

 circuits_i2c

 v2.0.1

 Table of contents

 	Circuits.I2C

 	Porting

 	Changelog

 	Modules

 	Circuits.I2C

 	Circuits.I2C.Backend

 	Circuits.I2C.Bus

 	Circuits.I2C.I2CDev

 	Circuits.I2C.NilBackend

Circuits.I2C

[image: Hex version]
[image: API docs]
[image: CircleCI]
Circuits.I2C lets you communicate with hardware devices using the I2C protocol.
This is the v2.0 branch. Circuits.I2C v1.x is still maintained in the maint-v1.x branch.
Circuits.I2C v2.0 is an almost backwards compatible update to Circuits.I2C
v1.x. Here's what's new:
	Linux or Nerves are no longer required. In fact, the NIF supporting them won't
be compiled if you don't want it.
	Develop using simulated I2C devices with
CircuitsSim
	Use USB->I2C adapters for development on your laptop (Coming soon)

If you've used Circuits.I2C v1.x, nearly all of your code will be the same. If
you're a library author, we'd appreciate if you could try this out and update
your :circuits_i2c dependency to allow v2.0. Details can be found in our
porting guide.

 Getting started on Nerves and Linux

By default, Circuits.I2C supports the Linux-based I2C driver interface so the
following instructions assume a Linux-based system like Nerves, Raspberry Pi OS,
embedded Linux or even desktop Linux if I2C lines are exposed. If you want to
use Circuits.I2C on a different platform and support is available, generally
the only difference is to change the "open" call. The rest is the same.
First off, add circuits_i2c to your mix.exs's dependency list like any other
Elixir library:
def deps do
 [{:circuits_i2c, "~> 2.0"}]
end
Circuits.I2C doesn't load device drivers, so you may need to load them
beforehand. If you are using Nerves on a supported platform, this is enabled for
you already. If using Raspberry Pi OS, the Adafruit Raspberry Pi I2C
instructions
may be helpful.
Internally, it uses the Linux "i2c-dev"
interface
so that it does not require board-dependent code.

 Getting started without hardware

If you don't have any real I2C devices, it's possible to work with simulated
devices. See the CircuitsSim
project for details.

 I2C background

An Inter-Integrated Circuit (I2C) bus
supports addressing hardware components and bidirectional use of the data line.
The following shows a bus IO expander connected via I2C to the processor.
[image: I2C schematic]
The protocol for talking to the IO expander is described in the MCP23008
Datasheet.
Here's a simple example of using it.
On the Raspberry Pi, the IO expander is connected to I2C bus 1 (i2c-1).
Its 7-bit address is 0x20. (see datasheet)
iex> alias Circuits.I2C
Circuits.I2C
iex> {:ok, ref} = I2C.open("i2c-1")
{:ok, #Reference<...>}

By default, all 8 GPIOs are set to inputs. Set the 4 high bits to outputs
so that we can toggle the LEDs. (Write 0x0f to register 0x00)
iex> I2C.write(ref, 0x20, <<0x00, 0x0f>>)
:ok

Turn on the LED attached to bit 4 on the expander. (Write 0x10 to register
0x09)
iex> I2C.write(ref, 0x20, <<0x09, 0x10>>)
:ok

Read all 11 of the expander's registers to see that the bit 0 switch is
the only one on and that the bit 4 LED is on.
iex> I2C.write(ref, 0x20, <<0>>) # Set the next register to be read to 0
:ok

iex> I2C.read(ref, 0x20, 11)
{:ok, <<15, 0, 0, 0, 0, 0, 0, 0, 0, 17, 16>>}

The operation of writing one or more bytes to select a register and
then reading is very common, so a shortcut is to just run the following:
iex> I2C.write_read(ref, 0x20, <<0>>, 11)
{:ok, <<15, 0, 0, 0, 0, 0, 0, 0, 0, 17, 16>>}

The 17 in register 9 says that bits 0 and bit 4 are high
We could have just read register 9.

iex> I2C.write_read(ref, 0x20, <<9>>, 1)
{:ok, <<17>>}

 Creating a new backend

Circuits.I2C supports alternative backends to support non-Linux hardware,
testing, and simulation. A backend can support communication on more than one
I2C bus.
To create a new backend, you need to implement the Circuits.I2C.Backend
behaviour. Circuits.I2C calls the bus_names/1 callback to discover what I2C
buses are available and then it calls the open/2 callback to use the I2C bus.

 FAQ

 How do I debug?

The most common issue is communicating with an I2C for the first time. For I2C,
first check that an I2C bus is available:
iex> Circuits.I2C.bus_names
["i2c-1"]
If the list is empty, then I2C is either not available, not enabled, or not
configured in the kernel. If you're using Raspbian, run raspi-config and check
that I2C is enabled in the advanced options. If you're on a BeagleBone, try
running config-pin and see the Universal I/O
project to enable
the I2C pins. On other ARM boards, double check that I2C is enabled in the
kernel and that the device tree configures it.
Once an I2C bus is available, try detecting devices on it:
iex> Circuits.I2C.detect_devices()
Circuits.I2C.detect_devices
Devices on I2C bus "i2c-1":
 * 64 (0x40)
 * 112 (0x70)

2 devices detected on 1 I2C buses
The return value here is a list of device addresses that were detected. It is
still possible that the device will work even if it does not detect, but you
probably want to check wires at this point. If you have a logic analyzer, use it
to verify that I2C transactions are being initiated on the bus.

 I2C seems slow. What could be wrong?

I2C buses are usually run at 100 kbit/s or 400 kbit/s. Many devices support
higher speeds. The tradeoff is that higher speeds are sometimes don't work as
well especially if you're using jumper cables to connect parts together. The
Raspberry Pi runs the I2C bus at a low speed - probably for this reason.
Other things to check:
	Can you reduce the reads and writes? I2C devices let you read or write many
bytes at the same time. Each transaction has overhead so minimizing
transaction helps.
	Can you reduce the total number of bytes in each transaction? For example, do
you need to read a particular register? Is there a mode that the device can be
put it so that it only returns useful data?
	Can a write and read be combined? The Circuits.I2C.write_read function is
more efficient than a separate write followed by a read.
	Does the device support a queue mode? Some devices have internal queues that
allow the host to copy out more than one sample each time.

 Where can I get help?

The hardest part is communicating with a device for the first time. The issue is
usually unrelated to Circuits.I2C. If you expand your searches to include
Python and C forums, you'll frequently find the answer.
If that fails, try posting a question to the Elixir
Forum. Tag the question with Nerves and it will
have a good chance of getting to the right people. Feel free to do this even if
you're not using Nerves.

 Can I develop code that uses Circuits.I2C on my laptop?

You have a few options:
	Connect your I2C devices to a USB->I2C adapter like a Adafruit FT232H
Breakout
	Use the CircuitsSim backend
	Create a custom backend and use it to mock interactions with the Circuits.I2C
API

 Will it run on Arduino?

No. This only runs on Linux-based boards. If you're interested in controlling an
Arduino from a computer that can run Elixir, check out
circuits_uart for communicating via the
Arduino's serial connection or
firmata for communication using the
Arduino's Firmata protocol.

 License

Code from the library is licensed under the Apache License, Version 2.0.

Porting

 Upgrading Circuits.I2C 1.0 projects to 2.0

Circuits.I2C 2.0 supports alternative I2C hardware and the ability to mock or
emulate devices via backends. The Linux i2c-dev backend is the default and this
matches Circuits.I2C 1.0. Most projects won't need any changes other than to
update the dependency in mix.exs. If upgrading a library, The following
dependency specification is recommended to allow both circuits_i2c versions:
 {:circuits_i2c, "~> 2.0 or ~> 1.0"}
The following potentially breaking changes were made:
	Circuits.I2C.open/1 no longer accepts Erlang strings.
	The stub implementation has been renamed to i2c_dev_test. If using the
stub implementation for testing, you may have to update your tests since
there were minor changes.

 Upgrading Elixir/ALE projects to Circuits.I2C

The Circuits.I2C package is the next version of Elixir/ALE's I2C support.
If you're currently using Elixir/ALE, you're encouraged to switch. Here are some
benefits:
	Supported by both the maintainer of Elixir/ALE and a couple others. They'd
prefer to support Circuits.I2C issues.
	Much faster than Elixir/ALE.
	Simplified API

Circuits.I2C uses Erlang's NIF interface. NIFs have the downside of being able
to crash the Erlang VM. Experience with Elixir/ALE has given many of us
confidence that this won't be a problem.

 Code modifications

Circuits.I2C is not a GenServer, so if you've added ElixirALE.I2C to a
supervision tree, you'll have to take it out and manually call
Circuits.I2C.open to obtain a reference. A common pattern is to create a
GenServer that is descriptive of what the I2C device does and have it be
responsible for all I2C calls.
The remain modifications should mostly be mechanical:
	Rename references to ElixirALE.I2C to Circuits.I2C and elixir_ale
to circuits_i2c
	Change calls to ElixirALE.I2C.start_link/2 to Circuits.I2C.open/1. You'll
need to remove the I2C address from the call to open. While you're at it,
review the arguments to open to not include any GenServer options.
	Add the I2C device's bus address to all of the read, write, and
write_read calls. We recommend making a short helper function that has
the I2C address.
	The read and write_read functions now return {:ok, result} tuples on
success so add code to handle that. Alternately, call read! or write_read!
and they will raise an exception if there's an error.
	Look for calls to I2C.read_device, I2C.write_device and
I2C.write_read_device and remove the _device part.
	Consider adding a call to Circuits.I2C.close/1 if there's an obvious place
to release the I2C. This is not strictly necessary since the garbage
collector will free unreferenced I2C references.
	If you manually implemented I2C bus retry logic, consider specifying the
:retries option to have Circuits.I2C retry for you.
	Change calls to ElixirALE.I2C.device_names/0 to Circuits.I2C.bus_names/0.

If you find that you have to make any other changes, please let us know via an
issue or PR so that other users can benefit.

Changelog

 v2.0.1 - 2023-10-22

	Changes	Add Circuits.I2C.bus() type back to fix a dialyzer warning on projects
that support both Circuits.I2C 1.0 and 2.0.

 v2.0.0 - 2023-08-14

This is a major update to Circuits.I2C that removes the requirement to use
Nerves or Linux. The API is almost the same and the default is to compile and
use the Linux backend, so changes may not be needed.
	Changes	Support alternative backends for different operating systems or for
simulated hardware
	For the Linux NIF, support passing a :retry count to Circuits.I2C.open/2
that will apply to all I2C operations. This simplifies dealing with devices
with flaky connections.
	Defer loading the Linux NIF until Circuits.I2C.open/2 is called
	Return error on Circuits.I2C.open/2 if the device isn't a real I2C device.
This was previously detected on the first operation.
	For the Linux NIF, return errno numbers rather than their strerr strings
when they're unknown. It turned out that the strings could be more confusing
that the numbers.

 v1.2.2 - 2023-03-24

	Fixes	Add types.h compatibility header to hex package so that host MacOS builds
work again.

 v1.2.1 - 2023-03-20

	Fixes	Detect I2C controllers that don't support 0-byte writes and revert to the
old detection heuristic. This fixes an issue on Beaglebones (AM335x) that
caused devices to be missed and kernel warnings to be logged.

 v1.2.0 - 2023-03-17

	Changes	Improve device detection by using 0-byte writes on some I2C addresses and
1-byte reads on others. This matches the i2c-tools heuristic and detects at
least on more device that wasn't detected before.
	Simplified NIF by deleting a lot of flexibility that didn't end up being
useful. Also moved functionality around so that it could be implemented more
simply.

 v1.1.0 - 2022-11-16

	Changes	Immediately close I2C bus references after discovery. Waiting for the GC to
collect them could cause intermittent failures in rare scenarios where
multiple I2C device discoveries are done close together. This likely only
affects CI in practice.
	Remove Erlang convenience functions since no one used them
	Require Elixir 1.10 or later. Previous versions probably work, but won't be
supported. This opens up the possibility of using Elixir 1.10+ features in
future releases.

 v1.0.1 - 2021-12-28

	Fixes	Properly mark I/O bound functions in NIF.

 v1.0.0 - 2021-10-20

This release only changes the version number. No code has changed.

 v0.3.9

This release only has doc and build output cleanup. No code has changed.

 v0.3.8

	New features
	Add Circuits.I2C.discover/2 and Circuits.I2C.discover_one/2. These
functions are intended for library authors wanting to provide good
suggestions or defaults to their users. See the hex docs for more
information. Thanks to Bruce Tate for the idea and PR.

	Improvements
	The stub I2C implementation is now used whenever MIX_ENV=test. While this
is not generally useful for testing code that uses Circuits.I2C, it does
prevent accidental use of real I2C buses in unit tests on those systems
with real I2C buses.

 v0.3.7

	Improvements	Add I2C address in hex showing detected devices

 v0.3.6

	Bug fixes	Add -fPIC to compilation flags to fix build with nerves_system_x86_64 and
other environments using the Musl C toolchains

 v0.3.5

	Bug fixes	Reduce the number of I2C addresses scanned for detection to avoid confusing
some devices.

 v0.3.4

This release should work on Erlang/OTP 20 - 22 and Elixir 1.4 and
newer. The CI process has been updated to verify more versions now.
	Bug fixes	Improve error message when bus doesn't exist

 v0.3.3

	Bug fixes	Fix binary handling in NIF. This fixes segfaults and other errors when run
on Raspbian.

 v0.3.2

	Bug fixes	Fix file handle leak when I2C bus references were garbage collected.

 v0.3.1

	Bug fixes	Build C source under the _build directory so that changing targets
properly rebuilds the C code as well as the Elixir code.

 v0.3.0

Print detected devices instead of an error.

 v0.2.0

Minor text updates.
Remove i2c_ from i2c_address and i2c_bus.

 v0.1.0

Initial release to hex.

Circuits.I2C

Circuits.I2C lets you communicate with hardware devices using the I2C
protocol.

 Summary

 Types

 address()

 I2C device address

 backend()

 Backends specify an implementation of a Circuits.I2C.Backend behaviour

 bus()

 Connection to a real or virtual I2C controller

 opt()

 present?()

 Function to report back whether a device is present

 Functions

 bus_names()

 Return a list of available I2C bus names. If nothing is returned, it's
possible that the kernel driver for that I2C bus is not enabled or the
kernel's device tree is not configured. On Raspbian, run raspi-config and
look in the advanced options.

 close(bus)

 close the I2C bus

 detect_devices()

 Convenience method to scan all I2C buses for devices

 detect_devices(bus)

 Scan the I2C bus for devices by performing a read at each device address and
returning a list of device addresses that respond.

 device_present?(bus, address)

 Return whether a device is present

 discover(possible_addresses, present? \\ &device_present?/2)

 Scan all I2C buses for one or more devices

 discover_one(possible_addresses, present? \\ &device_present?/2)

 Scans all I2C buses for one specific device

 discover_one!(possible_addresses, present? \\ &device_present?/2)

 Same as discover_one/2 but raises on error

 info(backend \\ nil)

 Return info about the low level I2C interface

 open(bus_name, options \\ [])

 Open an I2C bus

 read(bus, address, bytes_to_read, opts \\ [])

 Initiate a read transaction to the I2C device at the specified address

 read!(bus, address, bytes_to_read, opts \\ [])

 Initiate a read transaction and raise on error

 write(bus, address, data, opts \\ [])

 Write data to the I2C device at address.

 write!(bus, address, data, opts \\ [])

 Write data to the I2C device at address and raise on error

 write_read(bus, address, write_data, bytes_to_read, opts \\ [])

 Write data to an I2C device and then immediately issue a read.

 write_read!(bus, address, write_data, bytes_to_read, opts \\ [])

 Write data to an I2C device and then immediately issue a read. Raise on errors.

 Types

 Link to this type

 address()

 View Source

 @type address() :: 0..127

I2C device address
This is a "7-bit" address for the device. Some devices specify an "8-bit"
address in their documentation. You can tell if you have an "8-bit" address
if it's greater than 127 (0x7f) or if the documentation talks about different
read and write addresses. If you have an 8-bit address, divide it by 2.

 Link to this type

 backend()

 View Source

 @type backend() :: {module(), keyword()}

Backends specify an implementation of a Circuits.I2C.Backend behaviour
The second parameter of the Backend 2-tuple is a list of options. These are
passed to the behaviour function call implementations.

 Link to this type

 bus()

 View Source

 @type bus() :: Circuits.I2C.Bus.t()

Connection to a real or virtual I2C controller

 Link to this type

 opt()

 View Source

 @type opt() :: {:retries, non_neg_integer()}

 Link to this type

 present?()

 View Source

 @type present?() :: (Circuits.I2C.Bus.t(), address() -> boolean())

Function to report back whether a device is present
See discover/2 for how a custom function can improve device detection when
the type of device being looked for is known.

 Functions

 Link to this function

 bus_names()

 View Source

 @spec bus_names() :: [String.t()]

Return a list of available I2C bus names. If nothing is returned, it's
possible that the kernel driver for that I2C bus is not enabled or the
kernel's device tree is not configured. On Raspbian, run raspi-config and
look in the advanced options.
iex> Circuits.I2C.bus_names()
["i2c-1"]

 Link to this function

 close(bus)

 View Source

 @spec close(Circuits.I2C.Bus.t()) :: :ok

close the I2C bus

 Link to this function

 detect_devices()

 View Source

 @spec detect_devices() :: :"do not show this result in output"

Convenience method to scan all I2C buses for devices
This is only intended to be called from the IEx prompt. Programs should
use detect_devices/1.

 Link to this function

 detect_devices(bus)

 View Source

 @spec detect_devices(Circuits.I2C.Bus.t() | binary()) ::
 [address()] | {:error, term()}

Scan the I2C bus for devices by performing a read at each device address and
returning a list of device addresses that respond.
iex> Circuits.I2C.detect_devices("i2c-1")
[4]
The return value is a list of device addresses that were detected on the
specified I2C bus. If you get back 'Hh' or other letters, then IEx
converted the list to an Erlang string. Run i v() to get information about
the return value and look at the raw string representation for addresses.
Warning
This is intended to be a debugging aid. Reading bytes from devices can
advance internal state machines and might cause them to get out of sync
with other code.

If you already have opened an I2C bus, then pass that to detect_devices/1
instead of the string name.

 Link to this function

 device_present?(bus, address)

 View Source

 @spec device_present?(Circuits.I2C.Bus.t(), address()) :: boolean()

Return whether a device is present
This function performs a simplistic check for an I2C device on the specified
bus and address. It's not perfect, but works enough to be useful. Be warned
that it does perform an I2C read on the specified address and this may cause
some devices to actually do something.

 Link to this function

 discover(possible_addresses, present? \\ &device_present?/2)

 View Source

 @spec discover([address()], present?()) :: [{binary(), address()}]

Scan all I2C buses for one or more devices
This function takes a list of possible addresses and an optional detection
function. It only scans addresses in the possible addresses list to avoid
disturbing unrelated I2C devices.
If a detection function is not passed in, a default one that performs a
simple read and checks whether it succeeds is used. If the desired device has
an ID register or other means of identification, the optional function should
try to query that. If passing a custom function, be sure to return false
rather than raise if there are errors.
A list of bus name and address tuples is returned. The list may be empty.
See also discover_one/2.

 Link to this function

 discover_one(possible_addresses, present? \\ &device_present?/2)

 View Source

 @spec discover_one([address()], present?()) ::
 {:ok, {binary(), address()}}
 | {:error, :not_found | :multiple_possible_matches}

Scans all I2C buses for one specific device
This function and discover_one!/2 are convenience functions for the use
case of helping a user find a specific device. They both call discover/2 with
a list of possible I2C addresses and an optional function for checking whether
the device is present.
This function returns an :ok or :error tuple depending on whether one and
only one device was found. See discover_one!/2 for the raising version.

 Link to this function

 discover_one!(possible_addresses, present? \\ &device_present?/2)

 View Source

 @spec discover_one!([address()], present?()) :: {binary(), address()}

Same as discover_one/2 but raises on error

 Link to this function

 info(backend \\ nil)

 View Source

 @spec info(backend() | nil) :: map()

Return info about the low level I2C interface
This may be helpful when debugging I2C issues.

 Link to this function

 open(bus_name, options \\ [])

 View Source

 @spec open(
 String.t(),
 keyword()
) :: {:ok, Circuits.I2C.Bus.t()} | {:error, term()}

Open an I2C bus
I2C bus names depend on the platform. Names are of the form "i2c-n" where the
"n" is the bus number. The correct bus number can be found in the
documentation for the device or on a schematic. Another option is to call
Circuits.I2C.bus_names/0 to list them for you.
The same I2C bus may be opened more than once. There is no need to share
it between modules.
On success, this returns a Circuits.I2C.Bus.t() struct for accessing the
I2C bus. Use this in subsequent calls to read and write I2C devices.
Options depend on the backend. The following are for the I2CDev (default)
backend:
	:retries - the default number of retries to automatically do on reads
and writes (defaults to no retries)

 Link to this function

 read(bus, address, bytes_to_read, opts \\ [])

 View Source

 @spec read(Circuits.I2C.Bus.t(), address(), pos_integer(), [opt()]) ::
 {:ok, binary()} | {:error, term()}

Initiate a read transaction to the I2C device at the specified address
Options:
	:retries - number of retries before failing (defaults to no retries)

 Link to this function

 read!(bus, address, bytes_to_read, opts \\ [])

 View Source

 @spec read!(Circuits.I2C.Bus.t(), address(), pos_integer(), [opt()]) :: binary()

Initiate a read transaction and raise on error

 Link to this function

 write(bus, address, data, opts \\ [])

 View Source

 @spec write(Circuits.I2C.Bus.t(), address(), iodata(), [opt()]) ::
 :ok | {:error, term()}

Write data to the I2C device at address.
Options:
	:retries - number of retries before failing (defaults to no retries)

 Link to this function

 write!(bus, address, data, opts \\ [])

 View Source

 @spec write!(Circuits.I2C.Bus.t(), address(), iodata(), [opt()]) :: :ok

Write data to the I2C device at address and raise on error
Options:
	:retries - number of retries before failing (defaults to no retries)

 Link to this function

 write_read(bus, address, write_data, bytes_to_read, opts \\ [])

 View Source

 @spec write_read(Circuits.I2C.Bus.t(), address(), iodata(), pos_integer(), [opt()]) ::
 {:ok, binary()} | {:error, term()}

Write data to an I2C device and then immediately issue a read.
This function is useful for devices that want you to write the "register"
location to them first and then issue a read to get its contents. Many
devices operate this way and this function will issue the commands
back-to-back on the I2C bus. Some I2C devices actually require that the read
immediately follows the write. If the target supports this, the I2C
transaction will be issued that way. On the Raspberry Pi, this can be enabled
globally with File.write!("/sys/module/i2c_bcm2708/parameters/combined", "1")
Options:
	:retries - number of retries before failing (defaults to no retries)

 Link to this function

 write_read!(bus, address, write_data, bytes_to_read, opts \\ [])

 View Source

 @spec write_read!(Circuits.I2C.Bus.t(), address(), iodata(), pos_integer(), [opt()]) ::
 binary()

Write data to an I2C device and then immediately issue a read. Raise on errors.
Options:
	:retries - number of retries before failing (defaults to no retries)

Circuits.I2C.Backend behaviour

Backends provide the connection to the real or virtual I2C controller

 Summary

 Types

 options()

 I2C transfer options

 Callbacks

 bus_names(options)

 Return the I2C bus names on this system

 info()

 Return information about this backend

 open(bus_name, options)

 Open an I2C bus

 Types

 Link to this type

 options()

 View Source

 @type options() :: keyword()

I2C transfer options
Support for options is backend-specific. Backends are encouraged to
implement the following:
	:retries - a number of times to attempt to retry the transaction
before failing

 Callbacks

 Link to this callback

 bus_names(options)

 View Source

 @callback bus_names(options :: keyword()) :: [binary()]

Return the I2C bus names on this system
No supported options

 Link to this callback

 info()

 View Source

 @callback info() :: map()

Return information about this backend

 Link to this callback

 open(bus_name, options)

 View Source

 @callback open(bus_name :: String.t(), options :: keyword()) ::
 {:ok, Circuits.I2C.Bus.t()} | {:error, term()}

Open an I2C bus
Bus names are typically of the form "i2c-n" and available buses may be
found by calling bus_names/1.
Options:
	:retries - Specify a nonnegative integer for how many times to retry
a failed I2C operation.

Circuits.I2C.Bus protocol

A bus is the connection to a real or virtual I2C controller

 Summary

 Types

 flag()

 I2C controller flags

 t()

 All the types that implement this protocol.

 Functions

 close(bus)

 Free up resources associated with the bus

 flags(bus)

 read(bus, address, count, options)

 Read data over I2C

 write(bus, address, data, options)

 Write data over I2C

 write_read(bus, address, write_data, read_count, options)

 Write data and read a result in one I2C transaction

 Types

 Link to this type

 flag()

 View Source

 @type flag() :: :supports_empty_write

I2C controller flags
	:supports_empty_write - the controller supports sending empty binaries
to devices. These can be used for device detection.

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 close(bus)

 View Source

 @spec close(t()) :: :ok

Free up resources associated with the bus
Well behaved backends free up their resources with the help of the Erlang garbage collector. However, it is good
practice for users to call Circuits.I2C.close/1 (and hence this function) so that
limited resources are freed before they're needed again.

 Link to this function

 flags(bus)

 View Source

 @spec flags(t()) :: [flag()]

 Link to this function

 read(bus, address, count, options)

 View Source

 @spec read(t(), Circuits.I2C.address(), non_neg_integer(), keyword()) ::
 {:ok, binary()} | {:error, term()}

Read data over I2C
The controller should try to read the specified number of bytes over I2C.
If the retry option is passed and non-zero, the transaction only needs to
be retried if there's an error. This means that fewer that the requested
number of bytes may be returned.
See the implementation for options

 Link to this function

 write(bus, address, data, options)

 View Source

 @spec write(t(), Circuits.I2C.address(), iodata(), keyword()) ::
 :ok | {:error, term()}

Write data over I2C
The controller should write the passed in data to the specified I2C address.

 Link to this function

 write_read(bus, address, write_data, read_count, options)

 View Source

 @spec write_read(t(), Circuits.I2C.address(), iodata(), non_neg_integer(), keyword()) ::
 {:ok, binary()} | {:error, term()}

Write data and read a result in one I2C transaction
This function handles the common task of writing a register number
to a device and then reading its contents. The controller should perform it
as one transaction without a stop condition between the write and read.

Circuits.I2C.I2CDev

Circuits.I2C backend for the Linux i2c-dev interface
This backend works on Nerves, embedded Linux, and desktop Linux.

 Summary

 Functions

 bus_names(options)

 Return the I2C bus names on this system

 info()

 Return information about this backend

 open(bus_name, options)

 Open an I2C bus

 Functions

 Link to this function

 bus_names(options)

 View Source

Return the I2C bus names on this system
No supported options

 Link to this function

 info()

 View Source

Return information about this backend

 Link to this function

 open(bus_name, options)

 View Source

Open an I2C bus
Bus names are typically of the form "i2c-n" and available buses may be
found by calling Circuits.I2C.bus_names/0.
Options:
	:retries - Specify a nonnegative integer for how many times to retry
a failed I2C operation.

Circuits.I2C.NilBackend

Circuits.I2C backend when nothing else is available

 Summary

 Functions

 bus_names(options)

 Return the I2C bus names on this system

 info()

 Return information about this backend

 open(bus_name, options)

 Open an I2C bus

 Functions

 Link to this function

 bus_names(options)

 View Source

Return the I2C bus names on this system
No supported options

 Link to this function

 info()

 View Source

Return information about this backend

 Link to this function

 open(bus_name, options)

 View Source

Open an I2C bus
No supported options.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

OEBPS/assets/images/schematic-i2c.png
vee

Ri4

9

9
8
g
S o GPO
GP1 L
ap2 GP:
GP3 <L
aP ot
GP5 GPE
aPe GP6
& e
WCP23008

DIP_SWITGH 4

10k

R8 10k

RE 10k
R?
Ro 10k

