

 claude_agent_sdk

 v0.9.2

 [image: Logo]

 Table of contents

 	Getting Started

 	README

 	Getting Started with Claude Agent SDK for Elixir

 	Core Guides

 	Streaming Guide

 	Hooks Guide

 	MCP Tools Guide

 	Permissions Guide

 	Advanced Topics

 	Configuration Guide

 	Agents Guide

 	Sessions Guide

 	Testing & Errors

 	Testing Guide for Claude Agent SDK

 	Error Handling Guide

 	Examples

 	Examples

 	Mix Task Chat Example

 	Phoenix Chat - Claude Agent SDK Demo

 	Document Generation Example

 	Research Agent

 	Skill Invocation Example

 	Email Agent

 	Release Notes

 	Changelog

 	LICENSE

 	
 Modules

 	ClaudeAgentSDK.AbortSignal

 	ClaudeAgentSDK.Agent

 	ClaudeAgentSDK.AssistantError

 	ClaudeAgentSDK.CLI

 	ClaudeAgentSDK.Errors

 	ClaudeAgentSDK.Errors.Guards

 	ClaudeAgentSDK.Log

 	ClaudeAgentSDK.Model

 	ClaudeAgentSDK.Permission

 	ClaudeAgentSDK.Permission.Context

 	ClaudeAgentSDK.Permission.Result

 	ClaudeAgentSDK.Permission.RuleValue

 	ClaudeAgentSDK.Permission.Update

 	ClaudeAgentSDK.Query.CLIStream

 	ClaudeAgentSDK.Query.ClientStream

 	ClaudeAgentSDK.Streaming.EventAdapter

 	ClaudeAgentSDK.Streaming.Termination

 	ClaudeAgentSDK.TaskSupervisor

 	ClaudeAgentSDK.Tool

 	ClaudeAgentSDK.Tool.Registry

 	ClaudeAgentSDK.Transport

 	ClaudeAgentSDK.Transport.Erlexec

 	ClaudeAgentSDK.Transport.Port

 	ClaudeAgentSDK.Transport.StreamingRouter

 	Core API

 	ClaudeAgentSDK

 	ClaudeAgentSDK.Client

 	ClaudeAgentSDK.Orchestrator

 	ClaudeAgentSDK.Query

 	Session

 	ClaudeAgentSDK.Session

 	ClaudeAgentSDK.SessionStore

 	Authentication

 	ClaudeAgentSDK.Auth.Provider

 	ClaudeAgentSDK.Auth.Providers.Anthropic

 	ClaudeAgentSDK.Auth.Providers.Bedrock

 	ClaudeAgentSDK.Auth.Providers.Vertex

 	ClaudeAgentSDK.Auth.TokenStore

 	ClaudeAgentSDK.AuthChecker

 	ClaudeAgentSDK.AuthManager

 	Streaming

 	ClaudeAgentSDK.Streaming

 	ClaudeAgentSDK.Streaming.EventParser

 	ClaudeAgentSDK.Streaming.Session

 	Message Handling

 	ClaudeAgentSDK.ContentExtractor

 	ClaudeAgentSDK.Message

 	Configuration

 	ClaudeAgentSDK.OptionBuilder

 	ClaudeAgentSDK.Options

 	Testing

 	ClaudeAgentSDK.Mock

 	ClaudeAgentSDK.Mock.Process

 	Hooks

 	ClaudeAgentSDK.Hooks

 	ClaudeAgentSDK.Hooks.Matcher

 	ClaudeAgentSDK.Hooks.Output

 	ClaudeAgentSDK.Hooks.Registry

 	Control Protocol

 	ClaudeAgentSDK.ControlProtocol.Protocol

 	Utilities

 	ClaudeAgentSDK.DebugMode

 	ClaudeAgentSDK.JSON

 	ClaudeAgentSDK.Process

 	Exceptions

 	ClaudeAgentSDK.Errors.CLIConnectionError

 	ClaudeAgentSDK.Errors.CLIJSONDecodeError

 	ClaudeAgentSDK.Errors.CLINotFoundError

 	ClaudeAgentSDK.Errors.ClaudeSDKError

 	ClaudeAgentSDK.Errors.MessageParseError

 	ClaudeAgentSDK.Errors.ProcessError

 	
 Mix Tasks

 	Mix Tasks

 	mix claude.setup_token

 	mix run.live

 	mix showcase

 	mix test.live

ClaudeAgentSDK.AbortSignal

Lightweight cancellation token shared with callbacks.
Callbacks receive this via :signal in their context and can poll
cancelled?/1 to cooperatively stop work when a cancel or shutdown
occurs.

 Summary

 Types

 t()

 Functions

 cancel(abort_signal)

 Marks the signal as cancelled.

 cancelled?(arg1)

 Returns true if the signal has been cancelled.

 new()

 Creates a new abort signal.

 Types

 t()

 @type t() :: %ClaudeAgentSDK.AbortSignal{ref: :atomics.atomics_ref()}

 Functions

 cancel(abort_signal)

 @spec cancel(t()) :: :ok

Marks the signal as cancelled.

 cancelled?(arg1)

 @spec cancelled?(t() | nil) :: boolean()

Returns true if the signal has been cancelled.

 new()

 @spec new() :: t()

Creates a new abort signal.

ClaudeAgentSDK.Agent

Agent definition for custom agent profiles.
An Agent represents a custom persona or role for Claude with specific:
	Description: Human-readable description of the agent's purpose
	Prompt: System prompt that defines the agent's behavior
	Allowed Tools: Optional list of tools the agent can use
	Model: Optional model specification (e.g., "claude-sonnet-4", "opus")

Agents enable switching between different Claude behaviors at runtime while
maintaining conversation context.
Examples
Define a code review agent
code_agent = Agent.new(
 name: :code_reviewer,
 description: "Expert code reviewer",
 prompt: "You are an expert code reviewer. Analyze code for bugs, performance, and best practices.",
 allowed_tools: ["Read", "Grep"],
 model: "claude-sonnet-4"
)

Define a documentation agent
doc_agent = Agent.new(
 description: "Documentation specialist",
 prompt: "You excel at writing clear, comprehensive documentation.",
 allowed_tools: ["Read", "Write"]
)

Use agents in options
options = Options.new(
 agents: %{
 coder: code_agent,
 writer: doc_agent
 },
 agent: :coder # Start with code agent
)
Python SDK Compatibility
Maps to Python's AgentDefinition:
Python
AgentDefinition(
 description="Expert code reviewer",
 prompt="You are an expert...",
 tools=["Read", "Grep"],
 model="sonnet"
)

Elixir equivalent
Agent.new(
 description: "Expert code reviewer",
 prompt: "You are an expert...",
 allowed_tools: ["Read", "Grep"],
 model: "sonnet"
)

 Summary

 Types

 t()

 Functions

 new(attrs)

 Creates a new Agent struct.

 to_cli_map(agent)

 Converts an Agent to a CLI-compatible map.

 validate(agent)

 Validates an Agent struct.

 Types

 t()

 @type t() :: %ClaudeAgentSDK.Agent{
 allowed_tools: [String.t()] | nil,
 description: String.t(),
 model: String.t() | nil,
 name: atom() | nil,
 prompt: String.t()
}

 Functions

 new(attrs)

 @spec new(keyword()) :: t()

Creates a new Agent struct.
Parameters
	attrs - Keyword list of agent attributes

Required Fields
	:description - Description of the agent's purpose (string)
	:prompt - System prompt defining the agent's behavior (string)

Optional Fields
	:name - Agent identifier (atom)
	:allowed_tools - List of tool names the agent can use (list of strings)
	:model - Model to use for this agent (string, e.g., "sonnet", "claude-opus-4")

Returns
A new ClaudeAgentSDK.Agent.t/0 struct.
Examples
Minimal agent
Agent.new(
 description: "Simple helper",
 prompt: "You are a helpful assistant"
)

Complete agent
Agent.new(
 name: :researcher,
 description: "Research specialist",
 prompt: "You excel at research and analysis",
 allowed_tools: ["WebSearch", "WebFetch"],
 model: "claude-opus-4"
)

 to_cli_map(agent)

 @spec to_cli_map(t()) :: map()

Converts an Agent to a CLI-compatible map.
Transforms the Agent struct into a map format expected by the Claude CLI,
converting field names to match the CLI's JSON schema:
	prompt → "prompt"
	description → "description"
	allowed_tools → "tools"
	model → "model"

Omits nil fields from the output map.
Parameters
	agent - Agent struct to convert

Returns
A map with string keys suitable for JSON encoding and passing to the CLI.
Examples
agent = Agent.new(
 description: "Code reviewer",
 prompt: "You review code",
 allowed_tools: ["Read", "Grep"],
 model: "sonnet"
)

Agent.to_cli_map(agent)
#=> %{
#=> "description" => "Code reviewer",
#=> "prompt" => "You review code",
#=> "tools" => ["Read", "Grep"],
#=> "model" => "sonnet"
#=> }

 validate(agent)

 @spec validate(t()) :: :ok | {:error, atom()}

Validates an Agent struct.
Ensures that required fields are present and all fields have valid values.
Validation Rules
	description must be present and non-empty
	prompt must be present and non-empty
	allowed_tools must be a list of strings (if present)
	model must be a string (if present)

Parameters
	agent - Agent struct to validate

Returns
	:ok if validation succeeds
	{:error, reason} if validation fails

Examples
agent = Agent.new(
 description: "Valid agent",
 prompt: "You are helpful"
)
Agent.validate(agent)
#=> :ok

invalid = Agent.new(
 description: "",
 prompt: "Prompt"
)
Agent.validate(invalid)
#=> {:error, :description_required}

ClaudeAgentSDK.AssistantError

Enumerates assistant-level error codes surfaced by the Claude CLI.
Mirrors the Python SDK enum to keep client handling consistent.

 Summary

 Types

 t()

 Functions

 cast(error)

 Casts a string/atom error value into the assistant error enum.

 values()

 Returns the list of supported assistant error codes.

 Types

 t()

 @type t() ::
 :authentication_failed
 | :billing_error
 | :rate_limit
 | :invalid_request
 | :server_error
 | :unknown

 Functions

 cast(error)

 @spec cast(String.t() | atom() | nil) :: t() | nil

Casts a string/atom error value into the assistant error enum.
Returns nil when no error is present, and :unknown when the value
is present but not recognized.

 values()

 @spec values() :: [t()]

Returns the list of supported assistant error codes.

ClaudeAgentSDK.CLI

Centralized Claude CLI discovery and version tracking.
This module consolidates executable lookup logic and provides helpers
for checking installation status, parsing the installed version, and
warning when the detected version is below the supported minimum.

 Summary

 Functions

 find_executable()

 Attempts to find the Claude CLI executable.

 find_executable!()

 Like find_executable/0 but raises when the CLI is not available.

 installed?()

 Returns true if the Claude CLI is installed and discoverable.

 minimum_version()

 Returns the minimum supported Claude CLI version.

 recommended_version()

 Returns the recommended Claude CLI version for this SDK release.

 resolve_executable(arg1)

 Resolves the CLI executable, honoring option overrides.

 resolve_executable!(options)

 Like resolve_executable/1 but raises when the CLI is not available.

 version()

 Returns the installed Claude CLI version as a string.

 version_supported?()

 True if the installed version meets or exceeds the minimum.

 warn_if_outdated()

 Emits a warning when the installed CLI is below the supported minimum or unknown.

 Functions

 find_executable()

 @spec find_executable() :: {:ok, String.t()} | {:error, :not_found}

Attempts to find the Claude CLI executable.
Tries candidates in order (claude-code, then claude) and returns
{:ok, path} when found or {:error, :not_found} otherwise.

 find_executable!()

 @spec find_executable!() :: String.t()

Like find_executable/0 but raises when the CLI is not available.

 installed?()

 @spec installed?() :: boolean()

Returns true if the Claude CLI is installed and discoverable.

 minimum_version()

 @spec minimum_version() :: String.t()

Returns the minimum supported Claude CLI version.

 recommended_version()

 @spec recommended_version() :: String.t()

Returns the recommended Claude CLI version for this SDK release.
This version is tested and known to work with all SDK features including
file checkpointing, streaming control protocol, and partial messages.

 resolve_executable(arg1)

 @spec resolve_executable(ClaudeAgentSDK.Options.t() | nil) ::
 {:ok, String.t()} | {:error, :not_found}

Resolves the CLI executable, honoring option overrides.
When path_to_claude_code_executable or executable is set on the options,
that value is used directly. Otherwise falls back to normal discovery.

 resolve_executable!(options)

 @spec resolve_executable!(ClaudeAgentSDK.Options.t() | nil) :: String.t()

Like resolve_executable/1 but raises when the CLI is not available.

 version()

 @spec version() :: {:ok, String.t()} | {:error, term()}

Returns the installed Claude CLI version as a string.

 version_supported?()

 @spec version_supported?() :: boolean()

True if the installed version meets or exceeds the minimum.

 warn_if_outdated()

 @spec warn_if_outdated() :: :ok

Emits a warning when the installed CLI is below the supported minimum or unknown.

ClaudeAgentSDK.Errors

Structured error types for programmatic handling.
These mirror the Python SDK's exception taxonomy while keeping Elixir-friendly
return shapes ({:error, reason} where reason is a struct).
Base Exception
ClaudeSDKError serves as the conceptual base for all SDK errors. While Elixir
doesn't have exception inheritance, this provides a common pattern for wrapping
lower-level errors with SDK-specific context.
Error Types
	ClaudeSDKError - Base exception for generic SDK errors
	CLIConnectionError - Connection/startup failures
	CLINotFoundError - CLI executable not found
	ProcessError - CLI process exited with error
	CLIJSONDecodeError - JSON parsing failures
	MessageParseError - Message structure parsing failures

Utility Functions
	sdk_error?/1 - Check if an exception is an SDK error
	category/1 - Get the category of an SDK error

Guard Macro
Import ClaudeAgentSDK.Errors.Guards to use is_sdk_error/1 in guards:
import ClaudeAgentSDK.Errors.Guards

try do
 ClaudeAgentSDK.query("prompt", opts)
rescue
 e when is_sdk_error(e) ->
 Logger.error("SDK Error: #{Exception.message(e)}")
end
Examples
Raising base SDK error
raise ClaudeAgentSDK.Errors.ClaudeSDKError, message: "Operation failed"

Checking error type
Errors.sdk_error?(%Errors.CLIConnectionError{message: "failed"})
=> true

Getting error category
Errors.category(%Errors.CLIConnectionError{message: "failed"})
=> :connection

 Summary

 Types

 category()

 Error category for grouping related errors.

 sdk_error()

 Union type of all SDK error types.

 Functions

 category(error)

 Get the category of an SDK error.

 sdk_error?(error)

 Check if an exception is an SDK error.

 Types

 category()

 @type category() :: :connection | :process | :parse | :generic

Error category for grouping related errors.

 sdk_error()

 @type sdk_error() ::
 ClaudeAgentSDK.Errors.ClaudeSDKError.t()
 | ClaudeAgentSDK.Errors.CLIConnectionError.t()
 | ClaudeAgentSDK.Errors.CLINotFoundError.t()
 | ClaudeAgentSDK.Errors.ProcessError.t()
 | ClaudeAgentSDK.Errors.CLIJSONDecodeError.t()
 | ClaudeAgentSDK.Errors.MessageParseError.t()

Union type of all SDK error types.

 Functions

 category(error)

 @spec category(sdk_error()) :: category()

Get the category of an SDK error.
Categories help group related errors for handling:
	:connection - Connection and CLI discovery errors
	:process - CLI process execution errors
	:parse - JSON and message parsing errors
	:generic - Base SDK errors without specific category

Examples
iex> Errors.category(%Errors.CLIConnectionError{message: "failed"})
:connection

iex> Errors.category(%Errors.ProcessError{message: "crashed"})
:process

iex> Errors.category(%Errors.CLIJSONDecodeError{message: "bad", line: "{"})
:parse

 sdk_error?(error)

 @spec sdk_error?(term()) :: boolean()

Check if an exception is an SDK error.
Returns true if the given value is one of the SDK error types,
false otherwise.
Examples
iex> Errors.sdk_error?(%Errors.ClaudeSDKError{message: "test"})
true

iex> Errors.sdk_error?(%Errors.CLIConnectionError{message: "failed"})
true

iex> Errors.sdk_error?(%RuntimeError{message: "not sdk"})
false

iex> Errors.sdk_error?("string")
false

ClaudeAgentSDK.Errors.Guards

Guard macros for pattern matching SDK errors.
Provides is_sdk_error/1 macro that can be used in guards and function heads
to match any SDK error type.
Usage
import ClaudeAgentSDK.Errors.Guards

In function heads
def handle_error(e) when is_sdk_error(e) do
 Logger.error("SDK error: #{Exception.message(e)}")
end

In try/rescue
try do
 ClaudeAgentSDK.query("prompt", opts)
rescue
 e when is_sdk_error(e) ->
 {:error, :sdk_failure}
end
Why a Guard Macro?
While Errors.sdk_error?/1 works for runtime checks, Elixir guards are
compile-time constructs that only allow certain expressions. This macro
expands to valid guard expressions that match all SDK error struct types.

 Summary

 Functions

 is_sdk_error(error)

 Guard macro to check if a value is an SDK error.

 Functions

 is_sdk_error(error)

 (macro)

Guard macro to check if a value is an SDK error.
Can be used in function heads and guard clauses.
Examples
Function head guard
def log_error(e) when is_sdk_error(e), do: Logger.error(Exception.message(e))

Case clause guard
case error do
 e when is_sdk_error(e) -> handle_sdk_error(e)
 _ -> handle_other(error)
end

ClaudeAgentSDK.Log

SDK-scoped logger wrapper with a configurable minimum log level.
This avoids noisy output by default while still allowing callers to opt in to
more verbose logs via application config.

 Summary

 Types

 level()

 Functions

 configure(opts)

 debug(message, metadata \\ [])

 enabled?(level)

 error(message, metadata \\ [])

 info(message, metadata \\ [])

 log(level, message, metadata \\ [])

 warning(message, metadata \\ [])

 Types

 level()

 @type level() :: :debug | :info | :warning | :error

 Functions

 configure(opts)

 @spec configure(keyword()) :: :ok

 debug(message, metadata \\ [])

 @spec debug(
 Logger.message(),
 keyword()
) :: :ok

 enabled?(level)

 @spec enabled?(level()) :: boolean()

 error(message, metadata \\ [])

 @spec error(
 Logger.message(),
 keyword()
) :: :ok

 info(message, metadata \\ [])

 @spec info(
 Logger.message(),
 keyword()
) :: :ok

 log(level, message, metadata \\ [])

 @spec log(level(), Logger.message(), keyword()) :: :ok

 warning(message, metadata \\ [])

 @spec warning(
 Logger.message(),
 keyword()
) :: :ok

ClaudeAgentSDK.Model

Model validation and normalization utilities.
This module provides functions for validating Claude model names,
normalizing short forms to full model identifiers, and suggesting
similar model names when an invalid model is provided.
Supported Models
	"opus" - Claude Opus 4.1 (claude-opus-4-1-20250805)
	"sonnet" - Claude Sonnet 4.5 (claude-sonnet-4-5-20250929)
	"haiku" - Claude Haiku 4.5 (claude-haiku-4-5-20251001) - default
	"sonnet[1m]" - Claude Sonnet 4.5 with 1M context (claude-sonnet-4-5-20250929[1m])

Examples
iex> ClaudeAgentSDK.Model.validate("opus")
{:ok, "opus"}

iex> ClaudeAgentSDK.Model.validate("claude-sonnet-4-5-20250929")
{:ok, "claude-sonnet-4-5-20250929"}

iex> ClaudeAgentSDK.Model.validate("invalid")
{:error, :invalid_model}

iex> ClaudeAgentSDK.Model.list_models()
["claude-haiku-4-5-20251001", "claude-opus-4-1-20250805", ...]

iex> ClaudeAgentSDK.Model.suggest("opuss")
["opus"]

 Summary

 Functions

 list_models()

 Returns a sorted list of all known model names.

 suggest(invalid_model)

 Suggests similar model names for an invalid input.

 validate(model)

 Validates and normalizes a model name.

 Functions

 list_models()

 @spec list_models() :: [String.t()]

Returns a sorted list of all known model names.
The list includes both short forms and full model identifiers.
Returns
A sorted list of model name strings.
Examples
iex> models = ClaudeAgentSDK.Model.list_models()
iex> "opus" in models
true

iex> models = ClaudeAgentSDK.Model.list_models()
iex> "claude-opus-4-20250514" in models
true

iex> models = ClaudeAgentSDK.Model.list_models()
iex> models == Enum.sort(models)
true

 suggest(invalid_model)

 @spec suggest(String.t()) :: [String.t()]

Suggests similar model names for an invalid input.
Uses Jaro distance algorithm to find models with similarity > 0.7.
Returns up to 3 suggestions, sorted by similarity (highest first).
Parameters
	invalid_model - The invalid model name to find suggestions for

Returns
A list of up to 3 suggested model names, or an empty list if no
similar models are found.
Examples
iex> ClaudeAgentSDK.Model.suggest("opuss")
["opus", "claude-opus-4-20250514"]

iex> ClaudeAgentSDK.Model.suggest("sonet")
["sonnet", "claude-sonnet-4-20250514"]

iex> ClaudeAgentSDK.Model.suggest("completely-unrelated-xyz123")
[]

iex> suggestions = ClaudeAgentSDK.Model.suggest("claude")
iex> length(suggestions) <= 3
true

 validate(model)

 @spec validate(String.t() | nil) :: {:ok, String.t()} | {:error, :invalid_model}

Validates and normalizes a model name.
Accepts both short forms (e.g., "opus") and full model identifiers
(e.g., "claude-opus-4-20250514"). Returns the normalized full model
identifier on success.
Parameters
	model - The model name to validate (string)

Returns
	{:ok, normalized_model} - When the model is valid
	{:error, :invalid_model} - When the model is not recognized

Examples
iex> ClaudeAgentSDK.Model.validate("opus")
{:ok, "opus"}

iex> ClaudeAgentSDK.Model.validate("sonnet")
{:ok, "sonnet"}

iex> ClaudeAgentSDK.Model.validate("claude-haiku-4-5-20251001")
{:ok, "claude-haiku-4-5-20251001"}

iex> ClaudeAgentSDK.Model.validate("invalid-model")
{:error, :invalid_model}

iex> ClaudeAgentSDK.Model.validate(nil)
{:error, :invalid_model}

iex> ClaudeAgentSDK.Model.validate("")
{:error, :invalid_model}

ClaudeAgentSDK.Permission

Permission System for Claude Agent SDK.
This module provides a structured permission system for controlling tool execution
at runtime through callbacks and permission modes.
Permission Modes
The SDK supports six permission modes that control how tool permissions are handled:
	:default - All tools go through the permission callback
	:accept_edits - Edit operations (Write, Edit, MultiEdit) are auto-allowed
	:plan - Claude creates a plan, shows it to user, then executes after approval
	:bypass_permissions - All tools are allowed without callback invocation
	:delegate - Delegate tool execution to the SDK (CLI does not run built-in tools)
	:dont_ask - Do not prompt for permissions; tools proceed without callback

Permission Callbacks
Permission callbacks allow fine-grained control over tool execution. They receive
context about the tool being used and return a permission result.
Callback Signature
(Context.t() -> Result.t())
Example
callback = fn context ->
 case context.tool_name do
 "Bash" ->
 if String.contains?(context.tool_input["command"], "rm -rf") do
 Result.deny("Dangerous command detected")
 else
 Result.allow()
 end

 "Write" ->
 # Redirect system file writes to safe location
 file_path = context.tool_input["file_path"]
 if String.starts_with?(file_path, "/etc/") do
 safe_path = "/tmp/safe_output/" <> Path.basename(file_path)
 Result.allow(updated_input: %{context.tool_input | "file_path" => safe_path})
 else
 Result.allow()
 end

 _ ->
 Result.allow()
 end
end

options = %Options{
 can_use_tool: callback,
 permission_mode: :default
}
Runtime Mode Switching
Permission mode can be changed at runtime using Client.set_permission_mode/2:
{:ok, client} = Client.start_link(options)

Switch to plan mode
Client.set_permission_mode(client, :plan)

Switch back to default
Client.set_permission_mode(client, :default)
Integration with Hooks
The permission system integrates with the existing hooks system. Permission
callbacks are invoked via the control protocol when the CLI requests permission
to use a tool. If the CLI does not emit can_use_tool requests, the SDK
automatically invokes the callback via a PreToolUse hook when possible.
In that hook-based path, updated_permissions updates are ignored.
When can_use_tool is set, the SDK enables partial messages and configures
the CLI permission prompt tool to "stdio" internally.
See:
	ClaudeAgentSDK.Permission.Context - Permission context structure
	ClaudeAgentSDK.Permission.Result - Permission result types

 Summary

 Types

 callback()

 Permission callback function type.

 permission_mode()

 Permission mode controlling how tool permissions are handled.

 Functions

 mode_to_string(mode)

 Converts permission mode atom to CLI string format.

 string_to_mode(arg1)

 Converts CLI permission mode string to atom.

 valid_mode?(mode)

 Validates a permission mode.

 valid_modes()

 Returns all valid permission modes.

 validate_callback(callback)

 Validates a permission callback function.

 Types

 callback()

 @type callback() :: (ClaudeAgentSDK.Permission.Context.t() ->
 ClaudeAgentSDK.Permission.Result.t())

Permission callback function type.
Receives permission context and returns permission result.

 permission_mode()

 @type permission_mode() ::
 :default | :accept_edits | :plan | :bypass_permissions | :delegate | :dont_ask

Permission mode controlling how tool permissions are handled.

 Functions

 mode_to_string(mode)

 @spec mode_to_string(permission_mode()) :: String.t()

Converts permission mode atom to CLI string format.
Examples
iex> ClaudeAgentSDK.Permission.mode_to_string(:accept_edits)
"acceptEdits"

iex> ClaudeAgentSDK.Permission.mode_to_string(:default)
"default"

 string_to_mode(arg1)

 @spec string_to_mode(String.t()) :: permission_mode() | nil

Converts CLI permission mode string to atom.
Returns nil for unknown mode strings.
Examples
iex> ClaudeAgentSDK.Permission.string_to_mode("acceptEdits")
:accept_edits

iex> ClaudeAgentSDK.Permission.string_to_mode("invalid")
nil

 valid_mode?(mode)

 @spec valid_mode?(term()) :: boolean()

Validates a permission mode.
Returns true if the mode is valid, false otherwise.
Examples
iex> ClaudeAgentSDK.Permission.valid_mode?(:default)
true

iex> ClaudeAgentSDK.Permission.valid_mode?(:invalid)
false

 valid_modes()

 @spec valid_modes() :: [permission_mode()]

Returns all valid permission modes.
Examples
iex> ClaudeAgentSDK.Permission.valid_modes()
[:default, :accept_edits, :plan, :bypass_permissions, :delegate, :dont_ask]

 validate_callback(callback)

 @spec validate_callback(term()) :: :ok | {:error, String.t()}

Validates a permission callback function.
Returns :ok if the callback is valid, {:error, reason} otherwise.
Examples
iex> callback = fn _context -> Result.allow() end
iex> ClaudeAgentSDK.Permission.validate_callback(callback)
:ok

iex> ClaudeAgentSDK.Permission.validate_callback("not a function")
{:error, "Permission callback must be a function"}

ClaudeAgentSDK.Permission.Context

Permission context passed to permission callbacks.
The context contains information about the tool being used, including:
	Tool name
	Tool input parameters
	Session identifier
	Permission suggestions from the CLI
	Abort signal (reserved for future use)

Structure
%Context{
 tool_name: "Bash",
 tool_input: %{"command" => "ls -la"},
 session_id: "550e8400-e29b-41d4-a716-446655440000",
 suggestions: [],
 signal: nil
}
Usage in Callbacks
def my_permission_callback(context) do
 case context.tool_name do
 "Bash" ->
 command = context.tool_input["command"]
 if safe_command?(command) do
 Result.allow()
 else
 Result.deny("Command not allowed")
 end

 "Write" ->
 file_path = context.tool_input["file_path"]
 if allowed_path?(file_path) do
 Result.allow()
 else
 Result.deny("Path not allowed")
 end

 _ ->
 Result.allow()
 end
end
Permission Suggestions
The suggestions field contains permission update suggestions from the CLI.
These are hints about what permission rules might be appropriate:
[
 %{
 "type" => "deny",
 "reason" => "System file access detected",
 "tool_name" => "Write"
 }
]
Your callback can use these suggestions to make informed decisions or
ignore them entirely.

 Summary

 Types

 t()

 Permission context struct.

 Functions

 from_control_request(request, session_id)

 Builds a permission context from a control protocol request.

 new(attrs)

 Creates a new permission context.

 Types

 t()

 @type t() :: %ClaudeAgentSDK.Permission.Context{
 blocked_path: String.t() | nil,
 session_id: String.t(),
 signal: ClaudeAgentSDK.AbortSignal.t() | nil,
 suggestions: [map()],
 tool_input: map(),
 tool_name: String.t()
}

Permission context struct.
Fields:
	tool_name - Name of the tool being invoked (e.g., "Bash", "Write", "Read")
	tool_input - Map of input parameters for the tool
	session_id - Unique identifier for the current session
	suggestions - List of permission update suggestions from CLI
	signal - Optional abort signal reference (reserved for future use)

 Functions

 from_control_request(request, session_id)

 @spec from_control_request(map(), String.t()) :: t()

Builds a permission context from a control protocol request.
Parameters
	request - Control request map from CLI
	session_id - Current session identifier

Examples
request = %{
 "request_id" => "req-123",
 "request" => %{
 "subtype" => "can_use_tool",
 "tool_name" => "Read",
 "input" => %{"file_path" => "test.txt"},
 "permission_suggestions" => []
 }
}

Context.from_control_request(request, "session-id")

 new(attrs)

 @spec new(keyword()) :: t()

Creates a new permission context.
Parameters
	attrs - Keyword list of context attributes

Required Attributes
	:tool_name - Tool being invoked
	:tool_input - Tool input parameters
	:session_id - Session identifier

Optional Attributes
	:suggestions - Permission suggestions from CLI (default: [])
	:signal - Abort signal reference (default: nil)

Examples
Context.new(
 tool_name: "Bash",
 tool_input: %{"command" => "echo hello"},
 session_id: "550e8400-e29b-41d4-a716-446655440000"
)

Context.new(
 tool_name: "Write",
 tool_input: %{"file_path" => "/tmp/test.txt", "content" => "data"},
 session_id: "test-session",
 suggestions: [%{"type" => "deny"}]
)

ClaudeAgentSDK.Permission.Result

Permission result returned by permission callbacks.
A permission result indicates whether a tool should be allowed to execute,
and optionally modifies the tool's input parameters or permission rules.
Result Types
Allow
Permits the tool to execute:
Result.allow()
Result.allow(updated_input: %{"file_path" => "/safe/path.txt"})
Deny
Blocks the tool from executing:
Result.deny("Command not allowed")
Result.deny("Critical violation", interrupt: true)
Fields
For Allow Results
	behavior - Always :allow
	updated_input - Optional modified tool input (map)
	updated_permissions - Optional permission rule updates (list)

For Deny Results
	behavior - Always :deny
	message - Explanation for denial (string)
	interrupt - If true, stops entire agent execution (boolean)

Examples
Simple allow
Result.allow()

Allow with input modification
Result.allow(updated_input: %{"command" => "ls -la /safe/dir"})

Simple deny
Result.deny("Tool not allowed in this context")

Deny with interrupt
Result.deny("Security violation detected", interrupt: true)

 Summary

 Types

 behavior()

 Permission result behavior.

 t()

 Permission result struct.

 Functions

 allow(opts \\ [])

 Creates an allow permission result.

 deny(message, opts \\ [])

 Creates a deny permission result.

 to_json_map(result)

 Converts a permission result to a JSON-compatible map for the CLI.

 validate(result)

 Validates a permission result.

 Types

 behavior()

 @type behavior() :: :allow | :deny

Permission result behavior.

 t()

 @type t() :: %ClaudeAgentSDK.Permission.Result{
 behavior: behavior(),
 interrupt: boolean(),
 message: String.t() | nil,
 updated_input: map() | nil,
 updated_permissions: [ClaudeAgentSDK.Permission.Update.t() | map()] | nil
}

Permission result struct.
For allow results:
	behavior - :allow
	updated_input - Optional modified tool input
	updated_permissions - Optional permission updates (list of Update.t() or maps)

For deny results:
	behavior - :deny
	message - Explanation for denial
	interrupt - Whether to stop entire execution

 Functions

 allow(opts \\ [])

 @spec allow(keyword()) :: t()

Creates an allow permission result.
Parameters
	opts - Keyword list of options

Options
	:updated_input - Modified tool input (map)
	:updated_permissions - Permission rule updates (list of maps)

Examples
Simple allow
Result.allow()

Allow with input modification
Result.allow(updated_input: %{"file_path" => "/safe/output.txt"})

Allow with permission updates
Result.allow(
 updated_permissions: [
 %{type: "addRules", tool_name: "Bash", behavior: "deny"}
]
)

 deny(message, opts \\ [])

 @spec deny(
 String.t(),
 keyword()
) :: t()

Creates a deny permission result.
Parameters
	message - Explanation for the denial (required)
	opts - Keyword list of options

Options
	:interrupt - If true, stops entire agent execution (default: false)

Examples
Simple deny
Result.deny("Tool not allowed")

Deny with interrupt
Result.deny("Security policy violation", interrupt: true)

 to_json_map(result)

 @spec to_json_map(t()) :: map()

Converts a permission result to a JSON-compatible map for the CLI.
Examples
iex> result = Result.allow()
iex> Result.to_json_map(result)
%{"behavior" => "allow"}

iex> result = Result.deny("Not allowed")
iex> Result.to_json_map(result)
%{"behavior" => "deny", "message" => "Not allowed", "interrupt" => false}

iex> result = Result.allow(updated_input: %{"key" => "value"})
iex> Result.to_json_map(result)
%{"behavior" => "allow", "updatedInput" => %{"key" => "value"}}

 validate(result)

 @spec validate(term()) :: :ok | {:error, String.t()}

Validates a permission result.
Returns :ok if valid, {:error, reason} otherwise.
Examples
iex> Result.validate(Result.allow())
:ok

iex> Result.validate(Result.deny("Reason"))
:ok

iex> Result.validate(%{})
{:error, "Result must be a ClaudeAgentSDK.Permission.Result struct"}

ClaudeAgentSDK.Permission.RuleValue

Permission rule value struct.
Represents a single permission rule with a tool name and optional rule content
that defines the permission pattern.
Examples
Simple tool permission
RuleValue.new("Bash")

Tool permission with pattern
RuleValue.new("Bash", "echo *")

File write permission with path pattern
RuleValue.new("Write", "/tmp/**")

 Summary

 Types

 t()

 Permission rule value struct.

 Functions

 new(tool_name, rule_content \\ nil)

 Creates a new rule value.

 to_map(rule_value)

 Converts a rule value to a map for the control protocol.

 Types

 t()

 @type t() :: %ClaudeAgentSDK.Permission.RuleValue{
 rule_content: String.t() | nil,
 tool_name: String.t()
}

Permission rule value struct.

 Functions

 new(tool_name, rule_content \\ nil)

 @spec new(String.t(), String.t() | nil) :: t()

Creates a new rule value.
Parameters
	tool_name - Name of the tool this rule applies to
	rule_content - Optional content pattern for the rule

Examples
iex> RuleValue.new("Bash")
%RuleValue{tool_name: "Bash", rule_content: nil}

iex> RuleValue.new("Bash", "echo *")
%RuleValue{tool_name: "Bash", rule_content: "echo *"}

 to_map(rule_value)

 @spec to_map(t()) :: map()

Converts a rule value to a map for the control protocol.
Examples
iex> RuleValue.new("Bash", "echo *") |> RuleValue.to_map()
%{"toolName" => "Bash", "ruleContent" => "echo *"}

iex> RuleValue.new("Bash") |> RuleValue.to_map()
%{"toolName" => "Bash", "ruleContent" => nil}

ClaudeAgentSDK.Permission.Update

Permission update types for configuring permissions via the control protocol.
These types match the TypeScript/Python SDK permission update structures and can
be used to programmatically update tool permissions in sessions.
Update Types
	:add_rules - Add new permission rules
	:replace_rules - Replace existing permission rules
	:remove_rules - Remove specific permission rules
	:set_mode - Change the permission mode
	:add_directories - Add directories to allowed paths
	:remove_directories - Remove directories from allowed paths

Destinations
Permission updates can target different storage locations:
	:user_settings - User-level settings (persistent)
	:project_settings - Project-level settings (persistent)
	:local_settings - Local directory settings (persistent)
	:session - Session-only settings (temporary)

Examples
Add a rule to allow Bash commands in session
update = Update.add_rules(
 rules: [RuleValue.new("Bash", "echo *")],
 behavior: :allow,
 destination: :session
)

Set permission mode for the session
update = Update.set_mode(:accept_edits, destination: :session)

 Summary

 Types

 behavior()

 Permission behavior for rules.

 destination()

 Destination for permission updates.

 t()

 Permission update struct.

 update_type()

 Permission update type.

 Functions

 add_directories(directories, opts \\ [])

 Creates an add_directories update.

 add_rules(opts \\ [])

 Creates an add_rules update.

 new(type, opts \\ [])

 Creates a new permission update.

 remove_directories(directories, opts \\ [])

 Creates a remove_directories update.

 remove_rules(opts \\ [])

 Creates a remove_rules update.

 replace_rules(opts \\ [])

 Creates a replace_rules update.

 set_mode(mode, opts \\ [])

 Creates a set_mode update.

 to_map(update)

 Converts a permission update to a map for the control protocol.

 Types

 behavior()

 @type behavior() :: :allow | :deny | :ask

Permission behavior for rules.

 destination()

 @type destination() :: :user_settings | :project_settings | :local_settings | :session

Destination for permission updates.

 t()

 @type t() :: %ClaudeAgentSDK.Permission.Update{
 behavior: behavior() | nil,
 destination: destination() | nil,
 directories: [String.t()] | nil,
 mode: ClaudeAgentSDK.Permission.permission_mode() | nil,
 rules: [ClaudeAgentSDK.Permission.RuleValue.t()] | nil,
 type: update_type()
}

Permission update struct.

 update_type()

 @type update_type() ::
 :add_rules
 | :replace_rules
 | :remove_rules
 | :set_mode
 | :add_directories
 | :remove_directories

Permission update type.

 Functions

 add_directories(directories, opts \\ [])

 @spec add_directories(
 [String.t()],
 keyword()
) :: t()

Creates an add_directories update.

 add_rules(opts \\ [])

 @spec add_rules(keyword()) :: t()

Creates an add_rules update.

 new(type, opts \\ [])

 @spec new(
 update_type(),
 keyword()
) :: t()

Creates a new permission update.
Parameters
	type - Update type (:add_rules, :replace_rules, :remove_rules, :set_mode, :add_directories, :remove_directories)
	opts - Options for the update (rules, behavior, mode, directories, destination)

Examples
Update.new(:add_rules,
 rules: [RuleValue.new("Bash", "echo *")],
 behavior: :allow,
 destination: :session
)

 remove_directories(directories, opts \\ [])

 @spec remove_directories(
 [String.t()],
 keyword()
) :: t()

Creates a remove_directories update.

 remove_rules(opts \\ [])

 @spec remove_rules(keyword()) :: t()

Creates a remove_rules update.

 replace_rules(opts \\ [])

 @spec replace_rules(keyword()) :: t()

Creates a replace_rules update.

 set_mode(mode, opts \\ [])

 @spec set_mode(
 ClaudeAgentSDK.Permission.permission_mode(),
 keyword()
) :: t()

Creates a set_mode update.

 to_map(update)

 @spec to_map(t()) :: map()

Converts a permission update to a map for the control protocol.
Examples
iex> update = Update.add_rules(
...> rules: [RuleValue.new("Bash", "echo *")],
...> behavior: :allow,
...> destination: :session
...>)
iex> Update.to_map(update)
%{
 "type" => "addRules",
 "rules" => [%{"toolName" => "Bash", "ruleContent" => "echo *"}],
 "behavior" => "allow",
 "destination" => "session"
}

ClaudeAgentSDK.Query.CLIStream

Streams CLI-only query responses over a transport.
This module is used for unidirectional, non-control queries. It supports:
	String prompts (passed as CLI args)
	Enumerable prompts (streamed via stdin)
	Optional transport injection

 Summary

 Types

 transport_spec()

 Functions

 stream(prompt, options, transport \\ nil)

 Streams messages for a single query prompt.

 Types

 transport_spec()

 @type transport_spec() :: module() | {module(), keyword()} | nil

 Functions

 stream(prompt, options, transport \\ nil)

 @spec stream(
 String.t() | Enumerable.t(),
 ClaudeAgentSDK.Options.t(),
 transport_spec()
) ::
 Enumerable.t(ClaudeAgentSDK.Message.t())

Streams messages for a single query prompt.

ClaudeAgentSDK.Query.ClientStream

Wraps the ClaudeAgentSDK.Client GenServer to provide a Stream interface.
This module enables ClaudeAgentSDK.query/2 to work with SDK MCP servers
(and other control-protocol features like hooks and permission callbacks)
by using the control client internally while maintaining the same Stream API.
Why This Exists
SDK MCP servers require bidirectional communication (control protocol) to work.
The simple Process.stream approach is unidirectional and cannot handle
control_request messages from the CLI. This module bridges the gap by:
	Starting a Client GenServer (which handles control protocol)
	Sending the query message
	Wrapping Client.stream_messages as a Stream
	Cleaning up the Client when done

Usage
This module is used internally by ClaudeAgentSDK.Query and should not
be called directly. Use ClaudeAgentSDK.query/2 as normal.

 Summary

 Functions

 stream(prompt, options, transport \\ nil)

 Creates a Stream backed by a Client GenServer.

 Functions

 stream(prompt, options, transport \\ nil)

 @spec stream(String.t() | Enumerable.t(), ClaudeAgentSDK.Options.t(), term() | nil) ::
 Enumerable.t(ClaudeAgentSDK.Message.t())

Creates a Stream backed by a Client GenServer.
This function starts a Client, sends the prompt, and returns a Stream that
yields ClaudeAgentSDK.Message structs from the client's mailbox. The Client is
automatically stopped after
the stream is exhausted.
Parameters
	prompt - The prompt to send to Claude
	options - Configuration options (must contain SDK MCP servers)

Returns
A Stream of ClaudeAgentSDK.Message structs.

ClaudeAgentSDK.Streaming.EventAdapter

Utilities for working with heterogeneous streaming event/message streams.
When using streaming with control features (hooks, SDK MCP, permissions),
the stream may contain both streaming events (from EventParser) and Message
structs (from control protocol). These helpers normalize and filter such
mixed streams.
Examples
Normalize mixed stream to consistent event maps
stream
|> EventAdapter.to_events()
|> Stream.each(fn %{type: type} ->
 # All items now have :type key
end)

Extract only text content
final_text = stream
 |> EventAdapter.text_only()
 |> EventAdapter.accumulate_text()
 |> Enum.to_list()
 |> List.last()

Filter to tool events only
stream
|> EventAdapter.tools_only()
|> Stream.each(fn tool_event ->
 # Handle tool calls
end)
Event vs Message
	Events: Maps with :type key (from EventParser)
	%{type: :text_delta, text: "..."}
	%{type: :tool_use_start, name: "bash"}

	Messages: Structs (from Message module)
	%Message{type: :assistant, data: %{...}}
	%Message{type: :result, subtype: :success}

This module normalizes both into a consistent event map format.

 Summary

 Functions

 accumulate_text(stream)

 Accumulates text from stream into progressively built strings.

 text_only(stream)

 Filters stream to only text-related events.

 to_events(stream)

 Normalizes a mixed stream to consistent event maps.

 tools_only(stream)

 Filters stream to only tool-related events.

 Functions

 accumulate_text(stream)

 @spec accumulate_text(Enumerable.t()) :: Enumerable.t()

Accumulates text from stream into progressively built strings.
Takes text_delta events and builds up the complete text incrementally.
Each element in the output stream contains the accumulated text up to
that point.
Parameters
	stream - Stream of events

Returns
Stream of accumulated text strings (one per event, building up)
Examples
Get final complete text
final_text = stream
 |> EventAdapter.accumulate_text()
 |> Enum.to_list()
 |> List.last()

Watch text build up in real-time
stream
|> EventAdapter.accumulate_text()
|> Stream.each(fn accumulated ->
 IO.write("\r#{accumulated}")
end)
|> Stream.run()

 text_only(stream)

 @spec text_only(Enumerable.t()) :: Enumerable.t()

Filters stream to only text-related events.
Includes:
	:text_delta - Text content chunks
	:text_block_start - Text block initialization

Parameters
	stream - Stream of events

Returns
Stream containing only text events
Examples
stream
|> EventAdapter.text_only()
|> Stream.each(fn %{type: :text_delta, text: text} ->
 IO.write(text)
end)
|> Stream.run()

 to_events(stream)

 @spec to_events(Enumerable.t()) :: Enumerable.t()

Normalizes a mixed stream to consistent event maps.
Converts Message structs to event maps while passing through existing
event maps unchanged. This creates a uniform stream interface.
Parameters
	stream - Stream containing events and/or Message structs

Returns
Stream of event maps with :type key
Examples
Events pass through unchanged
[%{type: :text_delta, text: "Hi"}]
|> Stream.into([])
|> EventAdapter.to_events()
|> Enum.to_list()
=> [%{type: :text_delta, text: "Hi"}]

Messages get normalized
[%Message{type: :assistant, data: %{...}}]
|> Stream.into([])
|> EventAdapter.to_events()
|> Enum.to_list()
=> [%{type: :message, data: %{...}, timestamp: ~U[...]}]

 tools_only(stream)

 @spec tools_only(Enumerable.t()) :: Enumerable.t()

Filters stream to only tool-related events.
Includes:
	:tool_use_start - Tool call initialization
	:tool_input_delta - Tool input JSON chunks

Parameters
	stream - Stream of events

Returns
Stream containing only tool events
Examples
stream
|> EventAdapter.tools_only()
|> Stream.each(fn
 %{type: :tool_use_start, name: name} ->
 IO.puts("Tool: #{name}")
 %{type: :tool_input_delta, json: json} ->
 IO.write(json)
end)
|> Stream.run()

ClaudeAgentSDK.Streaming.Termination

Shared termination logic for streaming sessions.
Tracks stop_reason updates and determines when a message should complete.

 Summary

 Types

 stop_reason()

 Functions

 reduce(events, current_reason)

 step(event, current_reason)

 Types

 stop_reason()

 @type stop_reason() :: String.t() | nil

 Functions

 reduce(events, current_reason)

 @spec reduce([map()], stop_reason()) :: {stop_reason(), boolean()}

 step(event, current_reason)

 @spec step(map(), stop_reason()) :: {stop_reason(), boolean()}

ClaudeAgentSDK.TaskSupervisor

Optional Task.Supervisor for supervised callback execution.
This module provides a supervised environment for async callback execution
in the Claude Agent SDK. Using supervised tasks ensures that:
	Callback process crashes are detected and handled gracefully
	No orphaned processes accumulate over time
	Resource cleanup happens automatically on failure

Usage
Add to your application's supervision tree:
children = [
 ClaudeAgentSDK.TaskSupervisor,
 # ... other children
]
The SDK will automatically detect and use this supervisor when available.
If the supervisor is not started, the SDK falls back to Task.start/1.
Configuration
You can customize the supervisor name if needed:
{ClaudeAgentSDK.TaskSupervisor, name: MyApp.ClaudeTaskSupervisor}
Then configure the SDK to use it:
config :claude_agent_sdk, task_supervisor: MyApp.ClaudeTaskSupervisor
If a custom supervisor is configured but not running, the SDK logs a warning.
You can enforce stricter behavior in dev/test:
config :claude_agent_sdk, task_supervisor_strict: true
Direct Usage
{:ok, pid} = ClaudeAgentSDK.TaskSupervisor.start_child(fn ->
 # Your async work here
end)
OTP Notes
Tasks are started with restart: :temporary by default (no automatic restarts).

 Summary

 Functions

 available?()

 Checks if the task supervisor is available and running.

 child_spec(opts)

 Returns the child specification for supervision tree inclusion.

 start_child(fun, opts \\ [])

 Starts a supervised child task.

 start_link(opts \\ [])

 Starts the task supervisor.

 Functions

 available?()

 @spec available?() :: boolean()

Checks if the task supervisor is available and running.

 child_spec(opts)

 @spec child_spec(keyword()) :: Supervisor.child_spec()

Returns the child specification for supervision tree inclusion.

 start_child(fun, opts \\ [])

 @spec start_child(
 (-> any()),
 keyword()
) :: {:ok, pid()}

Starts a supervised child task.
The caller should monitor the returned pid if it needs crash signals.
Parameters
	fun - Zero-arity function to execute
	opts - Options passed to Task.Supervisor.start_child/3

Returns
	{:ok, pid} - Task started successfully (falls back to Task.start/1 if needed)

 start_link(opts \\ [])

 @spec start_link(keyword()) :: Supervisor.on_start()

Starts the task supervisor.
Options
	:name - The supervisor name (default: ClaudeAgentSDK.TaskSupervisor)

ClaudeAgentSDK.Tool

Tool definition macro for creating in-process MCP tools.
Provides the deftool macro for defining tools that can be used with
create_sdk_mcp_server/2 to create SDK-based MCP servers without subprocess overhead.
Usage
defmodule MyTools do
 use ClaudeAgentSDK.Tool

 deftool :calculator,
 "Performs basic calculations",
 %{
 type: "object",
 properties: %{
 expression: %{type: "string"}
 },
 required: ["expression"]
 } do
 def execute(%{"expression" => expr}) do
 result = eval_expression(expr)
 {:ok, %{"content" => [%{"type" => "text", "text" => "Result: #{result}"}]}}
 end

 defp eval_expression(expr) do
 # Implementation
 end
 end
end
Tool Metadata
Each tool defined with deftool creates a module with:
	__tool_metadata__/0 - Returns tool metadata
	execute/1 - Executes the tool with given input

Input/Output Format
Tools receive input as a map matching the input_schema and return:
	{:ok, result} - Success with result map
	{:error, reason} - Error with reason string

Result map should contain:
	"content" - List of content blocks (text, image, etc.)
	Optional: "is_error" - Boolean indicating error state

 Summary

 Functions

 __before_compile__(env)

 Collects all defined tools and makes them discoverable.

 __using__(opts)

 When used, defines the deftool macro in the calling module.

 deftool(name, description, list)

 Shorthand for deftool with minimal schema (just type: object).

 deftool(name, description, input_schema, list)

 Defines a tool with name, description, and input schema.

 list_tools(module)

 Lists all tools defined in a module.

 simple_schema(fields)

 Creates a simple JSON Schema for common tool patterns.

 valid_schema?(schema)

 Validates a JSON schema map.

 Functions

 __before_compile__(env)

 (macro)

Collects all defined tools and makes them discoverable.

 __using__(opts)

 (macro)

When used, defines the deftool macro in the calling module.

 deftool(name, description, list)

 (macro)

Shorthand for deftool with minimal schema (just type: object).

 deftool(name, description, input_schema, list)

 (macro)

Defines a tool with name, description, and input schema.
Parameters
	name - Atom tool name (e.g., :calculator)
	description - String description of what the tool does
	input_schema - JSON Schema map defining expected input
	do_block - Block containing execute/1 function definition

Examples
deftool :add, "Add two numbers", %{
 type: "object",
 properties: %{a: %{type: "number"}, b: %{type: "number"}},
 required: ["a", "b"]
} do
 def execute(%{"a" => a, "b" => b}) do
 {:ok, %{"content" => [%{"type" => "text", "text" => "Result: #{a + b}"}]}}
 end
end

 list_tools(module)

 @spec list_tools(module()) :: [map()]

Lists all tools defined in a module.
Parameters
	module - The module that used ClaudeAgentSDK.Tool

Returns
List of tool metadata maps.
Examples
iex> ClaudeAgentSDK.Tool.list_tools(MyTools)
[%{name: :calculator, description: "Performs calculations", ...}]

 simple_schema(fields)

 @spec simple_schema(keyword() | [atom()] | map()) :: map()

Creates a simple JSON Schema for common tool patterns.
This helper reduces boilerplate when defining tools with straightforward
input requirements. It supports several input formats for flexibility.
Input Formats
List of atoms (all string, all required)
simple_schema([:name, :path])
=> %{type: "object", properties: %{name: %{type: "string"}, path: %{type: "string"}}, required: ["name", "path"]}
Keyword list with types
simple_schema(name: :string, count: :number, enabled: :boolean)
=> %{type: "object", properties: %{...}, required: ["name", "count", "enabled"]}
Keyword list with descriptions
simple_schema(name: {:string, "User's full name"}, age: {:number, "Age in years"})
=> Adds description field to each property
Optional fields
simple_schema(name: :string, email: {:string, optional: true})
=> "name" is required, "email" is not
Map syntax (Python parity)
simple_schema(%{a: :float, b: :float})
=> %{"type" => "object", "properties" => %{"a" => %{"type" => "number"}, ...}, "required" => ["a", "b"]}

simple_schema(%{"name" => String, "age" => Integer})
=> Supports module types (String, Integer, Float) for Python parity
Supported Types
	:string or String - String type
	:number or :float or Float - Number type (float or int)
	:integer or Integer - Integer type
	:boolean - Boolean type
	:array - Array type
	:object - Object type

Examples
Simple tool with two required string fields
deftool :create_file, "Create a file", Tool.simple_schema([:path, :content]) do
 def execute(%{"path" => path, "content" => content}) do
 File.write!(path, content)
 {:ok, %{"content" => [%{"type" => "text", "text" => "Created #{path}"}]}}
 end
end

Tool with mixed types
deftool :search, "Search files",
 Tool.simple_schema(query: :string, max_results: {:integer, optional: true}) do
 def execute(%{"query" => query} = args) do
 max = Map.get(args, "max_results", 10)
 # ... search logic
 end
end

Python-style map syntax
deftool :add, "Add two numbers", Tool.simple_schema(%{a: :float, b: :float}) do
 def execute(%{"a" => a, "b" => b}) do
 {:ok, %{"content" => [%{"type" => "text", "text" => "Result: #{a + b}"}]}}
 end
end

 valid_schema?(schema)

 @spec valid_schema?(map()) :: boolean()

Validates a JSON schema map.
Parameters
	schema - JSON Schema map

Returns
Boolean indicating if schema is valid.
Examples
iex> ClaudeAgentSDK.Tool.valid_schema?(%{type: "object"})
true

iex> ClaudeAgentSDK.Tool.valid_schema?(%{})
false

ClaudeAgentSDK.Tool.Registry

GenServer that manages tool registration and execution for SDK MCP servers.
The Registry maintains a mapping of tool names to their metadata and execution modules,
enabling:
	Tool registration at server startup
	Tool lookup by name
	Tool execution dispatch
	Concurrent access to tool definitions

Usage
{:ok, pid} = Registry.start_link([])

tool = %{
 name: "calculator",
 description: "Calculate",
 input_schema: %{type: "object"},
 module: MyTools.Calculator
}

:ok = Registry.register_tool(pid, tool)
{:ok, result} = Registry.execute_tool(pid, "calculator", %{"expression" => "2+2"})

 Summary

 Types

 state()

 tool_metadata()

 tool_name()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 execute_tool(registry, name, input)

 Executes a tool with given input.

 get_tool(registry, name)

 Gets a tool by name from the registry.

 list_tools(registry)

 Lists all registered tools.

 register_tool(registry, tool)

 Registers a tool with the registry.

 start_link(opts \\ [])

 Starts the registry GenServer.

 Types

 state()

 @type state() :: %{tools: %{required(String.t()) => tool_metadata()}}

 tool_metadata()

 @type tool_metadata() :: %{
 name: tool_name(),
 description: String.t(),
 input_schema: map(),
 module: module()
}

 tool_name()

 @type tool_name() :: String.t() | atom()

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 execute_tool(registry, name, input)

 @spec execute_tool(GenServer.server(), tool_name(), map()) ::
 {:ok, map()} | {:error, term()}

Executes a tool with given input.
Parameters
	registry - Registry PID or name
	name - Tool name (atom)
	input - Input map matching tool's input_schema

Returns
	{:ok, result} - Tool executed successfully
	{:error, reason} - Execution failed

Examples
{:ok, result} = Registry.execute_tool(pid, "add", %{"a" => 5, "b" => 3})

 get_tool(registry, name)

 @spec get_tool(GenServer.server(), tool_name()) ::
 {:ok, tool_metadata()} | {:error, :not_found}

Gets a tool by name from the registry.
Parameters
	registry - Registry PID or name
	name - Tool name (atom)

Returns
	{:ok, tool} - Tool found
	{:error, :not_found} - Tool not found

Examples
{:ok, tool} = Registry.get_tool(pid, "calculator")

 list_tools(registry)

 @spec list_tools(GenServer.server()) :: {:ok, [tool_metadata()]}

Lists all registered tools.
Parameters
	registry - Registry PID or name

Returns
{:ok, tools} where tools is a list of tool metadata maps.
Examples
{:ok, tools} = Registry.list_tools(pid)
Enum.each(tools, fn tool -> IO.puts(tool.name) end)

 register_tool(registry, tool)

 @spec register_tool(GenServer.server(), tool_metadata()) ::
 :ok | {:error, :already_registered}

Registers a tool with the registry.
Parameters
	registry - Registry PID or name
	tool - Tool metadata map

Returns
	:ok - Successfully registered
	{:error, :already_registered} - Tool already exists

Examples
tool = %{
 name: "add",
 description: "Add numbers",
 input_schema: %{type: "object"},
 module: MyTools.Add
}

:ok = Registry.register_tool(pid, tool)

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the registry GenServer.
Options
	:name - Optional name for the registry

Examples
{:ok, pid} = Registry.start_link([])
{:ok, pid} = Registry.start_link(name: :my_registry)

ClaudeAgentSDK.Transport behaviour

Behaviour describing the transport layer used to communicate with the Claude CLI.
A transport is responsible for starting and supervising the underlying connection,
forwarding JSON control/data frames to the CLI, broadcasting replies to subscribers,
and shutting down cleanly when the client stops.
Implementations should be OTP-friendly processes (typically a GenServer)
that encapsulate any state required to maintain the connection.

 Summary

 Types

 message()

 Binary payload encoded as newline-terminated JSON.

 opts()

 Transport-specific options propagated from Client.start_link/1.

 t()

 Opaque transport reference returned from start_link/1.

 Callbacks

 close(t)

 Closes the transport and releases any external resources.

 end_input(t)

 Signals end of input stream to the CLI process.

 send(t, message)

 Sends a JSON payload to the CLI.

 start_link(opts)

 Starts the transport process and establishes the CLI connection.

 status(t)

 Returns the current connection status for observability/health checks.

 subscribe(t, pid)

 Subscribes the given process to receive inbound messages.

 Types

 message()

 @type message() :: binary()

Binary payload encoded as newline-terminated JSON.

 opts()

 @type opts() :: keyword()

Transport-specific options propagated from Client.start_link/1.

 t()

 @type t() :: pid()

Opaque transport reference returned from start_link/1.

 Callbacks

 close(t)

 @callback close(t()) :: :ok

Closes the transport and releases any external resources.

 end_input(t)

 (optional)

 @callback end_input(t()) :: :ok | {:error, term()}

Signals end of input stream to the CLI process.
This closes stdin to indicate no more input will be sent. Required for
non-streaming queries where the CLI waits for stdin to close before
processing.
Implementation Notes
	For Port-based transports: Close the stdin pipe
	For erlexec-based transports: Send :eof signal
	This callback is optional - transports may not support it

 send(t, message)

 @callback send(t(), message()) :: :ok | {:error, term()}

Sends a JSON payload to the CLI.

 start_link(opts)

 @callback start_link(opts()) :: {:ok, t()} | {:error, term()}

Starts the transport process and establishes the CLI connection.

 status(t)

 @callback status(t()) :: :connected | :disconnected | :error

Returns the current connection status for observability/health checks.

 subscribe(t, pid)

 @callback subscribe(t(), pid()) :: :ok

Subscribes the given process to receive inbound messages.

ClaudeAgentSDK.Transport.Erlexec

Transport implementation backed by erlexec.
This transport supports OS-level user execution via erlexec's :user option,
which Port-based transports cannot provide.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

ClaudeAgentSDK.Transport.Port

Default transport implementation that uses Erlang Ports to communicate with the Claude CLI.
The transport boots the CLI executable, relays JSON frames, and broadcasts inbound
messages to all registered subscribers.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 end_input(transport)

 Signals end of input (EOF) to the CLI subprocess.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 end_input(transport)

Signals end of input (EOF) to the CLI subprocess.
This is used to indicate that no more input will be sent, which is required
for the first result event pattern when SDK MCP servers or hooks are present.
Note: For Erlang ports, there's no direct way to close stdin while keeping
the port open. This implementation closes the port entirely, which signals
EOF to the CLI and allows it to finish processing.

ClaudeAgentSDK.Transport.StreamingRouter

Selects streaming transport based on required features.
Decision Algorithm
	Check explicit override (preferred_transport)
	Detect control protocol requirements
	Default to CLI-only for performance

Examples
Simple streaming → CLI-only
iex> select_transport(%Options{})
:streaming_session

With hooks → Control client
iex> select_transport(%Options{hooks: %{pre_tool_use: [...]}})
:control_client

Override
iex> select_transport(%Options{preferred_transport: :cli})
:streaming_session

 Summary

 Types

 transport_choice()

 Functions

 explain(opts)

 Human-readable explanation of transport choice.

 requires_control_protocol?(opts)

 Checks if options require control protocol.

 select_transport(opts)

 Selects transport implementation.

 Types

 transport_choice()

 @type transport_choice() :: :streaming_session | :control_client

 Functions

 explain(opts)

 @spec explain(ClaudeAgentSDK.Options.t()) :: String.t()

Human-readable explanation of transport choice.
Examples
iex> StreamingRouter.explain(%Options{hooks: %{...}})
"""
Transport: control_client
Reason: hooks detected
Features: [:hooks]
Override: none
"""

 requires_control_protocol?(opts)

 @spec requires_control_protocol?(ClaudeAgentSDK.Options.t()) :: boolean()

Checks if options require control protocol.
Useful for debugging transport selection.

 select_transport(opts)

 @spec select_transport(ClaudeAgentSDK.Options.t()) :: transport_choice()

Selects transport implementation.
Returns :streaming_session (CLI-only) or :control_client (full features).
Performance
This is a pure function with no I/O. Typical execution: <0.1ms.

ClaudeAgentSDK

An Elixir SDK for Claude Code.
This module provides a simple interface for interacting with Claude Code programmatically.
Basic Usage
Simple query
for message <- ClaudeAgentSDK.query("Write a hello world function") do
 IO.inspect(message)
end

With options
opts = %ClaudeAgentSDK.Options{
 max_turns: 3,
 output_format: :json,
 system_prompt: "You are a helpful assistant"
}

for message <- ClaudeAgentSDK.query("Build a REST API", opts) do
 IO.inspect(message)
end
Authentication
This SDK uses the already-authenticated Claude CLI. You must authenticate manually first:
In your terminal:
claude login
The SDK will use the stored authentication from your interactive Claude session.

 Summary

 Functions

 continue(prompt \\ nil, options \\ nil)

 Continues the most recent conversation.

 create_sdk_mcp_server(opts)

 Creates an SDK-based MCP server for in-process tool execution.

 list_sessions(opts \\ [])

 Lists saved Claude sessions from the SessionStore.

 query(prompt, options \\ nil, transport \\ nil)

 Runs a query against Claude Code and returns a stream of messages.

 resume(session_id, prompt \\ nil, options \\ nil)

 Resumes a specific conversation by session ID.

 Functions

 continue(prompt \\ nil, options \\ nil)

 @spec continue(String.t() | nil, ClaudeAgentSDK.Options.t() | nil) ::
 Enumerable.t(ClaudeAgentSDK.Message.t())

Continues the most recent conversation.
Parameters
	prompt - Optional new prompt to add to the conversation
	options - Optional ClaudeAgentSDK.Options struct with configuration

Examples
Continue without new prompt
ClaudeAgentSDK.continue()
|> Enum.to_list()

Continue with new prompt
ClaudeAgentSDK.continue("Now add error handling")
|> Enum.to_list()

 create_sdk_mcp_server(opts)

 @spec create_sdk_mcp_server(keyword()) :: %{
 type: :sdk,
 name: String.t(),
 version: String.t(),
 registry_pid: pid()
}

Creates an SDK-based MCP server for in-process tool execution.
Unlike external MCP servers that require separate processes, SDK servers
run directly within your application, providing:
	Better performance (no subprocess overhead)
	Simpler deployment (no external dependencies)
	Direct function calls to your tool implementations

Parameters
	opts - Keyword list with:	:name - Server name (string, required)
	:version - Server version (string, required)
	:tools - List of tool modules (list of atoms, required)

Returns
A map representing the SDK MCP server with:
	:type - Always :sdk
	:name - Server name
	:version - Server version (defaults to "1.0.0")
	:registry_pid - PID of the tool registry GenServer

Examples
defmodule MyTools do
 use ClaudeAgentSDK.Tool

 deftool :add, "Add two numbers", %{
 type: "object",
 properties: %{a: %{type: "number"}, b: %{type: "number"}},
 required: ["a", "b"]
 } do
 def execute(%{"a" => a, "b" => b}) do
 {:ok, %{"content" => [%{"type" => "text", "text" => "#{a + b}"}]}}
 end
 end
end

Create server
server = ClaudeAgentSDK.create_sdk_mcp_server(
 name: "calculator",
 version: "1.0.0",
 tools: [MyTools.Add]
)

Use in options
options = %ClaudeAgentSDK.Options{
 mcp_servers: %{"calc" => server},
 allowed_tools: ["mcp__calc__add"]
}

ClaudeAgentSDK.query("Calculate 15 + 27", options)

 list_sessions(opts \\ [])

 @spec list_sessions(keyword()) ::
 {:ok, [ClaudeAgentSDK.SessionStore.session_metadata()]} | {:error, term()}

Lists saved Claude sessions from the SessionStore.
Starts the SessionStore automatically when needed.

 query(prompt, options \\ nil, transport \\ nil)

 @spec query(
 String.t() | Enumerable.t(),
 ClaudeAgentSDK.Options.t() | nil,
 term() | nil
) ::
 Enumerable.t(ClaudeAgentSDK.Message.t())

Runs a query against Claude Code and returns a stream of messages.
Parameters
	prompt - The prompt to send to Claude
	options - Optional ClaudeAgentSDK.Options struct with configuration

Returns
Returns a Stream that yields ClaudeAgentSDK.Message structs.
Examples
Simple query
ClaudeAgentSDK.query("Write a function to calculate Fibonacci numbers")
|> Enum.to_list()

With options
opts = %ClaudeAgentSDK.Options{max_turns: 5}
ClaudeAgentSDK.query("Build a web server", opts)
|> Enum.to_list()

 resume(session_id, prompt \\ nil, options \\ nil)

 @spec resume(String.t(), String.t() | nil, ClaudeAgentSDK.Options.t() | nil) ::
 Enumerable.t(ClaudeAgentSDK.Message.t())

Resumes a specific conversation by session ID.
Parameters
	session_id - The session ID to resume
	prompt - Optional new prompt to add to the conversation
	options - Optional ClaudeAgentSDK.Options struct with configuration

Examples
ClaudeAgentSDK.resume("550e8400-e29b-41d4-a716-446655440000", "Add tests")
|> Enum.to_list()

ClaudeAgentSDK.Client

Bidirectional client for Claude Code with hooks support.
This GenServer maintains a persistent connection to the Claude CLI process,
handles control protocol messages, and invokes hook callbacks.
The Client enables:
	Bidirectional streaming communication
	Runtime hook callback invocation
	Control protocol request/response handling
	Message queueing and delivery

Usage
Define hook callbacks
def check_bash(input, _tool_use_id, _context) do
 if dangerous?(input), do: Output.deny("Blocked"), else: Output.allow()
end

Configure options with hooks
options = %Options{
 allowed_tools: ["Bash", "Write"],
 hooks: %{
 pre_tool_use: [
 Matcher.new("Bash", [&check_bash/3])
]
 }
}

Start client
{:ok, pid} = Client.start_link(options)

Send query
Client.send_message(pid, "Run: echo 'Hello'")

Receive messages
stream = Client.stream_messages(pid)
Enum.each(stream, &IO.inspect/1)

Stop client
Client.stop(pid)
With Streaming
{:ok, pid} = Client.start_link(options)

Start listening in separate process
task = Task.async(fn ->
 Client.stream_messages(pid)
 |> Enum.take_while(&(&1.type != :result))
 |> Enum.to_list()
end)

Send message
Client.send_message(pid, "Write a function")

Wait for completion
messages = Task.await(task, :infinity)
See: https://docs.anthropic.com/en/docs/claude-code/sdk

 Summary

 Types

 state()

 Client state.

 Functions

 await_init_sent(client, timeout_ms \\ nil)

 Waits until the initialize request has been sent to the transport.

 await_initialized(client, timeout_ms \\ nil)

 Waits for the client to finish initialization.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_agent(client)

 Gets the currently active agent.

 get_available_agents(client)

 Gets the list of available agent names.

 get_model(client)

 Retrieves the currently active model name.

 get_server_info(client)

 Returns the server initialization info provided by the CLI.

 interrupt(client)

 Sends an interrupt control request to the CLI.

 query(client, prompt, session_id \\ "default")

 Sends a request in streaming mode, injecting session_id when missing.

 receive_response(client)

 Collects messages until a result frame is received.

 receive_response_stream(client)

 Streams messages until a result frame is received.

 rewind_files(client, user_message_id)

 Rewinds tracked files to their state at a specific user message.

 send_message(client, message)

 Sends a message to Claude.

 set_agent(client, agent_name)

 Switches to a different agent configuration.

 set_model(client, model)

 Requests a runtime model switch.

 set_permission_mode(client, mode)

 Sets the permission mode at runtime.

 start_link(options, opts \\ [])

 Starts the client GenServer.

 stop(client)

 Stops the client.

 stream_messages(client)

 Returns a stream of messages from Claude.

 subscribe(client)

 Subscribes to the client's message stream and returns a subscription reference.

 Types

 state()

 @type state() :: %{
 port: port() | nil,
 transport: pid() | nil,
 transport_module: module() | nil,
 transport_opts: keyword(),
 options: ClaudeAgentSDK.Options.t(),
 registry: ClaudeAgentSDK.Hooks.Registry.t(),
 hook_callback_timeouts: %{required(String.t()) => pos_integer()},
 subscribers: %{required(reference()) => pid()},
 pending_requests: %{required(String.t()) => {GenServer.from(), reference()}},
 pending_callbacks: %{
 required(String.t()) => %{
 pid: pid(),
 monitor_ref: reference(),
 signal: ClaudeAgentSDK.AbortSignal.t(),
 type: :hook | :permission
 }
 },
 initialized: boolean(),
 buffer: String.t(),
 sdk_mcp_servers: %{required(String.t()) => pid()},
 current_model: String.t() | nil,
 pending_model_change: {GenServer.from(), reference()} | nil,
 current_permission_mode: ClaudeAgentSDK.Permission.permission_mode() | nil,
 pending_permission_change: {GenServer.from(), reference()} | nil,
 permission_bridge: :ets.tid() | nil,
 accumulated_text: String.t(),
 active_subscriber: reference() | nil,
 subscriber_queue: [{reference(), String.t()}],
 init_waiters: [GenServer.from()],
 pending_inbound: :queue.queue(),
 pending_inbound_count: non_neg_integer(),
 pending_inbound_dropped: non_neg_integer(),
 stream_buffer_limit: non_neg_integer(),
 server_info: map() | nil,
 init_request_id: String.t() | nil,
 init_timeout_ref: reference() | nil,
 init_timeout_ms: pos_integer() | nil
}

Client state.
Fields:
	port - Port to Claude CLI process
	options - Configuration options
	registry - Hook callback registry
	hook_callback_timeouts - Map of callback_id => timeout_ms
	subscribers - Map of ref => pid for streaming subscriptions
	pending_requests - Map of request_id => {from, ref}
	pending_callbacks - Map of request_id => %{pid, monitor_ref, signal, type} for in-flight control callbacks
	initialized - Whether initialization handshake completed
	buffer - Incomplete JSON buffer
	sdk_mcp_servers - Map of server_name => registry_pid for SDK MCP servers
	accumulated_text - Buffer for partial text (streaming, v0.6.0)
	active_subscriber - Current streaming consumer reference (v0.6.0)
	subscriber_queue - Pending message queue (v0.6.0)
	init_waiters - Callers waiting for initialize request send
	pending_inbound - Buffered inbound events/messages before first subscriber
	pending_inbound_count - Count of buffered inbound entries
	pending_inbound_dropped - Dropped inbound entries due to buffer limit
	stream_buffer_limit - Max buffered inbound entries before first subscriber

 Functions

 await_init_sent(client, timeout_ms \\ nil)

 @spec await_init_sent(pid(), pos_integer() | nil) ::
 {:ok, String.t()} | {:error, term()}

Waits until the initialize request has been sent to the transport.
Returns {:ok, request_id} once the initialize request is sent, or
{:error, reason} if the client is not alive or times out.

 await_initialized(client, timeout_ms \\ nil)

 @spec await_initialized(pid(), pos_integer() | nil) :: :ok | {:error, term()}

Waits for the client to finish initialization.
Returns :ok once the initialize handshake completes, or {:error, reason}
if the client is not alive or times out.

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_agent(client)

 @spec get_agent(pid()) :: {:ok, atom()} | {:error, term()}

Gets the currently active agent.
Parameters
	client - The client PID

Returns
{:ok, agent_name} or {:error, reason}
Examples
{:ok, :coder} = Client.get_agent(client)

 get_available_agents(client)

 @spec get_available_agents(pid()) :: {:ok, [atom()]} | {:error, term()}

Gets the list of available agent names.
Parameters
	client - The client PID

Returns
{:ok, [agent_name]} or {:error, reason}
Examples
{:ok, [:coder, :researcher]} = Client.get_available_agents(client)

 get_model(client)

 @spec get_model(pid()) :: {:ok, String.t()} | {:error, :model_not_set}

Retrieves the currently active model name.

 get_server_info(client)

 @spec get_server_info(pid()) :: {:ok, map()} | {:error, term()}

Returns the server initialization info provided by the CLI.

 interrupt(client)

 @spec interrupt(pid()) :: :ok | {:error, term()}

Sends an interrupt control request to the CLI.

 query(client, prompt, session_id \\ "default")

 @spec query(pid(), String.t() | Enumerable.t(), String.t()) :: :ok | {:error, term()}

Sends a request in streaming mode, injecting session_id when missing.
Matches Python SDK behavior:
	String prompts are wrapped as a "user" message with parent_tool_use_id: nil
	Map prompts (or enumerables of maps) get session_id injected if absent

 receive_response(client)

 @spec receive_response(pid()) ::
 {:ok, [ClaudeAgentSDK.Message.t()]} | {:error, term()}

Collects messages until a result frame is received.
Useful for workflows that only care about a single response and want
to avoid managing streaming state manually.

 receive_response_stream(client)

 @spec receive_response_stream(pid()) :: Enumerable.t(ClaudeAgentSDK.Message.t())

Streams messages until a result frame is received.
This provides a streaming equivalent of receive_response/1.

 rewind_files(client, user_message_id)

 @spec rewind_files(pid(), String.t()) :: :ok | {:error, term()}

Rewinds tracked files to their state at a specific user message.
Requires Options.enable_file_checkpointing to be enabled when starting the client.

 send_message(client, message)

 @spec send_message(pid(), String.t() | map()) :: :ok | {:error, term()}

Sends a message to Claude.
In streaming mode, this queues the message for sending.
Parameters
	client - Client PID
	message - Message string or map

Returns
:ok or {:error, reason}
Examples
Client.send_message(pid, "Write a hello world function")

 set_agent(client, agent_name)

 @spec set_agent(pid(), atom()) :: :ok | {:error, term()}

Switches to a different agent configuration.
Parameters
	client - The client PID
	agent_name - The name of the agent to switch to (atom)

Returns
:ok or {:error, reason}
Examples
Client.set_agent(client, :researcher)

 set_model(client, model)

 @spec set_model(pid(), String.t()) :: :ok | {:error, term()}

Requests a runtime model switch.
Returns :ok when the CLI confirms the change or {:error, reason}
when validation fails or the CLI rejects the request.

 set_permission_mode(client, mode)

 @spec set_permission_mode(pid(), ClaudeAgentSDK.Permission.permission_mode()) ::
 :ok | {:error, :invalid_permission_mode}

Sets the permission mode at runtime.
Changes how tool permissions are handled for subsequent tool uses.
Parameters
	client - Client PID
	mode - Permission mode atom (:default, :accept_edits, :plan, :bypass_permissions, :delegate, :dont_ask)

Returns
	:ok - Successfully changed mode
	{:error, :invalid_permission_mode} - Invalid mode provided

Examples
Client.set_permission_mode(pid, :plan)
Client.set_permission_mode(pid, :accept_edits)
Client.set_permission_mode(pid, :bypass_permissions)
Client.set_permission_mode(pid, :delegate)

 start_link(options, opts \\ [])

 @spec start_link(
 ClaudeAgentSDK.Options.t(),
 keyword()
) :: GenServer.on_start()

Starts the client GenServer.
Validates hooks configuration, starts Claude CLI process, and performs
initialization handshake.
Parameters
	options - ClaudeAgentSDK.Options struct with hooks configuration

Returns
	{:ok, pid} - Successfully started
	{:error, reason} - Failed to start

Examples
options = %Options{
 hooks: %{
 pre_tool_use: [Matcher.new("Bash", [&my_hook/3])]
 }
}

{:ok, pid} = Client.start_link(options)

 stop(client)

 @spec stop(pid()) :: :ok

Stops the client.
Terminates the CLI process and cleans up resources.
Parameters
	client - Client PID

Returns
:ok
Examples
Client.stop(pid)

 stream_messages(client)

 @spec stream_messages(pid()) :: Enumerable.t(ClaudeAgentSDK.Message.t())

Returns a stream of messages from Claude.
Subscribes to the client and yields messages as they arrive.
Parameters
	client - Client PID

Returns
Enumerable stream of Message structs
Examples
Client.stream_messages(pid)
|> Stream.filter(&(&1.type == :assistant))
|> Enum.to_list()

 subscribe(client)

 @spec subscribe(pid()) :: {pid(), reference() | nil}

Subscribes to the client's message stream and returns a subscription reference.

ClaudeAgentSDK.Orchestrator

Concurrent query orchestration with rate limiting and error recovery.
Enables parallel Claude query execution, sequential pipelines,
and automatic retry with exponential backoff.
Features
	Parallel query execution with concurrency limits
	Sequential pipeline workflows (output → input)
	Automatic retry with exponential backoff
	Rate limiting (configurable queries/minute)
	Cost tracking and statistics
	Error aggregation and reporting

Usage
Parallel queries
{:ok, results} = Orchestrator.query_parallel([
 {"Analyze file1.ex", opts},
 {"Analyze file2.ex", opts},
 {"Analyze file3.ex", opts}
], max_concurrent: 3)

Pipeline (sequential with context)
{:ok, final_result} = Orchestrator.query_pipeline([
 {"Analyze code", analysis_opts},
 {"Suggest refactorings", refactor_opts},
 {"Generate tests", test_opts}
], use_context: true)

Retry with backoff
{:ok, result} = Orchestrator.query_with_retry(
 prompt,
 options,
 max_retries: 3,
 backoff_ms: 1000
)

 Summary

 Functions

 query_parallel(queries, opts \\ [])

 Executes multiple queries in parallel.

 query_pipeline(steps, opts \\ [])

 Executes queries sequentially in a pipeline.

 query_with_retry(prompt, options, opts \\ [])

 Executes a query with automatic retry and exponential backoff.

 Functions

 query_parallel(queries, opts \\ [])

 @spec query_parallel(
 [{String.t(), ClaudeAgentSDK.Options.t()}],
 keyword()
) :: {:ok, [map()]} | {:error, term()}

Executes multiple queries in parallel.
Parameters
	queries - List of {prompt, options} tuples
	opts - Keyword list of options:	:max_concurrent - Maximum concurrent queries (default: 5)
	:timeout - Timeout per query in ms (default: 300_000)

Returns
	{:ok, results} - List of result maps
	{:error, reason} - If any query fails critically

Examples
queries = [
 {"What is 2+2?", %Options{}},
 {"What is 3+3?", %Options{}},
 {"What is 4+4?", %Options{}}
]

{:ok, results} = Orchestrator.query_parallel(queries, max_concurrent: 2)

Enum.each(results, fn result ->
 IO.puts("Prompt: #{result.prompt}")
 IO.puts("Success: #{result.success}")
 IO.puts("Cost: $#{result.cost}")
end)

 query_pipeline(steps, opts \\ [])

 @spec query_pipeline(
 [{String.t(), ClaudeAgentSDK.Options.t()}],
 keyword()
) :: {:ok, [ClaudeAgentSDK.Message.t()]} | {:error, term()}

Executes queries sequentially in a pipeline.
Each step can optionally use the output from the previous step.
Parameters
	steps - List of {prompt, options} tuples
	opts - Keyword list of options:	:use_context - Include previous output in next prompt (default: false)
	:stop_on_error - Stop pipeline on first error (default: true)

Returns
	{:ok, messages} - Messages from final step
	{:error, {:step_failed, prompt, errors}} - If a step fails

Examples
steps = [
 {"Analyze this code: ...", analysis_opts},
 {"Suggest improvements", refactor_opts},
 {"Generate tests for improved code", test_opts}
]

{:ok, final_result} = Orchestrator.query_pipeline(steps, use_context: true)

 query_with_retry(prompt, options, opts \\ [])

 @spec query_with_retry(String.t(), ClaudeAgentSDK.Options.t(), keyword()) ::
 {:ok, [ClaudeAgentSDK.Message.t()]} | {:error, term()}

Executes a query with automatic retry and exponential backoff.
Parameters
	prompt - Query prompt
	options - ClaudeAgentSDK.Options
	opts - Keyword list of retry options:	:max_retries - Maximum retry attempts (default: 3)
	:backoff_ms - Initial backoff in ms (default: 1000)
	:exponential - Use exponential backoff (default: true)

Returns
	{:ok, messages} - Successful result
	{:error, {:max_retries_exceeded, errors}} - If all retries fail

Examples
{:ok, result} = Orchestrator.query_with_retry(
 "Analyze this code",
 options,
 max_retries: 5,
 backoff_ms: 2000
)

ClaudeAgentSDK.Query

Handles querying Claude Code and processing responses.
This module is responsible for building the appropriate command-line arguments
for different types of Claude Code queries (new queries, continuations, and
resumptions) and delegating to the CLI streaming transport for execution.
All functions in this module return a Stream of ClaudeAgentSDK.Message structs.
SDK MCP Server Support
When SDK MCP servers are detected in options, the query automatically uses
the Client GenServer (which supports bidirectional control protocol) instead
of the simpler Process.stream approach. This is transparent to the caller -
you still get the same Stream interface.

 Summary

 Functions

 continue(prompt, options)

 Continues the most recent conversation.

 resume(session_id, prompt, options)

 Resumes a specific conversation by session ID.

 run(prompt, options, transport \\ nil)

 Runs a new query with the given prompt and options.

 Functions

 continue(prompt, options)

 @spec continue(String.t() | nil, ClaudeAgentSDK.Options.t()) ::
 Enumerable.t(ClaudeAgentSDK.Message.t())

Continues the most recent conversation.
Parameters
	prompt - Optional additional prompt to send (string or nil)
	options - Configuration options (see ClaudeAgentSDK.Options.t/0)

Returns
A stream of ClaudeAgentSDK.Message.t/0 structs.
Examples
ClaudeAgentSDK.Query.continue("Add error handling", %ClaudeAgentSDK.Options{})

 resume(session_id, prompt, options)

 @spec resume(String.t(), String.t() | nil, ClaudeAgentSDK.Options.t()) ::
 Enumerable.t(ClaudeAgentSDK.Message.t())

Resumes a specific conversation by session ID.
Parameters
	session_id - The session ID to resume (string)
	prompt - Optional additional prompt to send (string or nil)
	options - Configuration options (see ClaudeAgentSDK.Options.t/0)

Returns
A stream of ClaudeAgentSDK.Message.t/0 structs.
Examples
ClaudeAgentSDK.Query.resume("session-123", "Add tests", %ClaudeAgentSDK.Options{})

 run(prompt, options, transport \\ nil)

 @spec run(String.t() | Enumerable.t(), ClaudeAgentSDK.Options.t(), term() | nil) ::
 Enumerable.t(ClaudeAgentSDK.Message.t())

Runs a new query with the given prompt and options.
Automatically detects if SDK MCP servers are present in options and routes
to the appropriate backend:
	SDK MCP servers present → Uses Client GenServer (bidirectional control protocol)
	No SDK MCP servers → Uses CLI-only streaming transport (unidirectional)

Parameters
	prompt - The prompt to send to Claude (string)
	options - Configuration options (see ClaudeAgentSDK.Options.t/0)

Returns
A stream of ClaudeAgentSDK.Message.t/0 structs.
Examples
Simple query (no SDK MCP)
ClaudeAgentSDK.Query.run("Write a hello world function", %ClaudeAgentSDK.Options{})

With SDK MCP servers (auto-uses Client)
server = ClaudeAgentSDK.create_sdk_mcp_server(name: "math", tools: [Add])
options = %Options{mcp_servers: %{"math" => server}}
ClaudeAgentSDK.Query.run("What is 2+2?", options)

ClaudeAgentSDK.Session

Helper functions for working with Claude sessions.
Provides utilities to extract session metadata from message lists.

 Summary

 Functions

 calculate_cost(messages)

 Calculates total cost from messages.

 count_turns(messages)

 Counts conversation turns (assistant messages).

 extract_model(messages)

 Extracts the model used from messages.

 extract_session_id(messages)

 Extracts the session ID from a list of messages.

 get_summary(messages)

 Gets a summary of the conversation.

 Functions

 calculate_cost(messages)

 @spec calculate_cost([ClaudeAgentSDK.Message.t()]) :: float()

Calculates total cost from messages.
Examples
messages = ClaudeAgentSDK.query("Analyze code") |> Enum.to_list()
cost = ClaudeAgentSDK.Session.calculate_cost(messages)
=> 0.025

 count_turns(messages)

 @spec count_turns([ClaudeAgentSDK.Message.t()]) :: non_neg_integer()

Counts conversation turns (assistant messages).
Examples
messages = ClaudeAgentSDK.query("Multi-step task") |> Enum.to_list()
turns = ClaudeAgentSDK.Session.count_turns(messages)
=> 5

 extract_model(messages)

 @spec extract_model([ClaudeAgentSDK.Message.t()]) :: String.t() | nil

Extracts the model used from messages.
Examples
messages = ClaudeAgentSDK.query("Hello") |> Enum.to_list()
model = ClaudeAgentSDK.Session.extract_model(messages)
=> "claude-sonnet-4-5-20250929"

 extract_session_id(messages)

 @spec extract_session_id([ClaudeAgentSDK.Message.t()]) :: String.t() | nil

Extracts the session ID from a list of messages.
Examples
messages = ClaudeAgentSDK.query("Hello") |> Enum.to_list()
session_id = ClaudeAgentSDK.Session.extract_session_id(messages)
=> "550e8400-e29b-41d4-a716-446655440000"

 get_summary(messages)

 @spec get_summary([ClaudeAgentSDK.Message.t()]) :: String.t()

Gets a summary of the conversation.
Returns first assistant message (truncated to 200 chars).
Examples
messages = ClaudeAgentSDK.query("Build feature") |> Enum.to_list()
summary = ClaudeAgentSDK.Session.get_summary(messages)
=> "I'll help you build that feature. First, let me..."

ClaudeAgentSDK.SessionStore

Persistent session storage and management.
Provides save/load/search capabilities for Claude conversation sessions,
enabling multi-step workflows that survive application restarts.
Features
	Save/load complete session message history
	Tag sessions for organization
	Search sessions by tags, date range, cost
	Automatic cleanup of old sessions
	Export/import session data
	Session metadata tracking

Usage
Start the store
{:ok, _pid} = ClaudeAgentSDK.SessionStore.start_link()

Save a session
messages = ClaudeAgentSDK.query("Build a feature") |> Enum.to_list()
session_id = ClaudeAgentSDK.Session.extract_session_id(messages)

:ok = SessionStore.save_session(session_id, messages,
 tags: ["feature-dev", "important"],
 description: "Implemented user authentication"
)

Load session later
{:ok, session_data} = SessionStore.load_session(session_id)

Resume the conversation
ClaudeAgentSDK.resume(session_id, "Now add tests")

Search sessions
sessions = SessionStore.search(tags: ["important"], after: ~D[2025-10-01])
Storage
Sessions are stored in ~/.claude_sdk/sessions/ by default.
Each session is a JSON file with message history and metadata.
Configure storage location:
config :claude_agent_sdk,
 session_storage_dir: "/custom/path/sessions"

 Summary

 Types

 session_data()

 session_metadata()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_old_sessions(opts \\ [])

 Cleans up sessions older than specified days.

 delete_session(session_id)

 Deletes a session.

 list_sessions()

 Lists all sessions.

 load_session(session_id)

 Loads a session by ID.

 save_session(session_id, messages, opts \\ [])

 Saves a session with messages and metadata.

 search(criteria \\ [])

 Searches sessions by criteria.

 start_link(opts \\ [])

 Starts the SessionStore GenServer.

 Types

 session_data()

 @type session_data() :: %{
 session_id: String.t(),
 messages: [ClaudeAgentSDK.Message.t()],
 metadata: session_metadata()
}

 session_metadata()

 @type session_metadata() :: %{
 session_id: String.t(),
 created_at: DateTime.t(),
 updated_at: DateTime.t(),
 message_count: non_neg_integer(),
 total_cost: float(),
 tags: [String.t()],
 description: String.t() | nil,
 model: String.t() | nil
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_old_sessions(opts \\ [])

 @spec cleanup_old_sessions(keyword()) :: non_neg_integer()

Cleans up sessions older than specified days.
Examples
Delete sessions older than 30 days
count = SessionStore.cleanup_old_sessions(max_age_days: 30)
=> 5 (number of sessions deleted)

 delete_session(session_id)

 @spec delete_session(String.t()) :: :ok

Deletes a session.
Examples
:ok = SessionStore.delete_session(session_id)

 list_sessions()

 @spec list_sessions() :: [session_metadata()]

Lists all sessions.
Returns metadata for all stored sessions, sorted by updated_at (newest first).

 load_session(session_id)

 @spec load_session(String.t()) :: {:ok, session_data()} | {:error, :not_found}

Loads a session by ID.
Examples
{:ok, session_data} = SessionStore.load_session(session_id)
session_data.messages - List of messages
session_data.metadata - Session metadata

 save_session(session_id, messages, opts \\ [])

 @spec save_session(String.t(), [ClaudeAgentSDK.Message.t()], keyword()) ::
 :ok | {:error, term()}

Saves a session with messages and metadata.
Parameters
	session_id - Session identifier
	messages - List of Message structs from query
	opts - Keyword options:	:tags - List of tag strings
	:description - Session description

Examples
:ok = SessionStore.save_session(session_id, messages,
 tags: ["code-review", "security"],
 description: "Security audit of auth module"
)

 search(criteria \\ [])

 @spec search(keyword()) :: [session_metadata()]

Searches sessions by criteria.
Parameters
	criteria - Keyword options:	:tags - Match sessions with these tags (list)
	:after - Sessions created after date (Date or DateTime)
	:before - Sessions created before date
	:min_cost - Minimum cost threshold
	:max_cost - Maximum cost threshold

Examples
Find all security review sessions
sessions = SessionStore.search(tags: ["security"])

Find expensive sessions from last week
sessions = SessionStore.search(
 after: ~D[2025-10-01],
 min_cost: 0.10
)

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the SessionStore GenServer.

ClaudeAgentSDK.Auth.Provider

Multi-provider authentication abstraction.
Supports:
	Anthropic (via claude setup-token)
	AWS Bedrock (via AWS credentials)
	GCP Vertex AI (via GCP credentials)

 Summary

 Types

 provider()

 Functions

 setup_token(atom)

 Sets up authentication token for the specified provider.

 Types

 provider()

 @type provider() :: :anthropic | :bedrock | :vertex

 Functions

 setup_token(atom)

 @spec setup_token(provider()) ::
 {:ok, String.t(), DateTime.t() | nil} | {:error, term()}

Sets up authentication token for the specified provider.
Returns {:ok, token, expiry} or {:error, reason}.

ClaudeAgentSDK.Auth.Providers.Anthropic

Anthropic-specific authentication via claude setup-token.

 Summary

 Functions

 oauth_env_var()

 Returns the environment variable name for Claude OAuth tokens.

 setup_token()

 Guides user through obtaining an OAuth token via claude setup-token.

 Functions

 oauth_env_var()

 @spec oauth_env_var() :: String.t()

Returns the environment variable name for Claude OAuth tokens.
Examples
iex> ClaudeAgentSDK.Auth.Providers.Anthropic.oauth_env_var()
"CLAUDE_AGENT_OAUTH_TOKEN"

 setup_token()

 @spec setup_token() :: {:ok, String.t(), DateTime.t()} | {:error, term()}

Guides user through obtaining an OAuth token via claude setup-token.
The Claude CLI requires an interactive TTY, so this function prompts
the user to run claude setup-token in a separate terminal and paste
the resulting token.
Requirements
	Claude Code CLI installed (v2.0.10+)
	Active Claude subscription

Token Format
Accepts OAuth tokens (sk-ant-oat01-...) or API keys (sk-ant-api03-...).

ClaudeAgentSDK.Auth.Providers.Bedrock

AWS Bedrock authentication.
Uses AWS credentials instead of Anthropic API keys.
Requires CLAUDE_AGENT_USE_BEDROCK=1 environment variable.

 Summary

 Functions

 setup_token()

 Validates AWS Bedrock authentication.

 Functions

 setup_token()

 @spec setup_token() :: {:ok, String.t(), nil} | {:error, term()}

Validates AWS Bedrock authentication.
Returns {:ok, "aws", nil} if AWS credentials are available.
No token needed - CLI uses AWS SDK authentication.

ClaudeAgentSDK.Auth.Providers.Vertex

Google Vertex AI authentication.
Uses GCP credentials instead of Anthropic API keys.
Requires CLAUDE_AGENT_USE_VERTEX=1 environment variable.

 Summary

 Functions

 setup_token()

 Validates Google Vertex AI authentication.

 Functions

 setup_token()

 @spec setup_token() :: {:ok, String.t(), nil} | {:error, term()}

Validates Google Vertex AI authentication.
Returns {:ok, "gcp", nil} if GCP credentials are available.
No token needed - CLI uses GCP SDK authentication.

ClaudeAgentSDK.Auth.TokenStore behaviour

Persistent token storage for authentication.
Supports multiple storage backends:
	File-based (default): ~/.claude_sdk/token.json
	Application environment: :claude_agent_sdk, :auth_token
	Custom: User-provided module implementing this behavior

 Summary

 Types

 token_data()

 Callbacks

 clear()

 load()

 save(token_data)

 Functions

 clear()

 Clears stored token data.

 load()

 Loads token data from storage.

 save(data)

 Saves token data to storage.

 Types

 token_data()

 @type token_data() :: %{
 token: String.t(),
 expiry: DateTime.t() | nil,
 provider: atom()
}

 Callbacks

 clear()

 @callback clear() :: :ok

 load()

 @callback load() :: {:ok, token_data()} | {:error, :not_found | term()}

 save(token_data)

 @callback save(token_data()) :: :ok | {:error, term()}

 Functions

 clear()

 @spec clear() :: :ok

Clears stored token data.

 load()

 @spec load() :: {:ok, token_data()} | {:error, :not_found | term()}

Loads token data from storage.

 save(data)

 @spec save(token_data()) :: :ok | {:error, term()}

Saves token data to storage.

ClaudeAgentSDK.AuthChecker

Authentication checker and environment validator for Claude Code SDK.
This module provides functions to validate the authentication state and
environment setup before making queries to Claude Code. It helps prevent
authentication errors and provides helpful diagnostic information.
Basic Usage
Quick boolean check
if ClaudeAgentSDK.AuthChecker.authenticated?() do
 ClaudeAgentSDK.query("Hello!")
else
 IO.puts("Please run: claude login")
end

Full diagnostic check
diagnosis = ClaudeAgentSDK.AuthChecker.diagnose()

Ensure ready or raise error
ClaudeAgentSDK.AuthChecker.ensure_ready!()
Authentication Methods
The Claude CLI supports multiple authentication methods:
	Anthropic API key via claude login or ANTHROPIC_API_KEY environment variable
	Amazon Bedrock via CLAUDE_AGENT_USE_BEDROCK=1 and AWS credentials
	Google Vertex AI via CLAUDE_AGENT_USE_VERTEX=1 and GCP credentials

This module detects and validates all supported authentication methods.

 Summary

 Types

 auth_status()

 diagnosis()

 Functions

 auth_method_available?(method)

 Checks if a specific authentication method is available.

 authenticated?()

 Quick boolean check for authentication status.

 check_auth()

 Checks authentication status and returns result tuple.

 check_cli_installation()

 Checks Claude CLI installation status.

 diagnose()

 Performs comprehensive diagnostic check of the environment.

 ensure_ready!()

 Ensures the environment is ready for Claude queries.

 get_api_key_source()

 Gets the current API key source information.

 Types

 auth_status()

 @type auth_status() ::
 :ready | :cli_not_found | :not_authenticated | :invalid_credentials | :unknown

 diagnosis()

 @type diagnosis() :: %{
 cli_installed: boolean(),
 cli_version: String.t() | nil,
 cli_path: String.t() | nil,
 cli_error: String.t() | nil,
 authenticated: boolean(),
 auth_method: String.t() | nil,
 auth_info: String.t() | nil,
 auth_error: String.t() | nil,
 api_key_source: String.t() | nil,
 status: auth_status(),
 recommendations: [String.t()],
 last_checked: DateTime.t()
}

 Functions

 auth_method_available?(method)

 @spec auth_method_available?(atom()) :: boolean()

Checks if a specific authentication method is available.
Parameters
	method - Authentication method to check (:anthropic, :bedrock, or :vertex)

Examples
if ClaudeAgentSDK.AuthChecker.auth_method_available?(:bedrock) do
 IO.puts("AWS Bedrock authentication is configured")
end

 authenticated?()

 @spec authenticated?() :: boolean()

Quick boolean check for authentication status.
Returns true if Claude CLI is installed and properly authenticated,
false otherwise.
Examples
if ClaudeAgentSDK.AuthChecker.authenticated?() do
 IO.puts("Ready to make queries")
else
 IO.puts("Authentication required")
end

 check_auth()

 @spec check_auth() :: {:ok, String.t()} | {:error, String.t()}

Checks authentication status and returns result tuple.
Returns {:ok, info} if authenticated, {:error, reason} otherwise.
Examples
case ClaudeAgentSDK.AuthChecker.check_auth() do
 {:ok, info} -> IO.puts("Authenticated: #{info}")
 {:error, reason} -> IO.puts("Auth failed: #{reason}")
end

 check_cli_installation()

 @spec check_cli_installation() :: {:ok, map()} | {:error, String.t()}

Checks Claude CLI installation status.
Returns {:ok, %{path: path, version: version}} if installed,
{:error, reason} otherwise.
Examples
case ClaudeAgentSDK.AuthChecker.check_cli_installation() do
 {:ok, %{path: path, version: version}} ->
 IO.puts("CLI installed at #{path}, version #{version}")
 {:error, reason} ->
 IO.puts("CLI not found: #{reason}")
end

 diagnose()

 @spec diagnose() :: diagnosis()

Performs comprehensive diagnostic check of the environment.
Returns a detailed diagnosis map with information about CLI installation,
authentication status, detected auth method, and recommendations.
Returns
A diagnosis/0 map containing:
	cli_installed - Whether the Claude CLI is installed
	cli_version - Version of the installed CLI (if available)
	authenticated - Whether authentication is working
	auth_method - Detected authentication method
	api_key_source - Source of API credentials
	status - Overall status (see auth_status/0)
	recommendations - List of recommended actions
	last_checked - Timestamp of this check

Examples
diagnosis = ClaudeAgentSDK.AuthChecker.diagnose()

case diagnosis.status do
 :ready ->
 IO.puts("✅ Ready to use Claude")

 :cli_not_found ->
 IO.puts("❌ Claude CLI not found")

 :not_authenticated ->
 IO.puts("❌ Not authenticated")
end

 ensure_ready!()

 @spec ensure_ready!() :: :ok

Ensures the environment is ready for Claude queries.
Raises an exception with helpful error message if not ready.
Returns :ok if ready to proceed.
Examples
Will raise if not ready
ClaudeAgentSDK.AuthChecker.ensure_ready!()

Safe to make queries now
ClaudeAgentSDK.query("Hello!")
Raises
	RuntimeError - If CLI not found or authentication missing

 get_api_key_source()

 @spec get_api_key_source() :: {:ok, String.t()} | {:error, String.t()}

Gets the current API key source information.
Returns information about where the API credentials are coming from.
Examples
case ClaudeAgentSDK.AuthChecker.get_api_key_source() do
 {:ok, "environment variable ANTHROPIC_API_KEY"} ->
 IO.puts("Using environment variable")

 {:ok, "claude login session"} ->
 IO.puts("Using stored session")

 {:error, reason} ->
 IO.puts("No valid API key: #{reason}")
end

ClaudeAgentSDK.AuthManager

Manages authentication tokens for Claude Code SDK.
Provides automatic token acquisition, validation, refresh, and persistence.
Eliminates the need for manual claude login in automated environments.
Features
	Automatic token setup via claude setup-token
	Persistent storage across application restarts
	Token expiry detection and automatic refresh
	Multi-provider support (Anthropic, AWS Bedrock, GCP Vertex)
	Graceful fallback to ANTHROPIC_API_KEY environment variable

Usage
One-time setup (interactive, requires Claude subscription)
{:ok, token} = ClaudeAgentSDK.AuthManager.setup_token()

Subsequent calls automatically use stored token
ClaudeAgentSDK.query("Hello") # ✅ Authenticated

Manual refresh if needed
{:ok, token} = ClaudeAgentSDK.AuthManager.refresh_token()
Configuration
config/config.exs
config :claude_agent_sdk,
 auth_storage: :file, # :file | :application_env | :custom
 auth_file_path: "~/.claude_sdk/token.json",
 auto_refresh: true,
 refresh_before_expiry: 86_400_000 # 1 day in ms

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_auth()

 Clears stored authentication.

 ensure_authenticated()

 Ensures authentication is valid and available.

 get_token()

 Retrieves the current authentication token.

 refresh_token()

 Forces a token refresh.

 setup_token()

 Sets up a new authentication token interactively.

 start_link(opts \\ [])

 Starts the AuthManager GenServer.

 status()

 Returns current authentication status.

 Types

 t()

 @type t() :: %ClaudeAgentSDK.AuthManager{
 expiry: DateTime.t() | nil,
 provider: atom(),
 refresh_timer: reference() | nil,
 storage_backend: module(),
 token: String.t() | nil
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear_auth()

 @spec clear_auth() :: :ok

Clears stored authentication.
Useful for logout or testing.
Examples
iex> ClaudeAgentSDK.AuthManager.clear_auth()
:ok

 ensure_authenticated()

 @spec ensure_authenticated() :: :ok | {:error, term()}

Ensures authentication is valid and available.
Checks authentication in order of precedence:
	ANTHROPIC_API_KEY environment variable
	Valid stored token
	Automatic token setup (if interactive)

Returns :ok if authenticated, {:error, reason} otherwise.
Examples
iex> ClaudeAgentSDK.AuthManager.ensure_authenticated()
:ok

In CI without token:
iex> ClaudeAgentSDK.AuthManager.ensure_authenticated()
{:error, :authentication_required}

 get_token()

 @spec get_token() :: {:ok, String.t()} | {:error, :not_authenticated}

Retrieves the current authentication token.
Returns the token if valid, error otherwise.
Examples
iex> ClaudeAgentSDK.AuthManager.get_token()
{:ok, "sk-ant-api03-..."}

iex> ClaudeAgentSDK.AuthManager.get_token()
{:error, :not_authenticated}

 refresh_token()

 @spec refresh_token() :: {:ok, String.t()} | {:error, term()}

Forces a token refresh.
Useful for testing or manual token rotation.
Examples
iex> ClaudeAgentSDK.AuthManager.refresh_token()
{:ok, "sk-ant-api03-..."}

 setup_token()

 @spec setup_token() :: {:ok, String.t()} | {:error, term()}

Sets up a new authentication token interactively.
Executes claude setup-token which requires:
	Claude subscription
	Interactive terminal access
	Browser for OAuth flow

Examples
iex> ClaudeAgentSDK.AuthManager.setup_token()
{:ok, "sk-ant-api03-..."}

iex> ClaudeAgentSDK.AuthManager.setup_token()
{:error, "claude setup-token failed: not subscribed"}

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the AuthManager GenServer.
Automatically loads existing tokens from storage on startup.

 status()

 @spec status() :: map()

Returns current authentication status.
Examples
iex> ClaudeAgentSDK.AuthManager.status()
%{
 authenticated: true,
 provider: :anthropic,
 token_present: true,
 expires_at: ~U[2025-11-07 00:00:00Z],
 time_until_expiry_hours: 720
}

ClaudeAgentSDK.Streaming

Bidirectional streaming for interactive Claude conversations.
Enables real-time, character-by-character streaming with persistent sessions
using Claude CLI's --include-partial-messages flag.
Features
	Real-time streaming: Character-by-character text updates (typewriter effect)
	Persistent sessions: Send multiple messages without restarting subprocess
	Partial messages: Receive text_delta events as Claude types
	Multi-turn conversations: Context preserved across messages
	Phoenix LiveView ready: Perfect for chat UIs and interactive apps

Architecture
Your App
 ↓
ClaudeAgentSDK.Streaming (Public API)
 ↓
Session GenServer (Manages subprocess)
 ↓
claude --input-format stream-json \
 --output-format stream-json \
 --include-partial-messages
Quick Start
Start a streaming session
{:ok, session} = ClaudeAgentSDK.Streaming.start_session()

Send message and get streaming response
ClaudeAgentSDK.Streaming.send_message(session, "Hello")
|> Stream.each(fn
 %{type: :text_delta, text: text} ->
 IO.write(text) # Print each character immediately

 %{type: :message_stop} ->
 IO.puts("") # Message complete
end)
|> Stream.run()

Continue conversation (context preserved)
ClaudeAgentSDK.Streaming.send_message(session, "Tell me more")
|> Enum.to_list()

Close when done
ClaudeAgentSDK.Streaming.close_session(session)
Event Types
The stream yields event maps with these types:
Text Streaming (Primary)
	%{type: :text_delta, text: "...", accumulated: "..."} - Character chunk + full text so far
	%{type: :message_stop, final_text: "..."} - Message complete

Message Lifecycle
	%{type: :message_start, model: "...", role: "...", usage: %{}} - Message begins
	%{type: :content_block_start} - Content block starts
	%{type: :content_block_stop, final_text: "..."} - Content block complete

Tools & Thinking
	%{type: :tool_use_start, name: "...", id: "..."} - Tool call begins
	%{type: :tool_input_delta, json: "..."} - Tool input JSON chunk
	%{type: :thinking_start} - Thinking block starts (Sonnet 4.5+)
	%{type: :thinking_delta, thinking: "..."} - Thinking content chunk

Metadata & Errors
	%{type: :message_delta, stop_reason: "...", stop_sequence: "..."} - Final metadata
	%{type: :error, error: ...} - Error occurred

Examples
Typewriter Effect
{:ok, session} = ClaudeAgentSDK.Streaming.start_session()

ClaudeAgentSDK.Streaming.send_message(session, "Write a poem")
|> Stream.each(fn
 %{type: :text_delta, text: text} ->
 IO.write(text)
 Process.sleep(10) # Slow down for effect

 %{type: :message_stop} ->
 IO.puts("\n[Complete]")
end)
|> Stream.run()
Phoenix LiveView Integration
defmodule MyAppWeb.ClaudeChatLive do
 use MyAppWeb, :live_view

 def mount(_params, _session, socket) do
 {:ok, session} = ClaudeAgentSDK.Streaming.start_session()

 {:ok, assign(socket,
 claude_session: session,
 messages: [],
 current_response: ""
)}
 end

 def handle_event("send_message", %{"message" => message}, socket) do
 # Add user message
 messages = socket.assigns.messages ++ [%{role: :user, content: message}]

 # Start streaming in background using Task.Supervisor (OTP-safe pattern)
 # Add {Task.Supervisor, name: MyApp.TaskSupervisor} to your supervision tree
 pid = self()
 Task.Supervisor.start_child(MyApp.TaskSupervisor, fn ->
 ClaudeAgentSDK.Streaming.send_message(socket.assigns.claude_session, message)
 |> Stream.each(fn event -> send(pid, {:claude_event, event}) end)
 |> Stream.run()
 end)

 {:noreply, assign(socket, messages: messages, current_response: "")}
 end

 def handle_info({:claude_event, %{type: :text_delta, text: text}}, socket) do
 # Update response in real-time
 {:noreply, assign(socket, current_response: socket.assigns.current_response <> text)}
 end

 def handle_info({:claude_event, %{type: :message_stop}}, socket) do
 # Finalize message
 messages = socket.assigns.messages ++ [
 %{role: :assistant, content: socket.assigns.current_response}
]
 {:noreply, assign(socket, messages: messages, current_response: "")}
 end
end
Multi-Turn Conversation
{:ok, session} = ClaudeAgentSDK.Streaming.start_session()

First message
response1 = ClaudeAgentSDK.Streaming.send_message(session, "My name is Alice")
|> collect_text()

IO.puts("Claude: #{response1}")

Second message (context preserved)
response2 = ClaudeAgentSDK.Streaming.send_message(session, "What's my name?")
|> collect_text()

IO.puts("Claude: #{response2}") # Should mention "Alice"

ClaudeAgentSDK.Streaming.close_session(session)

defp collect_text(stream) do
 stream
 |> Stream.filter(&(&1.type == :text_delta))
 |> Stream.map(& &1.text)
 |> Enum.join("")
end
Custom Options
Start session with custom configuration
{:ok, session} = ClaudeAgentSDK.Streaming.start_session(%ClaudeAgentSDK.Options{
 model: "opus", # Use most capable model
 max_turns: 10, # Allow up to 10 turns
 allowed_tools: ["Read"], # Only allow Read tool
 verbose: true # Enable verbose logging
})
Configuration
See ClaudeAgentSDK.Options for all available configuration options.
Performance
	Memory-efficient: Uses lazy streams, constant memory regardless of response size
	Low latency: Events delivered as soon as received from Claude
	Concurrent: Multiple sessions can run simultaneously
	Resource cleanup: Subprocess terminated on session close

Error Handling
ClaudeAgentSDK.Streaming.send_message(session, "Hello")
|> Stream.each(fn
 %{type: :text_delta, text: text} ->
 IO.write(text)

 %{type: :error, error: reason} ->
 IO.puts("\nError: #{inspect(reason)}")

 %{type: :message_stop} ->
 IO.puts("\nComplete")
end)
|> Stream.run()
Limitations
	Requires Claude CLI v2.0+ with streaming support
	Subprocess spawning has ~100ms overhead
	No message history persistence (use ClaudeAgentSDK.SessionStore for that)
	Single active message per session (sequential only)

See Also
	ClaudeAgentSDK.Streaming.Session - GenServer managing the subprocess
	ClaudeAgentSDK.Streaming.EventParser - Event parsing logic
	ClaudeAgentSDK.Options - Configuration options
	ClaudeAgentSDK - Non-streaming API (simpler but blocks)

 Summary

 Types

 session()

 Functions

 close_session(session)

 Closes a streaming session and terminates the subprocess.

 get_session_id(session)

 Gets the Claude session ID for an active session.

 send_message(session, message)

 Sends a message to an active streaming session.

 start_session(options \\ nil)

 Starts a new streaming session.

 Types

 session()

 @type session() :: pid() | {:control_client, pid()}

 Functions

 close_session(session)

 @spec close_session(session()) :: :ok

Closes a streaming session and terminates the subprocess.
Cleans up all resources associated with the session.
Parameters
	session - Session PID to close

Returns
:ok
Examples
{:ok, session} = start_session()
... use session ...
:ok = close_session(session)

 get_session_id(session)

 @spec get_session_id(session()) :: {:ok, String.t()} | {:error, :no_session_id}

Gets the Claude session ID for an active session.
The session ID is extracted from the first message and can be used
for debugging or correlation with Claude API logs.
Parameters
	session - Session PID

Returns
	{:ok, session_id} - Session ID available (after first message)
	{:error, :no_session_id} - Session not yet initialized

Examples
{:ok, session} = start_session()

Before first message
{:error, :no_session_id} = get_session_id(session)

After sending a message
send_message(session, "Hello") |> Enum.to_list()
{:ok, session_id} = get_session_id(session)
IO.puts("Session ID: #{session_id}")

 send_message(session, message)

 @spec send_message(session(), String.t()) :: Enumerable.t()

Sends a message to an active streaming session.
Returns a stream of events that can be consumed in real-time for
typewriter effects, progress indicators, and incremental UI updates.
Parameters
	session - Session PID from start_session/1
	message - Message text to send to Claude

Returns
Lazy stream of event maps. See module documentation for event types.
The stream will automatically complete when the message is finished.
Examples
{:ok, session} = start_session()

Simple text collection
text = send_message(session, "Hello")
|> Stream.filter(&(&1.type == :text_delta))
|> Stream.map(& &1.text)
|> Enum.join("")

Typewriter effect
send_message(session, "Write a story")
|> Stream.each(fn
 %{type: :text_delta, text: text} -> IO.write(text)
 %{type: :message_stop} -> IO.puts("")
end)
|> Stream.run()

Error handling
send_message(session, "Hello")
|> Stream.each(fn
 %{type: :text_delta, text: text} -> IO.write(text)
 %{type: :error, error: reason} -> IO.puts("Error: #{inspect(reason)}")
end)
|> Stream.run()

 start_session(options \\ nil)

 @spec start_session(ClaudeAgentSDK.Options.t() | nil) ::
 {:ok, session()} | {:error, term()}

Starts a new streaming session.
Spawns a Claude CLI subprocess with streaming flags and begins listening
for events.
Parameters
	options - Optional ClaudeAgentSDK.Options struct for configuration

Returns
	{:ok, session_pid} - Session started successfully
	{:error, reason} - Failed to start (e.g., CLI not found, auth failed)

Examples
Default configuration
{:ok, session} = ClaudeAgentSDK.Streaming.start_session()

Custom configuration
{:ok, session} = ClaudeAgentSDK.Streaming.start_session(%Options{
 model: "opus",
 max_turns: 5,
 verbose: true
})

ClaudeAgentSDK.Streaming.EventParser

Parses streaming events from Claude CLI's --include-partial-messages output.
Handles all Server-Sent Events (SSE) types from the Anthropic Messages API:
	message_start - Message initialization with metadata
	content_block_start - Content block (text/tool_use/thinking) starts
	content_block_delta - Incremental content updates (THE CORE STREAMING EVENT)	text_delta - Character-by-character text streaming
	input_json_delta - Tool input JSON being built
	thinking_delta - Extended thinking content (Sonnet 4.5+)

	content_block_stop - Content block complete
	message_delta - Message-level metadata updates
	message_stop - Message complete

References
	https://docs.anthropic.com/en/api/messages-streaming

 Summary

 Types

 accumulated_text()

 event()

 Functions

 parse_buffer(buffer, accumulated_text)

 Parses a buffer of newline-delimited JSON and returns parsed events.

 parse_event(event, accumulated_text)

 Parses a single streaming event from Claude CLI output.

 Types

 accumulated_text()

 @type accumulated_text() :: String.t()

 event()

 @type event() :: map()

 Functions

 parse_buffer(buffer, accumulated_text)

 @spec parse_buffer(String.t(), accumulated_text()) ::
 {:ok, [event()], String.t(), accumulated_text()}

Parses a buffer of newline-delimited JSON and returns parsed events.
Handles partial JSON lines by returning the unparsed remainder.
Parameters
	buffer - String buffer containing newline-delimited JSON
	accumulated_text - Current accumulated text for the message

Returns
{:ok, events, remaining_buffer, new_accumulated_text}
Examples
buffer = ~s({"type":"message_start","message":{"model":"sonnet"}}\n{"type":"content_block_delta","delta":{"type":"text_delta","text":"Hi"}}\npartial)
{:ok, events, remaining, accumulated} = EventParser.parse_buffer(buffer, "")

events will contain both parsed events
remaining will be "partial" (incomplete JSON line)
accumulated will be "Hi" (from text_delta)

 parse_event(event, accumulated_text)

 @spec parse_event(map(), accumulated_text()) :: {:ok, [event()], accumulated_text()}

Parses a single streaming event from Claude CLI output.
Returns {:ok, [events], new_accumulated_text} where:
	events - List of parsed event maps (may be empty for unknown events)
	new_accumulated_text - Updated accumulated text for current message

Parameters
	raw_event - Decoded JSON map from CLI stdout
	accumulated_text - Current accumulated text for this message

Event Types Returned
Text Streaming (primary use case)
	%{type: :text_delta, text: "...", accumulated: "..."} - Character chunk + full text so far

Message Lifecycle
	%{type: :message_start, model: "..."} - Message begins
	%{type: :message_stop, final_text: "..."} - Message complete

Content Blocks
	%{type: :text_block_start} - Text content block starts
	%{type: :content_block_stop, final_text: "..."} - Block complete
	%{type: :tool_use_start, name: "...", id: "..."} - Tool call starts
	%{type: :thinking_start} - Thinking block starts (Sonnet 4.5+)

Tool & Thinking
	%{type: :tool_input_delta, json: "..."} - Partial tool input JSON
	%{type: :thinking_delta, thinking: "..."} - Thinking content chunk

Metadata
	%{type: :message_delta, stop_reason: "...", stop_sequence: "..."} - Final metadata

Examples
Text delta (most common event)
{:ok, [%{type: :text_delta, text: "Hello", accumulated: "Hello"}], "Hello"} =
 EventParser.parse_event(%{"type" => "content_block_delta", "delta" => %{"type" => "text_delta", "text" => "Hello"}}, "")

Message start
{:ok, [%{type: :message_start, model: "claude-sonnet-4-5"}], ""} =
 EventParser.parse_event(%{"type" => "message_start", "message" => %{"model" => "claude-sonnet-4-5"}}, "")

Unknown event (ignored gracefully)
{:ok, [], "existing text"} =
 EventParser.parse_event(%{"type" => "unknown_event"}, "existing text")

ClaudeAgentSDK.Streaming.Session

GenServer managing a persistent bidirectional streaming session with Claude.
Maintains a long-lived subprocess with stdin/stdout pipes for interactive
conversations with character-level streaming support via --include-partial-messages.
Architecture
Session GenServer
 |
 ├─> erlexec subprocess (claude CLI)
 │ ├─ stdin (send messages)
 │ ├─ stdout (receive streaming events)
 │ └─ stderr (capture errors)
 |
 └─> Subscriber Map
 ├─ ref1 => {pid1, current_stream_ref}
 ├─ ref2 => {pid2, current_stream_ref}
 └─ ...
State
	subprocess - {erlexec_pid, os_pid} tuple
	session_id - Claude session ID (extracted from first message)
	options - ClaudeAgentSDK.Options for configuration
	subscribers - Map of ref => {subscriber_pid, active: boolean}
	message_buffer - Incomplete JSON buffer from stdout
	accumulated_text - Current message text being assembled

Lifecycle
	init/1 - Spawn subprocess with streaming flags
	:read_output loop - Continuously read from stdout
	Parse events via EventParser
	Broadcast to subscribers
	terminate/2 - Clean shutdown of subprocess

 Summary

 Types

 subscriber_pid()

 subscriber_ref()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 close(session)

 Closes the streaming session and terminates the subprocess.

 get_session_id(session)

 Gets the Claude session ID.

 send_message(session, message)

 Sends a message to the Claude session and returns a stream of events.

 start_link(options \\ nil)

 Starts a new streaming session.

 Types

 subscriber_pid()

 @type subscriber_pid() :: pid()

 subscriber_ref()

 @type subscriber_ref() :: reference()

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 close(session)

 @spec close(pid()) :: :ok

Closes the streaming session and terminates the subprocess.
Parameters
	session - Session PID

Examples
{:ok, session} = Session.start_link()
... use session ...
:ok = Session.close(session)

 get_session_id(session)

 @spec get_session_id(pid()) :: {:ok, String.t()} | {:error, :no_session_id}

Gets the Claude session ID.
The session ID is extracted from the first message_start event.
Returns
	{:ok, session_id} - Session ID available
	{:error, :no_session_id} - Session not yet initialized

Examples
{:ok, session} = Session.start_link()
{:ok, session_id} = Session.get_session_id(session)

 send_message(session, message)

 @spec send_message(pid(), String.t()) :: Enumerable.t()

Sends a message to the Claude session and returns a stream of events.
The returned stream yields events as they arrive from Claude, enabling
real-time typewriter effects and incremental UI updates.
Parameters
	session - Session PID
	message - Message text to send

Returns
Stream of event maps (see EventParser for event types)
Examples
{:ok, session} = Session.start_link()

Get streaming response
Session.send_message(session, "Hello")
|> Stream.each(fn
 %{type: :text_delta, text: text} -> IO.write(text)
 %{type: :message_stop} -> IO.puts("")
end)
|> Stream.run()

 start_link(options \\ nil)

 @spec start_link(ClaudeAgentSDK.Options.t() | nil) :: GenServer.on_start()

Starts a new streaming session.
Spawns a Claude CLI subprocess with streaming flags enabled and
begins listening for events.
Parameters
	options - Optional ClaudeAgentSDK.Options struct

Returns
	{:ok, pid} - Session started successfully
	{:error, reason} - Failed to start subprocess

Examples
{:ok, session} = Session.start_link()
{:ok, session} = Session.start_link(%Options{model: "opus", max_turns: 10})

ClaudeAgentSDK.ContentExtractor

Content extraction helper for Claude Code SDK messages.
This module provides utilities to extract text content from Claude messages,
which can have various formats depending on the type of response. It handles
simple text, structured content blocks, tool responses, and nested formats.
Content Format Examples
Claude messages can contain content in several formats:
Simple Text
%{"content" => "Hello, world!"}
Text Blocks
%{"content" => [
 %{"type" => "text", "text" => "Hello"},
 %{"type" => "text", "text" => "World"}
]}
Tool Responses
%{"content" => [
 %{"type" => "text", "text" => "I'll help you with that."},
 %{"type" => "tool_use", "name" => "bash", "input" => %{"command" => "ls"}},
 %{"type" => "tool_result", "content" => "file1.txt file2.txt"}
]}
Basic Usage
Extract text from assistant messages
content = ClaudeAgentSDK.ContentExtractor.extract_text(message)

Check if message has text content
if ClaudeAgentSDK.ContentExtractor.has_text?(message) do
 IO.puts("Message contains: #{ClaudeAgentSDK.ContentExtractor.extract_text(message)}")
end

Extract all text from a stream of messages
all_text =
 stream
 |> Stream.filter(&ClaudeAgentSDK.ContentExtractor.has_text?/1)
 |> Stream.map(&ClaudeAgentSDK.ContentExtractor.extract_text/1)
 |> Enum.join("\n")

 Summary

 Functions

 extract_all_text(messages, separator \\ "\n")

 Extracts all text content from a stream of messages.

 extract_content_text(content)

 Extracts text from various content formats.

 extract_text(arg1)

 Extracts text content from a Claude message.

 has_text?(message)

 Checks if a message contains extractable text content.

 summarize(message, max_length \\ 100)

 Summarizes content from a message, truncating if too long.

 Functions

 extract_all_text(messages, separator \\ "\n")

 @spec extract_all_text(Enumerable.t(), String.t()) :: String.t()

Extracts all text content from a stream of messages.
Convenience function to extract and concatenate text from multiple
messages in a stream. Filters out messages without text content.
Parameters
	messages - Stream or enumerable of ClaudeAgentSDK.Message structs
	separator - String to join messages with (default: "\n")

Returns
	String containing all extracted text, joined with separator

Examples
messages = [
 %ClaudeAgentSDK.Message{type: :assistant, data: %{message: %{"content" => "Hello"}}},
 %ClaudeAgentSDK.Message{type: :assistant, data: %{message: %{"content" => "World"}}},
 %ClaudeAgentSDK.Message{type: :system, data: %{}} # No text content
]

ClaudeAgentSDK.ContentExtractor.extract_all_text(messages)
=> "Hello\nWorld"

ClaudeAgentSDK.ContentExtractor.extract_all_text(messages, " | ")
=> "Hello | World"

 extract_content_text(content)

 @spec extract_content_text(any()) :: String.t()

Extracts text from various content formats.
This function handles the actual content extraction from different
Claude content formats, including simple strings, text block arrays,
and mixed content with tool usage.
Parameters
	content - Content in various formats (string, list, map, etc.)

Returns
	String containing the extracted text

Examples
Simple string
ClaudeAgentSDK.ContentExtractor.extract_content_text("Hello")
=> "Hello"

Text blocks
ClaudeAgentSDK.ContentExtractor.extract_content_text([
 %{"type" => "text", "text" => "Hello"},
 %{"type" => "text", "text" => "World"}
])
=> "Hello World"

Mixed content with tools
ClaudeAgentSDK.ContentExtractor.extract_content_text([
 %{"type" => "text", "text" => "Let me help:"},
 %{"type" => "tool_use", "name" => "calculator", "input" => %{}},
 %{"type" => "text", "text" => "Done!"}
])
=> "Let me help: [Tool: calculator] Done!"

 extract_text(arg1)

 @spec extract_text(ClaudeAgentSDK.Message.t() | map()) :: String.t() | nil

Extracts text content from a Claude message.
Handles various message types and content formats, returning the readable
text portion of the message. Tool responses are represented as placeholders.
Parameters
	message - A ClaudeAgentSDK.Message struct

Returns
	String containing the extracted text content
	nil if the message doesn't contain extractable text

Examples
Simple text content
message = %ClaudeAgentSDK.Message{
 type: :assistant,
 data: %{message: %{"content" => "Hello, world!"}}
}
ClaudeAgentSDK.ContentExtractor.extract_text(message)
=> "Hello, world!"

Array-based content with multiple text blocks
message = %ClaudeAgentSDK.Message{
 type: :assistant,
 data: %{message: %{"content" => [
 %{"type" => "text", "text" => "Here's the answer:"},
 %{"type" => "text", "text" => "42"}
]}}
}
ClaudeAgentSDK.ContentExtractor.extract_text(message)
=> "Here's the answer: 42"

Content with tool usage
message = %ClaudeAgentSDK.Message{
 type: :assistant,
 data: %{message: %{"content" => [
 %{"type" => "text", "text" => "Let me check that file:"},
 %{"type" => "tool_use", "name" => "read_file", "input" => %{"path" => "data.txt"}},
 %{"type" => "text", "text" => "Done!"}
]}}
}
ClaudeAgentSDK.ContentExtractor.extract_text(message)
=> "Let me check that file: [Tool: read_file] Done!"

 has_text?(message)

 @spec has_text?(ClaudeAgentSDK.Message.t() | map()) :: boolean()

Checks if a message contains extractable text content.
Parameters
	message - A ClaudeAgentSDK.Message struct

Returns
	true if the message contains extractable text
	false otherwise

Examples
message = %ClaudeAgentSDK.Message{
 type: :assistant,
 data: %{message: %{"content" => "Hello"}}
}
ClaudeAgentSDK.ContentExtractor.has_text?(message)
=> true

message = %ClaudeAgentSDK.Message{
 type: :system,
 data: %{session_id: "123"}
}
ClaudeAgentSDK.ContentExtractor.has_text?(message)
=> true (system messages can have extractable info)

message = %ClaudeAgentSDK.Message{
 type: :unknown,
 data: %{}
}
ClaudeAgentSDK.ContentExtractor.has_text?(message)
=> false

 summarize(message, max_length \\ 100)

 @spec summarize(ClaudeAgentSDK.Message.t() | map(), pos_integer()) :: String.t()

Summarizes content from a message, truncating if too long.
Useful for logging or displaying preview text without overwhelming output.
Parameters
	message - A ClaudeAgentSDK.Message struct
	max_length - Maximum length of summary (default: 100)

Returns
	String containing truncated text with "..." if truncated, or full text if short enough

Examples
message = %ClaudeAgentSDK.Message{
 type: :assistant,
 data: %{message: %{"content" => "This is a very long message that should be truncated"}}
}

ClaudeAgentSDK.ContentExtractor.summarize(message, 20)
=> "This is a very long..."

ClaudeAgentSDK.Message

Represents a message from Claude Code CLI.
Messages are the core data structure returned by the Claude Code SDK. They represent
different types of communication during a conversation with Claude, including system
initialization, user inputs, assistant responses, and final results.
Message Types
	:system - Session initialization messages with metadata
	:user - User input messages (echoed back from CLI)
	:assistant - Claude's response messages containing the actual AI output
	:result - Final result messages with cost, duration, and completion status

Assistant messages may optionally include an error code when the CLI surfaces
an issue (e.g., :rate_limit or :authentication_failed).
Result Subtypes
	:success - Successful completion
	:error_max_turns - Terminated due to max turns limit
	:error_during_execution - Error occurred during execution

System Subtypes
	:init - Initial system message with session setup

Examples
Assistant message
%ClaudeAgentSDK.Message{
 type: :assistant,
 subtype: nil,
 data: %{
 message: %{"content" => "Hello! How can I help?"},
 session_id: "session-123"
 }
}

Assistant message with error metadata
%ClaudeAgentSDK.Message{
 type: :assistant,
 subtype: nil,
 data: %{
 message: %{"content" => "Please try again later."},
 session_id: "session-123",
 error: :rate_limit
 }
}

Result message
%ClaudeAgentSDK.Message{
 type: :result,
 subtype: :success,
 data: %{
 total_cost_usd: 0.001,
 duration_ms: 1500,
 num_turns: 2,
 session_id: "session-123"
 }
}

 Summary

 Types

 assistant_data()

 assistant_error()

 message_type()

 result_subtype()

 system_subtype()

 t()

 Functions

 content_blocks(message)

 Returns parsed content blocks for :user and :assistant messages.

 error?(arg1)

 Checks if the message indicates an error.

 final?(arg1)

 Checks if the message is a final result message.

 from_json(json_string)

 Parses a JSON message from Claude Code into a Message struct.

 session_id(arg1)

 Gets the session ID from a message.

 user_uuid(arg1)

 Returns the checkpoint UUID from a user message, or nil.

 Types

 assistant_data()

 @type assistant_data() :: %{
 :message => map(),
 :session_id => String.t() | nil,
 optional(:parent_tool_use_id) => String.t() | nil,
 optional(:error) => assistant_error() | nil
}

 assistant_error()

 @type assistant_error() :: ClaudeAgentSDK.AssistantError.t()

 message_type()

 @type message_type() ::
 :assistant | :user | :result | :system | :stream_event | :unknown | String.t()

 result_subtype()

 @type result_subtype() ::
 :success | :error_max_turns | :error_during_execution | String.t()

 system_subtype()

 @type system_subtype() :: :init | String.t()

 t()

 @type t() :: %ClaudeAgentSDK.Message{
 data: assistant_data() | map(),
 raw: map(),
 subtype: result_subtype() | system_subtype() | nil,
 type: message_type()
}

 Functions

 content_blocks(message)

 @spec content_blocks(t()) :: [map()]

Returns parsed content blocks for :user and :assistant messages.
This is an ergonomic alternative to the Python SDK's typed content-block objects.

 error?(arg1)

 @spec error?(t()) :: boolean()

Checks if the message indicates an error.
Returns true for result messages with error subtypes
(:error_max_turns or :error_during_execution).

 final?(arg1)

 @spec final?(t()) :: boolean()

Checks if the message is a final result message.
Final messages indicate the end of a conversation or query.
Parameters
	message - The message to check

Returns
true if the message is a final result, false otherwise.
Examples
iex> ClaudeAgentSDK.Message.final?(%ClaudeAgentSDK.Message{type: :result})
true

iex> ClaudeAgentSDK.Message.final?(%ClaudeAgentSDK.Message{type: :assistant})
false

 from_json(json_string)

 @spec from_json(String.t()) :: {:ok, t()} | {:error, term()}

Parses a JSON message from Claude Code into a Message struct.
Parameters
	json_string - Raw JSON string from Claude CLI

Returns
	{:ok, message} - Successfully parsed message
	{:error, reason} - Parsing failed

Examples
iex> ClaudeAgentSDK.Message.from_json(~s({"type":"assistant","message":{"content":"Hello"}}))
{:ok, %ClaudeAgentSDK.Message{type: :assistant, ...}}

 session_id(arg1)

 @spec session_id(t()) :: String.t() | nil

Gets the session ID from a message.
Returns nil if the message does not contain a session ID.

 user_uuid(arg1)

 @spec user_uuid(t()) :: String.t() | nil

Returns the checkpoint UUID from a user message, or nil.
Used with file checkpointing to identify rewind targets.

ClaudeAgentSDK.OptionBuilder

Smart option builder for Claude Code SDK configurations.
This module provides pre-configured option sets and builder patterns for
common use cases. Instead of manually constructing ClaudeAgentSDK.Options
structs, you can use these convenience functions to get sensible defaults
for different environments and scenarios.
Design Philosophy
	Environment-aware: Automatically adapt to dev, test, and production
	Security-first: Production configs are restrictive by default
	Composable: Mix and match presets with custom overrides
	Practical: Based on real-world usage patterns

Quick Start
Get options for current environment
options = ClaudeAgentSDK.OptionBuilder.for_environment()

Use a specific preset
options = ClaudeAgentSDK.OptionBuilder.build_development_options()

Customize a preset
options = ClaudeAgentSDK.OptionBuilder.merge(:development, %{max_turns: 15})
Structured Outputs (JSON Schema)
Request validated JSON by providing a schema to output_format. This emits
--json-schema for compatible CLI versions (same flag used by the Python SDK 0.1.10):
schema = %{
 "type" => "object",
 "properties" => %{"summary" => %{"type" => "string"}},
 "required" => ["summary"]
}

options = %Options{output_format: %{type: :json_schema, schema: schema}}
Environment Presets
	Environment	Security	Tools	Turn Limit	Use Case
	Development	Permissive	All tools	10	Local development
	Staging	Moderate	Read-only	5	Testing/CI
	Production	Restrictive	Read-only	3	Production analysis

Use Case Presets
	Preset	Tools	Purpose	Permissions
	Analysis	Read, Grep, Find	Code review	Read-only
	Documentation	Read, Write	Doc generation	File creation
	Chat	None	Simple Q&A	No tools
	Sandboxed	Custom	Safe execution	Isolated

 Summary

 Functions

 available_presets()

 Lists all available preset names.

 build_analysis_options()

 Builds options optimized for code analysis tasks.

 build_chat_options()

 Builds options for simple chat and Q&A interactions.

 build_development_options()

 Builds options suitable for development environment.

 build_documentation_options()

 Builds options for documentation generation tasks.

 build_production_options()

 Builds options suitable for production environment.

 build_staging_options()

 Builds options suitable for staging/testing environment.

 build_testing_options()

 Builds options for test generation and testing tasks.

 for_environment()

 Builds options for the configured build environment.

 merge(base, custom)

 Merges custom options with a base configuration.

 quick()

 Creates options for quick, one-off queries.

 sandboxed(sandbox_path, allowed_tools \\ ["Read", "Write"])

 Creates a sandboxed configuration for safe execution.

 validate(options)

 Validates that an options struct has sensible configuration.

 with_additional_tools(options, additional_tools)

 Adds additional allowed tools to any options.

 with_agent(options, name, definition)

 Adds custom agent to options.

 with_agents(agents)

 Sets multiple agents at once.

 with_agents(options, agents)

 with_haiku()

 Builds options for fast responses using Haiku model (default).

 with_model(options, model_name, fallback \\ nil)

 Adds specific model to any options.

 with_opus()

 Builds options for maximum capability using Opus model.

 with_sonnet()

 Builds options for balanced performance using Sonnet model.

 with_system_prompt(prompt)

 Adds a custom system prompt to any options.

 with_system_prompt(options, prompt)

 with_turn_limit(options, turns)

 Sets a custom turn limit for any options.

 with_working_directory(cwd)

 Adds a custom working directory to any options.

 with_working_directory(options, cwd)

 Functions

 available_presets()

 @spec available_presets() :: [atom()]

Lists all available preset names.
Useful for dynamic configuration or validation.
Examples
presets = ClaudeAgentSDK.OptionBuilder.available_presets()
=> [:development, :staging, :production, :analysis, :chat, :documentation, :testing]

 build_analysis_options()

 @spec build_analysis_options() :: ClaudeAgentSDK.Options.t()

Builds options optimized for code analysis tasks.
Use for: Code reviews, security audits, quality analysis
Features:
	Read and search tools for thorough analysis
	Higher turn limit (7) for comprehensive review
	No modification permissions for safety
	Specialized system prompt for analysis focus

Examples
options = ClaudeAgentSDK.OptionBuilder.build_analysis_options()
ClaudeAgentSDK.query("Review this module for potential issues", options)

 build_chat_options()

 @spec build_chat_options() :: ClaudeAgentSDK.Options.t()

Builds options for simple chat and Q&A interactions.
Use for: Help desk, documentation queries, general assistance
Features:
	Single turn for quick responses
	Text output for simple display
	No tool access to prevent unintended actions
	Minimal permissions

Examples
options = ClaudeAgentSDK.OptionBuilder.build_chat_options()
ClaudeAgentSDK.query("What is the difference between async and sync?", options)

 build_development_options()

 @spec build_development_options() :: ClaudeAgentSDK.Options.t()

Builds options suitable for development environment.
Use for: Local development, debugging, experimentation
Features:
	Higher turn limit (10) for complex tasks
	Verbose output for debugging
	All tools allowed for full functionality
	Edit permissions accepted for rapid iteration
	Stream JSON output for real-time feedback

Examples
Basic development setup
options = ClaudeAgentSDK.OptionBuilder.build_development_options()
ClaudeAgentSDK.query("Help me debug this function", options)

Development with custom system prompt
options =
 ClaudeAgentSDK.OptionBuilder.build_development_options()
 |> ClaudeAgentSDK.OptionBuilder.with_system_prompt("You are a debugging expert")

 build_documentation_options()

 @spec build_documentation_options() :: ClaudeAgentSDK.Options.t()

Builds options for documentation generation tasks.
Use for: API docs, README generation, code documentation
Features:
	Read access to understand existing code
	Write access for creating documentation files
	Higher turn limit (8) for comprehensive docs
	Accept edits mode for file creation
	Specialized prompt for documentation focus

Examples
options = ClaudeAgentSDK.OptionBuilder.build_documentation_options()
ClaudeAgentSDK.query("Generate API documentation for this module", options)

 build_production_options()

 @spec build_production_options() :: ClaudeAgentSDK.Options.t()

Builds options suitable for production environment.
Use for: Production monitoring, read-only analysis, customer-facing features
Features:
	Low turn limit (3) for efficiency
	Read-only access only
	Plan mode for safety
	Minimal tool access
	Structured JSON output

Examples
Production-safe code analysis
options = ClaudeAgentSDK.OptionBuilder.build_production_options()
ClaudeAgentSDK.query("Explain what this function does", options)

 build_staging_options()

 @spec build_staging_options() :: ClaudeAgentSDK.Options.t()

Builds options suitable for staging/testing environment.
Use for: CI/CD pipelines, automated testing, code review
Features:
	Moderate turn limit (5) for focused tasks
	Read-only tools for safety
	Plan mode prevents automatic changes
	Bash disabled to prevent system modifications
	JSON output for structured results

Examples
Use in CI for code analysis
options = ClaudeAgentSDK.OptionBuilder.build_staging_options()
ClaudeAgentSDK.query("Analyze this code for security issues", options)

 build_testing_options()

 @spec build_testing_options() :: ClaudeAgentSDK.Options.t()

Builds options for test generation and testing tasks.
Use for: Unit test creation, test analysis, quality assurance
Features:
	Read access to understand code under test
	Write access for creating test files
	Moderate turn limit for thorough test coverage
	Testing-focused system prompt

Examples
options = ClaudeAgentSDK.OptionBuilder.build_testing_options()
ClaudeAgentSDK.query("Generate comprehensive unit tests for this module", options)

 for_environment()

 @spec for_environment() :: ClaudeAgentSDK.Options.t()

Builds options for the configured build environment.
Automatically selects appropriate options based on the configured
environment (defaults to MIX_ENV or :prod when unset):
	:dev -> development options (permissive, verbose)
	:test -> staging options (moderate restrictions)
	:prod -> production options (restrictive, safe)

This is the recommended way to get environment-appropriate defaults.
Examples
Get options for current environment
options = ClaudeAgentSDK.OptionBuilder.for_environment()

In development, this gives you full access
In production, this gives you read-only access

 merge(base, custom)

 @spec merge(atom() | ClaudeAgentSDK.Options.t(), map()) :: ClaudeAgentSDK.Options.t()

Merges custom options with a base configuration.
Allows you to start with a preset and customize specific fields.
This is the recommended pattern for customizing presets.
Parameters
	base - Base preset (atom) or Options struct
	custom - Map of custom options to override

Examples
Start with development preset, customize turn limit
options = ClaudeAgentSDK.OptionBuilder.merge(:development, %{max_turns: 15})

Start with analysis preset, add custom prompt
options = ClaudeAgentSDK.OptionBuilder.merge(:analysis, %{
 system_prompt: "Focus on security vulnerabilities",
 max_turns: 10
})

Merge with existing options
base_options = ClaudeAgentSDK.OptionBuilder.build_chat_options()
options = ClaudeAgentSDK.OptionBuilder.merge(base_options, %{max_turns: 3})

 quick()

 @spec quick() :: ClaudeAgentSDK.Options.t()

Creates options for quick, one-off queries.
Use for: Simple questions, quick checks, lightweight operations
Features:
	Single turn limit
	Text output for simplicity
	No tools for safety
	Fast response

Examples
options = ClaudeAgentSDK.OptionBuilder.quick()
ClaudeAgentSDK.query("What does this error mean?", options)

 sandboxed(sandbox_path, allowed_tools \\ ["Read", "Write"])

 @spec sandboxed(String.t(), [String.t()]) :: ClaudeAgentSDK.Options.t()

Creates a sandboxed configuration for safe execution.
Use for: Untrusted code execution, isolated environments, testing
Features:
	Isolated to specific directory
	Bypass permissions (safe within sandbox)
	Customizable tool access
	No bash access by default

Parameters
	sandbox_path - Path to sandbox directory
	allowed_tools - List of tools to allow (default: ["Read", "Write"])

Examples
Basic sandbox
options = ClaudeAgentSDK.OptionBuilder.sandboxed("/tmp/sandbox")

Sandbox with custom tools
options = ClaudeAgentSDK.OptionBuilder.sandboxed("/tmp/safe", ["Read", "Write", "Grep"])

 validate(options)

 @spec validate(ClaudeAgentSDK.Options.t()) ::
 {:ok, ClaudeAgentSDK.Options.t()}
 | {:warning, ClaudeAgentSDK.Options.t(), [String.t()]}
 | {:error, String.t()}

Validates that an options struct has sensible configuration.
Checks for common misconfigurations and provides warnings.
Parameters
	options - Options struct to validate

Returns
	{:ok, options} if valid
	{:warning, options, warnings} if valid but has warnings
	{:error, reason} if invalid

Examples
options = ClaudeAgentSDK.OptionBuilder.build_development_options()
{:ok, _} = ClaudeAgentSDK.OptionBuilder.validate(options)

 with_additional_tools(options, additional_tools)

 @spec with_additional_tools(ClaudeAgentSDK.Options.t(), [String.t()]) ::
 ClaudeAgentSDK.Options.t()

Adds additional allowed tools to any options.
Parameters
	options - Options struct to modify
	tools - List of additional tools to allow

Examples
options =
 ClaudeAgentSDK.OptionBuilder.build_production_options()
 |> ClaudeAgentSDK.OptionBuilder.with_additional_tools(["Grep"])

 with_agent(options, name, definition)

 @spec with_agent(ClaudeAgentSDK.Options.t(), String.t(), map()) ::
 ClaudeAgentSDK.Options.t()

Adds custom agent to options.
Examples
options = OptionBuilder.build_development_options()
|> OptionBuilder.with_agent("security_reviewer", %{
 description: "Security-focused code reviewer",
 prompt: "You are a security expert. Review for vulnerabilities."
})

 with_agents(agents)

 @spec with_agents(map()) :: ClaudeAgentSDK.Options.t()

Sets multiple agents at once.
Examples
agents = %{
 "reviewer" => %{description: "Code reviewer", prompt: "Review code"},
 "tester" => %{description: "Test generator", prompt: "Generate tests"}
}

options = OptionBuilder.with_agents(agents)

 with_agents(options, agents)

 @spec with_agents(ClaudeAgentSDK.Options.t(), map()) :: ClaudeAgentSDK.Options.t()

 with_haiku()

 @spec with_haiku() :: ClaudeAgentSDK.Options.t()

Builds options for fast responses using Haiku model (default).
Best for:
	Simple queries
	Quick responses needed
	High-volume use cases
	Lowest cost option
	Default for most SDK operations

Examples
options = ClaudeAgentSDK.OptionBuilder.with_haiku()
ClaudeAgentSDK.query("What is 2+2?", options)

 with_model(options, model_name, fallback \\ nil)

 @spec with_model(ClaudeAgentSDK.Options.t(), String.t(), String.t() | nil) ::
 ClaudeAgentSDK.Options.t()

Adds specific model to any options.
Parameters
	options - Existing options
	model_name - Model name ("opus", "sonnet", "haiku", or full name like "claude-sonnet-4-5-20250929")
	fallback - Optional fallback model

Examples
options = build_development_options()
|> with_model("opus", "sonnet")

 with_opus()

 @spec with_opus() :: ClaudeAgentSDK.Options.t()

Builds options for maximum capability using Opus model.
Best for:
	Complex reasoning tasks
	Code generation requiring deep understanding
	Multi-step problem solving

Higher cost but better results.
Examples
options = ClaudeAgentSDK.OptionBuilder.with_opus()
ClaudeAgentSDK.query("Architect a complex system", options)

 with_sonnet()

 @spec with_sonnet() :: ClaudeAgentSDK.Options.t()

Builds options for balanced performance using Sonnet model.
Best for:
	General-purpose tasks
	Good balance of speed and capability
	Complex reasoning tasks

Examples
options = ClaudeAgentSDK.OptionBuilder.with_sonnet()
ClaudeAgentSDK.query("Review this code", options)

 with_system_prompt(prompt)

 @spec with_system_prompt(String.t()) :: ClaudeAgentSDK.Options.t()

Adds a custom system prompt to any options.
Parameters
	prompt - System prompt to use
	options - Options struct to modify (optional, creates new if not provided)

Examples
options = ClaudeAgentSDK.OptionBuilder.with_system_prompt("You are a security expert")

options =
 ClaudeAgentSDK.OptionBuilder.build_analysis_options()
 |> ClaudeAgentSDK.OptionBuilder.with_system_prompt("You are a security expert")

 with_system_prompt(options, prompt)

 @spec with_system_prompt(ClaudeAgentSDK.Options.t(), String.t()) ::
 ClaudeAgentSDK.Options.t()

 with_turn_limit(options, turns)

 @spec with_turn_limit(ClaudeAgentSDK.Options.t(), pos_integer()) ::
 ClaudeAgentSDK.Options.t()

Sets a custom turn limit for any options.
Parameters
	options - Options struct to modify
	turns - Maximum number of turns

Examples
options =
 ClaudeAgentSDK.OptionBuilder.build_chat_options()
 |> ClaudeAgentSDK.OptionBuilder.with_turn_limit(5)

 with_working_directory(cwd)

 @spec with_working_directory(String.t()) :: ClaudeAgentSDK.Options.t()

Adds a custom working directory to any options.
Parameters
	cwd - Working directory path
	options - Options struct to modify (optional, creates new if not provided)

Examples
options = ClaudeAgentSDK.OptionBuilder.with_working_directory("/project")

options =
 ClaudeAgentSDK.OptionBuilder.build_development_options()
 |> ClaudeAgentSDK.OptionBuilder.with_working_directory("/project")

 with_working_directory(options, cwd)

 @spec with_working_directory(ClaudeAgentSDK.Options.t(), String.t()) ::
 ClaudeAgentSDK.Options.t()

ClaudeAgentSDK.Options

Configuration options for Claude Code SDK requests.
This struct defines all available options that can be passed to Claude Code CLI.
All fields are optional and will be omitted from the CLI command if not provided.
Fields
	max_turns - Maximum number of conversation turns (integer)
	system_prompt - Custom system prompt to use (string)
	append_system_prompt - Additional system prompt to append (string)
	output_format - Output format (:text, :json, :stream_json, or structured JSON schema config)
	tools - Base tools set selection (--tools) (Python v0.1.12+)
	allowed_tools - List of allowed tool names (list of strings)
	disallowed_tools - List of disallowed tool names (list of strings)
	mcp_servers - Map of MCP server configurations or JSON/path string (v0.5.0+)
	mcp_config - Path to MCP configuration file (string, backward compat)
	betas - SDK beta feature flags (--betas) (Python v0.1.12+)
	permission_prompt_tool - Tool for permission prompts (string)
	permission_mode - Permission handling mode (see permission_mode/0)
	cwd - Working directory for the CLI (string)
	verbose - Enable verbose output (boolean)
	executable - Custom executable to run (string)
	executable_args - Arguments for custom executable (list of strings)
	path_to_claude_code_executable - Path to Claude Code CLI (string)
	abort_ref - Reference for aborting requests (reference)
	hooks - Hook configurations (see ClaudeAgentSDK.Hooks.hook_config/0)
	timeout_ms - Command execution timeout in milliseconds (integer, default: 4_500_000)
	sandbox - Sandbox settings merged into --settings JSON when present (Python v0.1.12+)
	enable_file_checkpointing - Enables file checkpointing + rewind_files (Python v0.1.15+)
	include_partial_messages - Enable character-level streaming (boolean) (v0.8.0+)
	stream_buffer_limit - Max inbound entries buffered before first subscriber (integer, default: 1000)
	preferred_transport - Override automatic transport selection (:auto | :cli | :control) (v0.8.0+)

Streaming + Tools (v0.8.0)
The SDK automatically selects the appropriate transport:
	CLI-only: Fast streaming without control features (no hooks, MCP, or permissions)
	Control client: Full features with streaming (hooks + partial messages)

Override with preferred_transport:
	:auto - Automatic selection (default)
	:cli - Force CLI-only mode (ignores control features)
	:control - Force control client (even without features)

Examples
Basic configuration
%ClaudeAgentSDK.Options{
 max_turns: 5,
 output_format: :stream_json,
 verbose: true
}

Advanced configuration
%ClaudeAgentSDK.Options{
 system_prompt: "You are a helpful coding assistant",
 allowed_tools: ["editor", "bash"],
 permission_mode: :accept_edits,
 cwd: "/path/to/project"
}

Streaming with tools (v0.8.0)
%ClaudeAgentSDK.Options{
 include_partial_messages: true,
 hooks: %{pre_tool_use: [...]},
 mcp_servers: %{"math" => sdk_server}
}
→ Automatically selects control client with streaming enabled

 Summary

 Types

 agent_definition()

 agent_name()

 external_mcp_server()

 External MCP server (stdio, sse, or http)

 http_mcp_server()

 HTTP MCP server configuration (HTTP transport).
Headers is optional (defaults to empty map if not provided).

 mcp_server()

 MCP server (either SDK or external)

 model_name()

 output_format()

 permission_mode()

 plugin_config()

 Plugin configuration supported by the SDK (currently local directories only).

 sdk_beta()

 SDK beta feature flag.

 sdk_mcp_server()

 SDK MCP server configuration (in-process)

 sse_mcp_server()

 SSE MCP server configuration (Server-Sent Events).
Headers is optional (defaults to empty map if not provided).

 stdio_mcp_server()

 External MCP server configuration (subprocess via stdio)

 structured_output_format()

 t()

 tools_option()

 Tools option - controls the base set of available tools.

 tools_preset()

 Tools preset configuration.

 transport_preference()

 Functions

 new(attrs \\ [])

 Creates a new Options struct with the given attributes.

 prepare_servers_for_cli(servers)

 Prepares MCP server configurations for the Claude CLI.

 to_args(options)

 Converts the options to command line arguments for the Claude CLI.

 validate_agents(options)

 Validates agent configuration in Options.

 Types

 agent_definition()

 @type agent_definition() :: ClaudeAgentSDK.Agent.t()

 agent_name()

 @type agent_name() :: atom()

 external_mcp_server()

 @type external_mcp_server() ::
 stdio_mcp_server() | sse_mcp_server() | http_mcp_server()

External MCP server (stdio, sse, or http)

 http_mcp_server()

 @type http_mcp_server() :: %{
 :type => :http,
 :url => String.t(),
 optional(:headers) => %{required(String.t()) => String.t()}
}

HTTP MCP server configuration (HTTP transport).
Headers is optional (defaults to empty map if not provided).

 mcp_server()

 @type mcp_server() :: sdk_mcp_server() | external_mcp_server()

MCP server (either SDK or external)

 model_name()

 @type model_name() :: String.t()

 output_format()

 @type output_format() :: :text | :json | :stream_json | structured_output_format()

 permission_mode()

 @type permission_mode() ::
 :default | :accept_edits | :bypass_permissions | :plan | :delegate | :dont_ask

 plugin_config()

 @type plugin_config() :: %{type: :local | String.t(), path: String.t()}

Plugin configuration supported by the SDK (currently local directories only).

 sdk_beta()

 @type sdk_beta() :: String.t()

SDK beta feature flag.

 sdk_mcp_server()

 @type sdk_mcp_server() :: %{
 type: :sdk,
 name: String.t(),
 version: String.t(),
 registry_pid: pid()
}

SDK MCP server configuration (in-process)

 sse_mcp_server()

 @type sse_mcp_server() :: %{
 :type => :sse,
 :url => String.t(),
 optional(:headers) => %{required(String.t()) => String.t()}
}

SSE MCP server configuration (Server-Sent Events).
Headers is optional (defaults to empty map if not provided).

 stdio_mcp_server()

 @type stdio_mcp_server() :: %{type: :stdio, command: String.t(), args: [String.t()]}

External MCP server configuration (subprocess via stdio)

 structured_output_format()

 @type structured_output_format() ::
 {:json_schema, map()}
 | %{
 :type => :json_schema | String.t(),
 :schema => map(),
 optional(:output_format) => :json | :stream_json | String.t()
 }

 t()

 @type t() :: %ClaudeAgentSDK.Options{
 abort_ref: reference() | nil,
 add_dir: [String.t()] | nil,
 add_dirs: [String.t()] | nil,
 agent: agent_name() | nil,
 agents: %{required(agent_name()) => agent_definition()} | nil,
 allowed_tools: [String.t()] | nil,
 append_system_prompt: String.t() | nil,
 betas: [sdk_beta()] | nil,
 can_use_tool: ClaudeAgentSDK.Permission.callback() | nil,
 continue_conversation: boolean() | nil,
 cwd: String.t() | nil,
 disallowed_tools: [String.t()] | nil,
 enable_file_checkpointing: boolean() | nil,
 env: %{optional(String.t()) => String.t()},
 executable: String.t() | nil,
 executable_args: [String.t()] | nil,
 extra_args: %{optional(String.t()) => String.t() | boolean() | nil},
 fallback_model: model_name() | nil,
 fork_session: boolean() | nil,
 hooks: ClaudeAgentSDK.Hooks.hook_config() | nil,
 include_partial_messages: boolean() | nil,
 max_budget_usd: number() | nil,
 max_buffer_size: pos_integer() | nil,
 max_thinking_tokens: pos_integer() | nil,
 max_turns: integer() | nil,
 mcp_config: String.t() | nil,
 mcp_servers: %{required(String.t()) => mcp_server()} | String.t() | nil,
 model: model_name() | nil,
 output_format: output_format() | nil,
 path_to_claude_code_executable: String.t() | nil,
 permission_mode: permission_mode() | nil,
 permission_prompt_tool: String.t() | nil,
 plugins: [plugin_config()],
 preferred_transport: transport_preference() | nil,
 resume: String.t() | nil,
 sandbox: map() | nil,
 session_id: String.t() | nil,
 setting_sources: [String.t() | atom()] | nil,
 settings: String.t() | nil,
 stderr: (String.t() -> any()) | nil,
 stream_buffer_limit: non_neg_integer() | nil,
 strict_mcp_config: boolean() | nil,
 system_prompt: String.t() | map() | nil,
 timeout_ms: integer() | nil,
 tools: tools_option(),
 user: String.t() | nil,
 verbose: boolean() | nil
}

 tools_option()

 @type tools_option() :: [String.t()] | tools_preset() | map() | nil

Tools option - controls the base set of available tools.
Supported forms:
	List of tool names: ["Read", "Edit"]
	Empty list: [] (disables all built-in tools)
	Preset map: %{type: :preset, preset: :claude_code} (maps to "default")

 tools_preset()

 @type tools_preset() :: %{
 type: :preset | String.t(),
 preset: :claude_code | String.t()
}

Tools preset configuration.

 transport_preference()

 @type transport_preference() :: :auto | :cli | :control

 Functions

 new(attrs \\ [])

 @spec new(keyword()) :: t()

Creates a new Options struct with the given attributes.
Parameters
	attrs - Keyword list of attributes to set (keyword list)

Returns
A new ClaudeAgentSDK.Options.t/0 struct with the specified attributes.
Examples
ClaudeAgentSDK.Options.new(
 max_turns: 5,
 output_format: :json,
 verbose: true
)

Empty options (all defaults)
ClaudeAgentSDK.Options.new()

 prepare_servers_for_cli(servers)

 @spec prepare_servers_for_cli(%{required(String.t()) => mcp_server()}) :: %{
 required(String.t()) => map()
}

Prepares MCP server configurations for the Claude CLI.
SDK servers: Strips the registry_pid field (CLI doesn't need it)
External servers: Passed through as-is
Parameters
	servers - Map of server name to server configuration

Returns
Map ready to be JSON-encoded for --mcp-config argument

 to_args(options)

 @spec to_args(t()) :: [String.t()]

Converts the options to command line arguments for the Claude CLI.
Parameters
	options - The options struct to convert

Returns
A list of strings representing CLI arguments.
Examples
options = %ClaudeAgentSDK.Options{max_turns: 5, verbose: true}
ClaudeAgentSDK.Options.to_args(options)
=> ["--max-turns", "5", "--verbose"]

 validate_agents(options)

 @spec validate_agents(t()) :: :ok | {:error, term()}

Validates agent configuration in Options.
Ensures that:
	All agents in the agents map are valid Agent structs
	If an active agent is specified, it exists in the agents map
	Agents and agent fields have correct types

Parameters
	options - Options struct to validate

Returns
	:ok if validation succeeds
	{:error, reason} if validation fails

Examples
options = Options.new(
 agents: %{test: Agent.new(description: "Test", prompt: "Test")},
 agent: :test
)
Options.validate_agents(options)
#=> :ok

invalid = Options.new(
 agents: %{test: Agent.new(description: "Test", prompt: "Test")},
 agent: :nonexistent
)
Options.validate_agents(invalid)
#=> {:error, {:agent_not_found, :nonexistent}}

ClaudeAgentSDK.Mock

Mock implementation for the Claude Code CLI for testing purposes.
This module provides a GenServer-based mock system that allows testing and development
without making actual API calls to the Claude service. It can be configured with
predefined responses for different prompt patterns.
Features
	Pattern-based responses: Configure responses for specific prompt patterns
	Default fallback: Provides realistic default responses for unmatched prompts
	Integration testing: Seamlessly integrates with the main SDK for testing
	Cost-free development: Enables development without incurring API costs

Usage
Start the mock server and configure responses:
{:ok, _pid} = ClaudeAgentSDK.Mock.start_link()

Set up a specific response
ClaudeAgentSDK.Mock.set_response("hello", [
 %{"type" => "system", "subtype" => "init", "session_id" => "mock-123"},
 %{"type" => "assistant", "message" => %{"content" => "Hello from mock!"}},
 %{"type" => "result", "subtype" => "success", "total_cost_usd" => 0.001}
])
Enable mocking in your application configuration:
Application.put_env(:claude_agent_sdk, :use_mock, true)
Response Format
Mock responses should follow the same format as the actual Claude CLI output:
	Each response is a list of message maps
	Each message has a "type" field (system, assistant, user, result)
	Messages may include optional "subtype" fields for categorization
	Result messages should include cost and timing information for realistic testing

Testing Integration
The mock system is designed to work seamlessly with testing frameworks:
test "queries return expected responses" do
 ClaudeAgentSDK.Mock.set_response("test prompt", expected_messages)

 result = ClaudeAgentSDK.query("test prompt", options)

 assert length(Enum.to_list(result)) == length(expected_messages)
end

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_responses()

 Clears all mock responses.

 get_response(prompt)

 Gets the response for a prompt.

 set_default_response(messages)

 Sets the default response for any unmatched prompt.

 set_response(prompt_pattern, messages)

 Sets a mock response for a given prompt pattern.

 start_link(opts \\ [])

 Starts the mock server.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 clear_responses()

 @spec clear_responses() :: :ok

Clears all mock responses.

 get_response(prompt)

 @spec get_response(String.t()) :: [map()]

Gets the response for a prompt.

 set_default_response(messages)

 @spec set_default_response([map()]) :: :ok

Sets the default response for any unmatched prompt.

 set_response(prompt_pattern, messages)

 @spec set_response(String.t(), [map()]) :: :ok

Sets a mock response for a given prompt pattern.
Examples
ClaudeAgentSDK.Mock.set_response("Hello", [
 %{type: "system", subtype: "init", session_id: "mock-123"},
 %{type: "assistant", message: %{"content" => "Hello from mock!"}},
 %{type: "result", subtype: "success", total_cost_usd: 0.001}
])

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts the mock server.

ClaudeAgentSDK.Mock.Process

Mock process implementation that returns predefined responses instead of spawning a CLI.
This module serves as a drop-in replacement for ClaudeAgentSDK.Process when
the mock system is enabled. Instead of spawning actual Claude CLI processes,
it retrieves predefined responses from the ClaudeAgentSDK.Mock server and
converts them into a stream of Message structs.
Behavior
	Prompt extraction: Intelligently extracts the relevant prompt from CLI arguments
	Response retrieval: Fetches appropriate mock responses from the Mock server
	Stream conversion: Converts raw mock data into proper Message structs
	Type preservation: Maintains the same message types and structure as real CLI output

Message Types Supported
	:system - System initialization and status messages
	:assistant - AI assistant responses with content
	:user - User input messages (for conversation context)
	:result - Final results with cost and performance metrics

Integration
This module is automatically used when Application.get_env(:claude_agent_sdk, :use_mock, false)
returns true. The main SDK seamlessly switches between real and mock processing
without requiring code changes in client applications.
Mock Response Format
Raw mock responses are converted to structured Message structs following the same
patterns as the real CLI output, ensuring compatibility across mock and live modes.

 Summary

 Functions

 stream(args, options, stdin_input \\ nil)

 Streams mock messages instead of running the actual CLI.

 Functions

 stream(args, options, stdin_input \\ nil)

 @spec stream([String.t()], ClaudeAgentSDK.Options.t(), String.t() | nil) ::
 Enumerable.t()

Streams mock messages instead of running the actual CLI.

ClaudeAgentSDK.Hooks

Type definitions and utilities for Claude Code Hooks.
Hooks are callback functions invoked by the Claude Code CLI at specific
lifecycle events during agent execution. They enable:
	Intercepting tool calls before/after execution
	Adding contextual information automatically
	Controlling execution flow based on runtime conditions
	Implementing security policies and validation
	Monitoring and auditing agent behavior

Hook Events
	:pre_tool_use - Before a tool executes
	:post_tool_use - After a tool executes
	:user_prompt_submit - When user submits a prompt
	:stop - When the agent finishes
	:subagent_stop - When a subagent finishes
	:pre_compact - Before context compaction

The CLI currently does not support SessionStart, SessionEnd, or Notification
hook events in the Python SDK. These are rejected during validation.
Examples
Define a hook callback
def check_bash(input, _tool_use_id, _context) do
 case input do
 %{"tool_name" => "Bash", "tool_input" => %{"command" => cmd}} ->
 if String.contains?(cmd, "rm -rf") do
 Output.deny("Dangerous command blocked")
 else
 Output.allow()
 end
 _ -> %{}
 end
end

Configure hooks
hooks = %{
 pre_tool_use: [
 Matcher.new("Bash", [&check_bash/3])
]
}
See: https://docs.anthropic.com/en/docs/claude-code/hooks

 Summary

 Types

 hook_callback()

 hook_config()

 Hook configuration map.

 hook_context()

 Context information passed to hook callbacks.

 hook_event()

 Hook event types supported by the SDK.

 hook_input()

 Input data passed to hook callbacks.

 hook_output()

 Hook callback function signature.

 Functions

 all_valid_events()

 Returns all valid hook event atoms.

 event_to_string(atom)

 Converts an Elixir hook event atom to CLI string format.

 string_to_event(arg1)

 Converts a CLI hook event string to Elixir atom.

 validate_config(config)

 Validates a hook configuration.

 Types

 hook_callback()

 @type hook_callback() :: (hook_input(), String.t() | nil, hook_context() ->
 hook_output())

 hook_config()

 @type hook_config() :: %{required(hook_event()) => [ClaudeAgentSDK.Hooks.Matcher.t()]}

Hook configuration map.
Maps hook events to lists of matchers.
Example
%{
 pre_tool_use: [
 %Matcher{matcher: "Bash", hooks: [&check_bash/3]},
 %Matcher{matcher: "Write|Edit", hooks: [&check_files/3]}
],
 post_tool_use: [
 %Matcher{matcher: "*", hooks: [&log_usage/3]}
]
}

 hook_context()

 @type hook_context() :: %{
 optional(:signal) => ClaudeAgentSDK.AbortSignal.t(),
 optional(atom()) => term()
}

Context information passed to hook callbacks.
Currently contains:
	signal - Optional abort signal reference for cooperative cancellation

Note: Can be an empty map initially.

 hook_event()

 @type hook_event() ::
 :pre_tool_use
 | :post_tool_use
 | :user_prompt_submit
 | :stop
 | :subagent_stop
 | :pre_compact

Hook event types supported by the SDK.

 hook_input()

 @type hook_input() :: %{
 :hook_event_name => String.t(),
 :session_id => String.t(),
 :transcript_path => String.t(),
 :cwd => String.t(),
 optional(:tool_name) => String.t(),
 optional(:tool_input) => map(),
 optional(:tool_response) => term(),
 optional(:prompt) => String.t(),
 optional(:message) => String.t(),
 optional(:trigger) => String.t(),
 optional(:custom_instructions) => String.t(),
 optional(:stop_hook_active) => boolean(),
 optional(atom()) => term()
}

Input data passed to hook callbacks.
The structure varies by hook event. Common fields:
	hook_event_name - String name of the event
	session_id - Session identifier
	transcript_path - Path to conversation transcript
	cwd - Current working directory

Event-specific fields:
	PreToolUse/PostToolUse: tool_name, tool_input, tool_response
	UserPromptSubmit: prompt
	Stop/SubagentStop: stop_hook_active
	PreCompact: trigger, custom_instructions

 hook_output()

 @type hook_output() :: ClaudeAgentSDK.Hooks.Output.t() | term()

Hook callback function signature.
Receives:
	Input data (varies by event)
	Tool use ID (for tool-related hooks, nil otherwise)
	Context with abort signal

Returns:
	Hook output map controlling behavior (see Output)

 Functions

 all_valid_events()

 @spec all_valid_events() :: [hook_event()]

Returns all valid hook event atoms.
Examples
iex> events = ClaudeAgentSDK.Hooks.all_valid_events()
iex> :pre_tool_use in events
true
iex> length(events)
6

 event_to_string(atom)

 @spec event_to_string(hook_event()) :: String.t()

Converts an Elixir hook event atom to CLI string format.
Examples
iex> ClaudeAgentSDK.Hooks.event_to_string(:pre_tool_use)
"PreToolUse"

iex> ClaudeAgentSDK.Hooks.event_to_string(:post_tool_use)
"PostToolUse"

 string_to_event(arg1)

 @spec string_to_event(String.t()) :: hook_event() | nil

Converts a CLI hook event string to Elixir atom.
Returns nil for unknown event strings.
Examples
iex> ClaudeAgentSDK.Hooks.string_to_event("PreToolUse")
:pre_tool_use

iex> ClaudeAgentSDK.Hooks.string_to_event("UnknownEvent")
nil

 validate_config(config)

 @spec validate_config(hook_config()) :: :ok | {:error, String.t()}

Validates a hook configuration.
Returns :ok if valid, {:error, reason} otherwise.
Examples
iex> matcher = %ClaudeAgentSDK.Hooks.Matcher{
...> matcher: "Bash",
...> hooks: [fn _, _, _ -> %{} end]
...> }
iex> ClaudeAgentSDK.Hooks.validate_config(%{pre_tool_use: [matcher]})
:ok

iex> ClaudeAgentSDK.Hooks.validate_config(%{invalid_event: []})
{:error, "Invalid hook event: invalid_event"}

ClaudeAgentSDK.Hooks.Matcher

Hook matcher configuration.
Defines which hooks should run for which tool patterns. Matchers support:
	Exact matching: "Bash" matches only the Bash tool
	Regex patterns: "Write|Edit" matches Write or Edit tools
	Wildcard: "*" or nil matches all tools
	Multiple hooks: Each matcher can have multiple callback functions
	Per-matcher timeout: Optional timeout_ms (default 60s, floored to 1s) for callback execution (serialized to seconds for the CLI)

Examples
Match specific tool
Matcher.new("Bash", [&MyModule.check_bash/3])

Match multiple tools with regex
Matcher.new("Write|Edit", [&check_file_edit/3])

Match all tools
Matcher.new("*", [&log_all_tools/3])
Matcher.new(nil, [&log_all_tools/3])

Multiple hooks for same pattern
Matcher.new("Bash", [&security_check/3, &audit_log/3])

 Summary

 Types

 t()

 Hook matcher struct.

 Functions

 new(matcher, hooks, opts \\ [])

 Creates a new hook matcher.

 to_cli_format(matcher, callback_id_fn)

 Converts matcher to CLI format for initialization.

 Types

 t()

 @type t() :: %ClaudeAgentSDK.Hooks.Matcher{
 hooks: [ClaudeAgentSDK.Hooks.hook_callback()],
 matcher: String.t() | nil,
 timeout_ms: pos_integer() | nil
}

Hook matcher struct.
Fields:
	matcher - Tool name pattern (nil, "*", "ToolName", or regex like "Tool1|Tool2")
	hooks - List of callback functions to invoke when pattern matches
	timeout_ms - Optional timeout (ms) applied to callbacks matched by this matcher (sent as seconds to the CLI)

 Functions

 new(matcher, hooks, opts \\ [])

 @spec new(String.t() | nil, [ClaudeAgentSDK.Hooks.hook_callback()], keyword()) :: t()

Creates a new hook matcher.
Parameters
	matcher - Tool name pattern. Can be:	nil - Matches all tools
	"*" - Matches all tools
	"ToolName" - Matches specific tool exactly
	"Tool1|Tool2" - Regex pattern matching multiple tools

	hooks - List of callback functions (each with signature (input, tool_use_id, context) -> output)
	opts - Optional keyword list	:timeout_ms - Timeout in milliseconds for callbacks matched by this matcher (serialized to seconds for CLI initialization)

Examples
Match Bash tool only
Matcher.new("Bash", [&check_bash/3])

Match Write or Edit tools
Matcher.new("Write|Edit", [&check_file_edit/3])

Match all tools
Matcher.new(nil, [&log_all_tools/3])

Multiple hooks for same pattern
Matcher.new("Bash", [&security_check/3, &audit_log/3])

 to_cli_format(matcher, callback_id_fn)

 @spec to_cli_format(t(), (ClaudeAgentSDK.Hooks.hook_callback() -> String.t())) ::
 map()

Converts matcher to CLI format for initialization.
The callback_id_fn function is called for each hook to get its unique ID
from the registry.
Parameters
	matcher - The matcher struct
	callback_id_fn - Function that takes a callback and returns its ID string

Returns
Map with CLI-compatible format:
	"matcher" - Tool pattern string or nil
	"hookCallbackIds" - List of callback ID strings
	"timeout" - Optional timeout in seconds

Examples
matcher = Matcher.new("Bash", [&check_bash/3])
id_fn = fn callback -> Registry.get_id(registry, callback) end

Matcher.to_cli_format(matcher, id_fn)
=> %{"matcher" => "Bash", "hookCallbackIds" => ["hook_0"]}

ClaudeAgentSDK.Hooks.Output

Hook output structure and helpers.
Represents the return value from hook callbacks. Hook output controls:
	Permission decisions (PreToolUse): allow, deny, or ask
	Additional context (PostToolUse, UserPromptSubmit): inject information for Claude
	Execution control: continue or stop the agent
	User feedback: system messages and reasons

Output Fields
	continue - Whether to continue execution (boolean)
	stopReason - Message when stopping (string)
	suppressOutput - Hide from transcript (boolean)
	systemMessage - User-visible message (string)
	reason - Claude-visible feedback (string)
	decision - "block" for some events (string)
	hookSpecificOutput - Event-specific control (map)

Examples
Allow a tool
Output.allow("Security check passed")

Deny a tool
Output.deny("Dangerous command detected")

Add context after tool execution
Output.add_context("PostToolUse", "Command completed in 2.3s")

Stop execution
Output.stop("Critical error occurred")

Combine helpers
Output.deny("Invalid file path")
|> Output.with_system_message("File access restricted")
|> Output.with_reason("Path outside allowed directory")
See: https://docs.anthropic.com/en/docs/claude-code/hooks#hook-output

 Summary

 Types

 hook_specific_output()

 Hook-specific output for different event types.

 permission_decision()

 Permission decision for PreToolUse hooks.

 post_tool_use_output()

 PostToolUse hook-specific output.

 pre_tool_use_output()

 PreToolUse hook-specific output.

 session_start_output()

 SessionStart hook-specific output.

 t()

 Complete hook output map.

 user_prompt_submit_output()

 UserPromptSubmit hook-specific output.

 Functions

 add_context(event_name, context)

 Creates hook output to add context.

 allow(reason \\ "Approved")

 Creates hook output to allow a PreToolUse.

 ask(reason)

 Creates hook output to ask the user for permission.

 async(output)

 Marks hook output for asynchronous processing.

 block(reason)

 Creates hook output to block with decision field.

 continue()

 Creates hook output to continue execution.

 deny(reason)

 Creates hook output to deny a PreToolUse.

 stop(reason)

 Creates hook output to stop execution.

 suppress_output(output)

 Marks output to be suppressed from transcript.

 to_json_map(output)

 Converts Elixir output to JSON-compatible map for CLI.

 validate(output)

 Validates hook output structure.

 with_async_timeout(output, timeout_ms)

 Sets the timeout for async hook processing.

 with_reason(output, reason)

 Adds a reason to hook output.

 with_system_message(output, message)

 Adds a system message to hook output.

 with_updated_input(output, updated_input)

 Modifies tool input before execution (PreToolUse hooks only).

 Types

 hook_specific_output()

 @type hook_specific_output() ::
 pre_tool_use_output()
 | post_tool_use_output()
 | user_prompt_submit_output()
 | session_start_output()

Hook-specific output for different event types.

 permission_decision()

 @type permission_decision() :: :allow | :deny | :ask

Permission decision for PreToolUse hooks.

 post_tool_use_output()

 @type post_tool_use_output() :: %{
 hookEventName: String.t(),
 additionalContext: String.t()
}

PostToolUse hook-specific output.
Adds context for Claude to consider:
	hookEventName - Must be "PostToolUse"
	additionalContext - Information about tool execution

 pre_tool_use_output()

 @type pre_tool_use_output() :: %{
 :hookEventName => String.t(),
 :permissionDecision => String.t(),
 :permissionDecisionReason => String.t(),
 optional(:updatedInput) => map()
}

PreToolUse hook-specific output.
Controls whether a tool call proceeds:
	hookEventName - Must be "PreToolUse"
	permissionDecision - "allow", "deny", or "ask"
	permissionDecisionReason - Explanation for the decision
	updatedInput - Optional modified tool input (via with_updated_input/2)

 session_start_output()

 @type session_start_output() :: %{
 hookEventName: String.t(),
 additionalContext: String.t()
}

SessionStart hook-specific output.
Adds context when session starts:
	hookEventName - Must be "SessionStart"
	additionalContext - Initial context for session

 t()

 @type t() :: %{
 optional(:continue) => boolean(),
 optional(:stopReason) => String.t(),
 optional(:suppressOutput) => boolean(),
 optional(:systemMessage) => String.t(),
 optional(:reason) => String.t(),
 optional(:decision) => String.t(),
 optional(:hookSpecificOutput) => hook_specific_output(),
 optional(atom()) => term()
}

Complete hook output map.
All fields are optional. The CLI processes these fields to control behavior.

 user_prompt_submit_output()

 @type user_prompt_submit_output() :: %{
 hookEventName: String.t(),
 additionalContext: String.t()
}

UserPromptSubmit hook-specific output.
Adds context before processing prompt:
	hookEventName - Must be "UserPromptSubmit"
	additionalContext - Contextual information to inject

 Functions

 add_context(event_name, context)

 @spec add_context(String.t(), String.t()) :: t()

Creates hook output to add context.
Used with PostToolUse, UserPromptSubmit, or SessionStart hooks.
Parameters
	event_name - Hook event name ("PostToolUse", "UserPromptSubmit", etc.)
	context - Contextual information to inject

Examples
Output.add_context("PostToolUse", "Command took 2.3 seconds")
Output.add_context("UserPromptSubmit", "Current time: 10:00 AM")
Output.add_context("SessionStart", "Recent issues: #123, #124")

 allow(reason \\ "Approved")

 @spec allow(String.t()) :: t()

Creates hook output to allow a PreToolUse.
Parameters
	reason - Explanation for allowing (default: "Approved")

Examples
Output.allow()
=> %{hookSpecificOutput: %{hookEventName: "PreToolUse", permissionDecision: "allow", ...}}

Output.allow("Security scan passed")

 ask(reason)

 @spec ask(String.t()) :: t()

Creates hook output to ask the user for permission.
The CLI will prompt the user to confirm the tool use.
Parameters
	reason - Explanation for asking user (required)

Examples
Output.ask("Confirm deletion of 100 files")
Output.ask("Review this API call before executing")

 async(output)

 @spec async(t()) :: t()

Marks hook output for asynchronous processing.
When async: true is set, the hook callback can continue processing
in the background while Claude continues execution. This is useful for
hooks that perform slow operations (e.g., external API calls, logging).
Parameters
	output - Existing hook output

Examples
Basic async output
Output.async(%{continue: true})

Combined with allow
Output.allow("Approved")
|> Output.async()

With timeout
Output.allow("Starting background check")
|> Output.async()
|> Output.with_async_timeout(30_000)

 block(reason)

 @spec block(String.t()) :: t()

Creates hook output to block with decision field.
Used for certain hooks to provide feedback to Claude.
Parameters
	reason - Explanation for blocking

Examples
Output.block("Tool execution failed validation")

 continue()

 @spec continue() :: t()

Creates hook output to continue execution.
Examples
Output.continue()
=> %{continue: true}

 deny(reason)

 @spec deny(String.t()) :: t()

Creates hook output to deny a PreToolUse.
Parameters
	reason - Explanation for denying (required)

Examples
Output.deny("Dangerous command detected")
Output.deny("File path not allowed")

 stop(reason)

 @spec stop(String.t()) :: t()

Creates hook output to stop execution.
Parameters
	reason - Explanation for stopping

Examples
Output.stop("Critical error detected")
Output.stop("Resource limit exceeded")

 suppress_output(output)

 @spec suppress_output(t()) :: t()

Marks output to be suppressed from transcript.
Parameters
	output - Existing hook output

Examples
Output.allow()
|> Output.suppress_output()

 to_json_map(output)

 @spec to_json_map(t()) :: map()

Converts Elixir output to JSON-compatible map for CLI.
Converts atom keys to strings recursively.
Examples
iex> Output.to_json_map(%{continue: false, stopReason: "Error"})
%{"continue" => false, "stopReason" => "Error"}

iex> Output.to_json_map(%{hookSpecificOutput: %{hookEventName: "PreToolUse"}})
%{"hookSpecificOutput" => %{"hookEventName" => "PreToolUse"}}

 validate(output)

 @spec validate(t()) :: :ok | {:error, String.t()}

Validates hook output structure.
Returns :ok if valid, {:error, reason} otherwise.
Examples
iex> Output.validate(%{continue: true})
:ok

iex> Output.validate("not a map")
{:error, "Hook output must be a map"}

 with_async_timeout(output, timeout_ms)

 @spec with_async_timeout(t(), non_neg_integer()) :: t()

Sets the timeout for async hook processing.
Must be used with async/1. The timeout is specified in milliseconds
and defines how long the CLI will wait for the async operation to complete.
Parameters
	output - Existing hook output (should have async: true)
	timeout_ms - Timeout in milliseconds

Examples
Output.allow("Processing")
|> Output.async()
|> Output.with_async_timeout(60_000) # 60 second timeout

 with_reason(output, reason)

 @spec with_reason(t(), String.t()) :: t()

Adds a reason to hook output.
Reasons are shown to Claude to help it understand what happened.
Parameters
	output - Existing hook output
	reason - Claude-visible explanation

Examples
Output.deny("Invalid path")
|> Output.with_reason("Path must be within /allowed directory")

 with_system_message(output, message)

 @spec with_system_message(t(), String.t()) :: t()

Adds a system message to hook output.
System messages are shown to the user but not to Claude.
Parameters
	output - Existing hook output
	message - User-visible message

Examples
Output.deny("Command blocked")
|> Output.with_system_message("Security policy violation")

 with_updated_input(output, updated_input)

 @spec with_updated_input(t(), map()) :: t()

Modifies tool input before execution (PreToolUse hooks only).
This helper allows hooks to sanitize, validate, or transform tool inputs
before Claude executes the tool. The updated input replaces the original
input for that tool execution.
Parameters
	output - Existing hook output
	updated_input - Map of updated input values

Examples
Sanitize file paths
Output.allow("Path sanitized")
|> Output.with_updated_input(%{"path" => sanitize_path(input["path"])})

Add default values
Output.allow("Defaults applied")
|> Output.with_updated_input(Map.put(input, "timeout", 30))

Validate and transform
Output.allow("Input validated")
|> Output.with_updated_input(%{
 "path" => expand_path(input["path"]),
 "validated" => true
})

ClaudeAgentSDK.Hooks.Registry

Hook callback registration and ID management.
Maintains bidirectional mapping between callback functions and unique IDs
for use with the Claude Code CLI hooks system.
Purpose
	Assigns unique IDs to callback functions for CLI initialization
	Enables lookup of callbacks by ID when CLI triggers hooks
	Provides idempotent registration (re-registering same callback returns same ID)

Usage
This module is primarily used internally by ClaudeAgentSDK.Client, but can
be used directly for testing hooks or building custom integrations.
registry = Registry.new()
callback = fn _input, _id, _ctx -> Output.allow() end

registry = Registry.register(registry, callback)
id = Registry.get_id(registry, callback) # => "hook_0"

{:ok, ^callback} = Registry.get_callback(registry, id)

 Summary

 Types

 t()

 Registry state containing callback mappings.

 Functions

 all_callbacks(registry)

 Returns all registered callbacks.

 count(registry)

 Returns count of registered callbacks.

 get_callback(registry, id)

 Gets callback function by ID.

 get_id(registry, callback)

 Gets ID for a callback function.

 new()

 Creates a new empty registry.

 register(registry, callback)

 Registers a callback and returns updated registry.

 Types

 t()

 @type t() :: %ClaudeAgentSDK.Hooks.Registry{
 callbacks: %{required(String.t()) => ClaudeAgentSDK.Hooks.hook_callback()},
 counter: non_neg_integer(),
 reverse_map: %{required(ClaudeAgentSDK.Hooks.hook_callback()) => String.t()}
}

Registry state containing callback mappings.
Fields:
	callbacks - Map from ID string to callback function
	reverse_map - Map from callback function to ID string (for quick lookup)
	counter - Next ID number to assign

 Functions

 all_callbacks(registry)

 @spec all_callbacks(t()) :: %{
 required(String.t()) => ClaudeAgentSDK.Hooks.hook_callback()
}

Returns all registered callbacks.
Parameters
	registry - Registry to query

Returns
Map from ID string to callback function.
Examples
registry = Registry.new()
registry = Registry.register(registry, fn _, _, _ -> %{} end)

Registry.all_callbacks(registry)
=> %{"hook_0" => #Function<...>}

 count(registry)

 @spec count(t()) :: non_neg_integer()

Returns count of registered callbacks.
Parameters
	registry - Registry to query

Returns
Non-negative integer count.
Examples
registry = Registry.new()
Registry.count(registry)
=> 0

registry = Registry.register(registry, fn _, _, _ -> %{} end)
Registry.count(registry)
=> 1

 get_callback(registry, id)

 @spec get_callback(t(), String.t()) ::
 {:ok, ClaudeAgentSDK.Hooks.hook_callback()} | :error

Gets callback function by ID.
Parameters
	registry - Registry to query
	id - Callback ID string (e.g., "hook_0")

Returns
	{:ok, callback} if ID found
	:error if ID not found

Examples
registry = Registry.new()
callback = fn _, _, _ -> %{} end
registry = Registry.register(registry, callback)

{:ok, retrieved} = Registry.get_callback(registry, "hook_0")
retrieved == callback
=> true

Registry.get_callback(registry, "hook_999")
=> :error

 get_id(registry, callback)

 @spec get_id(t(), ClaudeAgentSDK.Hooks.hook_callback()) :: String.t() | nil

Gets ID for a callback function.
Parameters
	registry - Registry to query
	callback - Callback function to look up

Returns
	ID string if callback registered
	nil if callback not found

Examples
registry = Registry.new()
callback = fn _, _, _ -> %{} end
registry = Registry.register(registry, callback)

Registry.get_id(registry, callback)
=> "hook_0"

other_callback = fn _, _, _ -> %{other: :callback} end
Registry.get_id(registry, other_callback)
=> nil

 new()

 @spec new() :: t()

Creates a new empty registry.
Examples
iex> registry = Registry.new()
iex> Registry.count(registry)
0

 register(registry, callback)

 @spec register(t(), ClaudeAgentSDK.Hooks.hook_callback()) :: t()

Registers a callback and returns updated registry.
If the callback is already registered, returns the existing registry
without modification (idempotent operation).
Parameters
	registry - Current registry state
	callback - Callback function to register (must be 3-arity function)

Returns
Updated registry with callback registered.
Examples
registry = Registry.new()
callback = fn _input, _tool_use_id, _context -> %{} end

registry = Registry.register(registry, callback)
Registry.get_id(registry, callback)
=> "hook_0"

Registering again is idempotent
registry = Registry.register(registry, callback)
Registry.count(registry)
=> 1

ClaudeAgentSDK.ControlProtocol.Protocol

Control protocol message encoding and decoding.
Handles bidirectional communication with Claude CLI via control messages:
	Initialize requests with hooks configuration
	Hook callback requests/responses
	Control requests/responses

Messages are exchanged as JSON over stdin/stdout.
Message Types
SDK → CLI
	control_request with initialize subtype
	control_response for hook callbacks

CLI → SDK
	control_request with hook_callback subtype
	control_response for initialize

See: https://docs.anthropic.com/en/docs/claude-code/sdk

 Summary

 Types

 message_type()

 Message type classifier.

 request_id()

 Request ID for tracking control protocol requests.

 Functions

 control_message?(arg1)

 Checks if a message is a control protocol message.

 decode_message(json_string)

 Decodes a message from CLI.

 decode_set_model_response(arg1)

 Decodes a set_model control response.

 encode_hook_response(request_id, output, atom)

 Encodes a hook callback response.

 encode_initialize_request(hooks_config, sdk_mcp_servers \\ nil, request_id \\ nil)

 Encodes an initialize request with hooks configuration and SDK MCP servers.

 encode_interrupt_request(request_id \\ nil)

 Encodes an interrupt control request.

 encode_rewind_files_request(user_message_id, request_id \\ nil)

 Encodes a rewind_files control request.

 encode_set_model_request(model, request_id \\ nil)

 Encodes a set_model control request.

 encode_set_permission_mode_request(mode, request_id \\ nil)

 Encodes a set_permission_mode control request.

 generate_request_id()

 Generates a unique request ID.

 Types

 message_type()

 @type message_type() ::
 :control_request
 | :control_response
 | :control_cancel_request
 | :sdk_message
 | :stream_event

Message type classifier.

 request_id()

 @type request_id() :: String.t()

Request ID for tracking control protocol requests.

 Functions

 control_message?(arg1)

 @spec control_message?(map()) :: boolean()

Checks if a message is a control protocol message.
Parameters
	message - Decoded message map

Returns
true if control message, false otherwise
Examples
iex> Protocol.control_message?(%{"type" => "control_request"})
true

iex> Protocol.control_message?(%{"type" => "assistant"})
false

 decode_message(json_string)

 @spec decode_message(String.t()) :: {:ok, {message_type(), map()}} | {:error, term()}

Decodes a message from CLI.
Parses JSON and classifies message type.
Parameters
	json_string - JSON message from CLI

Returns
	{:ok, {message_type, data}} - Successfully decoded
	{:error, reason} - Failed to decode

Examples
iex> json = ~s({"type":"control_request","request_id":"req_1","request":{}})
iex> {:ok, {type, _data}} = Protocol.decode_message(json)
iex> type
:control_request

 decode_set_model_response(arg1)

 @spec decode_set_model_response(map()) :: {:ok, String.t()} | {:error, term()}

Decodes a set_model control response.

 encode_hook_response(request_id, output, atom)

 @spec encode_hook_response(request_id(), map() | String.t(), :success | :error) ::
 String.t()

Encodes a hook callback response.
Sends the result of a hook callback execution back to CLI.
Parameters
	request_id - Request ID from CLI's hook_callback request
	output_or_error - Hook output map or error string
	status - :success or :error

Returns
JSON string ready to send to CLI
Examples
Success
output = %{hookSpecificOutput: %{permissionDecision: "allow"}}
json = Protocol.encode_hook_response("req_123", output, :success)

Error
json = Protocol.encode_hook_response("req_456", "Timeout", :error)

 encode_initialize_request(hooks_config, sdk_mcp_servers \\ nil, request_id \\ nil)

 @spec encode_initialize_request(map() | nil, map() | nil, request_id() | nil) ::
 {request_id(), String.t()}

Encodes an initialize request with hooks configuration and SDK MCP servers.
Sends hooks configuration and SDK MCP server info to CLI during initialization
so it knows which callbacks to invoke and which SDK servers are available.
Parameters
	hooks_config - Hooks configuration map (from build_hooks_config)
	sdk_mcp_servers - Map of server_name => server_info for SDK servers (optional)
	request_id - Optional request ID (generated if nil)

Returns
{request_id, json_string} tuple
Examples
hooks = %{
 "PreToolUse" => [
 %{"matcher" => "Bash", "hookCallbackIds" => ["hook_0"]}
]
}

sdk_servers = %{
 "math-tools" => %{"name" => "math-tools", "version" => "1.0.0"}
}

{id, json} = Protocol.encode_initialize_request(hooks, sdk_servers, nil)

 encode_interrupt_request(request_id \\ nil)

 @spec encode_interrupt_request(request_id() | nil) :: {request_id(), String.t()}

Encodes an interrupt control request.

 encode_rewind_files_request(user_message_id, request_id \\ nil)

 @spec encode_rewind_files_request(String.t(), request_id() | nil) ::
 {request_id(), String.t()}

Encodes a rewind_files control request.
Returns {request_id, json}.

 encode_set_model_request(model, request_id \\ nil)

 @spec encode_set_model_request(String.t(), request_id() | nil) ::
 {request_id(), String.t()}

Encodes a set_model control request.
Returns {request_id, json}.

 encode_set_permission_mode_request(mode, request_id \\ nil)

 @spec encode_set_permission_mode_request(String.t(), request_id() | nil) ::
 {request_id(), String.t()}

Encodes a set_permission_mode control request.
Returns {request_id, json}.

 generate_request_id()

 @spec generate_request_id() :: request_id()

Generates a unique request ID.
Format: req_{counter}_{random_hex}
Examples
iex> id = Protocol.generate_request_id()
iex> String.starts_with?(id, "req_")
true

ClaudeAgentSDK.DebugMode

Comprehensive debugging and diagnostics for Claude Code SDK.
This module provides tools for troubleshooting queries, analyzing performance,
and diagnosing environment issues. Essential for development, testing, and
production monitoring of Claude Code SDK usage.
Features
	Query Debugging: Detailed execution logging with timing
	Environment Diagnostics: CLI installation and auth status checks
	Performance Benchmarking: Multi-run performance analysis
	Message Analysis: Content statistics and error detection
	Connectivity Testing: Basic health checks and validation

Basic Usage
Debug a specific query
messages = ClaudeAgentSDK.DebugMode.debug_query("Hello, Claude!")

Run full environment diagnostics
ClaudeAgentSDK.DebugMode.run_diagnostics()

Benchmark query performance
results = ClaudeAgentSDK.DebugMode.benchmark("Analyze this code", nil, 3)

Analyze message statistics
stats = ClaudeAgentSDK.DebugMode.analyze_messages(messages)
Debug Output Example
🐛 DEBUG MODE ENABLED
 Prompt: "Hello, Claude!"
 Options: %ClaudeAgentSDK.Options{verbose: true, max_turns: 1}
 ✅ Auth: Authenticated as user@example.com
 [0ms] system:init: session_id=abc123, model=claude-opus-4
 [1250ms] assistant: "Hello! How can I help you today?" (35 chars)
 [1680ms] result:success: cost=$0.003, turns=1
🏁 Debug completed in 1680ms with 3 messages
Environment Diagnostics
🔍 Running Claude Code SDK Diagnostics...
✅ CLI Status: Installed at /usr/local/bin/claude
 Version: 1.2.3
✅ Authentication: Authenticated as user@example.com
📋 Environment:
 Build env: dev
 Mock enabled: false
 Elixir: 1.15.0
 OTP: 26
🔌 Testing basic connectivity...
 ✅ Basic connectivity OK
✅ All systems operational!

 Summary

 Functions

 analyze_messages(messages)

 Analyzes a stream of messages and provides comprehensive statistics.

 benchmark(prompt, options \\ nil, runs \\ 1)

 Benchmarks a query and returns performance metrics.

 debug_query(prompt, options \\ nil)

 Executes a query in debug mode with detailed logging and timing.

 inspect_message(message)

 Formats a message for detailed inspection.

 profile_query(prompt, options \\ nil)

 Executes a query with performance profiling.

 run_diagnostics()

 Runs a diagnostic check of the SDK environment.

 Functions

 analyze_messages(messages)

 @spec analyze_messages(Enumerable.t()) :: map()

Analyzes a stream of messages and provides comprehensive statistics.
Examines message patterns, content metrics, performance data, and error
conditions to provide insights into query execution and results.
Parameters
	messages - List or stream of ClaudeAgentSDK.Message structs

Returns
	Map with detailed analysis results

Examples
messages = ClaudeAgentSDK.query("Analyze this code")
stats = ClaudeAgentSDK.DebugMode.analyze_messages(messages)

%{
total_messages: 5,
message_types: %{assistant: 2, system: 1, result: 1, user: 1},
total_cost_usd: 0.025,
duration_ms: 3420,
content_length: 1523,
tools_used: ["Read", "Grep"],
session_id: "abc123",
success: true,
errors: []
}
Analysis Fields
	total_messages - Count of all messages
	message_types - Breakdown by message type
	total_cost_usd - Total API cost (if available)
	duration_ms - Total execution time
	content_length - Total character count of text content
	tools_used - List of tools invoked during execution
	session_id - Session identifier
	success - Whether query completed successfully
	errors - List of any error conditions encountered

 benchmark(prompt, options \\ nil, runs \\ 1)

 @spec benchmark(String.t(), ClaudeAgentSDK.Options.t() | nil, pos_integer()) :: map()

Benchmarks a query and returns performance metrics.
Parameters
	prompt - The query prompt
	options - Optional ClaudeAgentSDK.Options
	runs - Number of times to run the query (default: 1)

Returns
	Map with benchmark results

Examples
iex> results = ClaudeAgentSDK.DebugMode.benchmark("Hello", nil, 3)
%{
 runs: 3,
 avg_duration_ms: 1523,
 min_duration_ms: 1420,
 max_duration_ms: 1650,
 avg_cost_usd: 0.015
}

 debug_query(prompt, options \\ nil)

 @spec debug_query(String.t(), ClaudeAgentSDK.Options.t() | nil) :: [
 ClaudeAgentSDK.Message.t()
]

Executes a query in debug mode with detailed logging and timing.
Provides comprehensive debug output including authentication status,
timing information for each message, and final statistics. Automatically
enables verbose mode and catches/reports any errors.
Parameters
	prompt - The query prompt to debug
	options - Optional ClaudeAgentSDK.Options (verbose will be auto-enabled)

Returns
	List of messages with complete debug trace

Examples
Basic debug query
messages = ClaudeAgentSDK.DebugMode.debug_query("Hello")

Debug with custom options
options = %ClaudeAgentSDK.Options{max_turns: 3}
messages = ClaudeAgentSDK.DebugMode.debug_query("Complex task", options)
Output Format
🐛 DEBUG MODE ENABLED
 Prompt: "Hello, Claude!"
 Options: %ClaudeAgentSDK.Options{verbose: true, max_turns: 1}
 ✅ Auth: Authenticated as user@example.com
 [0ms] system:init: session_id=abc123, model=claude-opus-4
 [1250ms] assistant: "Hello! How can I help you today?" (35 chars)
 [1680ms] result:success: cost=$0.003, turns=1
🏁 Debug completed in 1680ms with 3 messages

 inspect_message(message)

 @spec inspect_message(ClaudeAgentSDK.Message.t()) :: String.t()

Formats a message for detailed inspection.
Parameters
	message - A ClaudeAgentSDK.Message struct

Returns
	Formatted string representation

Examples
iex> ClaudeAgentSDK.DebugMode.inspect_message(message)
"Message[assistant]: "Hello, world!" (15 chars)"

 profile_query(prompt, options \\ nil)

 @spec profile_query(String.t(), ClaudeAgentSDK.Options.t() | nil) ::
 {[ClaudeAgentSDK.Message.t()], map()}

Executes a query with performance profiling.
Similar to debug_query/2 but focuses on performance metrics,
memory usage, and execution timing rather than detailed content logging.
Parameters
	prompt - The query prompt
	options - Optional ClaudeAgentSDK.Options

Returns
	{messages, profile} where profile contains performance data

Examples
{messages, profile} = ClaudeAgentSDK.DebugMode.profile_query("Complex task")
IO.puts("Peak memory: #{profile.peak_memory_mb}MB")
IO.puts("Execution time: #{profile.execution_time_ms}ms")

 run_diagnostics()

 @spec run_diagnostics() :: :ok

Runs a diagnostic check of the SDK environment.
Checks:
	CLI installation
	Authentication status
	Basic connectivity
	Environment configuration

Examples
iex> ClaudeAgentSDK.DebugMode.run_diagnostics()
🔍 Running Claude Code SDK Diagnostics...
✅ CLI Status: Installed at /usr/local/bin/claude
...

ClaudeAgentSDK.JSON

Simple JSON parser for Claude Code SDK.
This module provides a lightweight JSON decoder that doesn't require external
dependencies. It first attempts to use Erlang's built-in :json module (OTP 27+),
falling back to a manual parser for older versions.
The manual parser handles the basic JSON structures needed for Claude Code messages:
	Objects (maps)
	Arrays (lists)
	Strings
	Numbers (integers and floats)
	Booleans and null

Note: The manual parser is simplified and may not handle all edge cases of the
JSON specification, but it's sufficient for parsing Claude Code CLI output.

 Summary

 Functions

 decode(json_string)

 Decode a JSON string into an Elixir term.

 Functions

 decode(json_string)

 @spec decode(String.t()) :: {:ok, term()} | {:error, :invalid_json}

Decode a JSON string into an Elixir term.
Parameters
	json_string - A valid JSON string to decode

Returns
	{:ok, term} - Successfully decoded JSON as Elixir term
	{:error, :invalid_json} - Failed to parse JSON

Examples
iex> ClaudeAgentSDK.JSON.decode(~s({"key": "value"}))
{:ok, %{"key" => "value"}}

iex> ClaudeAgentSDK.JSON.decode(~s([1, 2, 3]))
{:ok, [1, 2, 3]}

iex> ClaudeAgentSDK.JSON.decode("invalid")
{:error, :invalid_json}

ClaudeAgentSDK.Process

Handles spawning and communicating with the Claude Code CLI process using erlexec.
This module manages the lifecycle of Claude CLI subprocess execution:
	Starting the CLI process with proper arguments
	Capturing and parsing JSON output from stdout/stderr
	Converting the output into a stream of ClaudeAgentSDK.Message structs
	Handling errors and cleanup

The module uses erlexec's synchronous execution mode to capture all output
at once, then converts it to a lazy stream for consumption.

 Summary

 Functions

 stream(args, options, stdin_input \\ nil)

 Streams messages from Claude Code CLI using erlexec.

 Functions

 stream(args, options, stdin_input \\ nil)

 @spec stream([String.t()], ClaudeAgentSDK.Options.t(), String.t() | nil) ::
 Enumerable.t(ClaudeAgentSDK.Message.t())

Streams messages from Claude Code CLI using erlexec.
Parameters
	args - List of command-line arguments for the Claude CLI
	options - Configuration options (see ClaudeAgentSDK.Options.t/0)

Returns
A stream of ClaudeAgentSDK.Message.t/0 structs.
Examples
ClaudeAgentSDK.Process.stream(["--print", "Hello"], %ClaudeAgentSDK.Options{})

ClaudeAgentSDK.Errors.CLIConnectionError exception

Raised when the SDK fails to connect to the Claude CLI process.
Common causes include:
	Working directory does not exist or is inaccessible
	Claude CLI crashed during startup
	Port/transport layer communication failure

Fields
	:message - Human-readable error description
	:cwd - Working directory that was attempted (if available)
	:reason - Underlying error reason

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ClaudeAgentSDK.Errors.CLIConnectionError{
 __exception__: true,
 cwd: String.t() | nil,
 message: String.t(),
 reason: term()
}

ClaudeAgentSDK.Errors.CLIJSONDecodeError exception

Raised when the SDK fails to decode JSON output from the CLI.
This usually indicates a protocol mismatch or corrupted output stream.
Fields
	:message - Human-readable error description
	:line - The raw line that failed to parse
	:original_error - The underlying JSON decode error

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ClaudeAgentSDK.Errors.CLIJSONDecodeError{
 __exception__: true,
 line: String.t(),
 message: String.t(),
 original_error: term()
}

ClaudeAgentSDK.Errors.CLINotFoundError exception

Raised when the Claude CLI executable cannot be found.
This typically means Claude Code is not installed or not in the PATH.
Install with: npm install -g @anthropic-ai/claude-code
Fields
	:message - Human-readable error description
	:cli_path - Path that was searched (if available)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ClaudeAgentSDK.Errors.CLINotFoundError{
 __exception__: true,
 cli_path: String.t() | nil,
 message: String.t()
}

ClaudeAgentSDK.Errors.ClaudeSDKError exception

Base exception for all Claude Agent SDK errors.
This provides a common error type for catch-all handling and for wrapping
lower-level errors with SDK-specific context.
Fields
	:message - Human-readable error description
	:cause - Underlying error that caused this exception (optional)

Examples
Simple error
raise ClaudeAgentSDK.Errors.ClaudeSDKError, message: "Something went wrong"

Wrapping another error
%ClaudeAgentSDK.Errors.ClaudeSDKError{
 message: "Failed to process response",
 cause: original_error
}

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ClaudeAgentSDK.Errors.ClaudeSDKError{
 __exception__: true,
 cause: Exception.t() | term() | nil,
 message: String.t()
}

ClaudeAgentSDK.Errors.MessageParseError exception

Raised when a message from the CLI cannot be parsed into a known type.
This may occur with unexpected message formats or protocol changes.
Fields
	:message - Human-readable error description
	:data - The raw message data that failed to parse

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ClaudeAgentSDK.Errors.MessageParseError{
 __exception__: true,
 data: map() | nil,
 message: String.t()
}

ClaudeAgentSDK.Errors.ProcessError exception

Raised when the Claude CLI process exits with an error.
Fields
	:message - Human-readable error description
	:exit_code - Process exit code (if available)
	:stderr - Captured stderr output (if available)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %ClaudeAgentSDK.Errors.ProcessError{
 __exception__: true,
 exit_code: integer() | nil,
 message: String.t(),
 stderr: String.t() | nil
}

mix claude.setup_token

Sets up a long-lived authentication token for Claude Code SDK.
This task executes claude setup-token and stores the result
for automatic use by the SDK.
Usage
$ mix claude.setup_token

Requirements
	Claude Code CLI installed (npm install -g @anthropic-ai/claude-code)
	Active Claude subscription
	Interactive terminal access

Options
	--force - Force token refresh even if valid token exists
	--clear - Clear existing authentication

Examples
Initial setup
$ mix claude.setup_token

Force refresh
$ mix claude.setup_token --force

Clear authentication
$ mix claude.setup_token --clear

mix run.live

Runs Elixir scripts against the live Claude API instead of using mocks.
This task temporarily disables mocking and runs the specified script with actual API calls.
Use with caution as it will make real API calls and incur costs.
Usage
mix run.live script.exs
mix run.live examples/basic_example.exs
mix run.live examples/simple_analyzer.exs path/to/file.txt
Examples
Run a simple analysis script
mix run.live examples/simple_analyzer.exs lib/claude_agent_sdk.ex

Run any custom script with live API
mix run.live my_script.exs
Options
All additional arguments are passed through to the script.

mix showcase

Run the Claude Code SDK comprehensive showcase.
Usage
Run with mocks (safe, no API costs)
mix showcase

Run with live API calls (requires authentication)
mix showcase --live
Examples
mix showcase # Safe demo with mocks
mix showcase --live # Live demo with real API calls

mix test.live

Runs tests against the live Claude API instead of using mocks.
This task temporarily disables mocking and runs the test suite with actual API calls.
Use with caution as it will make real API calls and incur costs.
Usage
mix test.live
mix test.live test/specific_test.exs
Options
All options are passed through to the underlying mix test task.

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

