

 circuits_spi

 v2.0.3

 Table of contents

 	Circuits.SPI

 	Porting

 	Changelog

 	

 	Modules

 	Circuits.SPI

 	Circuits.SPI.Backend

 	Circuits.SPI.Bus

 	Circuits.SPI.NilBackend

 	Circuits.SPI.SPIDev

Circuits.SPI

[image: Hex version]
[image: API docs]
[image: CircleCI]
[image: REUSE status]
Circuits.SPI lets you communicate with hardware devices using the SPI protocol.
This is Circuits.SPI v2. Circuits.SPI v1.x is still maintained in the maint-v1.x branch.
Circuits.SPI v2.0 is an almost backwards compatible update to Circuits.SPI
v1.x. Here's what's new:
	Linux or Nerves are no longer required. In fact, the NIF supporting them won't
be compiled if you don't want it.
	Develop using simulated SPI devices with
CircuitsSim
	Use USB->SPI adapters for development on your laptop (Coming soon)

If you've used Circuits.SPI v1.x, nearly all of your code will be the same. If
you're a library author, we'd appreciate if you could try this out and update
your :circuits_spi dependency to allow v2.0. Details can be found in our
porting guide.

 Getting started on Nerves and Linux

If you're using Nerves or compiling on a Raspberry Pi or other device with SPI
support, then add circuits_spi like any other Elixir library:
def deps do
 [{:circuits_spi, "~> 2.0"}]
end
Circuits.SPI doesn't load device drivers, so you'll need to load any necessary
ones beforehand. On the Raspberry Pi, the Adafruit Raspberry Pi SPI
instructions
may be helpful, (This is already enabled for you if you are using Nerves)
A Serial Peripheral
Interface (SPI)
bus is a common multi-wire bus used to connect components on a circuit board. A
clock line drives the timing of sending bits between components. Bits on the
Controller Out Peripheral In COPI line go from the controller (usually the processor
running Linux) to the peripheral, and bits on the Controller In Peripheral Out CIPO line go
the other direction. Bits transfer both directions simultaneously. However, much
of the time, the protocol used across the SPI bus has a request followed by a
response and in these cases, bits going the "wrong" direction are ignored. This
will become more clear in the example below.
The following shows an example Analog to Digital Converter (ADC) that reads from
either a temperature sensor on CH0 (channel 0) or a potentiometer on CH1
(channel 1). It converts the analog measurements to digital, and sends the
digital measurements to SPI pins on the main processor running Linux (e.g.
Raspberry Pi). Many processors, like the one on the Raspberry Pi, can't read
analog signals directly, so they need an ADC to convert the signal.
[image: SPI schematic]
The protocol for talking to the ADC in the example below is described in the
MCP3002 data sheet. The
protocol is very similar to an application program interface (API) for
software. It will tell you the position and function of the bits you will send
to the ADC, along with how the data (in the form of bits)
will be returned.
See Figure 6-1 in the data sheet for the communication protocol. Sending a
0x68 first reads the temperature and sending a 0x78 reads the
potentiometer. Since the data sheet shows bits, 0x68 corresponds to 01101000b.
The leftmost bit is the "Start" bit. The second bit is SGL/DIFF, the third
bit is ODD/SIGN, and the fourth bit is MSBF. From table 5-1, if SGL/DIFF==1,
ODD/SIGN==0, and MSBF==1 then that specifies channel 0 which is connected to
the thermometer.
Make sure that you've enabled or loaded the SPI driver or this will
fail.
iex> {:ok, ref} = Circuits.SPI.open("spidev0.0")
{:ok, #Reference<...>}

Read the potentiometer

Use binary pattern matching to pull out the ADC counts (low 10 bits)
iex> {:ok, <<_::size(6), counts::size(10)>>} = Circuits.SPI.transfer(ref, <<0x78, 0x00>>)
{:ok, <<1, 197>>}

iex> counts
453

Convert counts to volts (1023 = 3.3 V)
iex> volts = counts / 1023 * 3.3
1.461290322580645
As shown above, you'll find out that Elixir's binary pattern matching is
extremely convenient when working with hardware. More information can be
found in the Kernel.SpecialForms documentation
and by running h <<>> at the IEx prompt.

 FAQ

 How do I only receive data?

SPI always sends a bit for every bit it receives. That means that to receive a
byte, you have to send a byte. Luckily, devices are designed with this in mind
and discard or ignore bytes in these situations. For example, if you have a
sensors and need to read 9 bytes of data, send 9 zeros to read it. The zeros
will be ignored and you'll get the data.

 How do I debug?

The most common issue is communicating with a SPI device for the first time.
First check that a SPI bus is available:
iex> Circuits.SPI.bus_names()
["spidev0.0", "spidev0.1"]
If the list is empty, then a SPI bus is either not available, not enabled, or
not configured in the kernel. If you're using Raspbian, run raspi-config and
check that SPI is enabled in the advanced options. If you're on a BeagleBone,
try running config-pin and see the Universal I/O
project to enable
the SPI pins. On other ARM boards, double check that SPI is enabled in the
kernel and that the device tree configures it.

 How do I set the speed of the SPI bus?

SPI bus options like frequency (:speed_hz) and bits per word (:bit_per_word)
are set as optional parameters to
Circuits.SPI.open/2.
For example, the following configures the SPI bus to run at 122,000 Hz:
{:ok, my_spi} = Circuits.SPI.open("spidev0.0", speed_hz: 122000)`
The ability to set the bus speed is device-specific. Please verify with a logic
analyzer that the speed is actually being set and consult the documentation for
limitations.

 Where can I get help?

Many issues are unrelated to Circuits.SPI. If you expand your searches to
include Python and C forums, it's possible that someone else has run into your
problem too. SPI libraries in other languages should be similar to
Circuits.SPI so hopefully you'll find the answer.
If that fails, try posting a question to the Elixir
Forum. Tag the question with Nerves and it will
have a good chance of getting to the right people. Feel free to do this even if
you're not using Nerves.

 Can I develop code that uses Circuits.SPI on my laptop?

You have a few options:
	Use the CircuitsSim backend
	Create a custom backend and use it to mock interactions with the Circuits.SPI
API

We hope to have support for USB adapters that have SPI interfaces in the future.

 License

All original source code in this project is licensed under Apache-2.0.
Additionally, this project follows the REUSE recommendations
and labels so that licensing and copyright are clear at the file level.
Exceptions to Apache-2.0 licensing are:
	Configuration and data files are licensed under CC0-1.0
	Documentation files are CC-BY-4.0
	Erlang Embedded board images are Solderpad Hardware License v0.51.

Porting

 Upgrading Circuits.SPI 1.x projects to 2.0

Circuits.SPI 2.0 supports alternative SPI hardware and the ability to mock or
emulate devices via backends. The Linux spi-dev backend is the default and this
matches Circuits.SPI 1.x. Most projects won't need any changes other than to
update the dependency in mix.exs. If upgrading a library, The following
dependency specification is recommended to allow both circuits_i2c versions:
 {:circuits_spi, "~> 2.0 or ~> 1.0"}
The following potentially breaking changes were made:
	Circuits.SPI.open/1 no longer accepts Erlang strings.
	The stub implementation has been renamed to spi_dev_test. If using the
stub implementation for testing, you may have to update your tests since
there were minor changes.

 Upgrading Elixir/ALE projects to Circuits.SPI

The Circuits.SPI package is the next version of Elixir/ALE's SPI support.
If you're currently using Elixir/ALE, you're encouraged to switch. Here are some
benefits:
	Supported by both the maintainer of Elixir/ALE and a couple others. They'd
prefer to support Circuits.SPI issues.
	Much faster than Elixir/ALE.
	Simplified API

Circuits.SPI uses Erlang's NIF interface. NIFs have the downside of being able
to crash the Erlang VM. Experience with Elixir/ALE has given many of us
confidence that this won't be a problem.

 Code modifications

Circuits.SPI is not a GenServer, so if you've added ElixirALE.SPI to a
supervision tree, you'll have to take it out and manually call
Circuits.SPI.open to obtain a reference. A common pattern is to create a
GenServer that is descriptive of what the SPI device does and have it be
responsible for all SPI calls.
The remain modifications should mostly be mechanical:
	Rename references to ElixirALE.SPI to Circuits.SPI and elixir_ale
to circuits_spi
	Change calls to ElixirALE.SPI.start_link/2 to Circuits.SPI.open/1.
Review the arguments to open to not include any GenServer options.
	The transfer function now returns {:ok, result} tuples on
success so add code to handle that.
	Consider adding a call to Circuits.SPI.close/1 if there's an obvious place
to release the SPI bus. This is not strictly necessary since the garbage
collector will free unreferenced SPI references.
	Change calls to ElixirALE.SPI.device_names/0 to Circuits.SPI.bus_names/0.

If you find that you have to make any other changes, please let us know via an
issue or PR so that other users can benefit.

Changelog

 v2.0.3 - 2024-04-20

	Improvements	Improve target detection so that setting MIX_TARGET when not
crosscompiling does the expected thing on MacOS.
	Explain lsb-first-related error message on some devices. @mnishiguchi

 v2.0.2 - 2024-01-15

	Bug fixes	Remove lazy NIF loading. There's an unexplained segfault in a small example
program that uses the same strategy. Even though it wasn't reproduceable
here, it's not worth the risk. Thanks to @pojiro for investigating.

 v2.0.1 - 2024-01-14

	Changes	Fix race condition when multiple processes load the NIF simultaneously that
would cause an unnecessary crash.

 v2.0.0 - 2023-11-12

Official v2.0.0 release. No changes from v2.0.0-pre.0.

 v2.0.0-pre.0 - 2023-05-30

This is a major update to Circuits.SPI that removes the requirement to use
Nerves or Linux. The API is almost the same and the default is to compile and
use the Linux backend, so changes may not be needed.
This is a prerelease so APIs may still change before the v2.0.0 release.
	Changes	Support alternative backends for different operating systems or for
simulated hardware
	Defer loading the Linux NIF until Circuits.SPI.open/2 is called

 v1.4.0 - 2022-12-31

	Changes	Remove Erlang convenience functions since no one used them
	Require Elixir 1.10 or later. Previous versions probably work, but won't be
supported. This opens up the possibility of using Elixir 1.10+ features in
future releases.

 v1.3.0 - 2022-02-21

	Updates	Add transfer!/2. This function is the raising version of transfer/2.
Thanks to @mnishiguchi for this.

 v1.2.0 - 2022-01-23

	Updates	Add the :lsb_first option to support SPI transfers that send the least
significant bit first rather than the most significant one. If the bit
reversal isn't supported by the hardware, a software version is used.
	Add config/1 to return the configuration for an SPI bus reference. This is
useful for checking what is actually being used.
	Update transfer/2 to support iodata. This makes the interface more
convenient since now you can prepend SPI message headers in your code
without having to concatenate binaries.
	Support full pathes being passed to SPI devices in open/2. Previously this
resulted in errors, but it was easy to forget.

 v1.1.0 - 2021-12-28

	Updates
	Add max_transfer_size/0 to return the low level maximum size that can be
sent at a time. Thanks to @cocoa-xu for this.

	Bug fixes
	Properly mark NIF transfer function as IO bound so that the Erlang scheduler
schedules it properly.

 v1.0.0 - 2021-10-20

This release only changes the version number. No code has changed.

 v0.1.6

This release only has doc and build output cleanup. No code has changed.

 v0.1.5

	Bug fixes	Add -fPIC to compilation flags to fix build with nerves_system_x86_64 and
other environments using the Musl C toolchains

 v0.1.4

This release doesn't functionally change any code. The only updates are to build
files for consistency with other Circuits projects.

 v0.1.3

	Bug fixes	Fix binary handling in NIF. This fixes segfaults and other errors on
Raspbian.

 v0.1.2

	Bug fixes	Fix file handle leak when SPI bus references were garbage collected.

 v0.1.1

	Bug fixes	Build C source under the _build directory so that changing targets
properly rebuilds the C code as well as the Elixir code.

 v0.1.0

Initial release to hex.

Circuits.SPI

This module enables Elixir programs to interact with hardware that's connected
via a SPI bus.

 Summary

 Types

 backend()

 Backends specify an implementation of a Circuits.SPI.Backend behaviour

 spi_option()

 SPI bus options

 spi_option_map()

 SPI bus options as returned by config/1.

 Functions

 bus_names()

 Return a list of available SPI bus names. If nothing is returned,
it's possible that the kernel driver for that SPI bus is not enabled or the
kernel's device tree is not configured. On Raspbian, run raspi-config and
look in the advanced options.

 close(spi_bus)

 Release any resources associated with the given file descriptor

 config(spi_bus)

 Return the configuration for this SPI bus

 info(backend \\ nil)

 Return info about the low level SPI interface

 max_transfer_size(bus \\ nil)

 Return the maximum transfer size in bytes

 open(bus_name, options \\ [])

 Open a SPI bus device

 transfer(spi_bus, data)

 Transfer data

 transfer!(spi_bus, data)

 Transfer data and raise on error

 Types

 Link to this type

 backend()

 View Source

 @type backend() :: {module(), keyword()}

Backends specify an implementation of a Circuits.SPI.Backend behaviour
The second parameter of the Backend 2-tuple is a list of options. These are
passed to the behaviour function call implementations.

 Link to this type

 spi_option()

 View Source

 @type spi_option() ::
 {:mode, 0..3}
 | {:bits_per_word, 8..16}
 | {:speed_hz, pos_integer()}
 | {:delay_us, non_neg_integer()}
 | {:lsb_first, boolean()}

SPI bus options
Options:
	mode - Set the clock polarity and phase to use:	Mode 0 (CPOL=0, CPHA=0) - Clock idle low/sample leading edge (default)
	Mode 1 (CPOL=0, CPHA=1) - Clock idle low/sample trailing edge
	Mode 2 (CPOL=1, CPHA=0) - Clock idle high/sample leading edge
	Mode 3 (CPOL=1, CPHA=1) - Clock idle high/sample trailing edge

	bits_per_word - Set the bits per word on the bus. Defaults to 8 bit words.
	speed_hz - Set the bus speed. Supported speeds are device-specific. The
default speed is 1 Mbps (1000000).
	delay_us - Set the delay between transactions (10)
	lsb_first - Set to true to send the least significant bit first rather
than the most significant one. (false)
The error message unsupported mode bits 8 might be printed due to
hardware that doesn't support the LSB-first mode, which can be ignored
since Circuits.SPI handles it automatically.

 Link to this type

 spi_option_map()

 View Source

 @type spi_option_map() :: %{
 mode: 0..3,
 bits_per_word: 8..16,
 speed_hz: pos_integer(),
 delay_us: non_neg_integer(),
 lsb_first: boolean(),
 sw_lsb_first: boolean()
}

SPI bus options as returned by config/1.
These mirror the options that can be passed to open/2. :sw_lsb_first
is set if :lsb_first is true, but Circuits.SPI is doing this in software.

 Functions

 Link to this function

 bus_names()

 View Source

 @spec bus_names() :: [binary()]

Return a list of available SPI bus names. If nothing is returned,
it's possible that the kernel driver for that SPI bus is not enabled or the
kernel's device tree is not configured. On Raspbian, run raspi-config and
look in the advanced options.
iex> Circuits.SPI.bus_names
["spidev0.0", "spidev0.1"]

 Link to this function

 close(spi_bus)

 View Source

 @spec close(Circuits.SPI.Bus.t()) :: :ok

Release any resources associated with the given file descriptor

 Link to this function

 config(spi_bus)

 View Source

 @spec config(Circuits.SPI.Bus.t()) :: {:ok, spi_option_map()} | {:error, term()}

Return the configuration for this SPI bus
The configuration could be different that what was given to open/2 if
the device had to change it for it to work.

 Link to this function

 info(backend \\ nil)

 View Source

 @spec info(backend() | nil) :: map()

Return info about the low level SPI interface
This may be helpful when debugging SPI issues.

 Link to this function

 max_transfer_size(bus \\ nil)

 View Source

 @spec max_transfer_size(Circuits.SPI.Bus.t() | nil) :: non_neg_integer()

Return the maximum transfer size in bytes
The number of bytes that can be sent and received at a time
may be capped by the low level SPI interface. For example,
the Linux spidev driver allocates its transfer buffer at
initialization based on the bufsiz parameter and rejects
requests that won't fit.
If you're sending large amounts of data over SPI, use this
function to determine how to split up large messages.

 Link to this function

 open(bus_name, options \\ [])

 View Source

 @spec open(binary(), [spi_option()]) :: {:ok, Circuits.SPI.Bus.t()} | {:error, term()}

Open a SPI bus device
On success, open/2 returns a reference that may be passed to
with transfer/2. The device will be closed automatically when
the reference goes out of scope.
SPI is not a standardized interface so appropriate options will
different from device-to-device. The defaults use here work on
many devices.
Parameters:
	bus_name is the name of the bus (e.g., "spidev0.0"). See bus_names/0
	opts is a keyword list to configure the bus

 Link to this function

 transfer(spi_bus, data)

 View Source

 @spec transfer(Circuits.SPI.Bus.t(), iodata()) :: {:ok, binary()} | {:error, term()}

Transfer data
Since each SPI transfer sends and receives simultaneously, the return value
will be a binary of the same length as data.

 Link to this function

 transfer!(spi_bus, data)

 View Source

 @spec transfer!(Circuits.SPI.Bus.t(), iodata()) :: binary()

Transfer data and raise on error

Circuits.SPI.Backend behaviour

Backends provide the connection to the real or virtual SPI controller

 Summary

 Callbacks

 bus_names(options)

 Return SPI bus names on this system

 info()

 Return information about this backend

 open(bus_name, list)

 Open a SPI bus device

 Callbacks

 Link to this callback

 bus_names(options)

 View Source

 @callback bus_names(options :: keyword()) :: [String.t()]

Return SPI bus names on this system
No supported options

 Link to this callback

 info()

 View Source

 @callback info() :: map()

Return information about this backend

 Link to this callback

 open(bus_name, list)

 View Source

 @callback open(bus_name :: String.t(), [Circuits.SPI.spi_option()]) ::
 {:ok, Circuits.SPI.Bus.t()} | {:error, term()}

Open a SPI bus device
On success, open/2 returns a reference that may be passed to
with transfer/2. The device will be closed automatically when
the reference goes out of scope.
SPI is not a standardized interface so appropriate options will
different from device-to-device. The defaults use here work on
many devices.
Parameters:
	bus_name is the name of the bus (e.g., "spidev0.0"). See bus_names/0
	opts is a keyword list to configure the bus

Circuits.SPI.Bus protocol

A bus is the connection to a real or virtual SPI controller

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 close(bus)

 Free up resources associated with the bus

 config(bus)

 Return the configuration for this SPI bus

 max_transfer_size(bus)

 Return the maximum transfer size in bytes

 transfer(bus, data)

 Transfer data

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 close(bus)

 View Source

 @spec close(t()) :: :ok

Free up resources associated with the bus
Well behaved backends free up their resources with the help of the Erlang garbage collector. However, it is good
practice for users to call Circuits.SPI.close/1 (and hence this function) so that
limited resources are freed before they're needed again.

 Link to this function

 config(bus)

 View Source

 @spec config(t()) :: {:ok, Circuits.SPI.spi_option_map()} | {:error, term()}

Return the configuration for this SPI bus
The configuration could be different that what was given to open/2 if
the device had to change it for it to work.

 Link to this function

 max_transfer_size(bus)

 View Source

 @spec max_transfer_size(t()) :: non_neg_integer()

Return the maximum transfer size in bytes
The number of bytes that can be sent and received at a time
may be capped by the low level SPI interface. For example,
the Linux spidev driver allocates its transfer buffer at
initialization based on the bufsiz parameter and rejects
requests that won't fit.
If you're sending large amounts of data over SPI, use this
function to determine how to split up large messages.

 Link to this function

 transfer(bus, data)

 View Source

 @spec transfer(t(), iodata()) :: {:ok, binary()} | {:error, term()}

Transfer data
Since each SPI transfer sends and receives simultaneously, the return value
will be a binary of the same length as data.

Circuits.SPI.NilBackend

Circuits.SPI backend when nothing else is available

 Summary

 Functions

 bus_names(options)

 Return the SPI bus names on this system

 info()

 Return information about this backend

 open(bus_name, options)

 Open an I2C bus

 Functions

 Link to this function

 bus_names(options)

 View Source

Return the SPI bus names on this system
No supported options

 Link to this function

 info()

 View Source

Return information about this backend

 Link to this function

 open(bus_name, options)

 View Source

Open an I2C bus
No supported options.

Circuits.SPI.SPIDev

Circuits.SPI backend for the Linux spidev interface
This backend works on Nerves, embedded Linux, and desktop Linux.

 Summary

 Functions

 bus_names(options)

 Return the SPI bus names on this system

 info()

 Return information about this backend

 open(bus_name, options)

 Open an SPI bus

 Functions

 Link to this function

 bus_names(options)

 View Source

Return the SPI bus names on this system
No supported options

 Link to this function

 info()

 View Source

Return information about this backend

 Link to this function

 open(bus_name, options)

 View Source

Open an SPI bus

 OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function u(){f()}function f(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{c(e,!0)}),t.addEventListener("mouseleave",n=>{c(e,!1)})})}function c(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{u(),a()});})();

OEBPS/assets/images/schematic-adc.png
1000

S

GND

g

8

g
-A|-C:’

Q g

8 g

S w

u2
vee
a vout
prseisok 1 oy © oo cHo o
—BLSBLEORL 3] oiv Q
—BLSPLCEQ U Tssuon <]
TBISPIGIPO 6] pour oy [1CHI >
¢

=T wcPaz02p

ND

9

Imﬂn

GND GND

b
Lz Shweoremince

2

