

 ClaudeCode

 v0.16.0

 Table of contents

 	Changelog

 	Introduction

 	🤖 Claude Code SDK for Elixir

 	Getting Started

 	Guides

 	Streaming Guide

 	Sessions Guide

 	Permissions Guide

 	Testing

 	Testing Guide

 	Integration

 	Phoenix Integration

 	MCP Integration

 	Tool Callbacks

 	Advanced

 	Configuration Guide

 	Production Supervision Guide

 	Custom Agents Guide

 	Reference

 	Examples

 	Architecture

 	Troubleshooting

 	
 Modules

 	ClaudeCode.History

 	ClaudeCode.JSONEncoder

 	Core API

 	ClaudeCode

 	ClaudeCode.Session

 	ClaudeCode.Supervisor

 	Configuration

 	ClaudeCode.Options

 	Streaming

 	ClaudeCode.Stream

 	Types & Parsing

 	ClaudeCode.Content

 	ClaudeCode.Message

 	ClaudeCode.Types

 	Callbacks

 	ClaudeCode.ToolCallback

 	Testing

 	ClaudeCode.Adapter.Test

 	ClaudeCode.Test

 	ClaudeCode.Test.Factory

 	MCP Integration

 	ClaudeCode.MCP

 	ClaudeCode.MCP.Config

 	ClaudeCode.MCP.Server

 	Messages

 	ClaudeCode.Message.AssistantMessage

 	ClaudeCode.Message.CompactBoundaryMessage

 	ClaudeCode.Message.PartialAssistantMessage

 	ClaudeCode.Message.ResultMessage

 	ClaudeCode.Message.SystemMessage

 	ClaudeCode.Message.UserMessage

 	Content Blocks

 	ClaudeCode.Content.TextBlock

 	ClaudeCode.Content.ThinkingBlock

 	ClaudeCode.Content.ToolResultBlock

 	ClaudeCode.Content.ToolUseBlock

 	Internal

 	ClaudeCode.Adapter

 	ClaudeCode.Adapter.CLI

 	ClaudeCode.CLI

 	ClaudeCode.Input

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[Unreleased]
[0.16.0] - 2026-01-27
Added
	:env option - Pass custom environment variables to the CLI subprocess ([aa2d3eb])	Merge precedence: system env → user :env → SDK vars → :api_key
	Useful for MCP tools that need specific env vars or custom PATH configurations
	Aligns with Python SDK's environment handling

[0.15.0] - 2026-01-26
Added
	Session history reading - Read and parse conversation history from session files ([ad737ea])	ClaudeCode.conversation/2 - Read conversation (user/assistant messages) by session ID
	ClaudeCode.History.list_projects/1 - List all projects with session history
	ClaudeCode.History.list_sessions/2 - List all sessions for a project
	ClaudeCode.History.read_session/2 - Read all raw entries from a session (low-level)

	JSON encoding for all structs - Implement Jason.Encoder and JSON.Encoder protocols ([a511d5c])	All message types: SystemMessage, AssistantMessage, UserMessage, ResultMessage, PartialAssistantMessage, CompactBoundaryMessage
	All content blocks: TextBlock, ThinkingBlock, ToolUseBlock, ToolResultBlock
	Nil values are automatically excluded from encoded output

	String.Chars for messages and content blocks - Use to_string/1 or string interpolation ([b3a9571])	TextBlock - returns the text content
	ThinkingBlock - returns the thinking content
	AssistantMessage - concatenates all text blocks from the message
	PartialAssistantMessage - returns delta text (empty string for non-text deltas)

Changed
	Conversation message parsing refactored - Extracted to dedicated module with improved error logging ([22c381c])

[0.14.0] - 2026-01-15
Added
	:session_id option - Specify a custom UUID as the session ID for conversations ([2f2c919])
	:disable_slash_commands option - Disable all skills/slash commands ([16f96b4])
	:no_session_persistence option - Disable session persistence so sessions are not saved to disk ([16f96b4])
	New permission modes - :delegate, :dont_ask, and :plan added to :permission_mode option ([16f96b4])
	New usage tracking fields - cache_creation, service_tier, web_fetch_requests, cost_usd, context_window, max_output_tokens in result and assistant message usage ([bed060b])
	New system message fields - claude_code_version, agents, skills, plugins for enhanced session metadata ([bed060b])

Fixed
	SystemMessage slash_commands and output_style parsing - Fields were always empty/default ([bed060b])
	ResultMessage model_usage parsing - Per-model token counts and costs were always 0/nil ([bed060b])

[0.13.3] - 2026-01-14
Changed
	ResultMessage optional fields use sensible defaults - model_usage defaults to %{} and permission_denials defaults to [] instead of nil ([cda582b])

Fixed
	ResultMessage.result is now optional - Error messages from the CLI may contain an errors array instead of a result field. The field no longer crashes when nil and displays errors appropriately ([c06e825])

[0.13.2] - 2026-01-08
Fixed
	ToolResultBlock content parsing - When CLI returns content as a list of text blocks, they are now parsed into TextBlock structs instead of raw maps ([5361e2d])

[0.13.1] - 2026-01-07
Changed
	Simplified test stub naming - Default stub name changed from ClaudeCode.Session to ClaudeCode ([2fd244f])	Config: adapter: {ClaudeCode.Test, ClaudeCode} instead of {ClaudeCode.Test, ClaudeCode.Session}
	Stubs: ClaudeCode.Test.stub(ClaudeCode, fn ...) instead of stub(ClaudeCode.Session, fn ...)
	Custom names still supported for multiple stub behaviors in same test

Added
	tool_result/2 accepts maps - Maps are automatically JSON-encoded ([6d9fca6])	Example: ClaudeCode.Test.tool_result(%{status: "success", data: [1, 2, 3]})

Fixed
	tool_result content format - Content is now [TextBlock.t()] instead of plain string ([dfba539])	Matches MCP CallToolResult format where content is an array of content blocks
	Fixes compatibility with code expecting content: [%{"type" => "text", "text" => ...}]

[0.13.0] - 2026-01-07
Added
	ClaudeCode.Test module - Req.Test-style test helpers for mocking Claude responses ([9f78103])	stub/2 - Register function or static message stubs for test isolation
	allow/3 - Share stubs with spawned processes for async tests
	set_mode_to_shared/0 - Enable shared mode for integration tests
	Message helpers: text/2, tool_use/3, tool_result/2, thinking/2, result/2, system/1
	Auto-generates system/result messages, links tool IDs, unifies session IDs
	Uses NimbleOwnership for process-based isolation with async: true support

	ClaudeCode.Test.Factory module - Test data generation for all message and content types ([54dcfd7])	Struct factories: assistant_message/1, user_message/1, result_message/1, system_message/1
	Content block factories: text_block/1, tool_use_block/1, tool_result_block/1, thinking_block/1
	Stream event factories for partial message testing
	Convenience functions with positional arguments for common cases

	Testing guide - Comprehensive documentation for testing ClaudeCode integrations ([7dfe509])

[0.12.0] - 2026-01-07
Added
	New stream helpers for common use cases ([0775bd4])	final_text/1 - Returns only the final result text, simplest way to get Claude's answer
	collect/1 - Returns structured summary with text, thinking, tool_calls, and result
	tap/2 - Side-effect function for logging/monitoring without filtering the stream
	on_tool_use/2 - Callback invoked for each tool use, useful for progress indicators

Changed
	collect/1 returns tool_calls instead of tool_uses ([7eebfeb])	Now returns {tool_use, tool_result} tuples pairing each tool invocation with its result
	If a tool use has no matching result, the result will be nil
	Migration: Change summary.tool_uses to summary.tool_calls and update iteration to handle tuples

Removed
	buffered_text/1 stream helper - Use final_text/1 or collect/1 instead ([4a1ee97])

[0.11.0] - 2026-01-07
Changed
	Renamed StreamEventMessage to PartialAssistantMessage - Aligns with TypeScript SDK naming (SDKPartialAssistantMessage)	ClaudeCode.Message.StreamEventMessage → ClaudeCode.Message.PartialAssistantMessage
	The struct still uses type: :stream_event to match the wire format
	Helper function renamed: stream_event?/1 → partial_assistant_message?/1

Added
	:fork_session option - Create a new session ID when resuming a conversation	Use with :resume to branch a conversation: start_link(resume: session_id, fork_session: true)
	Original session continues unchanged, fork gets its own session ID after first query

[0.9.0] - 2026-01-06
Changed
	BREAKING: Simplified public API - Renamed and reorganized query functions ([e7ca31a])	query_stream/3 → stream/3 - Primary API for session-based streaming queries
	query/3 (session-based sync) → Removed - Use stream/3 instead
	query/2 (new) - One-off convenience function with auto session management
	Migration: Replace ClaudeCode.query(session, prompt) with ClaudeCode.stream(session, prompt) |> Enum.to_list()
	Migration: Replace ClaudeCode.query_stream(session, prompt) with ClaudeCode.stream(session, prompt)

Added
	Concurrent request queuing - Multiple concurrent streams on same session are now properly queued and executed sequentially ([e7ca31a])

Fixed
	Named process handling - Stream cleanup now properly handles named processes (atoms, :via, :global tuples) ([e7ca31a])

[0.8.1] - 2026-01-06
Fixed
	Process cleanup on stop - Claude subprocess now properly terminates when calling ClaudeCode.stop/1 ([a560ff1])

[0.8.0] - 2026-01-06
Changed
	BREAKING: Renamed message type modules - Added "Message" suffix for clarity	ClaudeCode.Message.Assistant → ClaudeCode.Message.AssistantMessage
	ClaudeCode.Message.User → ClaudeCode.Message.UserMessage
	ClaudeCode.Message.Result → ClaudeCode.Message.ResultMessage
	ClaudeCode.Message.StreamEvent → ClaudeCode.Message.PartialAssistantMessage
	New ClaudeCode.Message.SystemMessage and ClaudeCode.Message.CompactBoundaryMessage message types

	BREAKING: Renamed content block modules - Added "Block" suffix for consistency	ClaudeCode.Content.Text → ClaudeCode.Content.TextBlock
	ClaudeCode.Content.ToolUse → ClaudeCode.Content.ToolUseBlock
	ClaudeCode.Content.ToolResult → ClaudeCode.Content.ToolResultBlock
	ClaudeCode.Content.Thinking → ClaudeCode.Content.ThinkingBlock

Added
	New system message fields - Support for additional Claude Code features	:output_style - Claude's configured output style
	:slash_commands - Available slash commands
	:uuid - Session UUID

	Extended message type fields - Better access to API response metadata	AssistantMessage: :priority, :sequence_id, :finalize_stack
	ResultMessage: :session_id, :duration_ms, :usage, :parent_message_id, :sequence_id
	UserMessage: :priority, :sequence_id, :finalize_stack

Fixed
	:mcp_servers option validation - Fixed handling of MCP server configurations ([0c7e849])

[0.7.0] - 2026-01-02
Added
	:strict_mcp_config option - Control MCP server loading behavior ([a095516])	When true, ignores global MCP server configurations
	Useful for disabling all MCP tools: tools: [], strict_mcp_config: true
	Or using only built-in tools: tools: :default, strict_mcp_config: true

Changed
	BREAKING: ClaudeCode.query now returns full %Result{} struct instead of just text	Before: {:ok, "response text"} or {:error, {:claude_error, "message"}}
	After: {:ok, %ClaudeCode.Message.Result{result: "response text", ...}} or {:error, %ClaudeCode.Message.Result{is_error: true, ...}}
	Provides access to metadata: session_id, is_error, subtype, duration_ms, usage, etc.
	Migration: Change {:ok, text} to {:ok, result} and use result.result to access the response text
	Result implements String.Chars, so IO.puts(result) prints just the text

Removed
	:input_format option - No longer exposed in public API ([c7ebab2])
	:output_format option - No longer exposed in public API ([c7ebab2])

[0.6.0] - 2025-12-31
Added
	:mcp_servers module map format - Pass Hermes modules with custom environment variables ([63d4b72])	Simple form: %{"tools" => MyApp.MCPServer}
	Extended form with env: %{"tools" => %{module: MyApp.MCPServer, env: %{"DEBUG" => "1"}}}
	Custom env is merged with defaults (MIX_ENV: "prod"), can override MIX_ENV
	Updated MCP docs to recommend mcp_servers as the primary configuration method

	:json_schema option - JSON Schema for structured output validation ([485513f])	Accepts a map (auto-encoded to JSON) or pre-encoded JSON string
	Maps to --json-schema CLI flag

	:max_budget_usd option - Maximum dollar amount to spend on API calls ([5bf996a])	Accepts float or integer values
	Maps to --max-budget-usd CLI flag

	:tools option - Specify available tools from the built-in set ([5bf996a])	Use :default for all tools, [] to disable all, or a list of tool names
	Maps to --tools CLI flag

	:agent option - Agent name for the session ([5bf996a])	Different from :agents which defines custom agent configurations
	Maps to --agent CLI flag

	:betas option - Beta headers to include in API requests ([5bf996a])	Accepts a list of beta feature names
	Maps to --betas CLI flag

Removed
	query_async/3 - Removed push-based async API in favor of query_stream/3	query_stream/3 provides a more idiomatic Elixir Stream-based API
	For push-based messaging (LiveView, GenServers), wrap query_stream/3 in a Task
	See Phoenix integration guide for migration examples

	Advanced Streaming API - Removed low-level streaming functions	receive_messages/2 - Use query_stream/3 instead
	receive_response/2 - Use query_stream/3 |> ClaudeCode.Stream.until_result() instead
	interrupt/2 - To cancel, use Task.shutdown/2 on the consuming task

Changed
	ClaudeCode.Stream - Now uses pull-based messaging internally instead of process mailbox

[0.5.0] - 2025-12-30
Removed
	:permission_handler option - Removed unimplemented option from session schema

Added
	Persistent streaming mode - Sessions use bidirectional stdin/stdout communication	Auto-connect on first query, auto-disconnect on session stop
	Multi-turn conversations without subprocess restarts
	New :resume option in start_link/1 for resuming sessions
	New ClaudeCode.get_session_id/1 and ClaudeCode.Input module

	Extended thinking support - ClaudeCode.Content.Thinking for reasoning blocks	Stream utilities: ClaudeCode.Stream.thinking_content/1, ClaudeCode.Stream.thinking_deltas/1
	StreamEvent helpers: thinking_delta?/1, get_thinking/1

	MCP servers map option - :mcp_servers accepts inline server configurations	Supports stdio, sse, and http transport types

	Character-level streaming - include_partial_messages: true option	Stream utilities: ClaudeCode.Stream.text_deltas/1, ClaudeCode.Stream.content_deltas/1
	Enables real-time streaming for LiveView applications

	Tool callback - :tool_callback option for logging/auditing tool usage	ClaudeCode.ToolCallback module for correlating tool use and results

	Hermes MCP integration - Expose Elixir tools to Claude via MCP	Optional dependency: {:hermes_mcp, "~> 0.14", optional: true}
	ClaudeCode.MCP.Config for generating MCP configuration
	ClaudeCode.MCP.Server for starting Hermes MCP servers

Changed
	Minimum Elixir version raised to 1.18
	ClaudeCode.Stream.filter_type/2 now supports :stream_event and :text_delta

[0.4.0] - 2025-10-02
Added
	Custom agents support - :agents option for defining agent configurations
	Settings options - :settings and :setting_sources for team settings

Changed
	:api_key now optional - CLI handles ANTHROPIC_API_KEY fallback

Fixed
	CLI streaming with explicit output-format support

[0.3.0] - 2025-06-16
Added
	ClaudeCode.Supervisor - Production supervision for multiple Claude sessions	Static named sessions and dynamic session management
	Global, local, and registry-based naming
	OTP supervision with automatic restarts

[0.2.0] - 2025-06-16
Added
	ANTHROPIC_API_KEY environment variable fallback

Changed
	BREAKING: Renamed API functions:	query_sync/3 → query/3
	query/3 → query_stream/3

	start_link/1 options now optional (defaults to [])

[0.1.0] - 2025-06-16
Added
	Complete SDK Implementation (Phases 1-4):
	Session management with GenServer-based architecture
	Synchronous queries with query_sync/3 (renamed to query/3 in later version)
	Streaming queries with native Elixir streams via query/3 (renamed to query_stream/3 in later version)
	Async queries with query_async/3 for manual message handling
	Complete message type parsing (system, assistant, user, result)
	Content block handling (text, tool use, tool result) with proper struct types
	Flattened options API with NimbleOptions validation
	Option precedence system: query > session > app config > defaults
	Application configuration support via config :claude_code
	Comprehensive CLI flag mapping for all Claude Code options

	Core Modules:
	ClaudeCode - Main interface with session management
	ClaudeCode.Session - GenServer for CLI subprocess management
	ClaudeCode.CLI - Binary detection and command building
	ClaudeCode.Options - Options validation and CLI conversion
	ClaudeCode.Stream - Stream utilities for real-time processing
	ClaudeCode.Message - Unified message parsing
	ClaudeCode.Content - Content block parsing
	ClaudeCode.Types - Type definitions matching SDK schema

	Message Type Support:
	System messages with session initialization
	Assistant messages with nested content structure
	User messages with proper content blocks
	Result messages with error subtypes
	Tool use and tool result content blocks

	Streaming Features:
	Native Elixir Stream integration with backpressure handling
	Stream utilities: text_content/1, tool_uses/1, filter_type/2
	Buffered text streaming with buffered_text/1
	Concurrent streaming request support
	Proper stream cleanup and error handling

	Configuration System:
	15+ configuration options with full validation
	Support for API key, model, system prompt, allowed tools
	Permission mode options: :default, :accept_edits, :bypass_permissions
	Timeout, max turns, working directory configuration
	Custom permission handler support
	Query-level option overrides

Implementation Details
	Flattened options API for intuitive configuration
	Updated CLI flag mappings to match latest Claude Code CLI
	Enhanced error handling with proper message subtypes
	Shell wrapper implementation to prevent CLI hanging
	Proper JSON parsing for all message types
	Concurrent query isolation with dedicated ports
	Memory management for long-running sessions
	Session continuity across multiple queries

Security
	API keys passed via environment variables only
	Shell command injection prevention with proper escaping
	Subprocess isolation with dedicated ports per query
	No sensitive data in command arguments or logs

Documentation
	Complete module documentation with doctests
	Comprehensive README with installation and usage examples
	Architecture documentation explaining CLI integration
	Streamlined roadmap focusing on current status and future enhancements

Testing
	146+ comprehensive tests covering all functionality
	Unit tests for all modules with mock CLI support
	Integration tests with real CLI when available
	Property-based testing for message parsing
	Stream testing with concurrent scenarios
	Coverage reporting with ExCoveralls

 🤖 Claude Code SDK for Elixir

The Elixir SDK for building AI agents with Claude Code.
	🔄 Native Streaming: Built on Elixir Streams for real-time responses
	💬 Conversation Continuity: Automatic context retention across queries
	🏭 Production-Ready Supervision: Fault-tolerant GenServers with automatic restarts
	⚡ High-Performance Concurrency: Multiple concurrent sessions with Elixir's actor model
	🔧 Zero-Config Phoenix: Drop-in support for LiveView and Phoenix apps
	🧪 Built-in Test Stubs: Mock Claude responses for fast, deterministic tests without API calls
	🔌 MCP Tool Integration: Expose Elixir functions to Claude via Hermes

[image: Hex.pm]
[image: Documentation]
[image: License]
[image: Elixir]
 [image: ClaudeCode]

 Getting Started - ClaudeCode v0.16.0

 Getting Started

This guide walks you through setting up and using the ClaudeCode Elixir SDK for the first time.
Prerequisites
Before you begin, make sure you have:
1. Elixir and Mix
ClaudeCode requires Elixir 1.18+ and OTP 27+.
Check your versions
elixir --version
=> Elixir 1.18.0 (compiled with Erlang/OTP 27)

2. Claude Code CLI
The SDK requires the Claude Code CLI to be installed on your system.
Install the CLI:
	Visit claude.ai/code
	Follow the installation instructions for your platform
	Verify installation:claude --version

3. Authentication
You need either a Claude subscription or an API key.
Option A: Use your Claude subscription (recommended)
claude # Then type /login to authenticate

Option B: Use an API key
	Sign up at console.anthropic.com
	Create a new API key
	Set ANTHROPIC_API_KEY environment variable

Installation
Add ClaudeCode to your project dependencies:
mix.exs
def deps do
 [
 {:claude_code, "~> 0.16"}
]
end
Install dependencies:
mix deps.get

Configuration
If you authenticated via /login, no configuration is needed - it just works.
For API key usage, set the environment variable:
export ANTHROPIC_API_KEY="sk-ant-your-api-key-here"

Your First Query
The simplest way to query Claude is with query/2:
Start an interactive Elixir session
iex -S mix

Send a one-off query
{:ok, response} = ClaudeCode.query("Hello! What's 2 + 2?")
IO.puts(response)
=> "Hello! 2 + 2 equals 4."
That's it! No session management needed for simple queries.
Streaming Responses
For real-time responses, use streaming:
{:ok, session} = ClaudeCode.start_link()

session
|> ClaudeCode.stream("Explain how GenServers work in Elixir")
|> ClaudeCode.Stream.text_content()
|> Enum.each(&IO.write/1)

ClaudeCode.stop(session)
See the Streaming Guide for more details.
Working with Files
Claude can read and analyze files in your project:
{:ok, session} = ClaudeCode.start_link(
 allowed_tools: ["View", "Edit"]
)

response =
 session
 |> ClaudeCode.stream("Can you look at my mix.exs file and suggest any improvements?")
 |> ClaudeCode.Stream.final_text()

IO.puts(response)
ClaudeCode.stop(session)
Conversation Context
ClaudeCode automatically maintains conversation context:
{:ok, session} = ClaudeCode.start_link()

First message
session |> ClaudeCode.stream("My name is Alice and I'm learning Elixir") |> Stream.run()

Follow-up message - Claude remembers the context
response =
 session
 |> ClaudeCode.stream("What's my name and what am I learning?")
 |> ClaudeCode.Stream.final_text()

IO.puts(response)
=> "Your name is Alice and you're learning Elixir!"

ClaudeCode.stop(session)
See the Sessions Guide for more on multi-turn conversations.
Error Handling
Streams throw on infrastructure errors (CLI crash, timeout). Use catch to handle them:
case ClaudeCode.start_link() do
 {:ok, session} ->
 try do
 response =
 session
 |> ClaudeCode.stream("Hello!")
 |> ClaudeCode.Stream.final_text()

 IO.puts("Claude says: #{response}")
 catch
 {:stream_init_error, reason} ->
 IO.puts("Failed to start stream: #{inspect(reason)}")

 {:stream_error, reason} ->
 IO.puts("Stream error: #{inspect(reason)}")

 {:stream_timeout, _ref} ->
 IO.puts("Request timed out")
 after
 ClaudeCode.stop(session)
 end

 {:error, reason} ->
 IO.puts("Failed to start session: #{inspect(reason)}")
end
Claude API errors (rate limits, max turns) come through as result messages with is_error: true - see Troubleshooting for details.
Next Steps
	Sessions Guide - Multi-turn conversations and session management
	Streaming Guide - Real-time response streaming
	Configuration Guide - All configuration options
	Supervision Guide - Production-ready supervision
	Troubleshooting - Common issues and solutions

 Streaming Guide - ClaudeCode v0.16.0

 Streaming Guide

ClaudeCode offers two ways to get responses: one-off queries and session-based streaming. This guide covers when and how to use each.
One-off vs Session-based
One-off - Single query with automatic session management:
{:ok, response} = ClaudeCode.query("Explain GenServers")
IO.puts(response) # Full response at once
Session-based Streaming - Multi-turn with real-time responses:
{:ok, session} = ClaudeCode.start_link()

session
|> ClaudeCode.stream("Explain GenServers")
|> ClaudeCode.Stream.text_content()
|> Enum.each(&IO.write/1) # Prints incrementally

ClaudeCode.stop(session)
	Use Case	Recommended
	Simple queries, scripts	One-off (query/2)
	Chat interfaces, LiveView	Session + stream/3
	Multi-turn conversations	Session + stream/3
	Batch processing	One-off (query/2)

Stream Utilities
The ClaudeCode.Stream module provides utilities for working with streams:
Getting the Final Result
alias ClaudeCode.Stream

Most common: just get the final answer
result = session
|> ClaudeCode.stream("What is 2 + 2?")
|> Stream.final_text()
=> "2 + 2 equals 4."
Collecting a Summary
Get a structured summary of the entire conversation
summary = session
|> ClaudeCode.stream("Create a hello.txt file")
|> Stream.collect()

IO.puts("Text: #{summary.text}")
IO.puts("Result: #{summary.result}")
IO.puts("Tool calls: #{length(summary.tool_calls)}")

Process each tool call with its result
Enum.each(summary.tool_calls, fn {tool_use, tool_result} ->
 IO.puts("Tool: #{tool_use.name}")
 if tool_result, do: IO.puts("Output: #{tool_result.content}")
end)
Filtering and Extracting Content
Extract text content from assistant messages
stream |> Stream.text_content() |> Enum.each(&IO.write/1)

Extract thinking content (for extended thinking models)
stream |> Stream.thinking_content() |> Enum.to_list()

Extract tool usage blocks
stream |> Stream.tool_uses() |> Enum.each(&handle_tool/1)

Filter by message type
stream |> Stream.filter_type(:assistant) |> Enum.to_list()

Take messages until result is received
stream |> Stream.until_result() |> Enum.to_list()
Monitoring and Side Effects
Log all messages without affecting the stream
stream
|> Stream.tap(fn msg -> Logger.debug("Got: #{inspect(msg)}") end)
|> Stream.final_text()

React to tool usage (for progress indicators)
stream
|> Stream.on_tool_use(fn tool ->
 IO.puts("Using tool: #{tool.name}")
end)
|> Stream.final_text()
Character-Level Streaming
For real-time chat interfaces, enable partial messages to receive text character-by-character:
session
|> ClaudeCode.stream("Tell me a story", include_partial_messages: true)
|> ClaudeCode.Stream.text_deltas()
|> Enum.each(&IO.write/1)
Delta Utilities
Text deltas only (most common)
ClaudeCode.Stream.text_deltas(stream)

Thinking deltas (extended thinking)
ClaudeCode.Stream.thinking_deltas(stream)

All delta types with index
ClaudeCode.Stream.content_deltas(stream)
Comparing Modes
Default: Complete chunks
stream |> Stream.text_content() |> Enum.to_list()
=> ["Hello! How can I help you today?"]

Partial: Character deltas
stream |> Stream.text_deltas() |> Enum.to_list()
=> ["Hello", "!", " How", " can", " I", " help", ...]
Working with Partial Messages
For advanced use cases, work with raw PartialAssistantMessage structs:
alias ClaudeCode.Message.PartialAssistantMessage

session
|> ClaudeCode.stream("Hello", include_partial_messages: true)
|> Elixir.Stream.each(fn
 %PartialAssistantMessage{event: %{type: :message_start}} ->
 IO.puts("Message started")

 %PartialAssistantMessage{event: %{type: :content_block_start, index: idx}} ->
 IO.puts("Content block #{idx} started")

 %PartialAssistantMessage{} = event when PartialAssistantMessage.text_delta?(event) ->
 IO.write(PartialAssistantMessage.get_text(event))

 %PartialAssistantMessage{event: %{type: :content_block_stop}} ->
 IO.puts("\nContent block complete")

 %PartialAssistantMessage{event: %{type: :message_stop}} ->
 IO.puts("Message complete")

 _other ->
 :ok
end)
|> Elixir.Stream.run()
Performance Metrics
Track time-to-first-token and throughput:
defmodule StreamMetrics do
 def measure_ttft(session, prompt) do
 start = System.monotonic_time(:millisecond)

 {first_chunk_time, chunks} =
 session
 |> ClaudeCode.stream(prompt, include_partial_messages: true)
 |> ClaudeCode.Stream.text_deltas()
 |> Elixir.Stream.with_index()
 |> Enum.reduce({nil, []}, fn {chunk, idx}, {ttft, acc} ->
 now = System.monotonic_time(:millisecond)
 ttft = if idx == 0, do: now - start, else: ttft
 {ttft, [chunk | acc]}
 end)

 total_time = System.monotonic_time(:millisecond) - start
 text = chunks |> Enum.reverse() |> Enum.join()

 %{
 time_to_first_token_ms: first_chunk_time,
 total_time_ms: total_time,
 chunk_count: length(chunks),
 character_count: String.length(text),
 chars_per_second: String.length(text) / (total_time / 1000)
 }
 end
end
Push-Based Streaming for LiveView
For event-driven architectures like Phoenix LiveView, wrap stream/3 in a Task:
Start streaming in a Task and forward messages
parent = self()
Task.start(fn ->
 session
 |> ClaudeCode.stream("Tell me a story", include_partial_messages: true)
 |> ClaudeCode.Stream.text_deltas()
 |> Enum.each(&send(parent, {:chunk, &1}))
 send(parent, :complete)
end)

Handle messages in your LiveView/GenServer
def handle_info({:chunk, chunk}, socket) do
 {:noreply, assign(socket, response: socket.assigns.response <> chunk)}
end

def handle_info(:complete, socket) do
 {:noreply, assign(socket, streaming: false)}
end
See Phoenix Integration for complete LiveView examples.
Error Handling
Streams throw on infrastructure errors. Use catch to handle them:
try do
 session
 |> ClaudeCode.stream(prompt)
 |> ClaudeCode.Stream.text_content()
 |> Enum.each(&IO.write/1)
catch
 {:stream_init_error, reason} -> IO.puts("Init error: #{inspect(reason)}")
 {:stream_error, reason} -> IO.puts("Stream error: #{inspect(reason)}")
 {:stream_timeout, _ref} -> IO.puts("Timeout")
end
Memory Efficiency
For large responses, process chunks immediately instead of accumulating:
Good: Process immediately
session
|> ClaudeCode.stream(prompt)
|> ClaudeCode.Stream.text_content()
|> Elixir.Stream.each(&IO.write/1)
|> Elixir.Stream.run()

Avoid: Accumulating all chunks
chunks =
 session
 |> ClaudeCode.stream(prompt)
 |> ClaudeCode.Stream.text_content()
 |> Enum.to_list() # Loads everything into memory
Next Steps
	Phoenix Integration - LiveView streaming
	Sessions Guide - Multi-turn conversations
	Examples - More patterns

 Sessions Guide - ClaudeCode v0.16.0

 Sessions Guide

Sessions are the core abstraction in ClaudeCode. A session maintains a persistent connection to Claude and preserves conversation context across queries.
Starting a Session
Basic - uses ANTHROPIC_API_KEY from environment
{:ok, session} = ClaudeCode.start_link()

With options
{:ok, session} = ClaudeCode.start_link(
 model: "sonnet",
 system_prompt: "You are an Elixir expert",
 timeout: 120_000
)

Always stop when done
ClaudeCode.stop(session)
Multi-Turn Conversations
Sessions automatically maintain conversation context:
{:ok, session} = ClaudeCode.start_link()

Claude remembers each exchange
session |> ClaudeCode.stream("My name is Alice") |> Stream.run()
session |> ClaudeCode.stream("I'm learning Elixir") |> Stream.run()

response =
 session
 |> ClaudeCode.stream("What's my name and what am I learning?")
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()
=> "Your name is Alice and you're learning Elixir!"

ClaudeCode.stop(session)
Streaming Multi-Turn
Use stream/3 for real-time responses while maintaining context:
{:ok, session} = ClaudeCode.start_link()

First turn with streaming
session
|> ClaudeCode.stream("My name is Alice")
|> ClaudeCode.Stream.text_content()
|> Enum.each(&IO.write/1)

Second turn - context is preserved
session
|> ClaudeCode.stream("What is my name?")
|> ClaudeCode.Stream.text_content()
|> Enum.each(&IO.write/1)
=> "Your name is Alice"

ClaudeCode.stop(session)
Resuming Sessions
Save and resume conversations across process restarts:
Get the session ID after a conversation
{:ok, session} = ClaudeCode.start_link()
session |> ClaudeCode.stream("Remember: the secret code is 12345") |> Stream.run()
session_id = ClaudeCode.get_session_id(session)
ClaudeCode.stop(session)

Later: resume with the same context
{:ok, session} = ClaudeCode.start_link(resume: session_id)

response =
 session
 |> ClaudeCode.stream("What was the secret code?")
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()
=> "The secret code is 12345"
Forking Sessions
Create a branch from an existing conversation. The fork starts with the same
context but gets a new session ID after the first query:
Original conversation
{:ok, session} = ClaudeCode.start_link()

session
|> ClaudeCode.stream("My name is Mike")
|> Stream.run()

session_id = ClaudeCode.get_session_id(session)
=> "eec9f765-06fb-437f-8e48-c4fef8bc3096"

Fork the conversation - creates a new branch
{:ok, forked} = ClaudeCode.start_link(
 resume: session_id,
 fork_session: true
)

Forked session has same context initially
forked
|> ClaudeCode.stream("What is my name?")
|> ClaudeCode.Stream.text_content()
|> Enum.each(&IO.write/1)
=> "Your name is Mike."

After first query, fork gets its own session ID
ClaudeCode.get_session_id(forked)
=> "196dd288-4024-4a50-a3a1-0ae38000e76f"

Original session unchanged
ClaudeCode.get_session_id(session)
=> "eec9f765-06fb-437f-8e48-c4fef8bc3096"
This is useful for exploring alternative conversation paths without affecting
the original session.
Reading Session History
Claude Code stores conversation history in ~/.claude/projects/. You can read
past conversations without starting a new session:
Get conversation (user + assistant messages) by session ID
{:ok, messages} = ClaudeCode.History.conversation("abc123-def456")

Enum.each(messages, fn msg ->
 IO.puts("#{msg.type}: #{msg}")
end)
Listing Projects and Sessions
List all projects with history
{:ok, projects} = ClaudeCode.History.list_projects()
=> ["/Users/me/project1", "/Users/me/project2"]

List sessions for a project
{:ok, sessions} = ClaudeCode.History.list_sessions("/Users/me/project1")
=> ["abc123-def456", "ghi789-jkl012"]
Low-Level Access
For metadata and non-conversation entries:
Read all entries (includes system events, summaries, file snapshots)
{:ok, entries} = ClaudeCode.History.read_session("abc123-def456")

Get session summary if available
{:ok, summary} = ClaudeCode.History.summary("abc123-def456")
=> "User asked about Elixir GenServers..."
Searching in a Specific Project
Faster lookup when you know the project
{:ok, messages} = ClaudeCode.History.conversation(
 "abc123-def456",
 project_path: "/Users/me/my-project"
)
Clearing Context
Start fresh within the same session:
ClaudeCode.clear(session)
Conversation history is cleared, but session stays alive
Named Sessions
Use atoms for easy access across your application:
{:ok, _} = ClaudeCode.start_link(name: :assistant)

Use from anywhere
:assistant |> ClaudeCode.stream("Hello!") |> Stream.run()
Session Lifecycle
	Event	Behavior
	start_link/1	Creates GenServer, CLI not started yet
	First query	CLI subprocess spawns (lazy connect)
	Subsequent queries	Reuses existing CLI connection
	stop/1	Terminates GenServer and CLI
	Process crash	GenServer exits, CLI terminates

Checking Session State
Check if session is alive
ClaudeCode.alive?(session)

Get current session ID (nil if no queries yet)
session_id = ClaudeCode.get_session_id(session)
Wrapping in GenServer
For production use, wrap sessions in your own GenServer:
defmodule ChatAgent do
 use GenServer

 def start_link(opts \\ []) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def chat(message) do
 GenServer.call(__MODULE__, {:chat, message}, 60_000)
 end

 def init(opts) do
 {:ok, session} = ClaudeCode.start_link(opts)
 {:ok, %{session: session}}
 end

 def handle_call({:chat, message}, _from, %{session: session} = state) do
 result =
 session
 |> ClaudeCode.stream(message)
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

 {:reply, {:ok, result}, state}
 end

 def terminate(_reason, %{session: session}) do
 ClaudeCode.stop(session)
 end
end
Session Options
Common options for start_link/1:
	Option	Type	Description
	name	atom	Register with a name for global access
	resume	string	Session ID to resume
	fork_session	boolean	Create new session ID when resuming (use with resume)
	model	string	Claude model ("sonnet", "opus", etc.)
	system_prompt	string	Override system prompt
	timeout	integer	Query timeout in ms (default: 300_000)
	allowed_tools	list	Tools Claude can use

See Configuration Guide for all options.
Supervised Sessions
For production fault tolerance, use ClaudeCode.Supervisor:
In application.ex
children = [
 {ClaudeCode.Supervisor, [
 [name: :assistant],
 [name: :code_reviewer, system_prompt: "You review code"]
]}
]

Sessions restart automatically on crashes
:assistant |> ClaudeCode.stream("Hello!") |> Stream.run()
See Supervision Guide for full production patterns.
Next Steps
	Streaming Guide - Real-time response streaming
	Supervision Guide - Production patterns
	Configuration Guide - All options

 Permissions Guide - ClaudeCode v0.16.0

 Permissions Guide

ClaudeCode provides several options to control what actions Claude can perform during a session.
Permission Modes
The permission_mode option controls how Claude handles permission requests:
{:ok, session} = ClaudeCode.start_link(
 permission_mode: :accept_edits
)
	Mode	Description
	:default	CLI prompts for permission on sensitive operations
	:accept_edits	Automatically accept file edit permissions
	:bypass_permissions	Skip all permission prompts (use with caution)

Tool Restrictions
Control which tools Claude can use with allowed_tools and disallowed_tools:
Allow only specific tools
{:ok, session} = ClaudeCode.start_link(
 allowed_tools: ["View", "Edit"]
)

Allow tools with patterns
{:ok, session} = ClaudeCode.start_link(
 allowed_tools: ["View", "Bash(git:*)"] # Only git commands in Bash
)

Disallow specific tools
{:ok, session} = ClaudeCode.start_link(
 disallowed_tools: ["Bash", "Edit"]
)
Common Tool Names
	View - Read files
	Edit - Modify files
	Write - Create new files
	Bash - Execute shell commands
	Glob - Search for files
	Grep - Search file contents

Tool Patterns
Use patterns to allow subsets of tool functionality:
Only allow git commands
allowed_tools: ["Bash(git:*)"]

Only allow npm and git
allowed_tools: ["Bash(git:*)", "Bash(npm:*)"]
Directory Access
Restrict which directories Claude can access:
{:ok, session} = ClaudeCode.start_link(
 add_dir: ["/path/to/allowed/directory"]
)
Security Considerations
	Production environments: Use permission_mode: :accept_edits or stricter
	Untrusted input: Always restrict tools when processing user-provided prompts
	File access: Use add_dir to limit directory access
	Shell commands: Use allowed_tools: ["Bash(git:*)"] patterns to restrict commands

Example: Restricted Code Review
Safe configuration for automated code review
{:ok, session} = ClaudeCode.start_link(
 permission_mode: :default,
 allowed_tools: ["View", "Glob", "Grep"], # Read-only tools
 add_dir: ["/app/src"] # Only access source directory
)

review =
 session
 |> ClaudeCode.stream("Review the code for security issues")
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()
Next Steps
	Configuration Guide - All configuration options
	Tool Callbacks - Monitor tool usage

 Testing Guide - ClaudeCode v0.16.0

 Testing Guide

ClaudeCode provides a test adapter that lets you mock Claude responses without making real API calls. This enables fast, deterministic tests for applications built on ClaudeCode.
Setup
1. Add Test Configuration
Configure the test adapter in your test environment:
config/test.exs
config :claude_code, adapter: {ClaudeCode.Test, ClaudeCode}
2. Start the Ownership Server
Add ClaudeCode.Test to your test helper:
test/test_helper.exs
ExUnit.start()
Supervisor.start_link([ClaudeCode.Test], strategy: :one_for_one)
3. Register Stubs in Tests
test "returns greeting" do
 ClaudeCode.Test.stub(ClaudeCode, fn _query, _opts ->
 [
 ClaudeCode.Test.text("Hello! How can I help?")
]
 end)

 {:ok, session} = ClaudeCode.start_link()
 result = session |> ClaudeCode.stream("Hi") |> ClaudeCode.Stream.final_text()
 assert result == "Hello! How can I help?"
end
Message Helpers
ClaudeCode.Test provides helpers to construct realistic Claude messages:
	Helper	Description
	text/2	Assistant message with text content
	tool_use/3	Assistant message with tool invocation
	tool_result/2	User message with tool execution result
	thinking/2	Assistant message with thinking block
	result/2	Final result message
	system/1	System initialization message

Text Messages
Simple text response
ClaudeCode.Test.text("Hello world!")

With options
ClaudeCode.Test.text("Done", stop_reason: :end_turn)
Tool Use
Tool invocation
ClaudeCode.Test.tool_use("Read", %{file_path: "/tmp/file.txt"})

With preceding text
ClaudeCode.Test.tool_use("Bash", %{command: "ls -la"}, text: "Let me check the directory...")
Tool Results
Successful tool result (string)
ClaudeCode.Test.tool_result("file contents here")

Structured data (maps are auto-encoded to JSON)
ClaudeCode.Test.tool_result(%{status: "success", files: ["a.ex", "b.ex"]})

Failed tool result
ClaudeCode.Test.tool_result("Permission denied", is_error: true)
Thinking Blocks
Extended thinking
ClaudeCode.Test.thinking("Let me analyze step by step...")

Thinking followed by response
ClaudeCode.Test.thinking("First I need to...", text: "Here's my answer")
Result Messages
Default success result
ClaudeCode.Test.result()

Custom result
ClaudeCode.Test.result("Task completed successfully")

Error result
ClaudeCode.Test.result("Rate limit exceeded", is_error: true)
Dynamic Stubs
Stubs can be functions that receive the query and options:
ClaudeCode.Test.stub(ClaudeCode, fn query, opts ->
 cond do
 String.contains?(query, "error") ->
 [ClaudeCode.Test.result("Something went wrong", is_error: true)]

 String.contains?(query, "file") ->
 [
 ClaudeCode.Test.tool_use("Read", %{file_path: "/tmp/test.txt"}),
 ClaudeCode.Test.tool_result(%{content: "file contents", size: 123}),
 ClaudeCode.Test.text("I read the file"),
 ClaudeCode.Test.result()
]

 true ->
 [ClaudeCode.Test.text("Default response")]
 end
end)
Testing Tool Sequences
Simulate multi-step tool interactions:
test "handles file read and edit sequence" do
 ClaudeCode.Test.stub(ClaudeCode, fn _query, _opts ->
 [
 ClaudeCode.Test.text("I'll read the file first"),
 ClaudeCode.Test.tool_use("Read", %{file_path: "lib/app.ex"}),
 ClaudeCode.Test.tool_result("defmodule App do\nend"),
 ClaudeCode.Test.text("Now I'll edit it"),
 ClaudeCode.Test.tool_use("Edit", %{
 file_path: "lib/app.ex",
 old_string: "defmodule App do",
 new_string: "defmodule MyApp do"
 }),
 ClaudeCode.Test.tool_result("File updated"),
 ClaudeCode.Test.text("Done! I renamed the module."),
 ClaudeCode.Test.result("Done! I renamed the module.")
]
 end)

 {:ok, session} = ClaudeCode.start_link()

 summary = session
 |> ClaudeCode.stream("Rename the module")
 |> ClaudeCode.Stream.collect()

 assert length(summary.tool_calls) == 2
 assert summary.result == "Done! I renamed the module."
end
Concurrent Tests
ClaudeCode.Test uses NimbleOwnership for process-based isolation. Each test process owns its stubs, allowing concurrent test execution with async: true:
defmodule MyAppTest do
 use ExUnit.Case, async: true

 test "concurrent test 1" do
 ClaudeCode.Test.stub(ClaudeCode, fn _, _ ->
 [ClaudeCode.Test.text("Response 1")]
 end)
 # ...
 end

 test "concurrent test 2" do
 ClaudeCode.Test.stub(ClaudeCode, fn _, _ ->
 [ClaudeCode.Test.text("Response 2")]
 end)
 # ...
 end
end
Allowing Spawned Processes
If your test spawns processes that need stub access:
test "spawned process can use stub" do
 ClaudeCode.Test.stub(ClaudeCode, fn _, _ ->
 [ClaudeCode.Test.text("Hello")]
 end)

 task = Task.async(fn ->
 {:ok, session} = ClaudeCode.start_link()
 ClaudeCode.stream(session, "hi") |> Enum.to_list()
 end)

 # Allow the task to access our stubs
 ClaudeCode.Test.allow(ClaudeCode, self(), task.pid)

 messages = Task.await(task)
 assert length(messages) > 0
end
Shared Mode
For complex scenarios where process ownership is difficult to track:
setup do
 ClaudeCode.Test.set_mode_to_shared()
 :ok
end
In shared mode, all processes can access stubs without explicit allowances.
Using Different Names
The name in {ClaudeCode.Test, name} can be any term. This is useful when you need different stub behaviors in the same test, or when building wrapper modules around ClaudeCode:
defmodule MyApp.AIAgentTest do
 use ExUnit.Case, async: true

 test "different agents have different behaviors" do
 # Stub different "personas" with different names
 ClaudeCode.Test.stub(MyApp.CodingAgent, fn _query, _opts ->
 [ClaudeCode.Test.text("Here's the code you requested...")]
 end)

 ClaudeCode.Test.stub(MyApp.ResearchAgent, fn _query, _opts ->
 [ClaudeCode.Test.text("Based on my research...")]
 end)

 # Start sessions with different adapters
 {:ok, coder} = ClaudeCode.start_link(adapter: {ClaudeCode.Test, MyApp.CodingAgent})
 {:ok, researcher} = ClaudeCode.start_link(adapter: {ClaudeCode.Test, MyApp.ResearchAgent})

 coding_result = coder |> ClaudeCode.stream("write code") |> ClaudeCode.Stream.final_text()
 research_result = researcher |> ClaudeCode.stream("research") |> ClaudeCode.Stream.final_text()

 assert coding_result =~ "code"
 assert research_result =~ "research"
 end
end
This pattern is inspired by Req.Test, where the name represents the semantic entity being mocked rather than an internal module.
Testing with Tool Callbacks
Test your tool callback handlers:
test "tool callback receives events" do
 events = []

 callback = fn event ->
 send(self(), {:tool_event, event})
 :ok
 end

 ClaudeCode.Test.stub(ClaudeCode, fn _, _ ->
 [
 ClaudeCode.Test.tool_use("Bash", %{command: "echo hi"}),
 ClaudeCode.Test.tool_result("hi"),
 ClaudeCode.Test.result()
]
 end)

 {:ok, session} = ClaudeCode.start_link(tool_callback: callback)
 session |> ClaudeCode.stream("run echo") |> Stream.run()

 assert_received {:tool_event, {:tool_start, _}}
 assert_received {:tool_event, {:tool_end, _, _}}
end
Auto-Generated Messages
ClaudeCode.Test automatically:
	Prepends a system message if none is provided
	Appends a result message if none is provided
	Links tool_use IDs to subsequent tool_result messages
	Unifies session IDs across all messages

This means minimal stubs work correctly:
This minimal stub works - system and result are auto-added
ClaudeCode.Test.stub(ClaudeCode, fn _, _ ->
 [ClaudeCode.Test.text("Hello")]
end)
Common Patterns
Testing Error Handling
test "handles API errors gracefully" do
 ClaudeCode.Test.stub(ClaudeCode, fn _, _ ->
 [ClaudeCode.Test.result("Rate limit exceeded", is_error: true)]
 end)

 {:ok, session} = ClaudeCode.start_link()

 result = session
 |> ClaudeCode.stream("test")
 |> Enum.find(&match?(%ClaudeCode.Message.ResultMessage{}, &1))

 assert result.is_error == true
end
Testing Stream Processing
test "processes streaming text correctly" do
 ClaudeCode.Test.stub(ClaudeCode, fn _, _ ->
 [
 ClaudeCode.Test.text("Part 1"),
 ClaudeCode.Test.text("Part 2"),
 ClaudeCode.Test.text("Part 3")
]
 end)

 {:ok, session} = ClaudeCode.start_link()

 texts = session
 |> ClaudeCode.stream("test")
 |> ClaudeCode.Stream.text_content()
 |> Enum.to_list()

 assert texts == ["Part 1", "Part 2", "Part 3"]
end
Testing Multi-Turn Conversations
test "maintains context across turns" do
 counter = :counters.new(1, [])

 ClaudeCode.Test.stub(ClaudeCode, fn query, _opts ->
 :counters.add(counter, 1, 1)
 turn = :counters.get(counter, 1)

 [ClaudeCode.Test.text("Turn #{turn}: #{query}")]
 end)

 {:ok, session} = ClaudeCode.start_link()

 r1 = session |> ClaudeCode.stream("First") |> ClaudeCode.Stream.final_text()
 r2 = session |> ClaudeCode.stream("Second") |> ClaudeCode.Stream.final_text()

 assert r1 == "Turn 1: First"
 assert r2 == "Turn 2: Second"
end

 Phoenix Integration - ClaudeCode v0.16.0

 Phoenix Integration

This guide covers integrating ClaudeCode with Phoenix applications, including LiveView real-time streaming and controller patterns.
Setup
Add ClaudeCode to your supervision tree:
lib/my_app/application.ex
def start(_type, _args) do
 children = [
 MyAppWeb.Endpoint,
 {ClaudeCode.Supervisor, [
 [name: :assistant]
]}
]

 Supervisor.start_link(children, strategy: :one_for_one)
end
LiveView with Streaming (Recommended)
defmodule MyAppWeb.ChatLive do
 use MyAppWeb, :live_view

 def mount(_params, _session, socket) do
 {:ok, assign(socket, messages: [], response: "", streaming: false)}
 end

 def handle_event("send", %{"message" => message}, socket) do
 parent = self()

 Task.start(fn ->
 :assistant
 |> ClaudeCode.stream(message, include_partial_messages: true)
 |> ClaudeCode.Stream.text_deltas()
 |> Enum.each(fn chunk ->
 send(parent, {:chunk, chunk})
 end)

 send(parent, :complete)
 end)

 messages = socket.assigns.messages ++ [%{role: :user, content: message}]
 {:noreply, assign(socket, messages: messages, response: "", streaming: true)}
 end

 def handle_info({:chunk, chunk}, socket) do
 {:noreply, assign(socket, response: socket.assigns.response <> chunk)}
 end

 def handle_info(:complete, socket) do
 messages = socket.assigns.messages ++ [%{role: :assistant, content: socket.assigns.response}]
 {:noreply, assign(socket, messages: messages, response: "", streaming: false)}
 end

 def render(assigns) do
 ~H"""
 <div class="chat">
 <div class="messages">
 <%= for msg <- @messages do %>
 <div class={"message #{msg.role}"}><%= msg.content %></div>
 <% end %>
 <%= if @streaming do %>
 <div class="message assistant streaming"><%= @response %></div>
 <% end %>
 </div>

 <form phx-submit="send">
 <input type="text" name="message" disabled={@streaming} autocomplete="off" />
 <button type="submit" disabled={@streaming}>Send</button>
 </form>
 </div>
 """
 end
end
Controller Integration
For traditional request/response patterns:
defmodule MyAppWeb.ClaudeController do
 use MyAppWeb, :controller

 def ask(conn, %{"prompt" => prompt}) do
 try do
 response =
 :assistant
 |> ClaudeCode.stream(prompt)
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

 json(conn, %{response: response})
 catch
 error ->
 conn
 |> put_status(:service_unavailable)
 |> json(%{error: inspect(error)})
 end
 end
end
Streaming HTTP Response
For Server-Sent Events or chunked responses:
def stream(conn, %{"prompt" => prompt}) do
 conn = put_resp_header(conn, "content-type", "text/event-stream")
 conn = send_chunked(conn, 200)

 :assistant
 |> ClaudeCode.stream(prompt)
 |> ClaudeCode.Stream.text_content()
 |> Enum.reduce_while(conn, fn chunk, conn ->
 case chunk(conn, "data: #{chunk}\n\n") do
 {:ok, conn} -> {:cont, conn}
 {:error, :closed} -> {:halt, conn}
 end
 end)
end
PubSub Broadcasting
For multi-user applications where multiple clients see the same response:
defmodule MyApp.ClaudeStreamer do
 def stream_to_topic(prompt, topic) do
 Task.start(fn ->
 :assistant
 |> ClaudeCode.stream(prompt, include_partial_messages: true)
 |> ClaudeCode.Stream.text_deltas()
 |> Enum.each(fn chunk ->
 Phoenix.PubSub.broadcast(MyApp.PubSub, topic, {:claude_chunk, chunk})
 end)

 Phoenix.PubSub.broadcast(MyApp.PubSub, topic, :claude_complete)
 end)
 end
end

In your LiveView
def mount(_params, _session, socket) do
 Phoenix.PubSub.subscribe(MyApp.PubSub, "chat:#{socket.assigns.room_id}")
 {:ok, socket}
end

def handle_info({:claude_chunk, chunk}, socket) do
 {:noreply, assign(socket, response: socket.assigns.response <> chunk)}
end

def handle_info(:claude_complete, socket) do
 {:noreply, assign(socket, streaming: false)}
end
Service Module Pattern
Wrap ClaudeCode in a service module for cleaner integration:
defmodule MyApp.Claude do
 @moduledoc "Service wrapper for Claude interactions"

 def ask(prompt, opts \\ []) do
 session = Keyword.get(opts, :session, :assistant)

 session
 |> ClaudeCode.stream(prompt)
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()
 end

 def stream(prompt, opts \\ []) do
 session = Keyword.get(opts, :session, :assistant)
 include_partial = Keyword.get(opts, :partial, true)

 session
 |> ClaudeCode.stream(prompt, include_partial_messages: include_partial)
 |> ClaudeCode.Stream.text_deltas()
 end
end

Usage in controller/LiveView
response = MyApp.Claude.ask("Hello!")
=> "Hello! How can I help you today?"
Error Handling
Graceful error handling in LiveView:
def handle_event("send", %{"message" => message}, socket) do
 parent = self()

 Task.start(fn ->
 try do
 :assistant
 |> ClaudeCode.stream(message)
 |> ClaudeCode.Stream.text_content()
 |> Enum.each(fn chunk -> send(parent, {:chunk, chunk}) end)

 send(parent, :complete)
 catch
 error -> send(parent, {:error, inspect(error)})
 end
 end)

 {:noreply, assign(socket, streaming: true)}
end

def handle_info({:error, message}, socket) do
 {:noreply,
 socket
 |> put_flash(:error, "Claude error: #{message}")
 |> assign(streaming: false)}
end
Next Steps
	Streaming Guide - Detailed streaming patterns
	Supervision Guide - Production setup
	Tool Callbacks - Monitor Claude's actions

 MCP Integration - ClaudeCode v0.16.0

 MCP Integration

The Model Context Protocol (MCP) lets you expose custom Elixir tools to Claude. This requires the optional hermes_mcp dependency.
Installation
mix.exs
def deps do
 [
 {:claude_code, "~> 0.16"},
 {:hermes_mcp, "~> 0.14"} # Optional MCP support
]
end
Check if MCP is available:
ClaudeCode.MCP.available?()
=> true
Defining Tools
Use Hermes to define tools Claude can invoke:
defmodule MyApp.Tools.Calculator do
 use Hermes.Server.Component, type: :tool

 alias Hermes.Server.Response

 @moduledoc "Perform mathematical calculations"

 schema do
 field :operation, :string, required: true, description: "The operation: add, subtract, multiply, or divide"
 field :a, :float, required: true, description: "First operand"
 field :b, :float, required: true, description: "Second operand"
 end

 def execute(params, frame) do
 case calculate(params.operation, params.a, params.b) do
 {:ok, value} ->
 response = Response.text(Response.tool(), "Result: #{value}")
 {:reply, response, frame}

 {:error, msg} ->
 response = Response.error(msg)
 {:reply, response, frame}
 end
 end

 defp calculate("divide", _a, 0), do: {:error, "Division by zero"}
 defp calculate("divide", _a, 0.0), do: {:error, "Division by zero"}
 defp calculate(op, a, b) do
 result = case op do
 "add" -> a + b
 "subtract" -> a - b
 "multiply" -> a * b
 "divide" -> a / b
 _ -> {:error, "Unknown operation"}
 end

 case result do
 {:error, _} = err -> err
 value -> {:ok, value}
 end
 end
end
Database Query Tool
defmodule MyApp.Tools.UserSearch do
 use Hermes.Server.Component, type: :tool

 alias Hermes.Server.Response

 import Ecto.Query

 @moduledoc "Search for users in the database"

 schema do
 field :email, :string, required: true, description: "Email to search for"
 field :limit, :integer, description: "Max results (default: 10)"
 end

 def execute(params, frame) do
 limit = params[:limit] || 10

 users = MyApp.Repo.all(
 from u in MyApp.User,
 where: ilike(u.email, ^"%#{params.email}%"),
 limit: ^limit,
 select: %{id: u.id, email: u.email, name: u.name}
)

 response = Response.json(Response.tool(), users)
 {:reply, response, frame}
 end
end
Creating the MCP Server
defmodule MyApp.MCPServer do
 use Hermes.Server,
 name: "myapp-tools",
 version: "1.0.0",
 capabilities: [:tools]

 component MyApp.Tools.Calculator
 component MyApp.Tools.UserSearch
end
Connecting to ClaudeCode
Using mcp_servers (Recommended)
The simplest way to connect MCP servers is with the mcp_servers option. Pass a map where keys are server names and values are either Hermes MCP modules or command configurations:
Connect a Hermes MCP server directly
{:ok, session} = ClaudeCode.start_link(
 mcp_servers: %{
 "myapp-tools" => MyApp.MCPServer
 }
)

Claude can now use your tools!
response =
 session
 |> ClaudeCode.stream("Calculate 15 * 7")
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()
Claude invokes your calculator tool and returns the result
When you pass a module atom, ClaudeCode automatically generates the stdio transport configuration to spawn your Elixir app with the MCP server.
Module with Custom Environment
If you need to pass custom environment variables to your Hermes MCP server, use a map with a module key:
{:ok, session} = ClaudeCode.start_link(
 mcp_servers: %{
 "myapp-tools" => %{
 module: MyApp.MCPServer,
 env: %{"DEBUG" => "1", "LOG_LEVEL" => "debug"}
 }
 }
)
Custom env is merged with the defaults (MIX_ENV: "prod"). You can override MIX_ENV if needed:
mcp_servers: %{
 "myapp-tools" => %{module: MyApp.MCPServer, env: %{"MIX_ENV" => "dev"}}
}
Combining Hermes and External MCP Servers
You can mix Hermes modules with external MCP servers (like Playwright, filesystem, etc.):
{:ok, session} = ClaudeCode.start_link(
 mcp_servers: %{
 # Your Hermes MCP server (module atom)
 "myapp-tools" => MyApp.MCPServer,

 # External MCP server (command config)
 "playwright" => %{
 command: "npx",
 args: ["@playwright/mcp@latest"]
 },

 # Another external server with environment variables
 "filesystem" => %{
 command: "npx",
 args: ["-y", "@anthropic/mcp-filesystem", "/path/to/allowed/dir"],
 env: %{"NODE_ENV" => "production"}
 }
 }
)
Query-level MCP Configuration
You can also specify or override MCP servers at query time:
Start session with default servers
{:ok, session} = ClaudeCode.start_link(
 mcp_servers: %{"myapp-tools" => MyApp.MCPServer}
)

Add additional server for specific query
session
|> ClaudeCode.stream("Test the login page",
 mcp_servers: %{
 "myapp-tools" => MyApp.MCPServer,
 "playwright" => %{command: "npx", args: ["@playwright/mcp@latest"]}
 })
|> Stream.run()
Production Supervision
Add MCP-enabled sessions to your supervision tree:
lib/my_app/application.ex
def start(_type, _args) do
 children = [
 # Start Claude sessions with MCP servers
 {ClaudeCode.Supervisor, [
 [name: :assistant, mcp_servers: %{"tools" => MyApp.MCPServer}]
]},

 MyAppWeb.Endpoint
]

 Supervisor.start_link(children, strategy: :one_for_one)
end
Alternative: File-based Configuration
If you prefer to use a configuration file (e.g., for complex setups or sharing configs), use mcp_config:
Start MCP server and get config path
{:ok, config_path} = ClaudeCode.MCP.Server.start_link(
 server: MyApp.MCPServer,
 port: 9001
)

Start ClaudeCode with MCP config file
{:ok, session} = ClaudeCode.start_link(mcp_config: config_path)
Multiple Servers with Config Files
alias ClaudeCode.MCP.Config

Generate configs for multiple servers
calc_config = Config.http_config("calculator", port: 9001)
db_config = Config.http_config("database", port: 9002)

Merge configs
merged = Config.merge_configs([calc_config, db_config])

Write to temp file
{:ok, config_path} = Config.write_temp_config(merged)

Start ClaudeCode with all servers
{:ok, session} = ClaudeCode.start_link(mcp_config: config_path)
Stdio Transport with Config Files
For command-line MCP tools using config files:
alias ClaudeCode.MCP.Config

stdio_config = Config.stdio_config("elixir-tools",
 command: "mix",
 args: ["run", "--no-halt", "-e", "MyApp.MCPServer.start_link(transport: :stdio)"],
 env: %{"MIX_ENV" => "prod"}
)

{:ok, path} = Config.write_temp_config(stdio_config)
Next Steps
	Tool Callbacks - Monitor tool usage
	Hermes MCP Documentation - Full Hermes guide

 Tool Callbacks - ClaudeCode v0.16.0

 Tool Callbacks

Tool callbacks allow you to monitor, log, and audit all tool executions during a ClaudeCode session. The callback is invoked asynchronously after each tool completes.
Basic Usage
callback = fn event ->
 IO.puts("Tool: #{event.name}, Success: #{not event.is_error}")
end

{:ok, session} = ClaudeCode.start_link(tool_callback: callback)
Callback Event Structure
The callback receives an event map with:
	Field	Type	Description
	name	string	Tool name (e.g., "View", "Edit", "Bash")
	tool_use_id	string	Unique identifier for this tool invocation
	input	map	Input parameters passed to the tool
	result	string	Tool output (may be nil)
	is_error	boolean	Whether the tool execution failed
	timestamp	DateTime	When the tool was executed

Logging
require Logger

callback = fn event ->
 Logger.info("Tool executed",
 tool: event.name,
 input: event.input,
 success: not event.is_error,
 timestamp: event.timestamp
)
end

{:ok, session} = ClaudeCode.start_link(tool_callback: callback)
Telemetry Integration
Emit telemetry events for metrics and monitoring:
callback = fn event ->
 :telemetry.execute(
 [:claude_code, :tool, :executed],
 %{duration_ms: 0},
 %{
 tool_name: event.name,
 tool_use_id: event.tool_use_id,
 is_error: event.is_error,
 input_keys: Map.keys(event.input),
 result_length: String.length(event.result || "")
 }
)
end

{:ok, session} = ClaudeCode.start_link(tool_callback: callback)

Attach a handler
:telemetry.attach(
 "tool-logger",
 [:claude_code, :tool, :executed],
 fn _event, _measurements, metadata, _config ->
 IO.puts("Tool #{metadata.tool_name} executed")
 end,
 nil
)
Security Monitoring
Monitor for sensitive operations:
@sensitive_tools ["Edit", "Write", "Bash"]
@sensitive_paths ["/etc", "/usr", "~/.ssh"]

callback = fn event ->
 if sensitive_operation?(event) do
 alert_security_team(event)
 end
end

defp sensitive_operation?(event) do
 event.name in @sensitive_tools and
 path_is_sensitive?(event.input["path"] || event.input["file_path"])
end

defp path_is_sensitive?(nil), do: false
defp path_is_sensitive?(path) do
 Enum.any?(@sensitive_paths, &String.starts_with?(path, &1))
end

defp alert_security_team(event) do
 Logger.warning("Sensitive operation",
 tool: event.name,
 input: event.input
)
end
Analytics Dashboard
Track tool usage statistics:
defmodule ToolAnalytics do
 use GenServer

 def start_link(opts \\ []) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def get_stats, do: GenServer.call(__MODULE__, :get_stats)

 def callback(event) do
 GenServer.cast(__MODULE__, {:record, event})
 end

 def init(_opts) do
 {:ok, %{tool_counts: %{}, error_counts: %{}, total: 0}}
 end

 def handle_cast({:record, event}, state) do
 new_state = state
 |> Map.update!(:total, &(&1 + 1))
 |> update_in([:tool_counts, event.name], &((&1 || 0) + 1))
 |> then(fn s ->
 if event.is_error do
 update_in(s, [:error_counts, event.name], &((&1 || 0) + 1))
 else
 s
 end
 end)

 {:noreply, new_state}
 end

 def handle_call(:get_stats, _from, state) do
 {:reply, state, state}
 end
end

Usage
{:ok, _} = ToolAnalytics.start_link()
{:ok, session} = ClaudeCode.start_link(tool_callback: &ToolAnalytics.callback/1)

Later
ToolAnalytics.get_stats()
=> %{total: 15, tool_counts: %{"View" => 10, "Edit" => 5}, error_counts: %{}}
Audit Trail
Store tool executions for compliance:
defmodule AuditLog do
 def callback(event) do
 audit_entry = %{
 tool: event.name,
 tool_use_id: event.tool_use_id,
 input: event.input,
 result_preview: String.slice(event.result || "", 0, 100),
 is_error: event.is_error,
 timestamp: event.timestamp
 }

 # Store in database, send to logging service, etc.
 MyApp.AuditRepo.insert!(audit_entry)
 end
end

{:ok, session} = ClaudeCode.start_link(tool_callback: &AuditLog.callback/1)
Combining Multiple Callbacks
defmodule CombinedCallbacks do
 def callback(event) do
 log_event(event)
 emit_telemetry(event)
 check_security(event)
 end

 defp log_event(event), do: Logger.info("Tool: #{event.name}")
 defp emit_telemetry(event), do: :telemetry.execute([:tool], %{}, %{name: event.name})
 defp check_security(event), do: SecurityMonitor.check(event)
end
Next Steps
	Permissions Guide - Control tool access
	Supervision Guide - Production patterns

 Configuration Guide - ClaudeCode v0.16.0

 Configuration Guide

ClaudeCode uses NimbleOptions for configuration validation. Options can be set at multiple levels with clear precedence rules.
Option Precedence
Options are resolved in this order (highest to lowest priority):
	Query-level options - Passed to query/3 or stream/3
	Session-level options - Passed to start_link/1
	Application config - Set in config/config.exs
	Default values - Built-in defaults

Application config (lowest priority)
config :claude_code, timeout: 300_000

Session-level overrides app config
{:ok, session} = ClaudeCode.start_link(timeout: 120_000)

Query-level overrides session
ClaudeCode.stream(session, "Hello", timeout: 60_000)
Session Options
All options for ClaudeCode.start_link/1:
Authentication
	Option	Type	Default	Description
	api_key	string	ANTHROPIC_API_KEY env	Anthropic API key
	name	atom	-	Register session with a name

Model Configuration
	Option	Type	Default	Description
	model	string	"sonnet"	Claude model to use
	fallback_model	string	-	Fallback if primary model fails
	system_prompt	string	-	Override system prompt
	append_system_prompt	string	-	Append to default system prompt
	max_turns	integer	-	Limit conversation turns
	max_budget_usd	number	-	Maximum dollar amount to spend on API calls
	agent	string	-	Agent name for the session
	betas	list	-	Beta headers for API requests

Timeouts
	Option	Type	Default	Description
	timeout	integer	300_000	Query timeout in milliseconds

Tool Control
	Option	Type	Default	Description
	tools	atom/list	-	Available tools: :default, [], or list of names
	allowed_tools	list	-	Tools Claude can use
	disallowed_tools	list	-	Tools Claude cannot use
	add_dir	list	-	Additional accessible directories
	permission_mode	atom	:default	Permission handling mode

Advanced
	Option	Type	Default	Description
	resume	string	-	Session ID to resume
	fork_session	boolean	false	Create new session ID when resuming
	mcp_config	string	-	Path to MCP config file
	strict_mcp_config	boolean	false	Only use MCP servers from explicit config
	agents	map	-	Custom agent configurations
	settings	map/string	-	Team settings
	setting_sources	list	-	Setting source priority
	tool_callback	function	-	Called after tool executions
	include_partial_messages	boolean	false	Enable character-level streaming
	json_schema	map/string	-	JSON Schema for structured output validation

Query Options
Options that can be passed to stream/3:
	Option	Type	Description
	timeout	integer	Override session timeout
	system_prompt	string	Override system prompt for this query
	append_system_prompt	string	Append to system prompt
	max_turns	integer	Limit turns for this query
	max_budget_usd	number	Maximum dollar amount for this query
	agent	string	Agent to use for this query
	betas	list	Beta headers for this query
	tools	list	Available tools for this query
	allowed_tools	list	Allowed tools for this query
	disallowed_tools	list	Disallowed tools for this query
	json_schema	map/string	JSON Schema for structured output
	include_partial_messages	boolean	Enable deltas for this query

Note: api_key and name cannot be overridden at query time.
Application Configuration
Set defaults in config/config.exs:
config :claude_code,
 api_key: System.get_env("ANTHROPIC_API_KEY"),
 model: "sonnet",
 timeout: 180_000,
 system_prompt: "You are a helpful assistant",
 allowed_tools: ["View"]
Environment-Specific Configuration
config/dev.exs
config :claude_code,
 timeout: 60_000,
 permission_mode: :accept_edits

config/prod.exs
config :claude_code,
 timeout: 300_000,
 permission_mode: :default

config/test.exs
config :claude_code,
 api_key: "test-key",
 timeout: 5_000
Model Selection
Use a specific model
{:ok, session} = ClaudeCode.start_link(model: "opus")

With fallback
{:ok, session} = ClaudeCode.start_link(
 model: "opus",
 fallback_model: "sonnet"
)
Available models: "sonnet", "opus", "haiku", or full model IDs.
System Prompts
Override completely
{:ok, session} = ClaudeCode.start_link(
 system_prompt: "You are an Elixir expert. Only discuss Elixir."
)

Append to default
{:ok, session} = ClaudeCode.start_link(
 append_system_prompt: "Always format code with proper indentation."
)
Cost Control
Limit spending per query
session
|> ClaudeCode.stream("Complex analysis task", max_budget_usd: 5.00)
|> Stream.run()

Set a session-wide budget limit
{:ok, session} = ClaudeCode.start_link(
 max_budget_usd: 25.00
)
Structured Outputs
Use JSON Schema to get validated structured responses:
schema = %{
 "type" => "object",
 "properties" => %{
 "name" => %{"type" => "string"},
 "age" => %{"type" => "integer"},
 "skills" => %{"type" => "array", "items" => %{"type" => "string"}}
 },
 "required" => ["name", "age"]
}

session
|> ClaudeCode.stream("Extract person info from: John is 30 and knows Elixir",
 json_schema: schema)
|> ClaudeCode.Stream.text_content()
|> Enum.join()
Tool Configuration
Use all default tools
{:ok, session} = ClaudeCode.start_link(tools: :default)

Specify available tools (subset of built-in)
{:ok, session} = ClaudeCode.start_link(
 tools: ["Bash", "Edit", "Read"]
)

Disable all tools
{:ok, session} = ClaudeCode.start_link(tools: [])

Allow specific tools with patterns
{:ok, session} = ClaudeCode.start_link(
 allowed_tools: ["View", "Edit", "Bash(git:*)"]
)

Disallow specific tools
{:ok, session} = ClaudeCode.start_link(
 disallowed_tools: ["Bash", "Write"]
)

Additional directories
{:ok, session} = ClaudeCode.start_link(
 add_dir: ["/app/lib", "/app/test"]
)
MCP Server Control
Claude Code can connect to MCP (Model Context Protocol) servers for additional tools. By default, it uses globally configured MCP servers. Use strict_mcp_config to control this:
No tools at all (no built-in tools, no MCP servers)
{:ok, session} = ClaudeCode.start_link(
 tools: [],
 strict_mcp_config: true
)
tools: [], mcp_servers: []

Built-in tools only (ignore global MCP servers)
{:ok, session} = ClaudeCode.start_link(
 tools: :default,
 strict_mcp_config: true
)
tools: ["Task", "Bash", "Read", "Edit", ...], mcp_servers: []

Default behavior (built-in tools + global MCP servers)
{:ok, session} = ClaudeCode.start_link()
tools: ["Task", "Bash", ..., "mcp__memory__*", "mcp__github__*", ...]
mcp_servers: [%{name: "memory", ...}, %{name: "github", ...}]

Specific MCP servers only (no global config)
{:ok, session} = ClaudeCode.start_link(
 strict_mcp_config: true,
 mcp_servers: %{
 "my-tools" => %{command: "npx", args: ["my-mcp-server"]}
 }
)
Using Hermes MCP Modules
You can use Elixir-based MCP servers built with Hermes MCP:
{:ok, session} = ClaudeCode.start_link(
 strict_mcp_config: true,
 mcp_servers: %{
 "my-tools" => MyApp.MCPServer,
 "custom" => %{module: MyApp.MCPServer, env: %{"DEBUG" => "1"}}
 }
)
Custom Agents
Configure custom agents with specialized behaviors:
agents = %{
 "code-reviewer" => %{
 "description" => "Expert code reviewer",
 "prompt" => "You review code for quality and best practices.",
 "tools" => ["View", "Grep", "Glob"],
 "model" => "sonnet"
 }
}

{:ok, session} = ClaudeCode.start_link(agents: agents)
See Agents Guide for more details.
Team Settings
From file path
{:ok, session} = ClaudeCode.start_link(
 settings: "/path/to/settings.json"
)

From map (auto-encoded to JSON)
{:ok, session} = ClaudeCode.start_link(
 settings: %{
 "team_name" => "My Team",
 "preferences" => %{"theme" => "dark"}
 }
)

Control setting sources
{:ok, session} = ClaudeCode.start_link(
 setting_sources: [:user, :project, :local]
)
Validation Errors
Invalid options raise descriptive errors:
{:ok, session} = ClaudeCode.start_link(timeout: "not a number")
=> ** (NimbleOptions.ValidationError) invalid value for :timeout option:
expected positive integer, got: "not a number"
Next Steps
	Permissions Guide - Tool and permission control
	Agents Guide - Custom agent configuration
	Supervision Guide - Production configuration

 Production Supervision Guide - ClaudeCode v0.16.0

 Production Supervision Guide

Use ClaudeCode.Supervisor for production-ready AI applications with fault tolerance and automatic restarts.
Why Supervision?
Elixir's OTP supervision provides:
	Automatic restart - Sessions restart on crashes
	Fault isolation - One session crash doesn't affect others
	Zero downtime - Hot code reloading preserves state
	Global access - Named sessions work from anywhere

Quick Start
Add to your application's supervision tree:
lib/my_app/application.ex
def start(_type, _args) do
 children = [
 MyAppWeb.Endpoint,
 {ClaudeCode.Supervisor, [
 [name: :general_assistant],
 [name: :code_reviewer, system_prompt: "You review code for bugs"]
]}
]

 Supervisor.start_link(children, strategy: :one_for_one)
end
Use from anywhere:
Controller
def chat(conn, %{"message" => message}) do
 response =
 :general_assistant
 |> ClaudeCode.stream(message)
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

 json(conn, %{response: response})
end

GenServer
def handle_call({:review, code}, _from, state) do
 result =
 :code_reviewer
 |> ClaudeCode.stream("Review: #{code}")
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

 {:reply, {:ok, result}, state}
end

Task
Task.async(fn ->
 :general_assistant
 |> ClaudeCode.stream("Analyze: #{data}")
 |> Stream.run()
end)
Session Management
Static Named Sessions
Best for long-lived assistants with specific roles:
{ClaudeCode.Supervisor, [
 [name: :assistant],
 [name: :code_reviewer, system_prompt: "You review code"],
 [name: :test_writer, system_prompt: "You write ExUnit tests"],
 [name: {:global, :distributed_helper}] # Works across nodes
]}
Dynamic Sessions
Add and remove sessions at runtime:
Start with base sessions
{ClaudeCode.Supervisor, [
 [name: :shared_assistant]
]}

Add user-specific session
def create_user_session(user_id) do
 ClaudeCode.Supervisor.start_session(ClaudeCode.Supervisor, [
 name: {:user, user_id},
 system_prompt: "You are helping user #{user_id}"
])
end

Query user session
{:user, user_id} |> ClaudeCode.stream(message) |> Stream.run()

Clean up
def cleanup_user_session(user_id) do
 ClaudeCode.Supervisor.terminate_session(ClaudeCode.Supervisor, {:user, user_id})
end
Registry-Based Sessions
For advanced session discovery:
children = [
 {Registry, keys: :unique, name: MyApp.SessionRegistry},
 {ClaudeCode.Supervisor, [
 [name: {:via, Registry, {MyApp.SessionRegistry, :primary}}]
]}
]

Access via registry
session = {:via, Registry, {MyApp.SessionRegistry, :primary}}
session |> ClaudeCode.stream("Hello") |> Stream.run()
Fault Tolerance
Automatic Restart
Sessions restart transparently after crashes:
:assistant |> ClaudeCode.stream("Complex task") |> Stream.run()
Even if :assistant crashes, it restarts automatically
:assistant |> ClaudeCode.stream("Another task") |> Stream.run()
Note: Conversation history is lost on restart.
Independent Failure
One session crash doesn't affect others:
If :code_reviewer crashes, :test_writer continues working
try do
 :code_reviewer |> ClaudeCode.stream(bad_input) |> Stream.run()
catch
 :error, _ -> :crashed
end

Still works
tests =
 :test_writer
 |> ClaudeCode.stream("Write tests")
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()
Management API
List sessions
ClaudeCode.Supervisor.list_sessions(ClaudeCode.Supervisor)

Count sessions
ClaudeCode.Supervisor.count_sessions(ClaudeCode.Supervisor)

Restart session (clears history)
ClaudeCode.Supervisor.restart_session(ClaudeCode.Supervisor, :assistant)

Add session at runtime
ClaudeCode.Supervisor.start_session(ClaudeCode.Supervisor, [
 name: :temporary,
 system_prompt: "Temporary helper"
])

Remove session
ClaudeCode.Supervisor.terminate_session(ClaudeCode.Supervisor, :temporary)
Real-World Example
Web application with multiple AI assistants:
lib/my_app/application.ex
def start(_type, _args) do
 children = [
 MyAppWeb.Endpoint,
 {Registry, keys: :unique, name: MyApp.AIRegistry},
 {ClaudeCode.Supervisor, [
 [name: {:via, Registry, {MyApp.AIRegistry, :support}},
 system_prompt: "You provide customer support"],

 [name: {:via, Registry, {MyApp.AIRegistry, :dev}},
 system_prompt: "You help developers integrate our API"],

 [name: {:via, Registry, {MyApp.AIRegistry, :analytics}},
 system_prompt: "You analyze data and generate insights"]
]}
]

 Supervisor.start_link(children, strategy: :one_for_one)
end

lib/my_app_web/controllers/support_controller.ex
def chat(conn, %{"message" => message}) do
 session = {:via, Registry, {MyApp.AIRegistry, :support}}

 try do
 response =
 session
 |> ClaudeCode.stream(message)
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

 json(conn, %{response: response})
 catch
 _ -> conn |> put_status(500) |> json(%{error: "Unavailable"})
 end
end
Health Checks
defmodule MyApp.HealthCheck do
 def ai_status do
 sessions = ClaudeCode.Supervisor.list_sessions(ClaudeCode.Supervisor)

 %{
 total: length(sessions),
 active: Enum.count(sessions, fn {_, pid, _, _} -> Process.alive?(pid) end)
 }
 end

 def test_connectivity do
 try do
 :assistant
 |> ClaudeCode.stream("ping", timeout: 10_000)
 |> Stream.run()

 :healthy
 catch
 error -> {:unhealthy, error}
 end
 end
end
Configuration
Per-Session Configuration
{ClaudeCode.Supervisor, [
 # Fast for simple queries
 [name: :quick, timeout: 30_000, max_turns: 5],

 # Deep analysis
 [name: :analyzer, timeout: 600_000, max_turns: 50],

 # Code assistant with file access
 [name: :coder,
 allowed_tools: ["View", "Edit", "Bash(git:*)"],
 add_dir: ["/app/lib"]]
]}
Troubleshooting
Session not found:
Check if session exists
ClaudeCode.Supervisor.list_sessions(ClaudeCode.Supervisor)
Session keeps crashing:
Validate configuration
valid_config = [
 name: :test,
 api_key: System.fetch_env!("ANTHROPIC_API_KEY"),
 timeout: 60_000
]
Next Steps
	Configuration Guide - All configuration options
	Phoenix Integration - Web application patterns
	Troubleshooting - Common issues

 Custom Agents Guide - ClaudeCode v0.16.0

 Custom Agents Guide

Custom agents allow you to define specialized AI assistants with specific behaviors, tools, and prompts.
Basic Usage
Define agents when starting a session:
agents = %{
 "code-reviewer" => %{
 "description" => "Expert code reviewer",
 "prompt" => "You are a senior developer. Review code for quality and best practices.",
 "tools" => ["View", "Grep", "Glob"],
 "model" => "sonnet"
 }
}

{:ok, session} = ClaudeCode.start_link(agents: agents)
Agent Configuration
Each agent is a map with:
	Field	Type	Required	Description
	description	string	Yes	Short description of the agent's purpose
	prompt	string	Yes	System prompt defining agent behavior
	tools	list	No	Tools the agent can use
	model	string	No	Model to use ("sonnet", "opus", "haiku")

Example Agents
Code Reviewer
"code-reviewer" => %{
 "description" => "Reviews code for bugs, quality, and best practices",
 "prompt" => """
 You are a senior Elixir developer and code reviewer.
 Focus on:
 - Code quality and readability
 - Potential bugs and edge cases
 - Performance issues
 - Elixir best practices and idioms
 Provide specific, actionable feedback.
 """,
 "tools" => ["View", "Grep", "Glob"],
 "model" => "sonnet"
}
Test Writer
"test-writer" => %{
 "description" => "Generates comprehensive ExUnit tests",
 "prompt" => """
 You write comprehensive ExUnit tests.
 Include:
 - Happy path tests
 - Edge cases
 - Error conditions
 - Property-based tests when appropriate
 Follow Elixir testing conventions.
 """,
 "tools" => ["View", "Edit", "Grep"],
 "model" => "sonnet"
}
Documentation Writer
"doc-writer" => %{
 "description" => "Creates and improves documentation",
 "prompt" => """
 You write clear, concise documentation.
 Focus on:
 - Module and function docs
 - Usage examples
 - Type specifications
 Follow ExDoc conventions.
 """,
 "tools" => ["View", "Edit"],
 "model" => "haiku"
}
Multiple Agents
Configure multiple agents in one session:
agents = %{
 "reviewer" => %{
 "description" => "Code review",
 "prompt" => "You review code...",
 "tools" => ["View", "Grep"]
 },
 "tester" => %{
 "description" => "Test writing",
 "prompt" => "You write tests...",
 "tools" => ["View", "Edit"]
 },
 "documenter" => %{
 "description" => "Documentation",
 "prompt" => "You write docs...",
 "tools" => ["View", "Edit"]
 }
}

{:ok, session} = ClaudeCode.start_link(agents: agents)
With Supervision
Use agents with supervised sessions:
agents = %{
 "code-reviewer" => %{
 "description" => "Expert code reviewer",
 "prompt" => "You review Elixir code for quality.",
 "tools" => ["View", "Grep", "Glob"]
 }
}

{ClaudeCode.Supervisor, [
 [name: :reviewer, agents: agents],
 [name: :assistant] # Without custom agents
]}
Proactive Agents
The description field can indicate when agents should be used proactively:
"code-reviewer" => %{
 "description" => "Expert code reviewer. Use proactively after code changes.",
 "prompt" => "..."
}
Tool Restrictions
Agents inherit session tool restrictions but can have their own:
agents = %{
 "safe-reviewer" => %{
 "description" => "Read-only code reviewer",
 "prompt" => "You review code without making changes.",
 "tools" => ["View", "Grep", "Glob"] # No Edit or Write
 }
}

{:ok, session} = ClaudeCode.start_link(
 agents: agents,
 allowed_tools: ["View", "Grep", "Glob", "Edit"] # Session allows Edit
 # But safe-reviewer agent only has View, Grep, Glob
)
Model Selection
Use different models for different agents:
agents = %{
 "complex-analyzer" => %{
 "description" => "Deep code analysis",
 "prompt" => "Perform thorough analysis...",
 "model" => "opus" # Most capable
 },
 "quick-helper" => %{
 "description" => "Quick answers",
 "prompt" => "Provide brief, helpful responses.",
 "model" => "haiku" # Fastest
 }
}
Next Steps
	Configuration Guide - All configuration options
	Supervision Guide - Production patterns

 Examples - ClaudeCode v0.16.0

 Examples

Code patterns and recipes for common ClaudeCode use cases.
For specific topics, see the dedicated guides:
	Streaming - Real-time response streaming
	Sessions - Multi-turn conversations
	Phoenix - LiveView and controller integration
	MCP - Custom tools with Hermes MCP
	Tool Callbacks - Monitoring and auditing

CLI Applications
Interactive Code Assistant
defmodule CodeAssistant do
 def main(args) do
 case setup_session() do
 {:ok, session} ->
 run_loop(session, args)
 ClaudeCode.stop(session)

 {:error, reason} ->
 IO.puts("Failed to start: #{reason}")
 System.halt(1)
 end
 end

 defp setup_session do
 ClaudeCode.start_link(
 system_prompt: "You are an expert Elixir developer.",
 allowed_tools: ["View", "Edit", "Bash(git:*)"],
 timeout: 300_000
)
 end

 defp run_loop(session, []) do
 IO.puts("Code Assistant Ready! (type 'quit' to exit)")
 interactive_loop(session)
 end

 defp run_loop(session, args) do
 prompt = Enum.join(args, " ")

 session
 |> ClaudeCode.stream(prompt)
 |> ClaudeCode.Stream.text_content()
 |> Enum.each(&IO.write/1)

 IO.puts("\n")
 end

 defp interactive_loop(session) do
 case IO.gets("> ") |> String.trim() do
 "quit" -> IO.puts("Goodbye!")
 "" -> interactive_loop(session)
 prompt ->
 session
 |> ClaudeCode.stream(prompt)
 |> ClaudeCode.Stream.text_content()
 |> Enum.each(&IO.write/1)

 IO.puts("\n")
 interactive_loop(session)
 end
 end
end
Batch Processing
File Analysis Pipeline
Analyze multiple files with concurrent processing:
defmodule FileAnalyzer do
 def analyze_directory(path, pattern \\ "**/*.ex") do
 files = Path.wildcard(Path.join(path, pattern))
 session_count = min(System.schedulers_online(), 4)
 sessions = start_sessions(session_count)

 try do
 files
 |> Task.async_stream(
 fn file -> analyze_file(sessions, file) end,
 max_concurrency: session_count,
 timeout: 300_000
)
 |> Enum.map(fn {:ok, result} -> result end)
 after
 stop_sessions(sessions)
 end
 end

 defp start_sessions(count) do
 Enum.map(1..count, fn _ ->
 {:ok, session} = ClaudeCode.start_link(
 system_prompt: "Analyze Elixir code for quality and issues.",
 allowed_tools: ["View"],
 timeout: 180_000
)
 session
 end)
 end

 defp stop_sessions(sessions) do
 Enum.each(sessions, &ClaudeCode.stop/1)
 end

 defp analyze_file(sessions, file_path) do
 session = Enum.at(sessions, :erlang.phash2(file_path, length(sessions)))

 try do
 analysis =
 session
 |> ClaudeCode.stream("Analyze: #{file_path}")
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

 %{file: file_path, analysis: analysis, analyzed_at: DateTime.utc_now()}
 catch
 error -> %{file: file_path, error: error, analyzed_at: DateTime.utc_now()}
 end
 end
end
Code Analysis Tools
Dependency Analyzer
defmodule DependencyAnalyzer do
 def analyze_mix_file(project_path \\ ".") do
 mix_file = Path.join(project_path, "mix.exs")
 lock_file = Path.join(project_path, "mix.lock")

 {:ok, session} = ClaudeCode.start_link(
 system_prompt: "You are an Elixir dependency expert.",
 allowed_tools: ["View"]
)

 prompt = """
 Analyze the dependencies in #{mix_file} and #{lock_file}.
 Check for security vulnerabilities, outdated versions, and conflicts.
 """

 try do
 analysis =
 session
 |> ClaudeCode.stream(prompt)
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

 {:ok, analysis}
 after
 ClaudeCode.stop(session)
 end
 end
end
Test Generator
defmodule TestGenerator do
 def generate_tests_for_module(module_file) do
 {:ok, session} = ClaudeCode.start_link(
 system_prompt: """
 You are an Elixir testing expert.
 Generate comprehensive ExUnit tests including happy paths,
 edge cases, and error conditions.
 """,
 allowed_tools: ["View", "Edit"],
 timeout: 300_000
)

 prompt = "Generate tests for: #{module_file}"

 result =
 session
 |> ClaudeCode.stream(prompt)
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

 ClaudeCode.stop(session)
 {:ok, result}
 end
end
Error Recovery
Retry with Backoff
defmodule ResilientQuery do
 def query_with_retry(session, prompt, opts \\ []) do
 max_retries = Keyword.get(opts, :max_retries, 3)
 base_delay = Keyword.get(opts, :base_delay_ms, 1000)

 do_query(session, prompt, opts, max_retries, base_delay, 0)
 end

 defp do_query(session, prompt, opts, max_retries, base_delay, attempt) do
 try do
 result =
 session
 |> ClaudeCode.stream(prompt, opts)
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

 {:ok, result}
 catch
 error when attempt < max_retries ->
 delay = base_delay * :math.pow(2, attempt)
 :timer.sleep(round(delay))
 do_query(session, prompt, opts, max_retries, base_delay, attempt + 1)

 error ->
 {:error, {error, attempts: attempt + 1}}
 end
 end
end
Circuit Breaker Pattern
defmodule ClaudeCircuitBreaker do
 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def query(prompt) do
 GenServer.call(__MODULE__, {:query, prompt}, 60_000)
 end

 def init(opts) do
 {:ok, session} = ClaudeCode.start_link(opts)
 {:ok, %{session: session, failures: 0, state: :closed}}
 end

 def handle_call({:query, _prompt}, _from, %{state: :open} = state) do
 {:reply, {:error, :circuit_open}, state}
 end

 def handle_call({:query, prompt}, _from, %{session: session} = state) do
 try do
 response =
 session
 |> ClaudeCode.stream(prompt)
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

 {:reply, {:ok, response}, %{state | failures: 0, state: :closed}}
 catch
 error ->
 new_failures = state.failures + 1
 new_state = if new_failures >= 3, do: :open, else: :closed

 if new_state == :open do
 Process.send_after(self(), :half_open, 30_000)
 end

 {:reply, {:error, error}, %{state | failures: new_failures, state: new_state}}
 end
 end

 def handle_info(:half_open, state) do
 {:noreply, %{state | state: :half_open, failures: 0}}
 end
end
Telemetry Integration
defmodule ClaudeMetrics do
 def stream_with_metrics(session, prompt, opts \\ []) do
 start_time = System.monotonic_time(:millisecond)

 try do
 result =
 session
 |> ClaudeCode.stream(prompt, opts)
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

 duration = System.monotonic_time(:millisecond) - start_time

 :telemetry.execute(
 [:claude_code, :query],
 %{duration_ms: duration},
 %{success: true}
)

 {:ok, result}
 catch
 error ->
 duration = System.monotonic_time(:millisecond) - start_time

 :telemetry.execute(
 [:claude_code, :query],
 %{duration_ms: duration},
 %{success: false}
)

 {:error, error}
 end
 end
end

Attach handler
:telemetry.attach(
 "claude-logger",
 [:claude_code, :query],
 fn _event, %{duration_ms: duration}, %{success: success}, _config ->
 IO.puts("Query took #{duration}ms, success: #{success}")
 end,
 nil
)
Next Steps
	Getting Started - Installation and setup
	Configuration - All options
	Troubleshooting - Common issues

 Architecture - ClaudeCode v0.16.0

 Architecture

Overview
The ClaudeCode Elixir SDK communicates with the Claude Code CLI (claude command) through a subprocess interface. The CLI handles all the complexity of communicating with Anthropic's API, while our SDK provides an idiomatic Elixir interface.
How It Works
1. CLI Communication
The SDK spawns the claude command as a subprocess with bidirectional streaming:
(/bin/sh -c "(ANTHROPIC_API_KEY='...' claude --input-format stream-json --output-format stream-json --verbose)")

The CLI uses bidirectional streaming mode where:
	Queries are sent via stdin as JSON messages
	Responses come back via stdout as newline-delimited JSON

Key CLI flags we use:
	--input-format stream-json: Bidirectional streaming mode (reads queries from stdin)
	--output-format stream-json: Outputs JSON messages line by line
	--verbose: Includes all message types in output
	--system-prompt: Sets the system prompt
	--allowed-tools: Comma-separated list of allowed tools (e.g. "View,Bash(git:*)")
	--model: Specifies the model to use
	--max-turns: Limits conversation length
	--cwd: Sets working directory for file operations
	--permission-mode: Controls permission handling (default, acceptEdits, bypassPermissions)
	--timeout: Query timeout in milliseconds
	--resume: Resume a previous session by ID
	--fork-session: When resuming, create a new session ID instead of reusing the original

2. Message Flow
Elixir SDK <-> Persistent CLI subprocess <-> Anthropic API
 ^ ^ |
 | stdin (query) | v
 +--- stdout (JSON messages) ------------------+
The SDK maintains a persistent CLI subprocess with bidirectional I/O:
	Queries are written to stdin as JSON messages
	Responses come via stdout as newline-delimited JSON
	Three main message types in a typical response:	system (type: "system") - Initialization info with tools and session ID (on connect)
	assistant (type: "assistant") - Streaming response chunks
	result (type: "result") - Final complete response with metadata

	The SDK parses these and extracts the final response from the result message

3. Core Components
Session GenServer (ClaudeCode.Session)
defmodule ClaudeCode.Session do
 use GenServer

 # State includes:
 # - port: Persistent CLI subprocess (nil until first query)
 # - buffer: JSON parsing buffer for stdout data
 # - requests: Map of request_ref => Request struct
 # - query_queue: Queue of pending queries (for serial execution)
 # - api_key: Authentication key
 # - session_id: Claude session ID for conversation continuity
 # - session_options: Validated session-level options

 # Each Request tracks:
 # - type: :sync | :async | :stream
 # - caller_pid: PID to notify for async/stream
 # - from: GenServer reply target (sync only)
 # - status: :active | :completed
end
Options Module (ClaudeCode.Options)
defmodule ClaudeCode.Options do
 # Handles:
 # - NimbleOptions validation with helpful error messages
 # - Option precedence: query > session > app config > defaults
 # - Application config integration
 # - Type safety for all configuration options
end
The Session GenServer uses a persistent CLI subprocess with a query queue for serial execution. This ensures efficient multi-turn conversations while maintaining conversation context.
CLI Module (ClaudeCode.CLI)
defmodule ClaudeCode.CLI do
 # Handles:
 # - Finding the claude binary
 # - Building command arguments from validated options
 # - Converting Elixir options to CLI flags
 # - Spawning the process
 # - Managing stdin/stdout/stderr
end
Message Parser (ClaudeCode.Message)
defmodule ClaudeCode.Message do
 # Parses JSON lines into message structs:
 # - SystemMessage
 # - AssistantMessage
 # - UserMessage
 # - ResultMessage
 # - PartialAssistantMessage
end
Configuration System (Phase 4)
Options & Validation
The SDK uses a sophisticated configuration system with multiple layers of precedence:
Precedence: Query > Session > App Config > Defaults
final_options = Options.resolve_final_options(session_opts, query_opts)
Option Precedence Chain
	Query-level options (highest precedence)
ClaudeCode.stream(session, "prompt", system_prompt: "Override for this query")

	Session-level options
ClaudeCode.start_link(api_key: key, system_prompt: "Session default")

	Application config
config/config.exs
config :claude_code,
 system_prompt: "App-wide default",
 timeout: 180_000

	Schema defaults (lowest precedence)
@session_opts_schema [
 timeout: [type: :timeout, default: 300_000]
]

Flattened Options API
Options are passed directly as keyword arguments (no nested :options key):
Before (nested)
{:ok, session} = ClaudeCode.start_link(
 api_key: key,
 options: %{system_prompt: "...", timeout: 60_000}
)

After (flattened)
{:ok, session} = ClaudeCode.start_link(
 api_key: key,
 system_prompt: "...",
 timeout: 60_000
)
NimbleOptions Integration
All options are validated using NimbleOptions for type safety:
@session_opts_schema [
 api_key: [type: :string, required: true],
 model: [type: :string, default: "sonnet"],
 allowed_tools: [type: {:list, :string}],
]
Benefits:
	Helpful error messages for invalid options
	Auto-generated documentation
	Type safety at compile time
	Consistent validation across the API

CLI Flag Conversion
The Options module converts Elixir-style options to CLI flags:
Elixir options
[
 system_prompt: "You are helpful",
 allowed_tools: ["View", "Bash(git:*)"],
 max_turns: 20
]

Converted to CLI flags
[
 "--system-prompt", "You are helpful",
 "--allowed-tools", "View,Bash(git:*)",
 "--permission-mode", "acceptEdits",
 "--max-turns", "20"
]
Implementation Details
Session Architecture
The Session GenServer uses a persistent CLI subprocess with serial query execution:
Each request gets a unique reference
defmodule Request do
 defstruct [
 :type, # :sync | :async | :stream
 :caller_pid, # PID for async/stream notifications
 :from, # GenServer.reply target (sync only)
 :status # :active | :completed
]
end
Key design decisions:
	Persistent Connection: Single CLI subprocess for all queries (auto-connects on first query)
	Query Queue: Queries are executed serially to maintain conversation context
	Automatic Reconnection: CLI is restarted if it exits unexpectedly
	Session Continuity: Session ID is captured and used for conversation context

Process Management
We'll use Elixir's Port for subprocess management:
port = Port.open({:spawn_executable, cli_path}, [
 :binary,
 :exit_status,
 :stderr_to_stdout,
 :stream,
 :hide,
 args: build_args(options)
])
Streaming
For streaming responses, we'll use Elixir's Stream module:
def stream(session, prompt) do
 Stream.resource(
 fn -> start_query(session, prompt) end,
 fn state -> receive_next_message(state) end,
 fn state -> cleanup(state) end
)
end
Error Handling
The CLI can fail in several ways:
	CLI not found: Check common locations, provide installation instructions
	Auth errors: CLI will output error JSON
	Process crashes: Monitor subprocess, restart if needed
	Rate limits: Parse error messages, implement backoff

JSON Message Format
Messages from the CLI look like:
{"type": "message", "role": "assistant", "content": [{"type": "text", "text": "Hello!"}]}
{"type": "tool_use", "id": "123", "name": "read_file", "input": {"path": "file.ex"}}
{"type": "result", "tool_use_id": "123", "output": "file contents..."}
Environment Setup
Finding the CLI
The SDK will search for claude in:
	System PATH (via System.find_executable/1)
	Common npm global locations:	~/.npm-global/bin/claude
	/usr/local/bin/claude
	~/.local/bin/claude

	Local node_modules:	./node_modules/.bin/claude
	~/node_modules/.bin/claude

Environment Variables
We'll pass through important environment variables:
	ANTHROPIC_API_KEY: For authentication
	CLAUDE_CODE_ENTRYPOINT: Set to "sdk-elixir" for telemetry

Session Management
Starting a Session
{:ok, session} = ClaudeCode.start_link(
 api_key: "sk-ant-...",
 model: "opus",
 system_prompt: "You are an Elixir expert",
 allowed_tools: ["View", "Edit", "Bash(git:*)"],
 timeout: 120_000
)
This will:
	Validate all options using NimbleOptions
	Apply application config defaults
	Start a GenServer with validated configuration
	Find the CLI binary
	Ready for queries (no subprocess yet)

Options are validated early to provide immediate feedback on configuration errors.
Query Lifecycle
	Query starts:	Validate query-level options using NimbleOptions
	Merge session and query options (query takes precedence)
	Ensure CLI subprocess is connected (lazy connect on first query)
	Generate unique request reference
	Queue query if another is in progress, otherwise execute immediately
	Write query JSON to CLI stdin
	Register request in requests map

	Stream messages:	Parse JSON lines from stdout buffer
	Route messages to current active request
	Capture session ID from messages

	Query ends:	Extract result from final message
	Reply to caller or notify subscribers
	Process next queued query if any

	Session continues:	GenServer and CLI subprocess stay alive
	Session ID enables conversation continuity

Session Continuity
The SDK automatically maintains conversation context across queries within a session:
Start a session
{:ok, session} = ClaudeCode.start_link(api_key: key)

First query establishes conversation context
session
|> ClaudeCode.stream("Hello, my name is Alice")
|> Stream.run()

Subsequent queries automatically continue the conversation using stored session_id
session
|> ClaudeCode.stream("What's my name?")
|> ClaudeCode.Stream.text_content()
|> Enum.join()
=> "Your name is Alice!"

Check current session ID
session_id = ClaudeCode.get_session_id(session)

Clear session to start fresh conversation
:ok = ClaudeCode.clear(session)

Fork a session to branch the conversation
{:ok, forked} = ClaudeCode.start_link(resume: session_id, fork_session: true)
How it works:
	Session IDs are captured from CLI responses and stored in the GenServer state
	The --resume flag is automatically added to subsequent queries
	Sessions maintain conversation history until explicitly cleared
	Use fork_session: true with resume: to create a branch with a new session ID

Permissions
The CLI has built-in permission handling, but we'll add an Elixir layer:
defmodule MyHandler do
 @behaviour ClaudeCode.PermissionHandler

 def handle_permission(tool, args, context) do
 # Called when CLI would ask for permission
 # Return :allow, {:deny, reason}, or {:confirm, prompt}
 end
end
Testing Strategy
Unit Tests
	Mock the Port for predictable message sequences
	Test message parsing with fixture JSON
	Test error handling scenarios

Integration Tests
	Use a mock CLI script for full flow testing
	Test real CLI if available (behind feature flag)

Example Mock CLI
#!/usr/bin/env bash
test/fixtures/mock_claude

echo '{"type": "message", "role": "assistant", "content": [{"type": "text", "text": "Mock response"}]}'
echo '{"type": "done"}'

Performance Considerations
	Persistent Connection: Single CLI subprocess avoids spawn overhead between queries
	Serial Execution: Query queue ensures conversation context is maintained
	Lazy Connect: CLI is only spawned on first query (not on session start)
	Auto-Reconnect: CLI is automatically restarted if it exits unexpectedly
	Lazy Streaming: Use Elixir streams to avoid loading all messages in memory

Security
	API Key Handling: Never log or expose API keys
	Command Injection: Use Port.open with explicit args list (no shell)
	File Access: Respect CLI's built-in file access controls
	Process Isolation: Each session runs in its own subprocess

Future Enhancements
	Native Elixir Implementation: Eventually bypass CLI for direct API calls
	WebSocket Support: If CLI adds WebSocket mode
	Distributed Sessions: Store session state in distributed cache
	Hot Code Reloading: Update SDK without dropping sessions

 Troubleshooting - ClaudeCode v0.16.0

 Troubleshooting

This guide helps you diagnose and resolve common issues with the ClaudeCode Elixir SDK.
Table of Contents
	Installation Issues
	Authentication Problems
	CLI Integration Issues
	Session Management
	Streaming Problems
	Performance Issues
	Error Reference

Installation Issues
ClaudeCode Package Not Found
Problem: mix deps.get fails to find the ClaudeCode package.
Solution:
Make sure you're using the correct package name and version
def deps do
 [
 {:claude_code, "~> 0.16"}
]
end
If using a pre-release version:
def deps do
 [
 {:claude_code, github: "guess/claude_code", branch: "main"}
]
end
Compilation Errors
Problem: ClaudeCode fails to compile with dependency errors.
Common causes:
	Incompatible Elixir/OTP versions
	Missing required dependencies

Solution:
Check your Elixir version (requires 1.18+)
elixir --version

Clean and reinstall dependencies
mix deps.clean --all
mix deps.get
mix compile

Authentication Problems
Invalid API Key Error
Problem: Getting authentication errors when starting a session.
Error message:
{:error, {:claude_error, "Authentication failed"}}
Solutions:
	Check your API key:
echo $ANTHROPIC_API_KEY

	Verify the key format:
Should start with 'sk-ant-'
export ANTHROPIC_API_KEY="sk-ant-your-key-here"

	Test with the Claude CLI directly:
claude --version
echo "Hello" | claude

	Use a different environment variable:
{:ok, session} = ClaudeCode.start_link(
 api_key: System.get_env("MY_CLAUDE_KEY")
)

API Key Not Found
Problem: Session fails to start with missing API key.
Error message:
{:error, "API key is required"}
Solutions:
	Set the environment variable:
export ANTHROPIC_API_KEY="your-key-here"

	Pass the key directly:
{:ok, session} = ClaudeCode.start_link(
 api_key: "your-key-here" # Not recommended for production
)

	Use application config:
config/config.exs
config :claude_code,
 api_key: System.get_env("ANTHROPIC_API_KEY")

CLI Integration Issues
Claude CLI Not Found
Problem: ClaudeCode can't find the Claude CLI binary.
Error message:
{:error, {:cli_not_found, "claude command not found in PATH"}}
Solutions:
	Install the Claude CLI:
	Visit claude.ai/code
	Follow installation instructions for your platform

	Verify installation:
which claude
claude --version

	Add to PATH if needed:
For bash/zsh
export PATH="$PATH:/path/to/claude/bin"

Or create a symlink
ln -s /path/to/claude/bin/claude /usr/local/bin/claude

	Check PATH configuration:
Verify claude is in your PATH
echo $PATH
Add claude location to PATH if needed
export PATH="$PATH:/path/to/claude/directory"

CLI Version Compatibility
Problem: ClaudeCode doesn't work with your Claude CLI version.
Solution:
Check CLI version
claude --version

Update to latest version
Follow update instructions at claude.ai/code

Supported CLI versions: 0.8.0+
CLI Hangs or Times Out
Problem: CLI subprocess hangs or doesn't respond.
Common causes:
	CLI waiting for input
	Network connectivity issues
	CLI process stuck

Solutions:
	Check timeout settings:
{:ok, session} = ClaudeCode.start_link(
 api_key: "...",
 timeout: 300_000 # 5 minutes
)

	Test CLI directly:
echo "Hello" | claude --print

	Check network connectivity:
curl -I https://api.anthropic.com

Session Management
Session Dies Unexpectedly
Problem: Session GenServer crashes or stops responding.
Debugging steps:
	Check session status:
ClaudeCode.alive?(session)

	Use supervision (manual setup required):
ClaudeCode doesn't provide built-in child_spec
You need to create a wrapper or use a simple supervisor
defmodule MyApp.ClaudeSupervisor do
 use Supervisor

 def start_link(opts) do
 Supervisor.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def init(opts) do
 children = [
 {ClaudeCode, [api_key: "...", name: :claude_session]}
]

 Supervisor.init(children, strategy: :one_for_one)
 end
end

Session State Corruption
Problem: Session maintains incorrect conversation context.
Solutions:
	Clear session state:
ClaudeCode.clear(session)

	Restart session:
ClaudeCode.stop(session)
{:ok, new_session} = ClaudeCode.start_link(opts)

	Use fresh sessions for unrelated queries:
For isolated queries, use the one-off query/2
{:ok, result} = ClaudeCode.query(prompt)

Or manually manage a session
{:ok, temp_session} = ClaudeCode.start_link()
temp_session |> ClaudeCode.stream(prompt) |> Stream.run()
ClaudeCode.stop(temp_session)

Streaming Problems
Stream Doesn't Start
Problem: Streaming query returns empty stream or never yields data.
Debugging:
	Test with one-off query first:
case ClaudeCode.query(prompt) do
 {:ok, response} -> IO.puts("One-off works: #{response}")
 error -> IO.puts("One-off error: #{inspect(error)}")
end

	Check stream consumption:
Force stream evaluation
session
|> ClaudeCode.stream(prompt)
|> Enum.to_list()
|> IO.inspect()

	Use stream utilities:
session
|> ClaudeCode.stream(prompt)
|> ClaudeCode.Stream.text_content()
|> Enum.each(&IO.write/1)

Stream Hangs or Stalls
Problem: Stream starts but stops producing data.
Solutions:
	Add timeouts:
session
|> ClaudeCode.stream(prompt, timeout: 120_000)
|> Stream.take_while(fn _ -> true end)
|> Enum.to_list()

	Use stream debugging:
session
|> ClaudeCode.stream(prompt)
|> Stream.each(fn msg -> IO.inspect(msg, label: "Stream message") end)
|> ClaudeCode.Stream.text_content()
|> Enum.to_list()

Memory Issues with Large Streams
Problem: Streaming large responses causes memory issues.
Solutions:
	Process chunks immediately:
session
|> ClaudeCode.stream(prompt)
|> ClaudeCode.Stream.text_content()
|> Stream.each(&IO.write/1) # Don't accumulate
|> Stream.run()

	Use collect for structured results:
When you need the full response organized
summary = session
|> ClaudeCode.stream(prompt)
|> ClaudeCode.Stream.collect()

Process the collected data
IO.puts(summary.result)

Performance Issues
Slow Query Response
Problem: Queries take too long to respond.
Optimization strategies:
	Use appropriate models:
For simple tasks, use faster models
{:ok, session} = ClaudeCode.start_link(
 api_key: "...",
 model: "claude-3-haiku-20240307" # Faster model
)

	Optimize prompts:
Be specific and concise
prompt = "Briefly explain GenServers in 2 paragraphs."

	Use streaming for responsiveness:
User sees response immediately
session
|> ClaudeCode.stream(prompt)
|> ClaudeCode.Stream.text_content()
|> Enum.each(&IO.write/1)

High Memory Usage
Problem: ClaudeCode uses too much memory.
Solutions:
	Limit concurrent sessions:
Limit the number of concurrent sessions manually
(No built-in session pooling - you need to implement this)
max_sessions = System.schedulers_online()
Example: Use Task.async_stream with max_concurrency

	Clean up sessions:
Always stop sessions when done
ClaudeCode.stop(session)

	Monitor memory usage:
:erlang.memory()

Connection Limits
Problem: Too many concurrent requests to Claude API.
Error message:
{:error, {:claude_error, "Rate limit exceeded"}}
Solutions:
	Implement backoff:
defp query_with_backoff(session, prompt, retries \\ 3) do
 try do
 result =
 session
 |> ClaudeCode.stream(prompt)
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()
 {:ok, result}
 catch
 error when retries > 0 ->
 :timer.sleep(2000) # Wait 2 seconds
 query_with_backoff(session, prompt, retries - 1)
 error -> {:error, error}
 end
end

	Use fewer concurrent sessions:
Limit parallelism
Task.async_stream(tasks, &process_task/1, max_concurrency: 2)

Error Reference
Common Error Patterns
CLI Errors
{:error, {:cli_not_found, message}} # Claude CLI not installed
{:error, {:cli_exit, exit_code}} # CLI crashed or failed
{:error, {:port_closed, reason}} # Communication failure
Authentication Errors
{:error, {:claude_error, "Invalid API key"}}
{:error, {:claude_error, "Authentication failed"}}
{:error, {:claude_error, "Rate limit exceeded"}}
Session Errors
{:error, :timeout} # Query timed out
{:error, :session_not_found} # Session doesn't exist
{:error, {:invalid_options, details}} # Bad configuration
Stream Errors
{:stream_error, reason} # Generic stream error
{:stream_timeout, request_ref} # Stream timed out
{:stream_init_error, reason} # Failed to start stream
Debugging Commands
Check System Status
Check if Claude CLI is available
System.cmd("which", ["claude"])

Test CLI directly
System.cmd("claude", ["--version"])

Check environment
System.get_env("ANTHROPIC_API_KEY")

Test network connectivity
System.cmd("curl", ["-I", "https://api.anthropic.com"])
Enable Debug Logging
Add to config/config.exs
config :logger, :console,
 level: :debug,
 format: "$time $metadata[$level] $message\n"

Or in IEx
Logger.configure(level: :debug)
Monitor Resource Usage
Memory usage
:erlang.memory()

Process info
Process.info(session_pid)

System info
:erlang.system_info(:process_count)
Getting Help
If you're still having issues:
	Check the logs - Enable debug logging to see what's happening
	Test components individually - CLI, network, authentication
	Create a minimal reproduction - Isolate the problem
	Check GitHub issues - Someone might have seen this before
	Open an issue - Include logs, environment details, and reproduction steps

Minimal Reproduction Template
Paste this into IEx to reproduce the issue
alias ClaudeCode

Your environment
IO.puts("Elixir: #{System.version()}")
IO.puts("OTP: #{System.otp_release()}")

case System.cmd("claude", ["--version"]) do
 {output, 0} -> IO.puts("Claude CLI: #{String.trim(output)}")
 {error, code} -> IO.puts("Claude CLI error: #{error} (exit: #{code})")
end

Your code that demonstrates the problem
{:ok, session} = ClaudeCode.start_link(
 api_key: System.get_env("ANTHROPIC_API_KEY")
)

The failing operation
result =
 session
 |> ClaudeCode.stream("Hello")
 |> Enum.to_list()

IO.inspect(result, label: "Result")

ClaudeCode.stop(session)
Include this output when reporting issues for faster resolution.

 ClaudeCode.History - ClaudeCode v0.16.0

ClaudeCode.History

Utilities for reading and parsing Claude Code session history files.
Claude Code stores conversation history in JSONL files at:
~/.claude/projects/<encoded-project-path>/<session-id>.jsonl
This module provides functions to:
	Find session files by session ID
	Read and parse session JSONL files
	Extract conversation history (user/assistant messages)

Session File Format
Session files contain various message types:
	user - User messages (prompts and tool results)
	assistant - Assistant responses
	system - System events (errors, etc.)
	summary - Conversation summary
	file-history-snapshot - File tracking metadata
	queue-operation - Internal operations

Examples
Read a session by ID
{:ok, messages} = ClaudeCode.History.read_session("abc123-def456")

Get just the conversation (user/assistant messages)
{:ok, conversation} = ClaudeCode.History.conversation("abc123-def456")

Read from a specific file path
{:ok, messages} = ClaudeCode.History.read_file("/path/to/session.jsonl")

Find session file location
{:ok, path} = ClaudeCode.History.find_session_path("abc123-def456")

 Summary

 Types

 history_entry()

 parsed_message()

 session_id()

 Functions

 conversation(session_id, opts \\ [])

 Extracts the conversation history from a session.

 conversation_from_file(path)

 Extracts the conversation history from a session file path.

 decode_project_path(encoded)

 Decodes an encoded project path back to a path format.

 encode_project_path(path)

 Encodes a project path to the format used by Claude Code.

 find_session_path(session_id, opts \\ [])

 Finds the file path for a session ID.

 list_projects(opts \\ [])

 Lists all projects that have session history.

 list_sessions(project_path, opts \\ [])

 Lists all session IDs for a project.

 read_file(path)

 Reads and parses a session JSONL file from a specific path.

 read_session(session_id, opts \\ [])

 Reads and parses a session file by session ID.

 summary(session_id, opts \\ [])

 Gets the conversation summary from a session, if available.

 Types

 history_entry()

 @type history_entry() :: map()

 parsed_message()

 @type parsed_message() ::
 ClaudeCode.Message.AssistantMessage.t()
 | ClaudeCode.Message.UserMessage.t()
 | map()

 session_id()

 @type session_id() :: String.t()

 Functions

 conversation(session_id, opts \\ [])

 @spec conversation(
 session_id(),
 keyword()
) :: {:ok, [parsed_message()]} | {:error, term()}

Extracts the conversation history from a session.
Returns only user and assistant messages, parsed into SDK message structs.
Other message types (system events, metadata) are excluded.
Options
Same as read_session/2.
Examples
{:ok, conversation} = ClaudeCode.History.conversation("abc123-def456")

Each message is a UserMessage or AssistantMessage struct
Enum.each(conversation, fn
 %UserMessage{message: %{content: content}} ->
 IO.puts("User: #{inspect(content)}")
 %AssistantMessage{message: %{content: content}} ->
 IO.puts("Assistant: #{inspect(content)}")
end)

 conversation_from_file(path)

 @spec conversation_from_file(Path.t()) :: {:ok, [parsed_message()]} | {:error, term()}

Extracts the conversation history from a session file path.
Returns only user and assistant messages, parsed into SDK message structs.
Examples
{:ok, conversation} = ClaudeCode.History.conversation_from_file("/path/to/session.jsonl")

 decode_project_path(encoded)

 @spec decode_project_path(String.t()) :: Path.t()

Decodes an encoded project path back to a path format.
Replaces - with /. Note that this encoding is lossy - if the original
path contained - or _ characters, they cannot be distinguished from path
separators. For example, /a/b-c, /a/b_c, and /a/b/c all encode to -a-b-c.
This function is primarily useful for display purposes. For matching against
known paths, use encode_project_path/1 instead.
Examples
iex> ClaudeCode.History.decode_project_path("-Users-me-project")
"/Users/me/project"

 encode_project_path(path)

 @spec encode_project_path(Path.t()) :: String.t()

Encodes a project path to the format used by Claude Code.
Replaces / and _ with - in the path to match the CLI's encoding.
Examples
iex> ClaudeCode.History.encode_project_path("/Users/me/project")
"-Users-me-project"

iex> ClaudeCode.History.encode_project_path("/Users/me/my_project")
"-Users-me-my-project"

 find_session_path(session_id, opts \\ [])

 @spec find_session_path(
 session_id(),
 keyword()
) :: {:ok, Path.t()} | {:error, term()}

Finds the file path for a session ID.
Searches through all project directories in ~/.claude/projects/.
Options
	:project_path - Specific project path to search in (optional)
	:claude_dir - Override the Claude directory (default: ~/.claude)

Examples
{:ok, "/Users/me/.claude/projects/-my-project/abc123.jsonl"} =
 ClaudeCode.History.find_session_path("abc123")

{:error, {:session_not_found, "abc123"}} =
 ClaudeCode.History.find_session_path("nonexistent")

 list_projects(opts \\ [])

 @spec list_projects(keyword()) :: {:ok, [Path.t()]} | {:error, term()}

Lists all projects that have session history.
Options
	:claude_dir - Override the Claude directory (default: ~/.claude)

Examples
{:ok, ["/Users/me/project1", "/Users/me/project2"]} =
 ClaudeCode.History.list_projects()

 list_sessions(project_path, opts \\ [])

 @spec list_sessions(
 Path.t(),
 keyword()
) :: {:ok, [session_id()]} | {:error, term()}

Lists all session IDs for a project.
Options
	:claude_dir - Override the Claude directory (default: ~/.claude)

Examples
{:ok, ["abc123", "def456"]} = ClaudeCode.History.list_sessions("/my/project")

 read_file(path)

 @spec read_file(Path.t()) :: {:ok, [history_entry()]} | {:error, term()}

Reads and parses a session JSONL file from a specific path.
Returns all entries from the file as maps with normalized keys.
Examples
{:ok, entries} = ClaudeCode.History.read_file("/path/to/session.jsonl")

 read_session(session_id, opts \\ [])

 @spec read_session(
 session_id(),
 keyword()
) :: {:ok, [history_entry()]} | {:error, term()}

Reads and parses a session file by session ID.
Searches through all project directories to find the session file.
Returns all entries from the session file, including metadata entries.
Options
	:project_path - Specific project path to search in (optional)
	:claude_dir - Override the Claude directory (default: ~/.claude)

Examples
{:ok, messages} = ClaudeCode.History.read_session("abc123-def456")

Search in a specific project
{:ok, messages} = ClaudeCode.History.read_session("abc123", project_path: "/my/project")

 summary(session_id, opts \\ [])

 @spec summary(
 session_id(),
 keyword()
) :: {:ok, String.t() | nil} | {:error, term()}

Gets the conversation summary from a session, if available.
Returns the summary text or nil if no summary exists.
Examples
{:ok, "User asked about..."} = ClaudeCode.History.summary("abc123-def456")
{:ok, nil} = ClaudeCode.History.summary("new-session-id")

 ClaudeCode.JSONEncoder - ClaudeCode v0.16.0

ClaudeCode.JSONEncoder

Shared JSON encoding logic for ClaudeCode structs.
Converts structs to maps with nil values removed for clean JSON output.
Used by both Jason.Encoder and JSON.Encoder protocol implementations.

 Summary

 Functions

 to_encodable(struct)

 Converts a struct to an encodable map, excluding nil values.

 Functions

 to_encodable(struct)

 @spec to_encodable(struct()) :: map()

Converts a struct to an encodable map, excluding nil values.
Handles nested structs, maps, and lists recursively.
Examples
iex> block = %ClaudeCode.Content.TextBlock{type: :text, text: "hello"}
iex> ClaudeCode.JSONEncoder.to_encodable(block)
%{type: :text, text: "hello"}

iex> msg = %ClaudeCode.Message.ResultMessage{result: nil, is_error: false, ...}
iex> ClaudeCode.JSONEncoder.to_encodable(msg)
%{is_error: false, ...} # result key excluded

 ClaudeCode - ClaudeCode v0.16.0

ClaudeCode

Elixir SDK for Claude Code CLI.
This module provides the main interface for interacting with Claude Code
through the command-line interface. It manages sessions as GenServer processes
that maintain persistent CLI subprocesses for efficient bidirectional communication.
API Overview
	Function	Purpose
	start_link/1	Start a session (with optional resume: id)
	stop/1	Stop a session
	stream/3	Send prompt to session, get message stream
	query/2	One-off query (auto start/stop)

Quick Start
Multi-turn conversation (primary API)
{:ok, session} = ClaudeCode.start_link(api_key: "sk-ant-...")

ClaudeCode.stream(session, "What is 5 + 3?")
|> Enum.each(&IO.inspect/1)

ClaudeCode.stream(session, "Multiply that by 2")
|> Enum.each(&IO.inspect/1)

ClaudeCode.stop(session)

One-off query (convenience)
{:ok, result} = ClaudeCode.query("What is 2 + 2?", api_key: "sk-ant-...")
IO.puts(result)
Session Lifecycle
Sessions automatically connect to the Claude CLI on startup and disconnect on stop.
The persistent connection enables:
	Efficient multi-turn conversations without CLI restart overhead
	Automatic session continuity via session IDs
	Real-time streaming of responses

Supervision for Production
For production applications, use the supervisor for fault tolerance and
automatic restart capabilities:
In your application supervision tree
children = [
 {ClaudeCode.Supervisor, [
 [name: :code_reviewer, api_key: api_key, system_prompt: "You review Elixir code"],
 [name: :test_writer, api_key: api_key, system_prompt: "You write ExUnit tests"]
]}
]

Supervisor.start_link(children, strategy: :one_for_one)

Access supervised sessions from anywhere
:code_reviewer
|> ClaudeCode.stream("Review this function")
|> ClaudeCode.Stream.text_content()
|> Enum.join()
Resume Previous Conversations
Get session ID from a previous interaction
session_id = ClaudeCode.get_session_id(session)

Later: resume the conversation
{:ok, new_session} = ClaudeCode.start_link(
 api_key: "sk-ant-...",
 resume: session_id
)

ClaudeCode.stream(new_session, "Continue where we left off")
|> Enum.each(&IO.inspect/1)

Or fork to create a branch with a new session ID
{:ok, forked} = ClaudeCode.start_link(
 resume: session_id,
 fork_session: true
)
See ClaudeCode.Supervisor for advanced supervision patterns.

 Summary

 Types

 message_stream()

 query_response()

 session()

 Functions

 alive?(session)

 Checks if a session is alive.

 clear(session)

 Clears the current session ID to start a fresh conversation.

 conversation(session_or_id, opts \\ [])

 Reads conversation history from a session's JSONL file.

 get_session_id(session)

 Gets the current session ID for conversation continuity.

 query(prompt, opts \\ [])

 Sends a one-off query to Claude and returns the result.

 start_link(opts \\ [])

 Starts a new Claude Code session.

 stop(session)

 Stops a Claude Code session.

 stream(session, prompt, opts \\ [])

 Sends a query to a session and returns a stream of messages.

 version()

 Returns the SDK version string.

 Types

 message_stream()

 @type message_stream() :: Enumerable.t(ClaudeCode.Message.t())

 query_response()

 @type query_response() ::
 {:ok, ClaudeCode.Message.ResultMessage.t()}
 | {:error, ClaudeCode.Message.ResultMessage.t() | term()}

 session()

 @type session() :: pid() | atom() | {:via, module(), any()}

 Functions

 alive?(session)

 @spec alive?(session()) :: boolean()

Checks if a session is alive.
Examples
true = ClaudeCode.alive?(session)

 clear(session)

 @spec clear(session()) :: :ok

Clears the current session ID to start a fresh conversation.
This will cause the next query to start a new conversation context
rather than continuing the existing one. Useful when you want to
reset the conversation history.
Examples
:ok = ClaudeCode.clear(session)

Next stream will start fresh
ClaudeCode.stream(session, "Hello!")
|> Enum.each(&IO.inspect/1)

 conversation(session_or_id, opts \\ [])

 @spec conversation(
 session() | String.t(),
 keyword()
) ::
 {:ok,
 [
 ClaudeCode.Message.AssistantMessage.t()
 | ClaudeCode.Message.UserMessage.t()
]}
 | {:error, term()}

Reads conversation history from a session's JSONL file.
Accepts either a session ID string or a running session reference.
Returns user and assistant messages parsed into SDK message structs.
Options
	:project_path - Specific project path to search in (optional)
	:claude_dir - Override the Claude directory (default: ~/.claude)

Examples
Read conversation history by session ID
{:ok, messages} = ClaudeCode.conversation("abc123-def456")

Or from a running session
{:ok, session} = ClaudeCode.start_link()
ClaudeCode.query(session, "Hello!")
{:ok, messages} = ClaudeCode.conversation(session)

Enum.each(messages, fn
 %ClaudeCode.Message.UserMessage{message: %{content: content}} ->
 IO.puts("User: #{inspect(content)}")
 %ClaudeCode.Message.AssistantMessage{message: %{content: blocks}} ->
 text = Enum.map_join(blocks, "", fn
 %ClaudeCode.Content.TextBlock{text: t} -> t
 _ -> ""
 end)
 IO.puts("Assistant: #{text}")
end)
See ClaudeCode.History for more options.

 get_session_id(session)

 @spec get_session_id(session()) :: String.t() | nil

Gets the current session ID for conversation continuity.
Returns the session ID that Claude CLI is using to maintain conversation
context. This ID is automatically captured from CLI responses and used
for subsequent queries to continue the conversation.
You can use this session ID with the :resume option when starting a
new session to continue the conversation later, or with :fork_session
to create a branch.
Examples
session_id = ClaudeCode.get_session_id(session)
=> "abc123-session-id"

For a new session with no queries yet
nil = ClaudeCode.get_session_id(session)

Resume later
{:ok, new_session} = ClaudeCode.start_link(resume: session_id)

Or fork the conversation
{:ok, forked} = ClaudeCode.start_link(resume: session_id, fork_session: true)

 query(prompt, opts \\ [])

 @spec query(
 String.t(),
 keyword()
) :: query_response()

Sends a one-off query to Claude and returns the result.
This is a convenience function that automatically manages a temporary session.
For multi-turn conversations, use start_link/1 and stream/3 instead.
Options
See ClaudeCode.Options.session_schema/0 for all available options.
Examples
Simple one-off query
{:ok, result} = ClaudeCode.query("What is 2 + 2?", api_key: "sk-ant-...")
IO.puts(result) # Result implements String.Chars
=> "4"

With options
{:ok, result} = ClaudeCode.query("Complex query",
 api_key: "sk-ant-...",
 model: "opus",
 system_prompt: "Focus on performance optimization"
)

Handle errors
case ClaudeCode.query("Do something risky", api_key: "sk-ant-...") do
 {:ok, result} -> IO.puts(result.result)
 {:error, %ClaudeCode.Message.ResultMessage{is_error: true} = result} ->
 IO.puts("Claude error: #{result.result}")
 {:error, reason} -> IO.puts("Error: #{inspect(reason)}")
end

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Starts a new Claude Code session.
The session automatically connects to a persistent CLI subprocess on startup.
This enables efficient multi-turn conversations without CLI restart overhead.
Options
For complete option documentation including types, validation rules, and examples,
see ClaudeCode.Options.session_schema/0 and the ClaudeCode.Options module.
Key options:
	:api_key - Anthropic API key (or set ANTHROPIC_API_KEY env var)
	:resume - Session ID to resume a previous conversation
	:model - Claude model to use
	:system_prompt - Custom system prompt

Examples
Start a basic session
{:ok, session} = ClaudeCode.start_link(api_key: "sk-ant-...")

Start with application config (if api_key is configured)
{:ok, session} = ClaudeCode.start_link()

Resume a previous conversation
{:ok, session} = ClaudeCode.start_link(
 api_key: "sk-ant-...",
 resume: "previous-session-id"
)

Start with custom options
{:ok, session} = ClaudeCode.start_link(
 api_key: "sk-ant-...",
 model: "opus",
 system_prompt: "You are an Elixir expert",
 allowed_tools: ["View", "Edit", "Bash(git:*)"],
 add_dir: ["/tmp", "/var/log"],
 max_turns: 20,
 timeout: 180_000,
 name: :my_session
)

 stop(session)

 @spec stop(session()) :: :ok

Stops a Claude Code session.
This closes the CLI subprocess and cleans up resources.
Examples
:ok = ClaudeCode.stop(session)

 stream(session, prompt, opts \\ [])

 @spec stream(session(), String.t(), keyword()) :: message_stream()

Sends a query to a session and returns a stream of messages.
This is the primary API for interacting with Claude. The stream emits messages
as they arrive and automatically completes when Claude finishes responding.
Options
Query-level options override session-level options. See ClaudeCode.Options.query_schema/0
for all available query options.
Examples
Stream all messages
session
|> ClaudeCode.stream("Write a hello world program")
|> Enum.each(&IO.inspect/1)

Stream with option overrides
session
|> ClaudeCode.stream("Explain quantum computing",
 system_prompt: "Focus on practical applications",
 allowed_tools: ["View"])
|> ClaudeCode.Stream.text_content()
|> Enum.each(&IO.write/1)

Collect all text content
text =
 session
 |> ClaudeCode.stream("Tell me a story")
 |> ClaudeCode.Stream.text_content()
 |> Enum.join()

Multi-turn conversation
{:ok, session} = ClaudeCode.start_link(api_key: "sk-ant-...")

ClaudeCode.stream(session, "What is 5 + 3?")
|> Enum.each(&IO.inspect/1)

ClaudeCode.stream(session, "Multiply that by 2")
|> Enum.each(&IO.inspect/1)

 version()

 @spec version() :: String.t()

Returns the SDK version string.
Used internally for environment variables passed to the CLI subprocess.
Examples
iex> ClaudeCode.version()
"0.16.0"

 ClaudeCode.Session - ClaudeCode v0.16.0

ClaudeCode.Session

GenServer that manages Claude Code sessions.
Each session maintains a connection to Claude (via an adapter) and handles
request queuing, subscriber management, and session continuity.
The session uses adapters for communication:
	ClaudeCode.Adapter.CLI (default) - Manages a CLI subprocess via Port
	ClaudeCode.Adapter.Test - Delivers mock messages for testing

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Starts a new session GenServer.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts)

Starts a new session GenServer.
The session lazily connects to the adapter on the first query.

 ClaudeCode.Supervisor - ClaudeCode v0.16.0

ClaudeCode.Supervisor

Supervisor for managing multiple ClaudeCode sessions.
This supervisor allows you to start and manage multiple named Claude sessions
in your application's supervision tree, providing fault tolerance and automatic
restart capabilities.
Examples
Basic usage with predefined sessions
children = [
 {ClaudeCode.Supervisor, [
 [name: :code_reviewer, api_key: api_key, system_prompt: "You are an expert code reviewer"],
 [name: :test_writer, api_key: api_key, system_prompt: "You write comprehensive tests"]
]}
]

Supervisor.start_link(children, strategy: :one_for_one)
Using global names for distributed access
children = [
 {ClaudeCode.Supervisor, [
 [name: {:global, :main_assistant}, api_key: api_key],
 [name: {:via, Registry, {MyApp.Registry, :helper}}, api_key: api_key]
]}
]
Dynamic session management
Start the supervisor without initial sessions
{:ok, supervisor} = ClaudeCode.Supervisor.start_link([])

Add sessions dynamically
ClaudeCode.Supervisor.start_session(supervisor, [
 name: :dynamic_session,
 api_key: api_key,
 system_prompt: "Dynamic helper"
])

Remove sessions when no longer needed
ClaudeCode.Supervisor.terminate_session(supervisor, :dynamic_session)
Session Access
Once supervised, sessions can be accessed by name from anywhere in your application:
Query a supervised session
{:ok, response} = ClaudeCode.query(:code_reviewer, "Review this function")

Stream from a supervised session
:test_writer
|> ClaudeCode.query_stream("Write tests for UserController")
|> Stream.each(&IO.inspect/1)
|> Stream.run()
Fault Tolerance
If a session crashes, the supervisor will automatically restart it:
	Session state is lost but the process name is preserved
	Conversation history is cleared on restart
	Other sessions continue running unaffected

Configuration
Sessions inherit application configuration and can override specific options:
config/config.exs
config :claude_code,
 model: "opus",
 timeout: 300_000

Supervisor sessions automatically use app config
{ClaudeCode.Supervisor, [
 [name: :assistant, api_key: api_key], # Uses app config defaults
 [name: :writer, api_key: api_key, model: "sonnet"] # Overrides model
]}

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 count_sessions(supervisor)

 Gets the count of sessions managed by the supervisor.

 list_sessions(supervisor)

 Lists all sessions currently managed by the supervisor.

 restart_session(supervisor, session_id)

 Restarts a specific session.

 start_link(sessions, opts \\ [])

 Starts the ClaudeCode supervisor.

 start_session(supervisor, session_config, opts \\ [])

 Dynamically starts a new session under the supervisor.

 terminate_session(supervisor, session_id)

 Terminates a session managed by the supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 count_sessions(supervisor)

Gets the count of sessions managed by the supervisor.
Examples
count = ClaudeCode.Supervisor.count_sessions(supervisor)
#=> 3

 list_sessions(supervisor)

Lists all sessions currently managed by the supervisor.
Returns a list of {child_id, child_pid, type, modules} tuples.
Examples
sessions = ClaudeCode.Supervisor.list_sessions(supervisor)
#=> [{:assistant, #PID<0.123.0>, :worker, [ClaudeCode.Session]}]

 restart_session(supervisor, session_id)

Restarts a specific session.
This will terminate the current session process and start a new one with the same configuration.
Note that conversation history will be lost.
Examples
:ok = ClaudeCode.Supervisor.restart_session(supervisor, :assistant)

 start_link(sessions, opts \\ [])

Starts the ClaudeCode supervisor.
Arguments
	sessions - List of session configurations. Each session config is a keyword list
of options passed to ClaudeCode.Session.start_link/1.

Options
	:name - Name for the supervisor process (optional)
	:strategy - Supervision strategy (defaults to :one_for_one)
	:max_restarts - Maximum restarts allowed (defaults to 3)
	:max_seconds - Time window for max restarts (defaults to 5)

Examples
Start with predefined sessions
{:ok, sup} = ClaudeCode.Supervisor.start_link([
 [name: :assistant, api_key: "sk-ant-..."],
 [name: :reviewer, api_key: "sk-ant-...", system_prompt: "Review code"]
])

Start empty supervisor for dynamic management
{:ok, sup} = ClaudeCode.Supervisor.start_link([])

Start with custom supervisor options
{:ok, sup} = ClaudeCode.Supervisor.start_link(
 [
 [name: :assistant, api_key: "sk-ant-..."]
],
 name: MyApp.ClaudeSupervisor,
 max_restarts: 5,
 max_seconds: 10
)

 start_session(supervisor, session_config, opts \\ [])

Dynamically starts a new session under the supervisor.
Arguments
	supervisor - PID or name of the ClaudeCode.Supervisor
	session_config - Keyword list of session options

Examples
ClaudeCode.Supervisor.start_session(supervisor, [
 name: :new_assistant,
 api_key: api_key,
 system_prompt: "You are helpful"
])

With custom child ID
ClaudeCode.Supervisor.start_session(supervisor, [
 name: :temp_session,
 api_key: api_key
], id: :my_temp_session)

 terminate_session(supervisor, session_id)

Terminates a session managed by the supervisor.
Arguments
	supervisor - PID or name of the ClaudeCode.Supervisor
	session_id - Child ID or session name

Examples
ClaudeCode.Supervisor.terminate_session(supervisor, :old_session)

 ClaudeCode.Options - ClaudeCode v0.16.0

ClaudeCode.Options

Handles option validation and CLI flag conversion.
This module is the single source of truth for all ClaudeCode options.
It provides validation for session and query options using NimbleOptions,
converts Elixir options to CLI flags, and manages option precedence:
query > session > app config > environment variables > defaults.
Session Options
Session options are used when starting a ClaudeCode session. Most options
can be overridden at the query level.
API Key
	:api_key - Anthropic API key (string, optional - falls back to ANTHROPIC_API_KEY env var)

Claude Configuration
	:model - Claude model to use (string, optional - CLI uses its default)
	:fallback_model - Fallback model if primary fails (string, optional)
	:system_prompt - Override system prompt (string, optional)
	:append_system_prompt - Append to system prompt (string, optional)
	:max_turns - Limit agentic turns in non-interactive mode (integer, optional)
	:max_budget_usd - Maximum dollar amount to spend on API calls (number, optional)
	:agent - Agent name for the session (string, optional)
Overrides the 'agent' setting. Different from :agents which defines custom agents.
	:betas - Beta headers to include in API requests (list of strings, optional)
Example: ["feature-x", "feature-y"]

Tool Control
	:tools - Specify the list of available tools from the built-in set (optional)
Use :default for all tools, [] to disable all, or a list of tool names.
Example: tools: :default or tools: ["Bash", "Edit", "Read"]
	:allowed_tools - List of allowed tools (list of strings, optional)
Example: ["View", "Bash(git:*)"]
	:disallowed_tools - List of denied tools (list of strings, optional)
	:add_dir - Additional directories for tool access (list of strings, optional)
Example: ["/tmp", "/var/log"]

Advanced Options
	:agents - Custom agent definitions (map, optional)
Map of agent name to agent configuration. Each agent must have description and prompt.
Example: %{"code-reviewer" => %{"description" => "Reviews code", "prompt" => "You are a code reviewer", "tools" => ["Read", "Edit"], "model" => "sonnet"}}
	:mcp_config - Path to MCP servers JSON config file (string, optional)
	:mcp_servers - MCP server configurations as a map (map, optional)
Values can be a Hermes MCP module (atom), a module map with custom env, or a command config map.
Example: %{"my-tools" => MyApp.MCPServer, "custom" => %{module: MyApp.MCPServer, env: %{"DEBUG" => "1"}}, "playwright" => %{command: "npx", args: ["@playwright/mcp@latest"]}}
	:strict_mcp_config - Only use MCP servers from mcp_config/mcp_servers (boolean, default: false)
When true, ignores all global MCP configurations and only uses explicitly provided MCP config.
	:permission_prompt_tool - MCP tool for handling permission prompts (string, optional)
	:permission_mode - Permission handling mode (atom, default: :default)
Options: :default, :accept_edits, :bypass_permissions, :delegate, :dont_ask, :plan
	:json_schema - JSON Schema for structured output validation (string or map, optional)
When provided as a map, it will be JSON encoded automatically.
Example: %{"type" => "object", "properties" => %{"name" => %{"type" => "string"}}, "required" => ["name"]}
	:settings - Settings configuration (string or map, optional)
Can be a file path, JSON string, or map that will be JSON encoded
Example: %{"feature" => true} or "/path/to/settings.json"
	:setting_sources - List of setting sources to load (list of strings, optional)
Valid sources: "user", "project", "local"
Example: ["user", "project", "local"]

Elixir-Specific Options
	:name - GenServer process name (atom, optional)
	:timeout - Query timeout in milliseconds (timeout, default: 300_000) - Elixir only, not passed to CLI
	:resume - Session ID to resume a previous conversation (string, optional)
	:fork_session - When resuming, create a new session ID instead of reusing the original (boolean, optional)
Must be used with :resume. Creates a fork of the conversation.
	:tool_callback - Post-execution callback for tool monitoring (function, optional)
Receives a map with :name, :input, :result, :is_error, :tool_use_id, :timestamp
	:cwd - Current working directory (string, optional)
	:env - Environment variables to merge with system environment (map of string to string, default: %{})
User-provided env vars override system vars but are overridden by SDK vars and :api_key.
Example: %{"MY_VAR" => "value", "PATH" => "/custom/bin:" <> System.get_env("PATH")}

Query Options
Query options can override session defaults for individual queries.
All session options except :api_key and :name can be used as query options.
Option Precedence
Options are resolved in this order (highest to lowest priority):
	Query-level options
	Session-level options
	Application configuration
	Environment variables (ANTHROPIC_API_KEY for api_key)
	Schema defaults

Usage Examples
Session with comprehensive options
{:ok, session} = ClaudeCode.start_link(
 api_key: "sk-ant-...",
 model: "opus",
 fallback_model: "sonnet",
 system_prompt: "You are an Elixir expert",
 allowed_tools: ["View", "Edit", "Bash(git:*)"],
 add_dir: ["/tmp", "/var/log"],
 max_turns: 20,
 timeout: 180_000,
 permission_mode: :default
)

Query with option overrides
ClaudeCode.query(session, "Help with testing",
 system_prompt: "Focus on ExUnit patterns",
 allowed_tools: ["View"],
 timeout: 60_000
)

Application configuration
config/config.exs
config :claude_code,
 model: "sonnet",
 timeout: 120_000,
 allowed_tools: ["View", "Edit"]

Session with MCP servers configured inline
{:ok, session} = ClaudeCode.start_link(
 mcp_servers: %{
 # Hermes MCP server module - auto-generates stdio config
 "my-tools" => MyApp.MCPServer,
 # Hermes module with custom environment variables
 "my-tools-debug" => %{module: MyApp.MCPServer, env: %{"DEBUG" => "1"}},
 # Explicit command config for external MCP servers
 "playwright" => %{command: "npx", args: ["@playwright/mcp@latest"]}
 }
)
Security Considerations
	:permission_mode: Controls permission handling behavior.
Use :bypass_permissions only in development environments.
	:add_dir: Grants tool access to additional directories.
Only include safe directories.
	:allowed_tools: Use tool restrictions to limit Claude's capabilities.
Example: ["View", "Bash(git:*)"] allows read-only operations and git commands.

 Summary

 Functions

 apply_app_config_defaults(session_opts)

 Applies application config defaults to session options.

 get_app_config()

 Gets application configuration for claude_code.

 merge_options(session_opts, query_opts)

 Merges session and query options with query taking precedence.

 query_schema()

 Returns the query options schema.

 session_schema()

 Returns the session options schema.

 to_cli_args(opts)

 Converts Elixir options to CLI arguments.

 validate_query_options(opts)

 Validates query options using NimbleOptions.

 validate_session_options(opts)

 Validates session options using NimbleOptions.

 Functions

 apply_app_config_defaults(session_opts)

Applies application config defaults to session options.
Session options take precedence over app config.

 get_app_config()

Gets application configuration for claude_code.
Returns only valid option keys from the session schema.

 merge_options(session_opts, query_opts)

Merges session and query options with query taking precedence.
Examples
iex> session_opts = [timeout: 60_000, model: "sonnet"]
iex> query_opts = [timeout: 120_000]
iex> ClaudeCode.Options.merge_options(session_opts, query_opts)
[model: "sonnet", timeout: 120_000]

 query_schema()

Returns the query options schema.

 session_schema()

Returns the session options schema.

 to_cli_args(opts)

Converts Elixir options to CLI arguments.
Ignores internal options like :api_key, :name, and :timeout that are not CLI flags.
Examples
iex> ClaudeCode.Options.to_cli_args([system_prompt: "You are helpful"])
["--system-prompt", "You are helpful"]

iex> ClaudeCode.Options.to_cli_args([allowed_tools: ["View", "Bash(git:*)"]])
["--allowedTools", "View,Bash(git:*)"]

 validate_query_options(opts)

Validates query options using NimbleOptions.
Examples
iex> ClaudeCode.Options.validate_query_options([timeout: 60_000])
{:ok, [timeout: 60_000]}

iex> ClaudeCode.Options.validate_query_options([invalid: "option"])
{:error, %NimbleOptions.ValidationError{}}

 validate_session_options(opts)

Validates session options using NimbleOptions.
The CLI will handle API key resolution from the environment if not provided.
Examples
iex> ClaudeCode.Options.validate_session_options([api_key: "sk-test"])
{:ok, [api_key: "sk-test", timeout: 300_000]}

iex> ClaudeCode.Options.validate_session_options([])
{:ok, [timeout: 300_000]}

 ClaudeCode.Stream - ClaudeCode v0.16.0

ClaudeCode.Stream

Stream utilities for handling Claude Code responses.
This module provides functions to create and manipulate streams of messages
from Claude Code sessions. It enables real-time processing of Claude's
responses without waiting for the complete result.
Example
session
|> ClaudeCode.stream("Write a story")
|> ClaudeCode.Stream.text_content()
|> Stream.each(&IO.write/1)
|> Stream.run()

 Summary

 Functions

 collect(stream)

 Consumes the stream and returns a structured summary of the conversation.

 content_deltas(stream)

 Extracts all content deltas from a partial message stream.

 create(session, prompt, opts \\ [])

 Creates a stream of messages from a Claude Code query.

 filter_event_type(stream, event_type)

 Filters stream to only stream events of a specific event type.

 filter_type(stream, type)

 Filters a message stream by message type.

 final_text(stream)

 Returns only the final result text, consuming the stream.

 on_tool_use(stream, callback)

 Invokes a callback whenever a tool is used, without filtering the stream.

 tap(stream, fun)

 Applies a side-effect function to each message without filtering.

 text_content(stream)

 Extracts text content from a message stream.

 text_deltas(stream)

 Extracts text deltas from a partial message stream.

 thinking_content(stream)

 Extracts thinking content from a message stream.

 thinking_deltas(stream)

 Extracts thinking deltas from a partial message stream.

 tool_results_by_name(stream, tool_name)

 Extracts tool results for a specific tool name from a message stream.

 tool_uses(stream)

 Extracts tool use blocks from a message stream.

 until_result(stream)

 Takes messages until a result is received.

 Functions

 collect(stream)

 @spec collect(Enumerable.t()) :: %{
 text: String.t(),
 tool_calls: [
 {ClaudeCode.Content.ToolUseBlock.t(),
 ClaudeCode.Content.ToolResultBlock.t() | nil}
],
 thinking: String.t(),
 result: String.t() | nil,
 is_error: boolean()
}

Consumes the stream and returns a structured summary of the conversation.
Returns a map containing:
	text - All text content concatenated
	tool_calls - List of {tool_use, tool_result} tuples pairing each tool
invocation with its result. If a tool use has no matching result, the
result will be nil.
	thinking - All thinking content concatenated
	result - The final result text
	is_error - Whether the result was an error

Examples
summary = session
|> ClaudeCode.stream("Create a hello.txt file")
|> ClaudeCode.Stream.collect()

IO.puts("Claude said: #{summary.text}")
IO.puts("Tool calls: #{length(summary.tool_calls)}")
IO.puts("Final result: #{summary.result}")

Process each tool call with its result
Enum.each(summary.tool_calls, fn {tool_use, tool_result} ->
 IO.puts("Tool: #{tool_use.name}")
 if tool_result, do: IO.puts("Result: #{tool_result.content}")
end)

 content_deltas(stream)

 @spec content_deltas(Enumerable.t()) :: Enumerable.t()

Extracts all content deltas from a partial message stream.
Returns a stream of delta maps, useful for tracking both text
and tool use input as it arrives. Each element contains:
	type: :text_delta, :input_json_delta, or :thinking_delta
	index: The content block index
	Content-specific fields (text, partial_json, or thinking)

Examples
ClaudeCode.stream(session, "Create a file", include_partial_messages: true)
|> ClaudeCode.Stream.content_deltas()
|> Enum.each(fn delta ->
 case delta.type do
 :text_delta -> IO.write(delta.text)
 :input_json_delta -> handle_tool_json(delta.partial_json)
 _ -> :ok
 end
end)

 create(session, prompt, opts \\ [])

 @spec create(pid(), String.t(), keyword()) :: Enumerable.t()

Creates a stream of messages from a Claude Code query.
This is the primary function for creating message streams. It returns a
Stream that emits messages as they arrive from the CLI.
Options
	:timeout - Maximum time to wait for each message (default: 60_000ms)
	:filter - Message type filter (:all, :assistant, :tool_use, :result)

Examples
Stream all messages
ClaudeCode.Stream.create(session, "Hello")
|> Enum.each(&IO.inspect/1)

Stream only assistant messages
ClaudeCode.Stream.create(session, "Hello", filter: :assistant)
|> Enum.map(& &1.message.content)

 filter_event_type(stream, event_type)

 @spec filter_event_type(
 Enumerable.t(),
 ClaudeCode.Message.PartialAssistantMessage.event_type()
) ::
 Enumerable.t()

Filters stream to only stream events of a specific event type.
Valid event types: :message_start, :content_block_start,
:content_block_delta, :content_block_stop, :message_delta, :message_stop
Examples
Only content block deltas
stream
|> ClaudeCode.Stream.filter_event_type(:content_block_delta)
|> Enum.each(&process_delta/1)

 filter_type(stream, type)

 @spec filter_type(Enumerable.t(), atom()) :: Enumerable.t()

Filters a message stream by message type.
Examples
Only assistant messages
stream |> ClaudeCode.Stream.filter_type(:assistant)

Only result messages
stream |> ClaudeCode.Stream.filter_type(:result)

 final_text(stream)

 @spec final_text(Enumerable.t()) :: String.t() | nil

Returns only the final result text, consuming the stream.
This is the most common use case - when you just want Claude's answer
without processing intermediate messages.
Examples
Simple query
result = session
|> ClaudeCode.stream("What is 2 + 2?")
|> ClaudeCode.Stream.final_text()
=> "2 + 2 equals 4."

With error handling
case ClaudeCode.Stream.final_text(stream) do
 nil -> IO.puts("No result received")
 text -> IO.puts(text)
end

 on_tool_use(stream, callback)

 @spec on_tool_use(Enumerable.t(), (ClaudeCode.Content.ToolUseBlock.t() -> any())) ::
 Enumerable.t()

Invokes a callback whenever a tool is used, without filtering the stream.
This is useful for progress indicators, logging, or triggering side effects
when Claude uses tools. The callback receives each ToolUseBlock.
Examples
Progress indicator for tool usage
stream
|> ClaudeCode.Stream.on_tool_use(fn tool ->
 IO.puts("Using tool: #{tool.name}")
end)
|> ClaudeCode.Stream.final_text()

Send tool events to a LiveView process
stream
|> ClaudeCode.Stream.on_tool_use(fn tool ->
 send(liveview_pid, {:tool_started, tool.name, tool.input})
end)
|> Enum.to_list()

Track tool usage
stream
|> ClaudeCode.Stream.on_tool_use(&Agent.update(tracker, fn tools -> [&1 | tools] end))
|> ClaudeCode.Stream.collect()

 tap(stream, fun)

 @spec tap(Enumerable.t(), (ClaudeCode.Message.t() -> any())) :: Enumerable.t()

Applies a side-effect function to each message without filtering.
This is useful for logging, monitoring, or sending events while still
allowing the stream to continue unchanged. Unlike Stream.each/2, this
is designed for observation within a pipeline.
Examples
Logging all messages
stream
|> ClaudeCode.Stream.tap(fn msg -> Logger.debug("Got: #{inspect(msg)}") end)
|> ClaudeCode.Stream.text_content()
|> Enum.join()

Progress notifications
stream
|> ClaudeCode.Stream.tap(&send(progress_pid, {:message, &1}))
|> ClaudeCode.Stream.final_text()

 text_content(stream)

 @spec text_content(Enumerable.t()) :: Enumerable.t()

Extracts text content from a message stream.
Filters the stream to only emit text content from assistant messages,
making it easy to collect the textual response.
Examples
text = session
|> ClaudeCode.stream("Tell me about Elixir")
|> ClaudeCode.Stream.text_content()
|> Enum.join()

 text_deltas(stream)

 @spec text_deltas(Enumerable.t()) :: Enumerable.t()

Extracts text deltas from a partial message stream.
This enables character-by-character streaming from Claude's responses.
Use with include_partial_messages: true option.
Examples
Real-time character streaming for LiveView
ClaudeCode.stream(session, "Tell a story", include_partial_messages: true)
|> ClaudeCode.Stream.text_deltas()
|> Enum.each(fn chunk ->
 Phoenix.PubSub.broadcast(MyApp.PubSub, "chat:123", {:text_chunk, chunk})
end)

Simple console output
session
|> ClaudeCode.stream("Hello", include_partial_messages: true)
|> ClaudeCode.Stream.text_deltas()
|> Enum.each(&IO.write/1)

 thinking_content(stream)

 @spec thinking_content(Enumerable.t()) :: Enumerable.t()

Extracts thinking content from a message stream.
Filters the stream to only emit thinking content from assistant messages,
making it easy to collect Claude's extended reasoning.
Examples
thinking = session
|> ClaudeCode.stream("Complex problem")
|> ClaudeCode.Stream.thinking_content()
|> Enum.join()

 thinking_deltas(stream)

 @spec thinking_deltas(Enumerable.t()) :: Enumerable.t()

Extracts thinking deltas from a partial message stream.
This enables streaming of Claude's extended reasoning as it arrives.
Use with include_partial_messages: true option.
Examples
Stream thinking content in real-time
session
|> ClaudeCode.stream("Complex problem", include_partial_messages: true)
|> ClaudeCode.Stream.thinking_deltas()
|> Enum.each(&IO.write/1)

 tool_results_by_name(stream, tool_name)

 @spec tool_results_by_name(Enumerable.t(), String.t()) :: Enumerable.t()

Extracts tool results for a specific tool name from a message stream.
Since tool results reference tool uses by ID (not name), this function
tracks tool use blocks and matches their IDs with subsequent tool results.
Examples
Get all Read tool results
session
|> ClaudeCode.stream("Read some files")
|> ClaudeCode.Stream.tool_results_by_name("Read")
|> Enum.each(&IO.inspect/1)

Get Bash command outputs
session
|> ClaudeCode.stream("Run some commands")
|> ClaudeCode.Stream.tool_results_by_name("Bash")
|> Enum.map(& &1.content)

 tool_uses(stream)

 @spec tool_uses(Enumerable.t()) :: Enumerable.t()

Extracts tool use blocks from a message stream.
Filters the stream to only emit tool use content blocks, making it easy
to react to tool usage in real-time.
Examples
session
|> ClaudeCode.stream("Create some files")
|> ClaudeCode.Stream.tool_uses()
|> Enum.each(&handle_tool_use/1)

 until_result(stream)

 @spec until_result(Enumerable.t()) :: Enumerable.t()

Takes messages until a result is received.
This is useful when you want to process messages but stop as soon as
the final result arrives.
Examples
messages = session
|> ClaudeCode.stream("Quick task")
|> ClaudeCode.Stream.until_result()
|> Enum.to_list()

 ClaudeCode.Content - ClaudeCode v0.16.0

ClaudeCode.Content

Utilities for working with content blocks in Claude messages.
Content blocks can be text, thinking, tool use requests, or tool results.
This module provides functions to parse and work with any content type.

 Summary

 Types

 t()

 Functions

 content?(arg1)

 Checks if a value is any type of content block.

 content_type(arg1)

 Returns the type of a content block.

 parse(data)

 Parses a content block from JSON data based on its type.

 parse_all(blocks)

 Parses a list of content blocks.

 Types

 t()

 @type t() ::
 ClaudeCode.Content.TextBlock.t()
 | ClaudeCode.Content.ThinkingBlock.t()
 | ClaudeCode.Content.ToolUseBlock.t()
 | ClaudeCode.Content.ToolResultBlock.t()

 Functions

 content?(arg1)

 @spec content?(any()) :: boolean()

Checks if a value is any type of content block.

 content_type(arg1)

 @spec content_type(t()) :: :text | :thinking | :tool_use | :tool_result

Returns the type of a content block.

 parse(data)

 @spec parse(map()) :: {:ok, t()} | {:error, term()}

Parses a content block from JSON data based on its type.
Examples
iex> Content.parse(%{"type" => "text", "text" => "Hello"})
{:ok, %TextBlock{type: :text, text: "Hello"}}

iex> Content.parse(%{"type" => "unknown"})
{:error, {:unknown_content_type, "unknown"}}

 parse_all(blocks)

 @spec parse_all([map()]) :: {:ok, [t()]} | {:error, term()}

Parses a list of content blocks.
Returns {:ok, contents} if all blocks parse successfully,
or {:error, {:parse_error, index, error}} for the first failure.

 ClaudeCode.Message - ClaudeCode v0.16.0

ClaudeCode.Message

Utilities for working with messages from the Claude CLI.
Messages can be system initialization, assistant responses, user tool results,
result messages, stream events, or conversation compaction boundaries.
This module provides functions to parse and work with any message type.

 Summary

 Types

 t()

 Functions

 message?(arg1)

 Checks if a value is any type of message.

 message_type(arg1)

 Returns the type of a message.

 parse(data)

 Parses a message from JSON data based on its type.

 parse_all(messages)

 Parses a list of messages.

 parse_stream(stream)

 Parses a newline-delimited JSON stream from the CLI.

 Types

 t()

 @type t() ::
 ClaudeCode.Message.SystemMessage.t()
 | ClaudeCode.Message.CompactBoundaryMessage.t()
 | ClaudeCode.Message.AssistantMessage.t()
 | ClaudeCode.Message.UserMessage.t()
 | ClaudeCode.Message.ResultMessage.t()
 | ClaudeCode.Message.PartialAssistantMessage.t()

 Functions

 message?(arg1)

 @spec message?(any()) :: boolean()

Checks if a value is any type of message.

 message_type(arg1)

 @spec message_type(t()) :: :system | :assistant | :user | :result | :stream_event

Returns the type of a message.

 parse(data)

 @spec parse(map()) :: {:ok, t()} | {:error, term()}

Parses a message from JSON data based on its type.
Examples
iex> Message.parse(%{"type" => "system", ...})
{:ok, %SystemMessage{...}}

iex> Message.parse(%{"type" => "unknown"})
{:error, {:unknown_message_type, "unknown"}}

 parse_all(messages)

 @spec parse_all([map()]) :: {:ok, [t()]} | {:error, term()}

Parses a list of messages.
Returns {:ok, messages} if all messages parse successfully,
or {:error, {:parse_error, index, error}} for the first failure.

 parse_stream(stream)

 @spec parse_stream(String.t()) :: {:ok, [t()]} | {:error, term()}

Parses a newline-delimited JSON stream from the CLI.
This is the format output by the CLI with --output-format stream-json.

 ClaudeCode.Types - ClaudeCode v0.16.0

ClaudeCode.Types

Type definitions for the ClaudeCode SDK.
These types match the official Claude SDK schema for messages
returned from the CLI with --output-format stream-json.

 Summary

 Types

 cache_creation()

 mcp_server()

 message()

 message_content()

 message_param()

 model()

 model_usage()

 permission_denial()

 permission_mode()

 result_subtype()

 role()

 server_tool_usage()

 session_id()

 stop_reason()

 usage()

 Types

 cache_creation()

 @type cache_creation() :: %{
 ephemeral_5m_input_tokens: non_neg_integer(),
 ephemeral_1h_input_tokens: non_neg_integer()
}

 mcp_server()

 @type mcp_server() :: %{name: String.t(), status: String.t()}

 message()

 @type message() :: %{
 id: String.t(),
 type: :message,
 role: role(),
 content: [ClaudeCode.Content.t()],
 model: model(),
 stop_reason: stop_reason(),
 stop_sequence: String.t() | nil,
 usage: usage()
}

 message_content()

 @type message_content() :: String.t() | [ClaudeCode.Content.t()]

 message_param()

 @type message_param() :: %{content: message_content(), role: role()}

 model()

 @type model() :: String.t()

 model_usage()

 @type model_usage() :: %{
 input_tokens: non_neg_integer(),
 output_tokens: non_neg_integer(),
 cache_creation_input_tokens: non_neg_integer() | nil,
 cache_read_input_tokens: non_neg_integer() | nil,
 web_search_requests: non_neg_integer(),
 cost_usd: float() | nil,
 context_window: non_neg_integer() | nil,
 max_output_tokens: non_neg_integer() | nil
}

 permission_denial()

 @type permission_denial() :: %{
 tool_name: String.t(),
 tool_use_id: String.t(),
 tool_input: map()
}

 permission_mode()

 @type permission_mode() :: :default | :accept_edits | :bypass_permissions | :plan

 result_subtype()

 @type result_subtype() ::
 :success
 | :error_max_turns
 | :error_during_execution
 | :error_max_budget_usd
 | :error_max_structured_output_retries

 role()

 @type role() :: :user | :assistant

 server_tool_usage()

 @type server_tool_usage() :: %{
 web_search_requests: non_neg_integer(),
 web_fetch_requests: non_neg_integer()
}

 session_id()

 @type session_id() :: String.t()

 stop_reason()

 @type stop_reason() :: :end_turn | :max_tokens | :stop_sequence | :tool_use | nil

 usage()

 @type usage() :: %{
 input_tokens: non_neg_integer(),
 output_tokens: non_neg_integer(),
 cache_creation_input_tokens: non_neg_integer() | nil,
 cache_read_input_tokens: non_neg_integer() | nil,
 server_tool_use: server_tool_usage() | nil,
 service_tier: String.t() | nil,
 cache_creation: cache_creation() | nil
}

 ClaudeCode.ToolCallback - ClaudeCode v0.16.0

ClaudeCode.ToolCallback

Handles post-execution tool callbacks for logging and auditing.
This module correlates tool use requests (from Assistant messages) with their
results (from User messages) and invokes callbacks asynchronously when results
are received.
Usage
Configure a callback when starting a session:
callback = fn event ->
 Logger.info("Tool #{event.name} executed: #{inspect(event.result)}")
end

{:ok, session} = ClaudeCode.start_link(
 api_key: "sk-ant-...",
 tool_callback: callback
)
Event Structure
The callback receives a map with the following keys:
	:name - Tool name (e.g., "Read", "Write", "Bash")
	:input - Tool input parameters (map)
	:result - Tool execution result (string)
	:is_error - Whether the tool execution failed (boolean)
	:tool_use_id - Unique identifier for correlation (string)
	:timestamp - When the result was received (DateTime)

 Summary

 Types

 pending_tools()

 tool_event()

 Functions

 process_message(message, pending_tools, callback)

 Processes a message and invokes callback when tool results are detected.

 Types

 pending_tools()

 @type pending_tools() :: %{
 required(String.t()) => %{
 name: String.t(),
 input: map(),
 started_at: DateTime.t()
 }
}

 tool_event()

 @type tool_event() :: %{
 name: String.t(),
 input: map(),
 result: String.t(),
 is_error: boolean(),
 tool_use_id: String.t(),
 timestamp: DateTime.t()
}

 Functions

 process_message(message, pending_tools, callback)

 @spec process_message(
 message :: struct(),
 pending_tools :: pending_tools(),
 callback :: (tool_event() -> any()) | nil
) :: {pending_tools(), [tool_event()]}

Processes a message and invokes callback when tool results are detected.
For Assistant messages with ToolUse blocks, stores tool info in pending_tools map.
For User messages with ToolResult blocks, correlates with pending tools and invokes callback.
Returns {updated_pending_tools, events} where events is a list of tool events
that were processed (for testing/debugging purposes).

 ClaudeCode.Adapter.Test - ClaudeCode v0.16.0

ClaudeCode.Adapter.Test

Test adapter that delivers mock messages synchronously.
This adapter retrieves messages from registered stubs in ClaudeCode.Test
and sends them to the Session. Used for testing applications built on ClaudeCode.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 ClaudeCode.Test - ClaudeCode v0.16.0

ClaudeCode.Test

Req.Test-style test helpers for ClaudeCode.
This module provides a simple way to mock Claude responses in your tests,
following the same patterns as Req.Test.
Setup
	Configure the adapter in your test environment:
 # config/test.exs
 config :claude_code, adapter: {ClaudeCode.Test, ClaudeCode}

	In your test helper, start the ownership server:
 # test/test_helper.exs
 ExUnit.start()
 Supervisor.start_link([ClaudeCode.Test], strategy: :one_for_one)

	Register stubs in your tests:
 test "returns greeting" do
 ClaudeCode.Test.stub(ClaudeCode, fn _query, _opts ->
 [
 ClaudeCode.Test.text("Hello! How can I help?"),
 ClaudeCode.Test.result()
]
 end)

 {:ok, session} = ClaudeCode.start_link([])
 result = session |> ClaudeCode.stream("Hi") |> ClaudeCode.Stream.final_text()
 assert result == "Hello! How can I help?"
 end

Message Helpers
	text/2 - Creates an assistant message with text content
	tool_use/3 - Creates a tool invocation message
	tool_result/2 - Creates a tool result message
	thinking/2 - Creates a thinking block message
	result/2 - Creates the final result message
	system/1 - Creates a system initialization message

Async Tests
This module uses NimbleOwnership for process-based isolation, allowing
concurrent test execution. Stubs registered in a test process are only
visible to that process and its allowees.
To allow a spawned process to access stubs:
ClaudeCode.Test.allow(ClaudeCode, self(), pid_of_spawned_process)
Using Different Names
The name in {ClaudeCode.Test, name} can be any term. This is useful when
you need different stub behaviors in the same test, or when building wrapper
modules around ClaudeCode:
Testing multiple "agents" with different behaviors
ClaudeCode.Test.stub(MyApp.CodingAgent, fn _query, _opts ->
 [ClaudeCode.Test.text("Here's the code...")]
end)

ClaudeCode.Test.stub(MyApp.ResearchAgent, fn _query, _opts ->
 [ClaudeCode.Test.text("Based on my research...")]
end)

{:ok, coder} = ClaudeCode.start_link(adapter: {ClaudeCode.Test, MyApp.CodingAgent})
{:ok, researcher} = ClaudeCode.start_link(adapter: {ClaudeCode.Test, MyApp.ResearchAgent})

 Summary

 Functions

 allow(name, owner_pid, pid_to_allow)

 Allows pid_to_allow to access stubs owned by owner_pid.

 result(result_text \\ "Done", opts \\ [])

 Creates a final result message.

 set_mode_to_shared()

 Sets the mode to shared global.

 stream(name, query, opts, callers \\ nil)

 Returns a list of messages from the registered stub.

 stub(name, fun_or_messages)

 Registers a stub for the given name.

 system(opts \\ [])

 Creates a system initialization message.

 text(text, opts \\ [])

 Creates an assistant message with text content.

 thinking(thinking_text, opts \\ [])

 Creates an assistant message with a thinking block.

 tool_result(content \\ "", opts \\ [])

 Creates a user message with a tool result block.

 tool_use(name, input, opts \\ [])

 Creates an assistant message with a tool use block.

 Functions

 allow(name, owner_pid, pid_to_allow)

 @spec allow(name :: term(), owner_pid :: pid(), pid_to_allow :: pid()) ::
 :ok | {:error, term()}

Allows pid_to_allow to access stubs owned by owner_pid.
This is useful when you spawn processes that need to access the same stubs
as the test process.
Example
test "spawned process can use stub" do
 ClaudeCode.Test.stub(ClaudeCode, fn _, _ -> [...] end)

 task = Task.async(fn ->
 # This task can now access the stub
 {:ok, session} = ClaudeCode.start_link([])
 ClaudeCode.stream(session, "hi") |> Enum.to_list()
 end)

 # Allow the task to access our stubs
 ClaudeCode.Test.allow(ClaudeCode, self(), task.pid)

 Task.await(task)
end

 result(result_text \\ "Done", opts \\ [])

 @spec result(
 String.t(),
 keyword()
) :: ClaudeCode.Message.ResultMessage.t()

Creates a final result message.
Options
	:is_error - Whether this is an error result (default: false)
	:subtype - Result subtype (default: :success or :error_during_execution)
	:session_id - Session ID (default: auto-generated)
	:duration_ms - Duration in milliseconds (default: 100)
	:num_turns - Number of turns (default: 1)

Examples
ClaudeCode.Test.result()
ClaudeCode.Test.result("Task completed successfully")
ClaudeCode.Test.result("Rate limit exceeded", is_error: true)

 set_mode_to_shared()

 @spec set_mode_to_shared() :: :ok

Sets the mode to shared global.
In shared mode, all processes can access stubs without explicit allowances.
This is useful for integration tests or when process ownership is complex.
Example
setup do
 ClaudeCode.Test.set_mode_to_shared()
 :ok
end

 stream(name, query, opts, callers \\ nil)

Returns a list of messages from the registered stub.
Called by ClaudeCode.Adapter.Test to retrieve stub messages.
The optional callers argument allows passing the caller chain from
a different process (used by the test adapter).

 stub(name, fun_or_messages)

 @spec stub(
 name :: term(),
 fun_or_messages :: (String.t(), keyword() -> [term()]) | [term()]
) :: :ok

Registers a stub for the given name.
The stub can be either a function or a list of messages:
Function stub
Receives the query and options, returns a list of messages:
ClaudeCode.Test.stub(ClaudeCode, fn query, opts ->
 [
 ClaudeCode.Test.text("Response to: #{query}"),
 ClaudeCode.Test.result()
]
end)
Static stub
A list of messages that will be returned for any query:
ClaudeCode.Test.stub(ClaudeCode, [
 ClaudeCode.Test.text("Static response"),
 ClaudeCode.Test.result()
])

 system(opts \\ [])

 @spec system(keyword()) :: ClaudeCode.Message.SystemMessage.t()

Creates a system initialization message.
Options
	:session_id - Session ID (default: auto-generated)
	:model - Model name (default: "claude-sonnet-4-20250514")
	:tools - List of available tools (default: [])
	:cwd - Current working directory (default: "/test")

Examples
ClaudeCode.Test.system()
ClaudeCode.Test.system(model: "claude-opus-4-20250514", tools: ["Read", "Edit"])

 text(text, opts \\ [])

 @spec text(
 String.t(),
 keyword()
) :: ClaudeCode.Message.AssistantMessage.t()

Creates an assistant message with text content.
Options
	:session_id - Session ID (default: auto-generated)
	:stop_reason - Stop reason atom (default: nil)
	:message_id - Message ID (default: auto-generated)

Examples
ClaudeCode.Test.text("Hello world!")
ClaudeCode.Test.text("Done", stop_reason: :end_turn)

 thinking(thinking_text, opts \\ [])

 @spec thinking(
 String.t(),
 keyword()
) :: ClaudeCode.Message.AssistantMessage.t()

Creates an assistant message with a thinking block.
Options
	:signature - Thinking signature (default: auto-generated)
	:text - Optional text to include after thinking
	:session_id - Session ID (default: auto-generated)

Examples
ClaudeCode.Test.thinking("Let me analyze this step by step...")
ClaudeCode.Test.thinking("First...", text: "Here's my answer")

 tool_result(content \\ "", opts \\ [])

 @spec tool_result(
 String.t() | map(),
 keyword()
) :: ClaudeCode.Message.UserMessage.t()

Creates a user message with a tool result block.
The content can be a string or a map. Maps are automatically JSON-encoded.
Content is wrapped as a list of content blocks: [%{"type" => "text", "text" => content}]
Options
	:tool_use_id - ID of the tool use this is responding to (default: nil for auto-linking)
	:is_error - Whether the tool execution failed (default: false)
	:session_id - Session ID (default: auto-generated)

Examples
ClaudeCode.Test.tool_result("file contents here")
ClaudeCode.Test.tool_result("Permission denied", is_error: true)
ClaudeCode.Test.tool_result(%{status: "success", data: [1, 2, 3]})

 tool_use(name, input, opts \\ [])

 @spec tool_use(String.t(), map(), keyword()) ::
 ClaudeCode.Message.AssistantMessage.t()

Creates an assistant message with a tool use block.
Options
	:id - Tool use ID (default: auto-generated)
	:text - Optional text to include before the tool use
	:session_id - Session ID (default: auto-generated)

Examples
ClaudeCode.Test.tool_use("Read", %{path: "/tmp/file.txt"})
ClaudeCode.Test.tool_use("Bash", %{command: "ls -la"}, text: "Let me check...")

 ClaudeCode.Test.Factory - ClaudeCode v0.16.0

ClaudeCode.Test.Factory

Test factories for ClaudeCode structs.
Provides simple factory functions with sensible defaults that accept
keyword lists or maps for overrides.
Usage
import ClaudeCode.Test.Factory

Create with defaults
text_block()

Override with keywords
text_block(text: "custom text")

Override with map
text_block(%{text: "custom text"})

Compose factories
assistant_message(message: %{content: [text_block(text: "Hello")]})

 Summary

 Functions

 assistant_message(attrs \\ [])

 Creates an AssistantMessage with default values.

 compact_boundary_message(attrs \\ [])

 Creates a CompactBoundaryMessage with default values.

 default_usage()

 Returns default usage map for messages

 generate_message_id()

 Generates a test message ID

 generate_session_id()

 Generates a test session ID

 generate_signature()

 Generates a test signature

 generate_tool_id()

 Generates a test tool ID

 generate_uuid()

 Generates a test UUID

 partial_message(attrs \\ [])

 Creates a PartialAssistantMessage (stream event) with default values.

 result_message(attrs \\ [])

 Creates a ResultMessage with default values.

 stream_event_content_block_start(attrs \\ %{})

 Creates a content_block_start stream event.

 stream_event_content_block_stop(attrs \\ %{})

 Creates a content_block_stop stream event.

 stream_event_input_json_delta(partial_json, attrs \\ %{})

 Creates an input_json_delta stream event for tool use streaming.

 stream_event_message_delta(attrs \\ %{})

 Creates a message_delta stream event.

 stream_event_message_start(attrs \\ %{})

 Creates a message_start stream event.

 stream_event_message_stop(attrs \\ %{})

 Creates a message_stop stream event.

 stream_event_sequence(text_chunks)

 Creates a complete sequence of stream events simulating a text response.

 stream_event_text_delta(text, attrs \\ %{})

 Creates a text delta stream event.

 stream_event_thinking_delta(thinking, attrs \\ %{})

 Creates a thinking_delta stream event for extended thinking streaming.

 system_message(attrs \\ [])

 Creates a SystemMessage with default values.

 text_block(attrs \\ [])

 Creates a TextBlock with default text.

 text_content(text)

 Creates a TextBlock with the given text.

 text_delta(text)

 thinking_block(attrs \\ [])

 Creates a ThinkingBlock with default values.

 thinking_content(thinking, signature \\ nil)

 Creates a ThinkingBlock with positional arguments.

 thinking_delta(thinking)

 tool_result_block(attrs \\ [])

 Creates a ToolResultBlock with default values.

 tool_result_content(content, tool_use_id \\ nil, is_error \\ false)

 Creates a ToolResultBlock with positional arguments.

 tool_use_block(attrs \\ [])

 Creates a ToolUseBlock with default values.

 tool_use_content(name, input, id \\ nil)

 Creates a ToolUseBlock with positional arguments.

 unique_id()

 Generates a unique numeric ID

 user_message(attrs \\ [])

 Creates a UserMessage with default values.

 Functions

 assistant_message(attrs \\ [])

Creates an AssistantMessage with default values.
The nested message field can be overridden with a map.
assistant_message()
assistant_message(message: %{content: [text_block()]})
assistant_message(session_id: "custom-session")

 compact_boundary_message(attrs \\ [])

Creates a CompactBoundaryMessage with default values.
compact_boundary_message()
compact_boundary_message(compact_metadata: %{trigger: "auto", pre_tokens: 5000})

 default_usage()

Returns default usage map for messages

 generate_message_id()

Generates a test message ID

 generate_session_id()

Generates a test session ID

 generate_signature()

Generates a test signature

 generate_tool_id()

Generates a test tool ID

 generate_uuid()

Generates a test UUID

 partial_message(attrs \\ [])

Creates a PartialAssistantMessage (stream event) with default values.
partial_message()
partial_message(event: %{type: :content_block_delta, delta: %{type: :text_delta, text: "Hi"}})

 result_message(attrs \\ [])

Creates a ResultMessage with default values.
result_message()
result_message(result: "Task completed", is_error: false)
result_message(is_error: true, subtype: :error_during_execution)

 stream_event_content_block_start(attrs \\ %{})

Creates a content_block_start stream event.
stream_event_content_block_start()
stream_event_content_block_start(%{index: 0, content_block: %{type: :text, text: ""}})

 stream_event_content_block_stop(attrs \\ %{})

Creates a content_block_stop stream event.
stream_event_content_block_stop()
stream_event_content_block_stop(%{index: 0})

 stream_event_input_json_delta(partial_json, attrs \\ %{})

Creates an input_json_delta stream event for tool use streaming.
stream_event_input_json_delta("{"path":")
stream_event_input_json_delta(""/test.txt"}", %{index: 1})

 stream_event_message_delta(attrs \\ %{})

Creates a message_delta stream event.
stream_event_message_delta()
stream_event_message_delta(%{delta: %{stop_reason: "end_turn"}})

 stream_event_message_start(attrs \\ %{})

Creates a message_start stream event.
stream_event_message_start()
stream_event_message_start(%{message: %{id: "msg_123"}})

 stream_event_message_stop(attrs \\ %{})

Creates a message_stop stream event.
stream_event_message_stop()

 stream_event_sequence(text_chunks)

Creates a complete sequence of stream events simulating a text response.
stream_event_sequence(["Hello", " ", "World!"])

 stream_event_text_delta(text, attrs \\ %{})

Creates a text delta stream event.
stream_event_text_delta("Hello")
stream_event_text_delta("world", %{index: 0})

 stream_event_thinking_delta(thinking, attrs \\ %{})

Creates a thinking_delta stream event for extended thinking streaming.
stream_event_thinking_delta("Let me reason...")
stream_event_thinking_delta("more reasoning", %{index: 0})

 system_message(attrs \\ [])

Creates a SystemMessage with default values.
system_message()
system_message(model: "claude-opus-4-20250514")

 text_block(attrs \\ [])

Creates a TextBlock with default text.
text_block()
text_block(text: "custom text")

 text_content(text)

Creates a TextBlock with the given text.
text_content("Hello world")

 text_delta(text)

 thinking_block(attrs \\ [])

Creates a ThinkingBlock with default values.
thinking_block()
thinking_block(thinking: "Let me analyze this...")

 thinking_content(thinking, signature \\ nil)

Creates a ThinkingBlock with positional arguments.
thinking_content("Let me reason through this...")
thinking_content("Reasoning...", "sig_abc123")

 thinking_delta(thinking)

 tool_result_block(attrs \\ [])

Creates a ToolResultBlock with default values.
tool_result_block()
tool_result_block(content: "file contents", is_error: false)

 tool_result_content(content, tool_use_id \\ nil, is_error \\ false)

Creates a ToolResultBlock with positional arguments.
tool_result_content("file contents")
tool_result_content("file contents", "tool_123")
tool_result_content("error message", "tool_123", true)

 tool_use_block(attrs \\ [])

Creates a ToolUseBlock with default values.
tool_use_block()
tool_use_block(name: "Bash", input: %{command: "ls"})

 tool_use_content(name, input, id \\ nil)

Creates a ToolUseBlock with positional arguments.
tool_use_content("Read", %{path: "/tmp/file.txt"})
tool_use_content("Read", %{path: "/tmp/file.txt"}, "tool_123")

 unique_id()

Generates a unique numeric ID

 user_message(attrs \\ [])

Creates a UserMessage with default values.
user_message()
user_message(message: %{content: [tool_result_block()]})

 ClaudeCode.MCP - ClaudeCode v0.16.0

ClaudeCode.MCP

Optional integration with Hermes MCP (Model Context Protocol).
This module provides helpers for exposing Elixir tools to Claude via the MCP protocol.
It requires the optional hermes_mcp dependency to be installed.
Overview
MCP (Model Context Protocol) allows Claude to interact with external tools and services.
With this integration, you can:
	Define tools using Hermes MCP patterns
	Start an MCP server (HTTP or stdio transport)
	Generate config files for the Claude CLI
	Connect ClaudeCode sessions to your MCP servers

Installation
Add hermes_mcp to your dependencies in mix.exs:
defp deps do
 [
 {:claude_code, "~> 0.16"},
 {:hermes_mcp, "~> 0.14"} # Required for MCP integration
]
end
Usage Example
1. Define your tools using Hermes
defmodule MyApp.Calculator do
 use Hermes.Server.Component, type: :tool

 @impl true
 def definition do
 %{
 name: "add",
 description: "Add two numbers together",
 inputSchema: %{
 type: "object",
 properties: %{
 a: %{type: "number", description: "First number"},
 b: %{type: "number", description: "Second number"}
 },
 required: ["a", "b"]
 }
 }
 end

 @impl true
 def execute(%{"a" => a, "b" => b}, _frame) do
 {:ok, [%{type: "text", text: "#{a + b}"}]}
 end
end

defmodule MyApp.MCPServer do
 use Hermes.Server,
 name: "my-tools",
 version: "1.0.0"

 tool MyApp.Calculator
end
2. Start the MCP server and connect to ClaudeCode
Start MCP server
{:ok, config_path} = ClaudeCode.MCP.Server.start_link(MyApp.MCPServer, port: 9001)

Connect ClaudeCode session with the MCP server
{:ok, session} = ClaudeCode.start_link(
 mcp_config: config_path
)

Claude can now use your tools!
{:ok, response} = ClaudeCode.query(session, "What is 5 + 3?")
Architecture
┌─────────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ ClaudeCode │────▶│ Claude CLI │────▶│ Hermes MCP │
│ Session │ │ (subprocess) │ │ Server │
└─────────────────────┘ └──────────────────┘ └─────────────────┘
 │ │
 │ MCP Protocol │
 │ (HTTP/SSE or stdio) │
 └────────────────────────┘
Submodules
	ClaudeCode.MCP.Config - Generate MCP configuration files
	ClaudeCode.MCP.Server - Start and manage Hermes MCP servers

 Summary

 Functions

 available?()

 Checks if Hermes MCP is available.

 require_hermes!()

 Raises an error if Hermes MCP is not available.

 Functions

 available?()

 @spec available?() :: boolean()

Checks if Hermes MCP is available.
Returns true if the hermes_mcp dependency is installed and loaded.
Example
if ClaudeCode.MCP.available?() do
 # Use MCP features
else
 # Fall back or show error
end

 require_hermes!()

 @spec require_hermes!() :: :ok | no_return()

Raises an error if Hermes MCP is not available.
Use this at the start of functions that require Hermes to provide
a clear error message.
Example
def start_mcp_server(module, opts) do
 ClaudeCode.MCP.require_hermes!()
 # ... rest of implementation
end

 ClaudeCode.MCP.Config - ClaudeCode v0.16.0

ClaudeCode.MCP.Config

Generates MCP configuration files for the Claude CLI.
The Claude CLI expects MCP server configurations in a specific JSON format.
This module provides helpers to generate these configuration files for
different transport types (HTTP/SSE and stdio).
Configuration Format
The Claude CLI expects a JSON file with the following structure:
{
 "mcpServers": {
 "server-name": {
 "command": "path/to/executable",
 "args": ["arg1", "arg2"],
 "env": {"KEY": "value"}
 }
 }
}
For HTTP/SSE transport:
{
 "mcpServers": {
 "server-name": {
 "url": "http://localhost:9001/sse"
 }
 }
}
Usage
Generate HTTP config
config = ClaudeCode.MCP.Config.http_config("my-server", port: 9001)

Generate stdio config
config = ClaudeCode.MCP.Config.stdio_config("my-server",
 command: "elixir",
 args: ["-S", "mix", "run", "--no-halt", "-e", "MyApp.MCPServer.start_link()"]
)

Write to temp file for Claude CLI
{:ok, path} = ClaudeCode.MCP.Config.write_temp_config(config)

Use with ClaudeCode session
{:ok, session} = ClaudeCode.start_link(mcp_config: path)

 Summary

 Types

 mcp_config()

 server_config()

 Functions

 http_config(name, opts)

 Generates an HTTP/SSE transport configuration for an MCP server.

 merge_configs(configs)

 Merges multiple MCP configurations into a single configuration.

 stdio_config(name, opts)

 Generates a stdio transport configuration for an MCP server.

 to_json(config, opts \\ [])

 Converts an MCP configuration to a JSON string.

 write_temp_config(config, opts \\ [])

 Writes an MCP configuration to a temporary file.

 Types

 mcp_config()

 @type mcp_config() :: %{mcpServers: %{required(String.t()) => server_config()}}

 server_config()

 @type server_config() :: %{
 optional(:command) => String.t(),
 optional(:args) => [String.t()],
 optional(:env) => %{required(String.t()) => String.t()},
 optional(:url) => String.t()
}

 Functions

 http_config(name, opts)

 @spec http_config(
 String.t(),
 keyword()
) :: mcp_config()

Generates an HTTP/SSE transport configuration for an MCP server.
Options
	:port - Port number (required)
	:host - Hostname (default: "localhost")
	:path - SSE endpoint path (default: "/sse")
	:scheme - URL scheme (default: "http")

Example
config = ClaudeCode.MCP.Config.http_config("calculator", port: 9001)
=> %{mcpServers: %{"calculator" => %{url: "http://localhost:9001/sse"}}}

config = ClaudeCode.MCP.Config.http_config("secure-server",
 port: 443,
 host: "api.example.com",
 scheme: "https",
 path: "/mcp/sse"
)

 merge_configs(configs)

 @spec merge_configs([mcp_config()]) :: mcp_config()

Merges multiple MCP configurations into a single configuration.
This is useful when you have multiple MCP servers that should all
be available to Claude.
Example
calculator = ClaudeCode.MCP.Config.http_config("calculator", port: 9001)
database = ClaudeCode.MCP.Config.http_config("database", port: 9002)

merged = ClaudeCode.MCP.Config.merge_configs([calculator, database])
=> %{mcpServers: %{"calculator" => ..., "database" => ...}}

 stdio_config(name, opts)

 @spec stdio_config(
 String.t(),
 keyword()
) :: mcp_config()

Generates a stdio transport configuration for an MCP server.
Options
	:command - Executable command (required)
	:args - List of command arguments (default: [])
	:env - Environment variables map (default: %{})

Example
config = ClaudeCode.MCP.Config.stdio_config("my-tools",
 command: "elixir",
 args: ["-S", "mix", "run", "--no-halt", "-e", "MyApp.start_mcp()"]
)

config = ClaudeCode.MCP.Config.stdio_config("node-server",
 command: "npx",
 args: ["@example/mcp-server"],
 env: %{"API_KEY" => "secret"}
)

 to_json(config, opts \\ [])

 @spec to_json(
 mcp_config(),
 keyword()
) :: {:ok, String.t()} | {:error, term()}

Converts an MCP configuration to a JSON string.
Options
	:pretty - Format with indentation (default: false)

Example
config = ClaudeCode.MCP.Config.http_config("my-server", port: 9001)
{:ok, json} = ClaudeCode.MCP.Config.to_json(config, pretty: true)

 write_temp_config(config, opts \\ [])

 @spec write_temp_config(
 mcp_config(),
 keyword()
) :: {:ok, String.t()} | {:error, term()}

Writes an MCP configuration to a temporary file.
Returns the path to the temporary file, which can be passed to
ClaudeCode via the :mcp_config option.
The temporary file is created in the system's temp directory and
will be automatically cleaned up by the OS eventually.
Options
	:prefix - Filename prefix (default: "claude_mcp_config")
	:dir - Directory for temp file (default: System.tmp_dir!())

Example
config = ClaudeCode.MCP.Config.http_config("my-server", port: 9001)
{:ok, path} = ClaudeCode.MCP.Config.write_temp_config(config)

{:ok, session} = ClaudeCode.start_link(mcp_config: path)

 ClaudeCode.MCP.Server - ClaudeCode v0.16.0

ClaudeCode.MCP.Server

Helper for starting and managing Hermes MCP servers for use with ClaudeCode.
This module provides convenience functions to start Hermes MCP servers
and automatically generate the configuration files needed by the Claude CLI.
Prerequisites
This module requires the hermes_mcp dependency:
{:hermes_mcp, "~> 0.14"}
Usage
Starting an HTTP Server
Define your Hermes server module
defmodule MyApp.MCPServer do
 use Hermes.Server,
 name: "my-tools",
 version: "1.0.0"

 tool MyApp.Calculator
 tool MyApp.FileReader
end

Start the server and get config path
{:ok, config_path} = ClaudeCode.MCP.Server.start_link(MyApp.MCPServer, port: 9001)

Use with ClaudeCode
{:ok, session} = ClaudeCode.start_link(mcp_config: config_path)
With Supervision
In your application supervisor
children = [
 {ClaudeCode.MCP.Server, server: MyApp.MCPServer, port: 9001, name: :my_mcp}
]
Architecture
When started, this module:
	Validates that Hermes MCP is available
	Starts the Hermes server with HTTP transport
	Generates an MCP config file pointing to the server
	Returns the config file path for use with ClaudeCode

 Summary

 Types

 start_option()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_config_path(server)

 Gets the config path from a running MCP server.

 start_link(opts)

 Starts an MCP server as a linked process.

 stdio_command(opts)

 Generates a stdio command configuration for a Hermes server.

 Types

 start_option()

 @type start_option() ::
 {:server, module()}
 | {:port, pos_integer()}
 | {:host, String.t()}
 | {:name, GenServer.name()}
 | {:hermes_opts, keyword()}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 get_config_path(server)

 @spec get_config_path(GenServer.server()) :: String.t()

Gets the config path from a running MCP server.
Example
config_path = ClaudeCode.MCP.Server.get_config_path(:my_mcp)

 start_link(opts)

 @spec start_link([start_option()]) :: {:ok, String.t()} | {:error, term()}

Starts an MCP server as a linked process.
Options
	:server - The Hermes server module (required)
	:port - Port for HTTP transport (required)
	:host - Hostname to bind (default: "localhost")
	:name - GenServer name for this process (optional)
	:hermes_opts - Additional options passed to Hermes.Server.start_link/1

Returns
	{:ok, config_path} - Path to the generated MCP config file
	{:error, reason} - If startup fails

Example
{:ok, config_path} = ClaudeCode.MCP.Server.start_link(
 server: MyApp.MCPServer,
 port: 9001
)

 stdio_command(opts)

 @spec stdio_command(keyword()) :: %{
 command: String.t(),
 args: [String.t()],
 env: %{required(String.t()) => String.t()}
}

Generates a stdio command configuration for a Hermes server.
This creates the command and args needed to start a Hermes server
as a subprocess using stdio transport.
Options
	:module - The Hermes server module (required)
	:mix_env - Mix environment (default: "prod")

Example
config = ClaudeCode.MCP.Server.stdio_command(
 module: MyApp.MCPServer
)
=> %{command: "mix", args: ["run", "--no-halt", "-e", "..."]}

 ClaudeCode.Message.AssistantMessage - ClaudeCode v0.16.0

ClaudeCode.Message.AssistantMessage

Represents an assistant message from the Claude CLI.
Assistant messages contain Claude's responses, which can include text,
tool use requests, or a combination of both.
Matches the official SDK schema:
{
 type: "assistant",
 uuid: string,
 message: { ... }, # Anthropic SDK Message type
 session_id: string,
 parent_tool_use_id?: string | null
}

 Summary

 Types

 t()

 Functions

 assistant_message?(arg1)

 Type guard to check if a value is an AssistantMessage.

 new(json)

 Creates a new AssistantMessage from JSON data.

 Types

 t()

 @type t() :: %ClaudeCode.Message.AssistantMessage{
 message: ClaudeCode.Types.message(),
 parent_tool_use_id: String.t() | nil,
 session_id: String.t(),
 type: :assistant,
 uuid: String.t() | nil
}

 Functions

 assistant_message?(arg1)

 @spec assistant_message?(any()) :: boolean()

Type guard to check if a value is an AssistantMessage.

 new(json)

 @spec new(map()) :: {:ok, t()} | {:error, atom() | tuple()}

Creates a new AssistantMessage from JSON data.
Examples
iex> AssistantMessage.new(%{"type" => "assistant", "message" => %{...}})
{:ok, %AssistantMessage{...}}

iex> AssistantMessage.new(%{"type" => "user"})
{:error, :invalid_message_type}

 ClaudeCode.Message.CompactBoundaryMessage - ClaudeCode v0.16.0

ClaudeCode.Message.CompactBoundaryMessage

Represents a conversation compaction boundary message from the Claude CLI.
Compact boundary messages indicate that the CLI has compacted the conversation
history to reduce token usage. This message provides metadata about the compaction.
Matches the official SDK schema:
{
 type: "system",
 subtype: "compact_boundary",
 uuid: string,
 session_id: string,
 compact_metadata: {
 trigger: "manual" | "auto",
 pre_tokens: number
 }
}

 Summary

 Types

 t()

 Functions

 compact_boundary_message?(arg1)

 Type guard to check if a value is a CompactBoundaryMessage.

 new(json)

 Creates a new CompactBoundaryMessage from JSON data.

 Types

 t()

 @type t() :: %ClaudeCode.Message.CompactBoundaryMessage{
 compact_metadata: %{trigger: String.t(), pre_tokens: non_neg_integer()},
 session_id: ClaudeCode.Types.session_id(),
 subtype: :compact_boundary,
 type: :system,
 uuid: String.t()
}

 Functions

 compact_boundary_message?(arg1)

 @spec compact_boundary_message?(any()) :: boolean()

Type guard to check if a value is a CompactBoundaryMessage.

 new(json)

 @spec new(map()) ::
 {:ok, t()} | {:error, :invalid_message_type | {:missing_fields, [atom()]}}

Creates a new CompactBoundaryMessage from JSON data.
Examples
iex> CompactBoundaryMessage.new(%{
...> "type" => "system",
...> "subtype" => "compact_boundary",
...> "uuid" => "...",
...> "session_id" => "...",
...> "compact_metadata" => %{"trigger" => "auto", "pre_tokens" => 5000}
...> })
{:ok, %CompactBoundaryMessage{...}}

iex> CompactBoundaryMessage.new(%{"type" => "assistant"})
{:error, :invalid_message_type}

 ClaudeCode.Message.PartialAssistantMessage - ClaudeCode v0.16.0

ClaudeCode.Message.PartialAssistantMessage

Represents a partial assistant message from the Claude CLI when using partial message streaming.
Partial assistant messages are emitted when include_partial_messages: true is enabled.
They provide real-time updates as Claude generates responses, enabling
character-by-character streaming for LiveView applications.
This type corresponds to SDKPartialAssistantMessage in the TypeScript SDK.
Event Types
	message_start - Signals the beginning of a new message
	content_block_start - Signals the beginning of a new content block (text or tool_use)
	content_block_delta - Contains incremental content updates (text chunks, tool input JSON)
	content_block_stop - Signals the end of a content block
	message_delta - Contains message-level updates (stop_reason, usage)
	message_stop - Signals the end of the message

Example Usage
ClaudeCode.query_stream(session, "Hello", include_partial_messages: true)
|> ClaudeCode.Stream.text_deltas()
|> Enum.each(&IO.write/1)
JSON Format
{
 "type": "stream_event",
 "event": {
 "type": "content_block_delta",
 "index": 0,
 "delta": {"type": "text_delta", "text": "Hello"}
 },
 "session_id": "...",
 "parent_tool_use_id": null,
 "uuid": "..."
}

 Summary

 Types

 delta()

 event()

 event_type()

 t()

 Functions

 event_type(partial_assistant_message)

 Gets the event type.

 get_index(arg1)

 Gets the content block index for delta events.

 get_partial_json(arg1)

 Extracts partial JSON from an input_json_delta event.

 get_text(arg1)

 Extracts text from a text_delta event.

 get_thinking(arg1)

 Extracts thinking from a thinking_delta event.

 input_json_delta?(arg1)

 Checks if this partial message is an input JSON delta (for tool use).

 new(json)

 Creates a new PartialAssistantMessage from JSON data.

 partial_assistant_message?(arg1)

 Type guard to check if a value is a PartialAssistantMessage.

 text_delta?(arg1)

 Checks if this partial message is a text delta.

 thinking_delta?(arg1)

 Checks if this partial message is a thinking delta.

 Types

 delta()

 @type delta() ::
 %{type: :text_delta, text: String.t()}
 | %{type: :input_json_delta, partial_json: String.t()}
 | %{type: :thinking_delta, thinking: String.t()}
 | map()

 event()

 @type event() ::
 %{type: event_type()}
 | %{
 type: :content_block_start,
 index: non_neg_integer(),
 content_block: map()
 }
 | %{type: :content_block_delta, index: non_neg_integer(), delta: delta()}
 | %{type: :content_block_stop, index: non_neg_integer()}
 | %{type: :message_start, message: map()}
 | %{type: :message_delta, delta: map(), usage: map()}
 | %{type: :message_stop}

 event_type()

 @type event_type() ::
 :message_start
 | :content_block_start
 | :content_block_delta
 | :content_block_stop
 | :message_delta
 | :message_stop

 t()

 @type t() :: %ClaudeCode.Message.PartialAssistantMessage{
 event: event(),
 parent_tool_use_id: String.t() | nil,
 session_id: String.t(),
 type: :stream_event,
 uuid: String.t() | nil
}

 Functions

 event_type(partial_assistant_message)

 @spec event_type(t()) :: event_type()

Gets the event type.

 get_index(arg1)

 @spec get_index(t()) :: non_neg_integer() | nil

Gets the content block index for delta events.
Returns nil for non-content block events.

 get_partial_json(arg1)

 @spec get_partial_json(t()) :: String.t() | nil

Extracts partial JSON from an input_json_delta event.
Returns nil if not an input_json_delta event.

 get_text(arg1)

 @spec get_text(t()) :: String.t() | nil

Extracts text from a text_delta event.
Returns nil if not a text delta event.

 get_thinking(arg1)

 @spec get_thinking(t()) :: String.t() | nil

Extracts thinking from a thinking_delta event.
Returns nil if not a thinking delta event.

 input_json_delta?(arg1)

 @spec input_json_delta?(t()) :: boolean()

Checks if this partial message is an input JSON delta (for tool use).

 new(json)

 @spec new(map()) :: {:ok, t()} | {:error, atom() | tuple()}

Creates a new PartialAssistantMessage from JSON data.
Examples
iex> PartialAssistantMessage.new(%{
...> "type" => "stream_event",
...> "event" => %{"type" => "content_block_delta", "index" => 0, "delta" => %{"type" => "text_delta", "text" => "Hi"}},
...> "session_id" => "abc123"
...> })
{:ok, %PartialAssistantMessage{type: :stream_event, event: %{type: :content_block_delta, ...}, ...}}

 partial_assistant_message?(arg1)

 @spec partial_assistant_message?(any()) :: boolean()

Type guard to check if a value is a PartialAssistantMessage.

 text_delta?(arg1)

 @spec text_delta?(t()) :: boolean()

Checks if this partial message is a text delta.

 thinking_delta?(arg1)

 @spec thinking_delta?(t()) :: boolean()

Checks if this partial message is a thinking delta.

 ClaudeCode.Message.ResultMessage - ClaudeCode v0.16.0

ClaudeCode.Message.ResultMessage

Represents a result message from the Claude CLI.
Result messages are the final message in a conversation, containing
the final response, timing information, token usage, and cost.
String.Chars Protocol
Result implements String.Chars, so you can use it directly with
IO.puts/1 or string interpolation:
{:ok, result} = ClaudeCode.query(session, "Hello")
IO.puts(result) # prints just the result text
Matches the official SDK schema for successful results:
{
 type: "result",
 subtype: "success",
 uuid: string,
 duration_ms: float,
 duration_api_ms: float,
 is_error: boolean,
 num_turns: int,
 result: string,
 session_id: string,
 total_cost_usd: float,
 usage: object,
 modelUsage: {model: ModelUsage},
 permission_denials: PermissionDenial[],
 structured_output?: unknown
}
And for error results:
{
 type: "result",
 subtype: "error_max_turns" | "error_during_execution" | "error_max_budget_usd" | "error_max_structured_output_retries",
 uuid: string,
 duration_ms: float,
 duration_api_ms: float,
 is_error: boolean,
 num_turns: int,
 session_id: string,
 total_cost_usd: float,
 usage: object,
 modelUsage: {model: ModelUsage},
 permission_denials: PermissionDenial[],
 errors: string[]
}

 Summary

 Types

 t()

 Functions

 new(json)

 Creates a new Result message from JSON data.

 result_message?(arg1)

 Type guard to check if a value is a Result message.

 Types

 t()

 @type t() :: %ClaudeCode.Message.ResultMessage{
 duration_api_ms: float(),
 duration_ms: float(),
 errors: [String.t()] | nil,
 is_error: boolean(),
 model_usage: %{required(String.t()) => ClaudeCode.Types.model_usage()},
 num_turns: non_neg_integer(),
 permission_denials: [ClaudeCode.Types.permission_denial()],
 result: String.t() | nil,
 session_id: ClaudeCode.Types.session_id(),
 structured_output: any() | nil,
 subtype: ClaudeCode.Types.result_subtype(),
 total_cost_usd: float(),
 type: :result,
 usage: ClaudeCode.Types.usage(),
 uuid: String.t() | nil
}

 Functions

 new(json)

 @spec new(map()) :: {:ok, t()} | {:error, atom() | {:missing_fields, [atom()]}}

Creates a new Result message from JSON data.
Examples
iex> Result.new(%{"type" => "result", "subtype" => "success", ...})
{:ok, %Result{...}}

iex> Result.new(%{"type" => "assistant"})
{:error, :invalid_message_type}

 result_message?(arg1)

 @spec result_message?(any()) :: boolean()

Type guard to check if a value is a Result message.

 ClaudeCode.Message.SystemMessage - ClaudeCode v0.16.0

ClaudeCode.Message.SystemMessage

Represents a system initialization message from the Claude CLI.
System messages provide session setup information including available tools,
MCP servers, model, and permission mode.
For conversation compaction boundaries, use ClaudeCode.Message.CompactBoundaryMessage.
Matches the official SDK schema:
{
 type: "system",
 subtype: "init",
 uuid: string,
 apiKeySource: string,
 cwd: string,
 session_id: string,
 tools: string[],
 mcp_servers: { name: string, status: string }[],
 model: string,
 permissionMode: "default" | "acceptEdits" | "bypassPermissions" | "plan",
 slash_commands: string[],
 output_style: string,
 claude_code_version: string,
 agents: string[],
 skills: string[],
 plugins: string[]
}

 Summary

 Types

 t()

 Functions

 new(json)

 Creates a new SystemMessage from JSON data.

 system_message?(arg1)

 Type guard to check if a value is a SystemMessage.

 Types

 t()

 @type t() :: %ClaudeCode.Message.SystemMessage{
 agents: [String.t()],
 api_key_source: String.t(),
 claude_code_version: String.t() | nil,
 cwd: String.t(),
 mcp_servers: [ClaudeCode.Types.mcp_server()],
 model: String.t(),
 output_style: String.t(),
 permission_mode: ClaudeCode.Types.permission_mode(),
 plugins: [String.t()],
 session_id: ClaudeCode.Types.session_id(),
 skills: [String.t()],
 slash_commands: [String.t()],
 subtype: :init,
 tools: [String.t()],
 type: :system,
 uuid: String.t()
}

 Functions

 new(json)

 @spec new(map()) ::
 {:ok, t()} | {:error, :invalid_message_type | {:missing_fields, [atom()]}}

Creates a new SystemMessage from JSON data.
Examples
iex> SystemMessage.new(%{"type" => "system", "subtype" => "init", ...})
{:ok, %SystemMessage{...}}

iex> SystemMessage.new(%{"type" => "assistant"})
{:error, :invalid_message_type}

 system_message?(arg1)

 @spec system_message?(any()) :: boolean()

Type guard to check if a value is a SystemMessage.

 ClaudeCode.Message.UserMessage - ClaudeCode v0.16.0

ClaudeCode.Message.UserMessage

Represents a user message from the Claude CLI.
User messages typically contain tool results in response to Claude's
tool use requests.
Matches the official SDK schema:
{
 type: "user",
 uuid?: string,
 message: MessageParam, # from Anthropic SDK
 session_id: string,
 parent_tool_use_id?: string | null
}

 Summary

 Types

 t()

 Functions

 new(json)

 Creates a new UserMessage from JSON data.

 user_message?(arg1)

 Type guard to check if a value is a UserMessage.

 Types

 t()

 @type t() :: %ClaudeCode.Message.UserMessage{
 message: ClaudeCode.Types.message_param(),
 parent_tool_use_id: String.t() | nil,
 session_id: ClaudeCode.Types.session_id(),
 type: :user,
 uuid: String.t() | nil
}

 Functions

 new(json)

 @spec new(map()) :: {:ok, t()} | {:error, atom() | tuple()}

Creates a new UserMessage from JSON data.
Examples
iex> UserMessage.new(%{"type" => "user", "message" => %{...}})
{:ok, %UserMessage{...}}

iex> UserMessage.new(%{"type" => "assistant"})
{:error, :invalid_message_type}

 user_message?(arg1)

 @spec user_message?(any()) :: boolean()

Type guard to check if a value is a UserMessage.

 ClaudeCode.Content.TextBlock - ClaudeCode v0.16.0

ClaudeCode.Content.TextBlock

Represents a text content block within a Claude message.
Text blocks contain plain text content that represents Claude's response
or user input.

 Summary

 Types

 t()

 Functions

 new(data)

 Creates a new Text content block from JSON data.

 text_content?(arg1)

 Type guard to check if a value is a Text content block.

 Types

 t()

 @type t() :: %ClaudeCode.Content.TextBlock{text: String.t(), type: :text}

 Functions

 new(data)

 @spec new(map()) :: {:ok, t()} | {:error, atom()}

Creates a new Text content block from JSON data.
Examples
iex> Text.new(%{"type" => "text", "text" => "Hello!"})
{:ok, %Text{type: :text, text: "Hello!"}}

iex> Text.new(%{"type" => "tool_use", "text" => "Hi"})
{:error, :invalid_content_type}

 text_content?(arg1)

 @spec text_content?(any()) :: boolean()

Type guard to check if a value is a Text content block.

 ClaudeCode.Content.ThinkingBlock - ClaudeCode v0.16.0

ClaudeCode.Content.ThinkingBlock

Represents a thinking content block within a Claude message.
Thinking blocks contain Claude's extended reasoning, visible when
extended thinking is enabled on supported models.

 Summary

 Types

 t()

 Functions

 new(data)

 Creates a new Thinking content block from JSON data.

 thinking_content?(arg1)

 Type guard to check if a value is a Thinking content block.

 Types

 t()

 @type t() :: %ClaudeCode.Content.ThinkingBlock{
 signature: String.t(),
 thinking: String.t(),
 type: :thinking
}

 Functions

 new(data)

 @spec new(map()) :: {:ok, t()} | {:error, atom() | {:missing_fields, [atom()]}}

Creates a new Thinking content block from JSON data.
Examples
iex> Thinking.new(%{"type" => "thinking", "thinking" => "Let me reason...", "signature" => "sig_123"})
{:ok, %Thinking{type: :thinking, thinking: "Let me reason...", signature: "sig_123"}}

iex> Thinking.new(%{"type" => "text"})
{:error, :invalid_content_type}

 thinking_content?(arg1)

 @spec thinking_content?(any()) :: boolean()

Type guard to check if a value is a Thinking content block.

 ClaudeCode.Content.ToolResultBlock - ClaudeCode v0.16.0

ClaudeCode.Content.ToolResultBlock

Represents a tool result content block within a Claude message.
Tool result blocks contain the output from a tool execution, which can be
either successful results or error messages.

 Summary

 Types

 t()

 Functions

 new(data)

 Creates a new ToolResult content block from JSON data.

 tool_result_content?(arg1)

 Type guard to check if a value is a ToolResult content block.

 Types

 t()

 @type t() :: %ClaudeCode.Content.ToolResultBlock{
 content: [ClaudeCode.Content.TextBlock.t()],
 is_error: boolean(),
 tool_use_id: String.t(),
 type: :tool_result
}

 Functions

 new(data)

 @spec new(map()) :: {:ok, t()} | {:error, atom() | {:missing_fields, [atom()]}}

Creates a new ToolResult content block from JSON data.
Examples
iex> ToolResult.new(%{"type" => "tool_result", "tool_use_id" => "123", "content" => "OK"})
{:ok, %ToolResult{type: :tool_result, tool_use_id: "123", content: "OK", is_error: false}}

iex> ToolResult.new(%{"type" => "text"})
{:error, :invalid_content_type}

 tool_result_content?(arg1)

 @spec tool_result_content?(any()) :: boolean()

Type guard to check if a value is a ToolResult content block.

 ClaudeCode.Content.ToolUseBlock - ClaudeCode v0.16.0

ClaudeCode.Content.ToolUseBlock

Represents a tool use content block within a Claude message.
Tool use blocks indicate that Claude wants to invoke a specific tool
with the given parameters.

 Summary

 Types

 t()

 Functions

 new(data)

 Creates a new ToolUse content block from JSON data.

 tool_use_content?(arg1)

 Type guard to check if a value is a ToolUse content block.

 Types

 t()

 @type t() :: %ClaudeCode.Content.ToolUseBlock{
 id: String.t(),
 input: map(),
 name: String.t(),
 type: :tool_use
}

 Functions

 new(data)

 @spec new(map()) :: {:ok, t()} | {:error, atom() | {:missing_fields, [atom()]}}

Creates a new ToolUse content block from JSON data.
Examples
iex> ToolUse.new(%{"type" => "tool_use", "id" => "123", "name" => "Read", "input" => %{}})
{:ok, %ToolUse{type: :tool_use, id: "123", name: "Read", input: %{}}}

iex> ToolUse.new(%{"type" => "text"})
{:error, :invalid_content_type}

 tool_use_content?(arg1)

 @spec tool_use_content?(any()) :: boolean()

Type guard to check if a value is a ToolUse content block.

 ClaudeCode.Adapter - ClaudeCode v0.16.0

ClaudeCode.Adapter behaviour

Behaviour for ClaudeCode adapters.
Adapters handle the communication layer between Session and Claude.
The CLI adapter (ClaudeCode.Adapter.CLI) manages a persistent Port subprocess.
The Test adapter (ClaudeCode.Adapter.Test) provides mock message delivery for testing.
Message Protocol
Adapters communicate with Session by sending messages:
	{:adapter_message, request_id, message} - A parsed message from Claude
	{:adapter_done, request_id} - Query complete (ResultMessage received)
	{:adapter_error, request_id, reason} - Error occurred

Usage
To use a custom adapter, pass the :adapter option when starting a session:
For testing with stubs
{:ok, session} = ClaudeCode.start_link(
 adapter: {ClaudeCode.Test, MyApp.Chat}
)
The default adapter is ClaudeCode.Adapter.CLI which manages the Claude CLI subprocess.

 Summary

 Callbacks

 send_query(adapter, request_id, prompt, session_id, opts)

 Sends a query to the adapter.

 start_link(session, opts)

 Starts the adapter process.

 stop(adapter)

 Stops the adapter gracefully.

 Callbacks

 send_query(adapter, request_id, prompt, session_id, opts)

 @callback send_query(
 adapter :: pid(),
 request_id :: reference(),
 prompt :: String.t(),
 session_id :: String.t() | nil,
 opts :: keyword()
) :: :ok | {:error, term()}

Sends a query to the adapter.
The adapter should send messages back to the session via send/2:
	{:adapter_message, request_id, message} for each message
	{:adapter_done, request_id} when the query completes
	{:adapter_error, request_id, reason} on errors

Parameters
	adapter - PID of the adapter process
	request_id - Unique reference for this request
	prompt - The user's query string
	session_id - Optional session ID for conversation continuity
	opts - Query options

 start_link(session, opts)

 @callback start_link(session :: pid(), opts :: keyword()) ::
 {:ok, pid()} | {:error, term()}

Starts the adapter process.
The adapter should link to the session for lifecycle management.
Returns {:ok, pid} on success.
Parameters
	session - PID of the Session GenServer
	opts - Session options (api_key, model, etc.)

 stop(adapter)

 @callback stop(adapter :: pid()) :: :ok

Stops the adapter gracefully.

 ClaudeCode.Adapter.CLI - ClaudeCode v0.16.0

ClaudeCode.Adapter.CLI

CLI adapter that manages a persistent Port connection to the Claude CLI.
This adapter:
	Spawns the CLI subprocess with --input-format stream-json
	Receives async messages from the Port
	Parses JSON and forwards structured messages to Session
	Handles Port lifecycle (connect, reconnect, cleanup)

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 ClaudeCode.CLI - ClaudeCode v0.16.0

ClaudeCode.CLI

Handles CLI subprocess management for Claude Code.
This module is responsible for:
	Finding the claude binary
	Building command arguments from validated options
	Managing the subprocess lifecycle

 Summary

 Functions

 build_command(prompt, api_key, opts, session_id \\ nil)

 Builds the command and arguments for running the Claude CLI.

 find_binary()

 Finds the claude binary in the system PATH.

 validate_installation()

 Validates that the Claude CLI is properly installed and accessible.

 Functions

 build_command(prompt, api_key, opts, session_id \\ nil)

 @spec build_command(String.t(), String.t(), keyword(), String.t() | nil) ::
 {:ok, {String.t(), [String.t()]}} | {:error, term()}

Builds the command and arguments for running the Claude CLI.
Accepts validated options from the Options module and converts them to CLI flags.
If a session_id is provided, automatically adds --resume flag for session continuity.
Returns {:ok, {executable, args}} or {:error, reason}.

 find_binary()

 @spec find_binary() :: {:ok, String.t()} | {:error, :not_found}

Finds the claude binary in the system PATH.
Returns {:ok, path} if found, {:error, :not_found} otherwise.

 validate_installation()

 @spec validate_installation() :: :ok | {:error, term()}

Validates that the Claude CLI is properly installed and accessible.

 ClaudeCode.Input - ClaudeCode v0.16.0

ClaudeCode.Input

Builds input messages for stream-json input format.
When using --input-format stream-json, the CLI accepts NDJSON messages via stdin.
This module provides builders for the various message types.
Message Format
Messages are JSON objects with the following structure:
%{
 type: "user",
 message: %{role: "user", content: "Your message"},
 session_id: "default",
 parent_tool_use_id: nil
}
Usage
Build a user message
json = ClaudeCode.Input.user_message("Hello, Claude!")

With explicit session ID
json = ClaudeCode.Input.user_message("Hello!", "my-session-123")

 Summary

 Functions

 tool_response(tool_use_id, result, session_id, opts \\ [])

 Builds a tool response message for stream-json input.

 user_message(content, session_id \\ "default", opts \\ [])

 Builds a user message for stream-json input.

 Functions

 tool_response(tool_use_id, result, session_id, opts \\ [])

 @spec tool_response(String.t(), String.t() | map(), String.t(), keyword()) ::
 String.t()

Builds a tool response message for stream-json input.
Use this when responding to a tool use request from Claude.
Parameters
	tool_use_id - The ID of the tool use being responded to
	result - The result of the tool execution (string or map)
	session_id - Session ID for conversation continuity
	opts - Additional options:	:is_error - Whether the tool execution resulted in an error (default: false)

Examples
iex> ClaudeCode.Input.tool_response("tool-123", "File created", "session-456")
Returns JSON with tool result

 user_message(content, session_id \\ "default", opts \\ [])

 @spec user_message(String.t(), String.t(), keyword()) :: String.t()

Builds a user message for stream-json input.
Parameters
	content - The message content (string)
	session_id - Session ID for conversation continuity (default: "default")
	opts - Additional options:	:parent_tool_use_id - Tool use ID if responding to a tool (default: nil)

Examples
iex> ClaudeCode.Input.user_message("What is 2 + 2?")
~s({"type":"user","message":{"role":"user","content":"What is 2 + 2?"},"session_id":"default","parent_tool_use_id":null})

iex> ClaudeCode.Input.user_message("Hello", "session-123")
~s({"type":"user","message":{"role":"user","content":"Hello"},"session_id":"session-123","parent_tool_use_id":null})

OEBPS/dist/epub-4WIP524F.js
