OEIS Sequence A178858
- Divisors of 5040.
From OEIS A178858:
Divisors of 5040. (Formerly )
Sequence IDs: :a178858
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a178858) |> Sequence.take!(60)
[1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,28,30,35,36,40,42,45,48,56,60,63,70,72,80,84,90,105,112,120,126,140,144,168,180,210,240,252,280,315,336,360,420,504,560,630,720,840,1008,1260,1680,2520,5040]
OEIS Sequence A178859
- Divisors of 7560.
From OEIS A178859:
Divisors of 7560. (Formerly )
Sequence IDs: :a178859
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a178859) |> Sequence.take!(61)
[1,2,3,4,5,6,7,8,9,10,12,14,15,18,20,21,24,27,28,30,35,36,40,42,45,54,56,60,63,70,72,84,90,105,108,120,126,135,140,168,180,189,210,216,252,270,280,315,360,378,420,504,540,630,756,840,945,1080,1260,1512,1890]
OEIS Sequence A178860
- Divisors of 10080.
From OEIS A178860:
Divisors of 10080. (Formerly )
Sequence IDs: :a178860
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a178860) |> Sequence.take!(63)
[1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,28,30,32,35,36,40,42,45,48,56,60,63,70,72,80,84,90,96,105,112,120,126,140,144,160,168,180,210,224,240,252,280,288,315,336,360,420,480,504,560,630,672,720,840,1008]
OEIS Sequence A178861
- Divisors of 15120.
From OEIS A178861:
Divisors of 15120. (Formerly )
Sequence IDs: :a178861
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a178861) |> Sequence.take!(63)
[1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,27,28,30,35,36,40,42,45,48,54,56,60,63,70,72,80,84,90,105,108,112,120,126,135,140,144,168,180,189,210,216,240,252,270,280,315,336,360,378,420,432,504,540,560,630]
OEIS Sequence A178862
- Divisors of 20160.
From OEIS A178862:
Divisors of 20160. (Formerly )
Sequence IDs: :a178862
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a178862) |> Sequence.take!(63)
[1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,28,30,32,35,36,40,42,45,48,56,60,63,64,70,72,80,84,90,96,105,112,120,126,140,144,160,168,180,192,210,224,240,252,280,288,315,320,336,360,420,448,480,504,560,576]
OEIS Sequence A178863
- Divisors of 25200.
From OEIS A178863:
Divisors of 25200. (Formerly )
Sequence IDs: :a178863
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a178863) |> Sequence.take!(63)
[1,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,21,24,25,28,30,35,36,40,42,45,48,50,56,60,63,70,72,75,80,84,90,100,105,112,120,126,140,144,150,168,175,180,200,210,225,240,252,280,300,315,336,350,360,400,420,450,504]
OEIS Sequence A178864
- Divisors of 27720.
From OEIS A178864:
Divisors of 27720. (Formerly )
Sequence IDs: :a178864
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a178864) |> Sequence.take!(64)
[1,2,3,4,5,6,7,8,9,10,11,12,14,15,18,20,21,22,24,28,30,33,35,36,40,42,44,45,55,56,60,63,66,70,72,77,84,88,90,99,105,110,120,126,132,140,154,165,168,180,198,210,220,231,252,264,280,308,315,330,360,385,396,420]
OEIS Sequence A178877
- Divisors of 1260.
From OEIS A178877:
Divisors of 1260. (Formerly )
Sequence IDs: :a178877
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a178877) |> Sequence.take!(36)
[1,2,3,4,5,6,7,9,10,12,14,15,18,20,21,28,30,35,36,42,45,60,63,70,84,90,105,126,140,180,210,252,315,420,630,1260]
OEIS Sequence A178878
- Divisors of 1680.
From OEIS A178878:
Divisors of 1680. (Formerly )
Sequence IDs: :a178878
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a178878) |> Sequence.take!(40)
[1,2,3,4,5,6,7,8,10,12,14,15,16,20,21,24,28,30,35,40,42,48,56,60,70,80,84,105,112,120,140,168,210,240,280,336,420,560,840,1680]
OEIS Sequence A209061
- Exponentially squarefree numbers.
From OEIS A209061:
Exponentially squarefree numbers.
Sequence IDs: :a209061
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a209061) |> Sequence.take!(67)
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69]
OEIS Sequence A211337
- Numbers n for which the number of divisors, tau(n), is congruent to 1 modulo 3.
From OEIS A211337:
Numbers n for which the number of divisors, tau(n), is congruent to 1 modulo 3.
Sequence IDs: :a211337
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a211337) |> Sequence.take!(59)
[1,6,8,10,14,15,21,22,26,27,33,34,35,38,39,46,48,51,55,57,58,62,64,65,69,74,77,80,82,85,86,87,91,93,94,95,106,111,112,115,118,119,120,122,123,125,129,133,134,141,142,143,145,146,155,158,159,161,162]
OEIS Sequence A211338
- Numbers n for which the number of divisors, tau(n), is congruent to 2 modulo 3.
From OEIS A211338:
Numbers n for which the number of divisors, tau(n), is congruent to 2 modulo 3.
Sequence IDs: :a211338
Finite: False
Offset: 1
Example
iex> Sequence.create(Elixir.Chunky.Sequence.OEIS.Factors, :a211338) |> Sequence.take!(60)
[2,3,5,7,11,13,16,17,19,23,24,29,30,31,37,40,41,42,43,47,53,54,56,59,61,66,67,70,71,73,78,79,81,83,88,89,97,101,102,103,104,105,107,109,110,113,114,127,128,130,131,135,136,137,138,139,149,151,152,154]