

 Clarity

 v0.1.1

 Table of contents

 	
 Modules

 	Clarity

 	Clarity.Introspector

 	Clarity.Router

 	Clarity.Vertex

 	
 Mix Tasks

 	mix clarity.export_graph

 	mix clarity.install

Clarity

⚠️ Alpha Notice: Clarity is currently in an alpha state. APIs and features
may change rapidly, and things may break. Feedback and contributions are very
welcome!
Clarity is an interactive introspection and visualization tool for Elixir projects.
It automatically discovers and visualizes applications, domains, resources,
modules, and their relationships, giving you a navigable graph interface
enriched with diagrams, tooltips, and documentation.
[image: Clarity Screenshot]
Features
	📊 Graph navigation – explore your application structure visually.
	🗂 Extensible introspection – support for Ash domains/resources, Phoenix
endpoints, Ecto repos, and more.
	🖼 Mermaid & Graphviz diagrams – ER diagrams, class diagrams, and policy
diagrams where available.
	📝 Markdown rendering – show documentation from moduledocs and resource
definitions.
	🔎 Interactive tooltips – quick overviews of nodes and edges.
	⚡ LiveView-powered – fully dynamic, real-time updates in the browser.
	🔌 Custom extensions – add your own introspectors to visualize
domain-specific concepts.

Installation
Igniter
mix igniter.install clarity

Manual
The package can be installed by adding clarity to your list of dependencies
in mix.exs:
def deps do
 [
 {:clarity, "~> 0.1.0"}
]
end
Router:
import Clarity.Router
clarity("/clarity")
License
Copyright 2025 Alembic Pty Ltd
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Summary

 Types

 t()

 tree()

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 get(name \\ __MODULE__)

 Gets the current state of the clarity.

 introspect()

 Builds a new clarity by introspecting the current state of the system.

 update(name \\ __MODULE__)

 Types

 t()

 @type t() :: %Clarity{
 graph: :digraph.graph(),
 root: Clarity.Vertex.t(),
 tree: tree(),
 vertices: %{required(String.t()) => Clarity.Vertex.t()}
}

 tree()

 @type tree() :: %{
 node: :digraph.vertex(),
 children: %{optional(:digraph.label()) => [tree()]}
}

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get(name \\ __MODULE__)

 @spec get(name :: Agent.agent()) :: t()

Gets the current state of the clarity.

 introspect()

 @spec introspect() :: t()

Builds a new clarity by introspecting the current state of the system.

 update(name \\ __MODULE__)

 @spec update(name :: Agent.agent()) :: t()

Clarity.Introspector behaviour

Defines the behaviour and orchestration logic for introspectors.
Clarity introspects ash applications using an underlying :digraph structure,
allowing visualization and exploration of resources, domains, actions, types,
and more.
This module defines the Clarity.Introspector behaviour and the default
pipeline for built-in and user-defined introspectors. Each introspector
receives a digraph and may add or modify vertices and edges. After all
introspect/1 calls, each introspector can optionally perform post-processing
via post_introspect/1.
Custom Introspectors
You can define your own introspectors by implementing this behaviour and adding
your module to the :clarity_introspectors config under the your application.
config :acme, :clarity_introspectors, [
 MyApp.MyCustomIntrospector
]
Example
Here's a simplified example of a custom introspector implementation:
defmodule MyApp.MyCustomIntrospector do
 @behaviour Clarity.Introspector

 alias Clarity.Vertex

 @impl Clarity.Introspector
 def dependencies, do: [Clarity.Introspector.Ash.Domain]

 @impl Clarity.Introspector
 def introspect(graph) do
 for %Vertex.Resource{resource: resource} = resource_vertex <- :digraph.vertices(graph) do
 # Create a custom vertex for the resource
 custom_vertex = %Vertex.Custom{resource: resource}
 custom_vertex_id = Vertex.unique_id(custom_vertex)
 :digraph.add_vertex(graph, custom_vertex, custom_vertex_id)

 # Add an edge from the resource to the custom vertex
 :digraph.add_edge(graph, resource_vertex, custom_vertex, :custom)
 end

 graph
 end

 @impl Clarity.Introspector
 def post_introspect(graph) do
 del_vertices =
 for %Vertex.Custom{} = custom_vertex <- :digraph.vertices(graph),
 # No outgoing edges
 0 == :digraph.out_degree(graph, custom_vertex),
 # Only one incoming edge (resource)
 1 == :digraph.in_degree(graph, custom_vertex),
 do: custom_vertex

 :digraph.del_vertices(graph, del_vertices)

 graph
 end
end

 Summary

 Types

 t()

 A module implementing the Clarity.Introspector behaviour.

 Callbacks

 dependencies()

 Declares the introspectors that this module depends on.

 introspect(graph)

 Builds and processes the introspection graph using the built-in and configured
introspectors.

 post_introspect(graph)

 Called after the main graph resolution phase.

 Functions

 attach_moduledoc_content(module, graph, vertex)

 Attaches the moduledoc content of a module to the introspection graph.

 introspect(graph, introspectors \\ introspectors())

 Builds and processes the introspection graph using the built-in and configured
introspectors.

 introspectors()

 Returns the list of introspectors, including both built-in and user-defined
ones, sorted by their dependencies.

 Types

 t()

 @type t() :: module()

A module implementing the Clarity.Introspector behaviour.

 Callbacks

 dependencies()

 @callback dependencies() :: [t()]

Declares the introspectors that this module depends on.
Returns a list of introspector modules that must be executed before this one.
This callback must be implemented by all introspectors to declare their
dependencies explicitly.
Example
@impl Clarity.Introspector
def dependencies do
 [Clarity.Introspector.Root, Clarity.Introspector.Application]
end

 introspect(graph)

 @callback introspect(graph :: :digraph.graph()) :: :digraph.graph()

Builds and processes the introspection graph using the built-in and configured
introspectors.
Each introspector first modifies the graph using introspect/1, and then may
apply further changes with post_introspect/1.
Returns the final :digraph.graph() structure.

 post_introspect(graph)

 (optional)

 @callback post_introspect(graph :: :digraph.graph()) :: :digraph.graph()

Called after the main graph resolution phase.
Allows introspectors to further refine or clean up the graph. For example, it
can remove vertices that are not used anywhere and therefore are not relevant
for visualization.
Must return the modified :digraph.graph() structure.

 Functions

 attach_moduledoc_content(module, graph, vertex)

 @spec attach_moduledoc_content(
 module :: module(),
 graph :: :digraph.graph(),
 vertex :: :digraph.vertex()
) :: :ok

Attaches the moduledoc content of a module to the introspection graph.

 introspect(graph, introspectors \\ introspectors())

 @spec introspect(graph :: :digraph.graph(), introspectors :: [t()]) ::
 :digraph.graph()

Builds and processes the introspection graph using the built-in and configured
introspectors.
Returns the final :digraph.graph() structure.

 introspectors()

 @spec introspectors() :: [t()]

Returns the list of introspectors, including both built-in and user-defined
ones, sorted by their dependencies.

Clarity.Router

Router for the Clarity LiveView application.

 Summary

 Functions

 clarity(path, opts \\ [])

 Defines an clarity route.
It expects the path the clarity dashboard will be mounted at
and a set of options.

 clarity_browser_pipeline(name \\ :browser)

 Can be used to create a :browser pipeline easily if you don't have one.

 Functions

 clarity(path, opts \\ [])

 (macro)

Defines an clarity route.
It expects the path the clarity dashboard will be mounted at
and a set of options.
Options
	:live_socket_path - Optional override for the socket path. it must match
the socket "/live", Phoenix.LiveView.Socket in your endpoint. Defaults to /live.

	:on_mount - Optional list of hooks to attach to the mount lifecycle.

	:session - Optional extra session map or MFA tuple to be merged with the session.

	:live_session_name - Optional atom to name the live_session. Defaults to :clarity.

Examples
defmodule MyAppWeb.Router do
 use Phoenix.Router

 scope "/" do
 import Clarity.Router

 # Make sure you are piping through the browser pipeline
 # If you don't have one, see `clarity_browser_pipeline/1`
 pipe_through [:browser]

 clarity "/clarity"
 end
end

 clarity_browser_pipeline(name \\ :browser)

 (macro)

Can be used to create a :browser pipeline easily if you don't have one.
By default it is called :browser, but you can rename it by supplying an
argument, for example:
defmodule MyAppWeb.Router do
 use Phoenix.Router

 import Clarity.Router
 clarity_browser_pipeline :something

 scope "/" do
 pipe_through [:something]
 clarity "/clarity"
 end
end

Clarity.Vertex protocol

Protocol for vertices in the Clarity graph.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 dot_shape(vertex)

 Returns the shape to be used for the vertex in the graph visualization.
This is used to determine how the vertex will be rendered in the graph.

 graph_group(vertex)

 Returns the group to which the vertex belongs in the graph.
This is used for grouping vertexs in the visualization.

 graph_id(vertex)

 Returns a graph ID for the vertex, which is used to identify the vertex in the
graph.

 markdown_overview(vertex)

 Returns the overview content for the vertex.

 render_name(vertex)

 Renders the name of the vertex for display purposes.
This is typically used in the UI to show the name of the vertex.

 type_label(vertex)

 Returns the label for the type of the vertex.
This is used for displaying the type of the vertex in the graph.

 unique_id(vertex)

 Returns a unique identifier for the vertex.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 dot_shape(vertex)

 @spec dot_shape(t()) :: String.t()

Returns the shape to be used for the vertex in the graph visualization.
This is used to determine how the vertex will be rendered in the graph.

 graph_group(vertex)

 @spec graph_group(t()) :: [iodata()]

Returns the group to which the vertex belongs in the graph.
This is used for grouping vertexs in the visualization.

 graph_id(vertex)

 @spec graph_id(t()) :: iodata()

Returns a graph ID for the vertex, which is used to identify the vertex in the
graph.

 markdown_overview(vertex)

 @spec markdown_overview(t()) :: iodata() | nil

Returns the overview content for the vertex.
Used for tooltips and other informational displays in the UI.
Careful: This component is rendered for every vertex in the graph, so it
should be efficient.

 render_name(vertex)

 @spec render_name(t()) :: String.t()

Renders the name of the vertex for display purposes.
This is typically used in the UI to show the name of the vertex.

 type_label(vertex)

 @spec type_label(t()) :: String.t()

Returns the label for the type of the vertex.
This is used for displaying the type of the vertex in the graph.

 unique_id(vertex)

 @spec unique_id(t()) :: String.t()

Returns a unique identifier for the vertex.
Used for identifying vertexs in the graph, including in the UI of the dashboard.

mix clarity.export_graph

This task exports the Clarity graph to a DOT file, which can be used for
visualization with Graphviz.
Options
	--out or -o: The output file path. Defaults to - (stdout).
	--filter-vertices or -f: A list of vertex names to filter the graph.
Only vertices reachable from these will be included in the output.

mix clarity.install

Installs Clarity
Example
mix clarity.install

 OEBPS/docs/assets/screenshot.png
A Clarity

application
v clarity
domain
M Dermo Accounts. Domain-
resource
» Demo.Accounts.User
endpoint
DemoWeb.Endpoint
router
DemoWeb.Router

» ash

Graph Navigation

ER Diagram

clarity / Demo.Accounts.Domain

Class Diagram

SLELELELES

OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

