

 Commanded

 v1.4.6

 Table of contents

 	Changelog

 	Introduction

 	Getting started

 	Choosing an event store

 	Using Commanded

 	Building blocks

 	Application

 	Aggregates

 	Commands

 	Events

 	Process managers

 	Other

 	Supervision

 	Serialization

 	Read model projections

 	Testing

 	Deployment

 	Upgrades

 	Upgrade guide v0.19.x to v1.0

 	Modules

 	Commanded

 	Commanded.Application

 	Commanded.UUID

 	Commanded.Aggregate.Multi

 	Commanded.Aggregates.Aggregate

 	Commanded.Aggregates.AggregateLifespan

 	Commanded.Aggregates.AggregateStateBuilder

 	Commanded.Aggregates.DefaultLifespan

 	Commanded.Aggregates.ExecutionContext

 	Commanded.Aggregates.Supervisor

 	Commanded.Commands.CompositeRouter

 	Commanded.Commands.ExecutionResult

 	Commanded.Commands.Handler

 	Commanded.Commands.Router

 	Commanded.Event.FailureContext

 	Commanded.Event.Handler

 	Commanded.Event.Mapper

 	Commanded.Event.Upcaster

 	Commanded.ProcessManagers.FailureContext

 	Commanded.ProcessManagers.ProcessManager

 	Commanded.EventStore

 	Commanded.EventStore.Adapter

 	Commanded.EventStore.Adapters.InMemory

 	Commanded.EventStore.EventData

 	Commanded.EventStore.RecordedEvent

 	Commanded.EventStore.SnapshotData

 	Commanded.EventStore.TypeProvider

 	Commanded.PubSub

 	Commanded.PubSub.Adapter

 	Commanded.PubSub.LocalPubSub

 	Commanded.PubSub.PhoenixPubSub

 	Commanded.Registration

 	Commanded.Registration.Adapter

 	Commanded.Registration.GlobalRegistry

 	Commanded.Registration.LocalRegistry

 	Commanded.Serialization.JsonDecoder

 	Commanded.Serialization.JsonSerializer

 	Commanded.Serialization.ModuleNameTypeProvider

 	Commanded.Middleware

 	Commanded.Middleware.ConsistencyGuarantee

 	Commanded.Middleware.ExtractAggregateIdentity

 	Commanded.Middleware.Logger

 	Commanded.Middleware.Pipeline

 	Commanded.Assertions.EventAssertions

 	Mix Tasks

 	mix commanded.reset

Changelog

 v1.4.6

 Enhancements

	Includes changelog updates
	Version bump

 v1.4.5

 Enhancements

	Support OTP 26 and Elixir 1.17 (#595).

 v1.4.4

 Enhancements

	feat: put aggregate_state into assigns of the pipeline (#502).
	Add tag to partition test case (#525).
	Make before_reset/0 an explicit callback function (#550).
	New Event.Handler.after_start/1 callback allows configuration in the handler's process (#568).

 Bug fixes

	Fix EventData typespec (#495).
	Fix refute_receive_event examples (#557).
	Fix interested? function doc (#562).
	Use TypeProvider for process managers snapshot serialization (#558).
	fix(router.ex): Telemetry is not emitted if dispatch fails for {:error, :unregistered_command} (#563).

 v1.4.3

 Enhancements

	Use Logger.warning to fix deprecation warnings (#542).
	Add typespec to CompositeRouter.dispatch/2 function (#536).
	Support opts in Commanded.EventStore.append_to_stream function (#528).
	Process manager metadata access (#514).

 Bug fixes

	 Correct parameter type in ProcessManager.after_command/1 callback function (#533).

 v1.4.2

	Record aggregate state while processing Commanded.Aggregate.Multi (#507).
	Properly handle EXIT signal in event handler (#512).
	Separate logging a process managers error (#513).

 v1.4.1

 Enhancements

	Retry command execution when the aggregate process is down (#494).

 Bug fixes

	Remove duplicate apply function call when receiving missed events published to an aggregate's event stream (364c877).
	Fix typespec typo in Commanded.Application (#503).

 v1.4.0

 Enhancements

	Allow a process manager to stop after dispatching a command (#460).
	Replace use Mix.Config with import Config in config files (#467).
	Event handler concurrency (#486).
	Remove elixir_uuid dependency (#493).
	Support and test for OTP 25 (#489).

 v1.3.1

 Bug fixes

	Event Handler not calling init/1 callback function on restart (#463).
	Call process manager init/1 function on process restart (#464).

 v1.3.0

 Enhancements

	Allow command identity to be provided during dispatch (#406).
	Define Commanded.Telemetry module to emit consistent telemetry events (#414).
	Telemetry [:commanded, :aggregate, :execute] events (#407).
	Telemetry [:commanded, :event, :handle] events (#408).
	Telemetry [:commanded, :process_manager, :handle] events (#418).
	Telemetry [:commanded, :application, :dispatch] (#423).
	Graceful shutdown of event handlers (#431).
	Ensure command dispatch metadata is a map (#432).
	Retry command execution on node down (#429).
	Dispatch returning resultant events (#444).
	Get aggregate state (#448).
	Support telemetry v1.0 (#456).

 v1.2.0

 Enhancements

	Add init/1 callback function to event handlers and process managers (#393).
	Include application and handler_name as additional event handler metadata (#396).
	Allow GenServer start options to be provided when starting event handlers and process managers (#398).
	Add hibernate_after option to application config (#399).
	Add support for providing adapter-specific event store subscription options (#391).
	Support custom state for event handlers (#400).
	Allow event handlers and process manager error callback to return failure context struct (#397).
	Allow a before execute function to be defined which is called with the command dispatch execution context and aggregate state before (#402).

 Bug fixes

	Allow process manager error/3 callback to return :skip for failed commands, not just failed events (#362).

 v1.1.1

 Enhancements

	Capture exception on Process Manager apply/2 and call error/3 callback functions (#380).
	Include metadata in upcaster protocol (#389).

 Bug fixes

	Fix Commanded.Aggregate.Multi.execute/2 calls which return Multi struct (#385).

 v1.1.0

 Enhancements

	Dynamic Commanded applications (#324).
	Log and ignore unexpected messages received by event handlers and process manager instances (#333)
	Process manager identity/0 function (#334).
	Extend Commanded.AggregateCase ExUnit case template to support Commanded.Aggregate.Multi.
	Allow Commanded.Aggregate.Multi to return events as :ok tagged tuples.
	Run the formatter in CI (#341).
	Add stacktraces to EventHandler error logging (#340)
	refute_receive_event/4 only tests newly created events (#347).
	Allow Commanded Application name to be set dynamically in middleware (#352).
	Remove router module compile-time checking (#363).
	Reduce memory consumption during aggregate state rebuild (#368).
	Upgrade to phoenix_pubsub to 2.0 (#365).
	Ignore :not_found error when resetting InMemory event store (#354).
	Add router/1 to locals_without_parens in Mix format config (#351).
	Include stacktrace in event handler and process manager error callback functions (#342).
	Call event handler's error/3 callback function when handle/2 function returns an invalid value (#372).

 Bug fixes

	Fixes the typespec for command dispatch (#325).
	Process manager stops if interested?/1 returns an empty list (#335).

 v1.0.1

 Enhancements

	Global registry using Erlang's :global module (#344).
	Command dispatch return (#331).

 Bug fixes

	Fix distributed subscription registration bug (#345).
	Retry event handler and process manager subscriptions on error (#348).

 v1.0.0

 Breaking changes

	Support multiple Commanded apps (#298).

 Enhancements

	Define adapter behaviour modules for event store, pubsub, and registry (#311).
	Add AggregateCase ExUnit case template to support aggregate unit testing (#315).
	Application config lookup (#318).

 Bug fixes

	Fix process manager exception on start (#307).
	Fix commanded aggregate race (#308).
	Fix Dialyzer warnings and include in Travis CI (#317).

 Upgrading

Follow the upgrade guide to define and use your own Commanded application.

 v0.19.1

 Enhancements

	Reset event handler mix task mix commanded.reset MyApp.Handler (#293).

 Bug fixes

	Fix regression in Commanded.Middleware.Logger.delta (#295).

 v0.19.0

 Enhancements

	Update typespec for data and metadata fields in Commanded.EventStore.EventData struct (#246).
	Add include_execution_result and aggregate_version to typespec for router command dispatch (#262).
	Add .formatter.exs to Hex package (#247).
	Event upcasting (#263).
	Support :ok tagged tuple events from aggregate (#268).
	Modify Commanded.Registration.start_child to pass a child_spec (#273).
	Add supervisor_child_spec/2 to Commanded.Registration behaviour (#277) used by Commanded Horde Registry.
	Ensure Commanded can be compiled when optional Jason dependency is not present (#286).
	Fix Aggregate initialization races (#287).
	Support {:system, varname} format in Phoenix PubSub config (#291).

 Breaking changes

	Use DateTime instead of NaiveDateTime for all datetimes (#254).
 This affects the created_at field defined in the Commanded.EventStore.RecordedEvent. You will need to migrate from NaiveDateTime to DateTime if you use this field in your code (such as in an event handler's metadata).

 v0.18.1

 Enhancements

	Process manager idle process timeout (#290).
	Register event handler and process manager subscriptions on process start (#272).

 v0.18.0

 Enhancements

	Rename uuid dependency to elixir_uuid (#178).
	Allow aggregate identity to be of any type that implements the String.Chars protocol (#166).
	Process manager and event handler error & exception handling (#192).
	Process manager event handling timeout (#193).
	Allow event handlers to subscribe to individual streams (#203).
	Add new values for expected_version for event store append events behaviour (#127).
	Export Commanded.Commands.Router macros in .formatter.exs file (#204).
	Generate specs and docs for Router dispatch functions only once (#206).
	Allow two-arity predicate function in wait_for_event receiving both event data and recorded event struct (#213).
	Allow :infinity timeout on command dispatch (#227)
	Strict process manager routing (#243).
	Allow Commanded.Aggregate.Multi to be nested (#244).
	Add child_spec/0 function to Commanded.EventStore behaviour.
	Add delete_subscription/2 to Commanded.EventStore behaviour (#245).
	Add refute_receive_event/2 to Commanded.Assertions.EventAssertions test helpers.

 Bug fixes

	Fix typo in include_execution_result global router option (#216).
	Handle the {:ok, _} tuple dispatch result in process manager command dispatch (#236).
	Allow string keys for Commanded.Middleware.Pipeline.assign_metadata/3, atoms are being deprecated (#228)
	Fix Commanded.PubSub.subscribe typespec (#222).

 Breaking changes

	Migrate to Jason for JSON serialization (#234).
You will need to add Jason as a dependency in mix.exs:
defp deps do
 [{:jason, "~> 1.2"}]
end
Jason has no support for encoding arbitrary structs - explicit implementation of the Jason.Encoder protocol is always required. You must update all your domain event modules, aggregate state (when using state snapshotting), and process manager state to include @derive Jason.Encoder as shown below:
defmodule AnEvent do
 @derive Jason.Encoder
 defstruct [:field]
end

	Extend aggregate lifespan behaviour to include after_error/1 and after_command/1 callbacks (#210).
Previously you only had to define an after_event/1 callback function to implement the Commanded.Aggregates.AggregateLifespan behaviour:
defmodule BankAccountLifespan do
 @behaviour Commanded.Aggregates.AggregateLifespan

 def after_event(%BankAccountClosed{}), do: :stop
 def after_event(_event), do: :infinity
end
Now you must also define after_command/1 and after_error/1 callback functions:
defmodule BankAccountLifespan do
 @behaviour Commanded.Aggregates.AggregateLifespan

 def after_event(%BankAccountClosed{}), do: :stop
 def after_event(_event), do: :infinity

 def after_command(%CloseAccount{}), do: :stop
 def after_command(_command), do: :infinity

 def after_error(:invalid_initial_balance), do: :stop
 def after_error(_error), do: :stop
end

 Upgrading

Please ensure you upgrade the following event store dependencies.
Using the Elixir EventStore:
	eventstore to v0.16.0
	commanded_eventstore_adapter to v0.5.0

Using EventStoreDB:
	commanded_extreme_adapter to v0.6.0

Commanded Ecto projections:
	commanded_ecto_projections to v0.8.0

Commanded scheduler:
	commanded_scheduler to v0.2.0

 v0.17.5

 Enhancements

	Process manager idle process timeout (#290).

 v0.17.4

 Bug fixes

	Register event handler and process manager subscriptions on process start (#272).

 v0.17.3

 Bug fixes

	Fix snapshot recording (#196).
	Fixed warning about deprecated time unit in elixir 1.8 (#239).

 v0.17.2

 Enhancements

	Remove default error/4 callback function from process manager to silence deprecation warning.

 v0.17.1

 Enhancements

	Support Phoenix.PubSub v1.1.0.

 Bug fixes

	Set default aggregate lifespan timeout to :infinity (#200).

 v0.17.0

 Enhancements

	Ability to globally override include_execution_result and include_aggregate_version in environment config (#168).
	Handle custom type serialization in snapshot source type (#165).
	Fix compiler warnings in generated code (routers, event handlers, and process managers).
	Add InMemory.reset!/0 for testing purposes (#175).

 Bug fixes

	Ensure process managers can be configured with :strong consistency.
	Fix error when subscription process already tracked (#180).

 v0.16.0

	Support composite command routers (#111).
	Aggregate state snapshots (#121).
	New error/3 callback for process manager and deprecated error/4 (#124)
	Router support for identity prefix function.
	Retry command execution on concurrency error (#132).
	Event handler error/3 callback (#133).
	Support distributed dispatch consistency (#135).
	Defer event handler and process router init until after subscribed (#138).
	Replace aggregate lifespan after_command/1 callback with after_event/1 (#139).
	Support process manager routing to multiple instances (#141).
	Allow a default consistency to be set via the application env (#150).
	Command dispatch consistency using explicit handler names (#161).

 Breaking changes

	The Commanded.Aggregates.AggregateLifespan behaviour has been changed from after_command/1 to after_event/1. You will need to update your own lifespan modules to use events instead of commands to shutdown an aggregate process after an inactivity timeout.

 Upgrading

Please ensure you upgrade the following event store dependencies.
Using the Elixir EventStore:
	eventstore to v0.14.0
	commanded_eventstore_adapter to v0.4.0

Using EventStoreDB:
	commanded_extreme_adapter to v0.5.0

 v0.15.1

 Bug fixes

	Event handler child_spec/1 must include config options defined by use macro.

 v0.15.0

 Enhancements

	Process manager command dispatch error handling (#93).
	Event handlers may define an init/0 callback function to start any related processes. It must return :ok, otherwise the handler process will be stopped.
	Add include_execution_result option to command dispatch (#96).
	Add Commanded.Aggregate.Multi (#98) as a way to return multiple events from a command dispatch that require aggregate state to be updated after each event.
	Correlation and causation ids (#105).
	Initial support for running on a cluster of nodes (#80).

 Bug fixes

	Adding a prefix to the aggregate in the router breaks the strong consistency of command dispatch (#101).

 Upgrading

Please ensure you upgrade the following event store dependencies.
Using the Elixir EventStore:
	eventstore to v0.13.0
	commanded_eventstore_adapter to v0.3.0

Using EventStoreDB:
	commanded_extreme_adapter to v0.4.0

 v0.14.0

 Enhancements

	Dispatch command with :eventual or :strong consistency guarantee (#82).
	Additional stream prefix per aggregate (#77).
	Include custom metadata during command dispatch (#61).
	Validate command dispatch registration in router (59).

 Upgrading

Please ensure you upgrade the following event store dependencies.
Using the Elixir EventStore:
	eventstore to v0.11.0
	commanded_eventstore_adapter to v0.2.0

Using EventStoreDB:
	commanded_extreme_adapter to v0.3.0

 v0.13.0

 Enhancements

	Command dispatch optionally returns aggregate version, using include_aggregate_version: true during dispatch.

 v0.12.0

 Enhancements

	Commanded.Event.Handler and Commanded.ProcessManagers.ProcessManager macros to simplify defining, and starting, event handlers and process managers. Note the previous approach to defining and starting may still be used, so this is not a breaking change.

 v0.11.0

 Enhancements

	Shutdown idle aggregate processes (#43).

 v0.10.0

 Enhancements

	Extract event store integration to a behaviour (Commanded.EventStore). This defines the contract to be implemented by an event store adapter. It allows additional event store databases to be used with Commanded.
By default, a GenServer in-memory event store adapter is used. This should only be used for testing as there is no persistence.
The existing PostgreSQL-based eventstore integration has been extracted as a separate package (commanded_eventstore_adapter). There is also a new adapter for Greg Young's Event Store using the Extreme library (commanded_extreme_adapter).
You must install the required event store adapter package and update your environment configuration to specify the :event_store_adapter module. See the README for details.

 v0.9.0

 Enhancements

	Stream events from event store when rebuilding aggregate state.

 v0.8.5

 Enhancements

	Upgrade to Elixir 1.4 and remove compiler warnings.

 v0.8.4

 Enhancements

	Event handler and process manager subscriptions should be created from a given stream position (#14).
	Stop process manager instance after reaching its final state (#24).

 v0.8.3

 Enhancements

	Middleware after_failure callback is executed even when a middleware halts execution.

 v0.8.2

 Bug fixes

	JsonSerializer should ensure event type atom exists when deserializing (#28).

 v0.8.1

 Enhancements

	Command handlers should be optional by default (#30).

 v0.8.0

 Enhancements

	Simplify aggregates and process managers (#31).

 v0.7.1

 Bug fixes

	Restarting aggregate process should load all events from its stream in batches. The Event Store read stream default limit is 1,000 events.

 v0.7.0

 Enhancements

	Command handling middleware allows a command router to define middleware modules that are executed before, and after success or failure of each command dispatch (#12).

 v0.6.3

 Enhancements

	Process manager instance processes event non-blocking to prevent timeout during event processing and any command dispatching. It persists last seen event id to ensure events are handled only once.

 v0.6.2

 Enhancements

	Command dispatch timeout. Allow a timeout value to be configured during command registration or dispatch. This overrides the default timeout of 5 seconds. The same as the default GenServer call timeout.

 Bug fixes

	Fix pending aggregates restarts: supervisor restarts aggregate process but it cannot accept commands (#22).

 v0.6.1

 Enhancements

	Upgrade eventstore mix dependency to v0.6.0 to use support for recorded events created_at as NaiveDateTime.

 v0.6.0

 Enhancements

	Confirm receipt of events in event handler and process manager router (#19).
	Convert keys to atoms when decoding JSON using Poison decoder.
	Prefix process manager instance snapshot uuid with process manager name.
	Multi command dispatch registration in router (#16).

 v0.5.0

 Enhancements

	Include event metadata as second argument to event handlers. An event handler must now implement the Commanded.Event.Handler behaviour consisting of a single handle_event/2 function.

 v0.4.0

 Enhancements

	Macro to assist with building process managers (README).

 v0.3.1

 Enhancements

	Include unit test event assertion function: assert_receive_event/2 (#13).
	Include top level application in mix config.

 v0.3.0

 Enhancements

	Don't persist an aggregate's pending events when executing a command returns an error (#10).

 Bug fixes

	Ensure an aggregate's pending events are persisted in the order they were applied.

 v0.2.1

 Enhancements

	Support integer, atom or strings as an aggregate UUID (#7).

 v0.1.0

Initial release.

Getting started

Commanded can be installed from the package manager hex as follows.
	Add commanded to your list of dependencies in mix.exs:
 def deps do
 [{:commanded, "~> 1.4"}]
 end

	Optionally add jason to support JSON serialization via Commanded.Serialization.JsonSerializer:
 def deps do
 [{:jason, "~> 1.3"}]
 end

	Fetch mix dependencies:
 $ mix deps.get

	Define a Commanded application module for your app, see the Application guide for details.
 defmodule MyApp.Application do
 use Commanded.Application, otp_app: :my_app
 end

	Configure one of the supported event stores by following the Choosing an Event Store guide.

Choosing an event store

You must decide which event store to use with Commanded. You have a choice between two existing event stores:
	PostgreSQL-based Elixir EventStore (adapter).

	EventStoreDB (adapter).

There is also an in-memory event store adapter for test use only.
Want to use a different event store? Then you will need to write your own event store provider as described below.

 PostgreSQL-based Elixir EventStore

Use :commanded_eventstore_adapter to persist events to a PostgreSQL database. As the name implies, this is the adapter for EventStore, which is open-source event store using PostgreSQL for persistence and implemented in Elixir.

 EventStoreDB

Use :commanded_extreme_adapter to persist events to EventStoreDB: an open-source database, the best data storage solution for event-sourced systems. It can be run as a cluster of nodes containing the same data, which remains available for writes provided at least half the nodes are alive and connected.
The quickest way to get started with EventStoreDB is by using their official EventStoreDB Docker container.
The Commanded adapter uses the :extreme Elixir TCP client to connect to EventStoreDB.

 Running EventStoreDB

You must run EventStoreDB with all projections enabled and standard projections started.
Use the --run-projections=all --start-standard-projections=true flags when running the EventStoreDB executable.

 Writing your own event store provider

To use an alternative event store with Commanded you will need to implement the Commanded.EventStore.Adapter behaviour. This defines the contract to be implemented by an adapter module to allow an event store to be used with Commanded. Tests to verify an adapter conforms to the behaviour are provided in test/event_store_adapter.
You can use one of the existing adapters (commanded_eventstore_adapter or commanded_extreme_adapter) to understand what is required.

Using Commanded

Commanded provides the building blocks for you to create your own Elixir applications following the CQRS/ES pattern.
A separate guide is provided for each of the components you can build:
	Application
	Aggregates
	Commands, registration and dispatch
	Events and handlers
	Process managers

Commanded uses strong consistency for command dispatch (write model) and eventual consistency, by default, for the read model. Receiving an :ok reply from dispatch indicates the command was successfully handled and any created domain events fully persisted to your chosen event store. You may opt into strong consistency for individual event handlers and command dispatch as required.

 Quick overview

Here's an example bank account opening feature built using Commanded to demonstrate its usage.
	Define an OpenBankAccount command:
 defmodule OpenBankAccount do
 defstruct [:account_number, :initial_balance]
 end

	Define a corresponding BankAccountOpened domain event:
 defmodule BankAccountOpened do
 @derive Jason.Encoder
 defstruct [:account_number, :initial_balance]
 end

	Build a BankAccount aggregate to handle the command, protect its business invariants, and return a domain event when successfully handled:
 defmodule BankAccount do
 defstruct [:account_number, :balance]

 # Public command API

 def execute(%BankAccount{account_number: nil}, %OpenBankAccount{account_number: account_number, initial_balance: initial_balance})
 when initial_balance > 0
 do
 %BankAccountOpened{account_number: account_number, initial_balance: initial_balance}
 end

 # Ensure initial balance is never zero or negative
 def execute(%BankAccount{}, %OpenBankAccount{initial_balance: initial_balance})
 when initial_balance <= 0
 do
 {:error, :initial_balance_must_be_above_zero}
 end

 # Ensure account has not already been opened
 def execute(%BankAccount{}, %OpenBankAccount{}) do
 {:error, :account_already_opened}
 end

 # State mutators

 def apply(%BankAccount{} = account, %BankAccountOpened{} = event) do
 %BankAccountOpened{account_number: account_number, initial_balance: initial_balance} = event

 %BankAccount{account |
 account_number: account_number,
 balance: initial_balance
 }
 end
 end

	Define a router module to route the open account command to the bank account aggregate:
 defmodule BankRouter do
 use Commanded.Commands.Router

 dispatch OpenBankAccount, to: BankAccount, identity: :account_number
 end

	Define an application to host the aggregate and supporting processes:
 defmodule BankApp do
 use Commanded.Application,
 otp_app: :bank,
 event_store: [adapter: Commanded.EventStore.Adapters.InMemory]

 router BankRouter
 end
 This application is configured to use in-memory event store included with Commanded for testing.

	Create an event handler module that updates a bank account balance:
 defmodule AccountBalanceHandler do
 use Commanded.Event.Handler,
 application: BankApp,
 name: __MODULE__

 def after_start(_state) do
 with {:ok, _pid} <- Agent.start_link(fn -> 0 end, name: __MODULE__) do
 :ok
 end
 end

 def handle(%BankAccountOpened{initial_balance: initial_balance}, _metadata) do
 Agent.update(__MODULE__, fn _ -> initial_balance end)
 end

 def current_balance do
 Agent.get(__MODULE__, fn balance -> balance end)
 end
 end

	Start the application and event handler processes:
 {:ok, _pid} = BankApp.start_link()
 {:ok, _pid} = AccountBalanceHandler.start_link()
 In a real application you would use a supervisor to start these processes.

Finally, we can dispatch a command to open a new bank account:
:ok = BankApp.dispatch(%OpenBankAccount{account_number: "ACC123456", initial_balance: 1_000})

Application

Commanded allows you to define, supervise, and start your own application module. To use Commanded you must create at least one application. You can create multiple Commanded applications which will run independently, each using its own separately configured event store.
The application expects at least an :otp_app option to be specified. It should point to an OTP application containing the application's configuration.
For example, the application:
defmodule MyApp.Application do
 use Commanded.Application, otp_app: :my_app

 router MyApp.Router
end
Could be configured with:
config/config.exs
config :my_app, MyApp.Application,
 event_store: [
 adapter: Commanded.EventStore.Adapters.EventStore,
 event_store: MyApp.EventStore
],
 pubsub: :local,
 registry: :local
Alternatively, you can include the event store, pubsub, and registry config when defining the application:
defmodule MyApp.Application do
 use Commanded.Application,
 otp_app: :my_app,
 event_store: [
 adapter: Commanded.EventStore.Adapters.EventStore,
 event_store: MyApp.EventStore
],
 pubsub: :local,
 registry: :local

 router(MyApp.Router)
end
Finally, you can provide an optional init/1 function to provide runtime configuration.
defmodule MyApp.Application do
 use Commanded.Application, otp_app: :my_app

 def init(config) do
 {:ok, config}
 end
end

 Routing commands

A Commanded application is also a composite router. This provides the router macro allowing you to include one or more router modules for command dispatch.
defmodule MyApp.Application do
 use Commanded.Application, otp_app: :my_app

 router(MyApp.Billing.Router)
 router(MyApp.Customers.Router)
 router(MyApp.Notifications.Router)
end
Once you have defined a router you can dispatch a command using the application module:
:ok = MyApp.Application.dispatch(%RegisterCustomer{id: Commanded.UUID.uuid4(), name: "Ben"})

Aggregates

Build your aggregates using standard Elixir modules and functions, with structs to hold state. There is no external dependency requirement.
An aggregate is comprised of its state, public command functions, and state mutators.
In a CQRS application all state must be derived from the published domain events. This prevents tight coupling between aggregate instances, such as querying for their state, and ensures their state isn't exposed.
If an aggregate needs data owned by another aggregate, then you should lookup the data from a projection and include it in the command before dispatch. Usually this would be a projection into a read model built for querying. You can use Commanded Ecto projections to project events into a SQL database.

 Aggregate state

Use the defstruct keyword to define the aggregate state and fields.
defmodule ExampleAggregate do
 defstruct [:uuid, :name]
end

 Command functions

A command function receives the aggregate's state and the command to execute. It must return the resultant domain events, which may be one event or multiple events. You can return a single event or a list of events: %Event{}, [%Event{}], {:ok, %Event{}}, or {:ok, [%Event{}]}.
To respond without returning an event you can return :ok, nil or an empty list as either [] or {:ok, []}.
For business rule violations and errors you may return an {:error, error} tagged tuple or raise an exception.
Name your public command functions execute/2 to dispatch commands directly to the aggregate without requiring an intermediate command handler.
defmodule ExampleAggregate do
 def execute(%ExampleAggregate{uuid: nil}, %Create{} = command) do
 %Create{uuid: uuid, name: name} = command

 event = %Created{uuid: uuid, name: name}

 {:ok, event}
 end

 def execute(%ExampleAggregate{}, %Create{}),
 do: {:error, :already_created}
end

 State mutators

The state of an aggregate can only be mutated by applying a domain event to its state. This is achieved by an apply/2 function that receives the state and the domain event. It returns the modified state.
Pattern matching is used to invoke the respective apply/2 function for an event. These functions must never fail as they are used when rebuilding the aggregate state from its history of domain events. You cannot reject the event once it has occurred.
defmodule ExampleAggregate do
 def apply(%ExampleAggregate{}, %Created{} = event) do
 %Created{uuid: uuid, name: name} = event

 %ExampleAggregate{uuid: uuid, name: name}
 end
end

 Example aggregate

You can define your aggregate with public API functions using the language of your domain. In this bank account example, the public function to open a new account is open_account/3:
defmodule BankAccount do
 defstruct [:account_number, :balance]

 # Public API

 def open_account(%BankAccount{account_number: nil}, account_number, initial_balance)
 when initial_balance > 0
 do
 event = %BankAccountOpened{account_number: account_number, initial_balance: initial_balance}

 {:ok, event}
 end

 def open_account(%BankAccount{}, _account_number, initial_balance)
 when initial_balance <= 0
 do
 {:error, :initial_balance_must_be_above_zero}
 end

 def open_account(%BankAccount{}, _account_number, _initial_balance) do
 {:error, :account_already_opened}
 end

 # State mutators

 def apply(%BankAccount{} = account, %BankAccountOpened{} = event) do
 %BankAccountOpened{account_number: account_number, initial_balance: initial_balance} = event

 %BankAccount{account |
 account_number: account_number,
 balance: initial_balance
 }
 end
end
With this approach you must dispatch the command to a command handler:
defmodule Commanded.ExampleDomain.OpenAccountHandler do
 alias BankAccount
 alias Commands.OpenAccount

 @behaviour Commanded.Commands.Handler

 def handle(%BankAccount{} = aggregate, %OpenAccount{} = command) do
 %OpenAccount{account_number: account_number, initial_balance: initial_balance} = command

 BankAccount.open_account(aggregate, account_number, initial_balance)
 end
end
An alternative approach is to expose one or more public command functions, execute/2, and use pattern matching on the command argument. With this approach you can route your commands directly to the aggregate.
In this example the execute/2 function pattern matches on the OpenAccount command module:
defmodule BankAccount do
 defstruct [:account_number, :balance]

 # Public API

 def execute(
 %BankAccount{account_number: nil},
 %OpenAccount{initial_balance: initial_balance} = command
) when initial_balance > 0
 do
 %OpenAccount{account_number: account_number} = command

 %BankAccountOpened{account_number: account_number, initial_balance: initial_balance}
 end

 def execute(%BankAccount{}, %OpenAccount{initial_balance: initial_balance})
 when initial_balance <= 0
 do
 {:error, :initial_balance_must_be_above_zero}
 end

 def execute(%BankAccount{}, %OpenAccount{}) do
 {:error, :account_already_opened}
 end

 # State mutators

 def apply(%BankAccount{} = account, %BankAccountOpened{} = event) do
 %BankAccountOpened{account_number: account_number, initial_balance: initial_balance} = event

 %BankAccount{account |
 account_number: account_number,
 balance: initial_balance
 }
 end
end

 Using Commanded.Aggregate.Multi to return multiple events

Sometimes you need to create multiple events from a single command. You can use Commanded.Aggregate.Multi to help track the events and update the aggregate state. This can be useful when you want to emit multiple events that depend upon the aggregate state being updated.
Any errors encountered will be returned to the caller, the modified aggregate state and any pending events are discarded.

 Example

In the example below, money is withdrawn from the bank account and the updated balance is used to check whether the account is overdrawn.
defmodule BankAccount do
 defstruct [
 account_number: nil,
 balance: 0,
 state: nil,
]

 alias Commanded.Aggregate.Multi

 # Public API

 def execute(
 %BankAccount{state: :active} = account,
 %WithdrawMoney{amount: amount})
 when is_number(amount) and amount > 0
 do
 account
 |> Multi.new()
 |> Multi.execute(&withdraw_money(&1, amount))
 |> Multi.execute(&check_balance/1)
 end

 # State mutators

 def apply(%BankAccount{} = state, %MoneyWithdrawn{balance: balance}),
 do: %BankAccount{state | balance: balance}

 def apply(%BankAccount{} = state, %AccountOverdrawn{}),
 do: %BankAccount{state | state: :overdrawn}

 # Private helpers

 defp withdraw_money(%BankAccount{} = account, amount) do
 %BankAccount{account_number: account_number, balance: balance} = account

 event = %MoneyWithdrawn{
 account_number: account_number,
 amount: amount,
 balance: balance - amount
 }

 {:ok, event}
 end

 defp check_balance(%BankAccount{balance: balance} = account)
 when balance < 0
 do
 %BankAccount{account_number: account_number} = account

 event = %AccountOverdrawn{account_number: account_number, balance: balance}

 {:ok, event}
 end

 defp check_balance(%BankAccount{}), do: :ok
end

 Aggregate state snapshots

A snapshot represents the aggregate state when all events to that point in time have been replayed. You can optionally configure state snapshotting for individual aggregates in your app configuration. Instead of loading every event for an aggregate when rebuilding its state, only the snapshot and any events appended since its creation are read. By default snapshotting is disabled for all aggregates.
As an example, assume a snapshot was taken after persisting an event for the aggregate at version 100. When the aggregate process is restarted we load and deserialize the snapshot data as the aggregate's initial state. Then we fetch and replay the aggregate's events after version 100.
This is a performance optimisation for aggregates that have a long lifetime or raise a large number of events. It limits the worst case scenario when rebuilding the aggregate state: it will need to read the snapshot and at most this many events from storage.
Use the following options to configure snapshots for an aggregate:
	snapshot_every - snapshot aggregate state every so many events. Use nil to disable snapshotting, or exclude the configuration entirely.

	snapshot_version - a non-negative integer indicating the version of the aggregate state snapshot. Incrementing this version forces any earlier recorded snapshots to be ignored when rebuilding aggregate state.

 Example

In config/config.exs enable snapshots for ExampleAggregate after every ten events:
config :my_app, MyApp.Application,
 snapshotting: %{
 MyApp.ExampleAggregate => [
 snapshot_every: 10,
 snapshot_version: 1
]
 }

 Snapshot serialization

Aggregate state will be serialized using the configured event store serializer, by default this stores the data as JSON. Remember to derive the Jason.Encoder protocol for the aggregate state to ensure JSON serialization is supported, as shown below.
defmodule ExampleAggregate do
 @derive Jason.Encoder
 defstruct [:name, :datetime]
end
You can use the Commanded.Serialization.JsonDecoder protocol to decode the parsed JSON data into the expected types:
defimpl Commanded.Serialization.JsonDecoder, for: ExampleAggregate do
 @doc """
 Parse the datetime included in the aggregate state
 """
 def decode(%ExampleAggregate{} = state) do
 %ExampleAggregate{datetime: datetime} = state

 {:ok, dt, _} = DateTime.from_iso8601(datetime)

 %ExampleAggregate{state | datetime: dt}
 end
end
Note: The default JSON encoding of a DateTime struct uses the to_iso8601/1 function which is why we must decode it using the from_iso8601/1 function.

 Rebuilding an aggregate snapshot

Whenever you change the structure of an aggregate's state you must increment the snapshot_version number. The aggregate state will be rebuilt from its events, ignoring any existing snapshots. They will be overwritten when the next snapshot is taken.

Commands

You need to create a module per command and define the fields using defstruct:
defmodule OpenAccount do
 @enforce_keys [:account_number]
 defstruct [:account_number, :initial_balance]
end
A command must contain a field to uniquely identify the aggregate instance (e.g. account_number). Use @enforce_keys to force the identity field to be specified when creating the command struct.
Since commands are just plain Elixir structs you can use a library such as typed_struct for defining structs, fields with their types, and enforcing mandatory keys without writing too much boilerplate code.
Commanded logs commands during execution when using debug log level. To prevent sensitive data from being exposed in
logs you can use the built-in Elixir Inspect module to exclude fields.
defmodule RegisterUser do
 @derive {Inspect, only: [:id, :name]}
 defstruct [:id, :name, :password]
end

 Command dispatch and routing

A router module is used to route commands to their registered command handler and aggregate module.
You create a router module using Commanded.Commands.Router and register each command with its associated handler:
defmodule BankRouter do
 use Commanded.Commands.Router

 dispatch OpenAccount, to: OpenAccountHandler, aggregate: BankAccount, identity: :account_number
 dispatch DepositMoney, to: DepositMoneyHandler, aggregate: BankAccount, identity: :account_number
end
This can be more succinctly configured by excluding command handlers and dispatching directly to the aggregate, using multi-command registration, and with the identify helper macro:
defmodule BankRouter do
 use Commanded.Commands.Router

 identify BankAccount, by: :account_number
 dispatch [OpenAccount, DepositMoney], to: BankAccount
end
A router must be registered with its associated application using the router macro, as shown below:
defmodule BankApp do
 use Commanded.Application, otp_app: :bank_app

 router BankRouter
end

 Command handlers

A command handler receives the aggregate and the command being executed. It allows you to validate, authorize, and/or enrich the command with additional data before executing the appropriate aggregate module function.
The command handler must implement the Commanded.Commands.Handler behaviour consisting of a single handle/2 function. It receives the aggregate state and the command to be handled. It must return the raised domain events from the aggregate. It may return an {:error, reason} tuple on failure. The handle/2 function is executed in the same process as the aggregate itself and is therefore within the consistency boundary of the aggregate. In effect, there is no essential difference between using the handle/2 function in a command handler module vs. the execute/2 function in the aggregate module aside from organization of your source code.
defmodule OpenAccountHandler do
 @behaviour Commanded.Commands.Handler

 def handle(%BankAccount{} = aggregate, %OpenAccount{} = command) do
 %OpenAccount{account_number: account_number, initial_balance: initial_balance} = command

 BankAccount.open_account(aggregate, account_number, initial_balance)
 end
end
Command handlers execute in the context of the dispatch call, as such they are limited to the timeout period specified. The default timeout is five seconds, the same as a GenServer call. You can increase the timeout value for individual commands as required - see the section on Timeouts below.

 Dispatch directly to aggregate

It is also possible to route a command directly to an aggregate, without requiring an intermediate command handler.
defmodule BankRouter do
 use Commanded.Commands.Router

 # will route to `BankAccount.execute/2`
 dispatch OpenAccount, to: BankAccount, identity: :account_number
end
By default, the aggregate module's execute/2 function will be called with the aggregate's state and the command to execute. Using this approach, you will create an execute/2 clause that pattern-matches on each command that the aggregate should handle.
Alternatively, you may specify the name of a function (also receiving both the aggregate state and the command) on your aggregate module to which the command will be dispatched:
defmodule BankRouter do
 use Commanded.Commands.Router

 # Will route to `BankAccount.open_account/2`
 dispatch OpenAccount, to: BankAccount, function: :open_account, identity: :account_number
end

 Dispatching commands

You dispatch a command to its registered aggregate using the application:
:ok = BankApp.dispatch(%OpenAccount{account_number: "ACC123", initial_balance: 1_000})
Optionally, you can dispatch a command using the router by providing the application as an option:
command = %OpenAccount{account_number: "ACC123", initial_balance: 1_000}

:ok = BankRouter.dispatch(command, application: BankApp)

 Define aggregate identity

You can define the identity field for an aggregate once using the identify macro. The configured identity will be used for all commands registered to the aggregate, unless overridden by a command registration.
Example
defmodule BankRouter do
 use Commanded.Commands.Router

 identify BankAccount, by: :account_number

 dispatch OpenAccount, to: BankAccount
end
The above configuration requires that all commands for the BankAccount aggregate must contain an account_number field used to identity a unique instance.
Identity prefix
An optional identity prefix can be used to distinguish between different aggregates that would otherwise share the same identity. As an example you might have a User and a UserPreferences aggregate that you wish to share the same identity. In this scenario you should specify a prefix for each aggregate (e.g. "user-" and "user-preference-").
defmodule BankRouter do
 use Commanded.Commands.Router

 identify BankAccount,
 by: :account_number,
 prefix: "bank-account-"

 dispatch OpenAccount, to: BankAccount
end
The prefix is used as the stream identity when appending, and reading, the aggregate's events (e.g. <prefix><instance_identity>). Note you must not change the stream prefix once you have events persisted in your event store, otherwise the aggregate's events cannot be read from the event store and its state cannot be rebuilt since the stream name will be different.
Custom aggregate identity
Any module that implements the String.Chars protocol can be used for an aggregate's identity. By default this includes the following Elixir built-in types: strings, integers, floats, atoms, and lists.
You can define your own custom identity modules and implement the String.Chars protocol for them:
defmodule AccountNumber do
 defstruct [:branch, :account_number]

 defimpl String.Chars do
 def to_string(%AccountNumber{branch: branch, account_number: account_number}),
 do: branch <> ":" <> account_number
 end
end
The custom identity will be converted to a string during command dispatch. This is used as the aggregate's identity and determines the stream to append its events in the event store.
open_account = %OpenAccount{
 account_number: %AccountNumber{branch: "B1", account_number: "ACC123"},
 initial_balance: 1_000
}

:ok = BankApp.dispatch(open_account)

 Timeouts

A command handler has a default timeout of 5 seconds. The same default as a GenServer.call/3 process call. It must handle the command in this period, otherwise the call fails and the caller process exits.
You can configure a different timeout value during command registration by providing a timeout option, defined in milliseconds:
defmodule BankRouter do
 use Commanded.Commands.Router

 # Configure a timeout of 1 second for the open account command handler
 dispatch OpenAccount,
 to: OpenAccountHandler,
 aggregate: BankAccount,
 identity: :account_number,
 timeout: 1_000
end
You can override the timeout value during command dispatch. This example is dispatching the open account command with a timeout of 2 seconds:
open_account = %OpenAccount{account_number: "ACC123", initial_balance: 1_000}

:ok = BankApp.dispatch(open_account, timeout: 2_000)

 Multi-command registration

Command routers support multi command registration so you can group related command handlers into the same module:
defmodule BankRouter do
 use Commanded.Commands.Router

 dispatch [OpenAccount,CloseAccount],
 to: BankAccountHandler,
 aggregate: BankAccount,
 identity: :account_number
end

 Command dispatch consistency guarantee

You can choose the consistency guarantee when dispatching a command.
	Strong consistency offers up-to-date data but at the cost of high latency.
	Eventual consistency offers low latency but read model queries may reply with stale data since they may not have processed the persisted events.

In Commanded, the available options during command dispatch are:
	:eventual (default) - don't block command dispatch and don't wait for any event handlers, regardless of their own consistency configuration.
:ok = BankApp.dispatch(command)
:ok = BankApp.dispatch(command, consistency: :eventual)

	:strong - block command dispatch until all strongly consistent event handlers and process managers have successfully processed all events created by the command.
:ok = BankApp.dispatch(command, consistency: :strong)
Dispatching a command using :strong consistency but without any strongly consistent event handlers configured will have no effect.

	Provide an explicit list of event handler and process manager modules (or their configured names), containing only those handlers you'd like to wait for. No other handlers will be awaited on, regardless of their own configured consistency setting.
:ok = BankApp.dispatch(command, consistency: [ExampleHandler, AnotherHandler])
:ok = BankApp.dispatch(command, consistency: ["ExampleHandler", "AnotherHandler"])
Note you cannot opt-in to strong consistency for a handler that has been configured as eventually consistent.

Which consistency guarantee should I use?
When dispatching a command using consistency: :strong the dispatch will block until all of the strongly consistent event handlers and process managers have handled all events created by the command. This guarantees that when you receive the :ok response from dispatch, your strongly consistent read models will have been updated and can safely be queried.
Strong consistency helps to alleviate problems and workarounds you would otherwise encounter when dealing with eventual consistency in your own application. Use :strong consistency when you want to query a read model immediately after dispatching a command. You must also configure the event handler to use :strong consistency.
Using :eventual consistency, or omitting the consistency option, will cause the command dispatch to immediately return without waiting for any event handlers or process managers. The handlers run independently, and asynchronously, in the background, therefore you will need to deal with potentially stale read model data.
Configure default consistency
You may override the default consistency (:eventual) by setting default_consistency in your environment config (e.g. config/config.exs):
config :commanded, default_consistency: :strong
This will effect command dispatch, event handlers, and process managers where a consistency is not explicitly defined.
Consistency failures
By opting-in to strong consistency you may encounter an additional error reply from command dispatch:
case BankApp.dispatch(command, consistency: :strong) do
 :ok -> # ... all ok
 {:error, :consistency_timeout} -> # command ok, handlers have not yet executed
end
Receiving an {:error, :consistency_timeout} error indicates the command successfully dispatched, but some or all of the strongly consistent event handlers have not yet executed.
The default timeout is configured as five seconds; this determines how long the dispatch will block waiting for the handlers. You can override the default value in your environment config file (e.g. config/config.exs):
config :commanded,
 dispatch_consistency_timeout: 10_000 # ten seconds

 Dispatch returning execution result

You can choose to include the execution result as part of the dispatch result by setting include_execution_result true:
{
 :ok,
 %Commanded.Commands.ExecutionResult{
 aggregate_uuid: aggregate_uuid,
 aggregate_version: aggregate_version,
 events: events,
 metadata: metadata
 }
} = BankApp.dispatch(command, include_execution_result: true)
This is useful if you need to get information from the events produced by the aggregate.

 Dispatch returning aggregate version

You can optionally choose to include the aggregate's version as part of the dispatch result by setting the include_aggregate_version option to true:
{:ok, aggregate_version} = BankApp.dispatch(command, include_aggregate_version: true)
This is useful when you need to wait for an event handler, such as a read model projection, to be up-to-date before continuing execution or querying its data.

 Causation and correlation ids

To assist with monitoring and debugging your deployed application it is useful to track the causation and correlation ids for your commands and events.
	causation_id - the UUID of the command causing an event, or the event causing a command dispatch.
	correlation_id - a UUID used to correlate related commands/events.

You can set causation and correlation ids when dispatching a command:
:ok = BankApp.dispatch(command, causation_id: Commanded.UUID.uuid4(), correlation_id: Commanded.UUID.uuid4())
When dispatching a command in an event handler, you should copy these values from the metadata (second) argument associated with the event you are handling:
defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: "ExampleHandler"

 def handle(%AnEvent{..}, %{event_id: causation_id, correlation_id: correlation_id}) do
 command = %ExampleCommand{..}

 BankApp.dispatch(command,
 causation_id: causation_id,
 correlation_id: correlation_id,
)
 end
end
Commands dispatched by a process manager will be automatically assigned the appropriate causation and correlation ids from the source domain event.
You can use Commanded audit middleware to record every dispatched command. This allows you to follow the chain of commands and events by using the causation id. The correlation id can be used to find all related commands and events.

 Event metadata

It's helpful for debugging to have additional metadata associated with events issued by a command. You can set it when dispatching a command:
:ok = BankApp.dispatch(command, metadata: %{"issuer_id" => issuer_id, "user_id" => "user@example.com"})
Note, due to metadata serialization you should expect that only: strings, numbers, and boolean values are preserved; any other value will be converted to a string.
You should always use string keys in your metadata map; atom keys will be converted to strings.

 Aggregate lifespan

By default an aggregate instance process will run indefinitely once started. You can control this by implementing the Commanded.Aggregates.AggregateLifespan behaviour in a module.
Define a module that implements the Commanded.Aggregates.AggregateLifespan behaviour:
defmodule BankAccountLifespan do
 @behaviour Commanded.Aggregates.AggregateLifespan

 def after_event(%MoneyDeposited{}), do: :timer.hours(1)
 def after_event(%BankAccountClosed{}), do: :stop
 def after_event(_event), do: :infinity

 def after_command(%CloseAccount{}), do: :stop
 def after_command(_command), do: :infinity

 def after_error(:invalid_initial_balance), do: :timer.minutes(5)
 def after_error(_error), do: :stop
end
Then specify the module as the lifespan option when registering the command in the router.
defmodule BankRouter do
 use Commanded.Commands.Router

 dispatch [OpenAccount,CloseAccount],
 to: BankAccount,
 lifespan: BankAccountLifespan,
 identity: :account_number
end
The inactivity timeout is specified in milliseconds, after which time the aggregate process will be stopped if no other messages are received by it.
Return :stop or {:stop, reason} to immediately shutdown the aggregate process. Return :infinity to prevent the aggregate instance from shutting down.
You can also return :hibernate and the process is hibernated, it will continue its loop once a message is in its message queue. Hibernating an aggregate causes garbage collection and minimises the memory used by the process. Hibernating should not be used aggressively as too much time could be spent garbage collecting.

 Middleware

Allows a command router to define middleware modules that are executed before and after success or failure of each command dispatch.
This provides an extension point to add in command validation, authorization, logging, and other cross-cutting behaviour that you want to be called for every command the router dispatches.
defmodule BankingRouter do
 use Commanded.Commands.Router

 middleware CommandLogger
 middleware MyCommandValidator
 middleware AuthorizeCommand

 identify BankAccount, by: :account_number

 dispatch OpenAccount, to: OpenAccountHandler, aggregate: BankAccount
 dispatch DepositMoney, to: DepositMoneyHandler, aggregate: BankAccount
end
The middleware modules are executed in the order they’ve been defined. They will receive a Commanded.Middleware.Pipeline struct containing the command being dispatched, in the :command field.

 Example middleware

Implement the Commanded.Middleware behaviour in your module and define the before_dispatch, after_dispatch, and after_failure callback functions.
defmodule NoOpMiddleware do
 @behaviour Commanded.Middleware

 alias Commanded.Middleware.Pipeline
 import Pipeline

 def before_dispatch(%Pipeline{} = pipeline) do
 pipeline
 end

 def after_dispatch(%Pipeline{} = pipeline) do
 pipeline
 end

 def after_failure(%Pipeline{} = pipeline) do
 pipeline
 end
end
Commanded provides a Commanded.Middleware.Logger middleware for logging the name of each dispatched command and its execution duration.

 Composite command routers

You can use the Commanded.Commands.CompositeRouter macro to define a router comprised of other router modules. This approach is useful if you prefer to construct a router per context and then combine them together to form a top level application router.
By using Commanded.Commands.CompositeRouter in your own module you can include other routers via the router macro:
defmodule ApplicationRouter do
 use Commanded.Commands.CompositeRouter

 router BankAccountRouter
 router MoneyTransferRouter
end
defmodule BankApp do
 use Commanded.Application, otp_app: :bank_app

 router ApplicationRouter
end
Command dispatch works the same as any other router:
:ok = BankApp.dispatch(%OpenAccount{account_number: "ACC123", initial_balance: 1_000})

Events

 Domain events

Domain events indicate that something of importance has occurred, within the context of an aggregate. They should be named in the past tense: account registered; funds transferred; fraudulent activity detected etc.
Create a module per domain event and define the fields with defstruct. An event should contain a field to uniquely identify the aggregate instance (e.g. account_number).
Remember to derive the Jason.Encoder protocol for the event struct to ensure JSON serialization is supported, as shown below.
defmodule BankAccountOpened do
 @derive Jason.Encoder
 defstruct [:account_number, :initial_balance]
end
Note, due to event serialization you should expect that only: strings, numbers and boolean values defined in an event are preserved; any other value will be converted to a string. You can control this behaviour as described in the Serialization guide.

 Event handlers

Event handlers allow you to execute code that reacts to domain events: to build read model projections; dispatch commands to other aggregates; and to interact with third-party systems such as sending emails.
Commanded guarantees only one instance of an event handler will run, regardless of how many nodes are running (even when not using distributed Erlang). This is enforced by the event store subscription (PostgreSQL advisory locks in Elixir Event Store).
Use the Commanded.Event.Handler macro within your event handler module to implement the defined behaviour. This consists of a single handle/2 function that receives each published domain event and its metadata, including the event's unique event number. It should return :ok on success or {:error, :reason} on failure. You can return {:error, :already_seen_event} to skip events that have already been handled, due to the at-least-once event delivery of the supported event stores.
Use pattern matching to match on each type of event you are interested in. A catch-all handle/2 function is included, so all other events will be ignored by default.
defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: "ExampleHandler"

 @impl Commanded.Event.Handler
 def handle(%AnEvent{..}, _metadata) do
 # ... process the event
 :ok
 end
end
The name given to the event handler must be unique and remain unchanged between releases. It is used when subscribing to the event store to track which events the handler has seen during restarts.
{:ok, _handler} = ExampleHandler.start_link()

 Subscription options

You can choose to start the event handler's event store subscription from the :origin, :current position, or an exact event number using the start_from option. The default is to use the origin so your handler will receive all events.
defmodule ExampleHandler do
 # Define `start_from` as one of :origin, :current, or an explicit event number (e.g. 1234)
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: "ExampleHandler",
 start_from: :origin
end
You can optionally override :start_from by passing it as param:
{:ok, _handler} = ExampleHandler.start_link(start_from: :current)
Use the :current position when you don't want newly created event handlers to go through all previous events. An example would be adding an event handler to send transactional emails to an already deployed system containing many historical events.
You should start your event handlers using an OTP Supervisor to ensure they are restarted on error. See the Supervision guide for more details.

 Subscribing to an individual stream

By default event handlers will subscribe to all events appended to any stream. Provide a subscribe_to option to subscribe to a single stream.
defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: __MODULE__,
 subscribe_to: "stream1234"
end
This will ensure the handler only receives events appended to that stream.

 Event handler callbacks

	Commanded.Event.Handler.init/1 - (optional) used to configure the handler before it starts.
	Commanded.Event.Handler.after_start/1 - (optional) initialisation callback function called in the process of the started handler.
	Commanded.Event.Handler.error/3 - (optional) called when an event handle/2 callback returns an error.

 Metadata

The handle/2 function in your handler receives the domain event and a map of metadata associated with that event. You can provide the metadata key/value pairs when dispatching a command:
:ok = ExampleApp.dispatch(command, metadata: %{"issuer_id" => issuer_id, "user_id" => "user@example.com"})
In addition to the metadata key/values you provide, the following system values will be included in the metadata passed to an event handler:
	application - the Commanded.Application associated with the event handler.
	handler_name - the name of the event handler.
	state - optional event handler state.
	event_id - a globally unique UUID to identify the event.
	event_number - a globally unique, monotonically incrementing and gapless integer used to order the event amongst all events.
	stream_id - the stream identity for the event.
	stream_version - the version of the stream for the event.
	causation_id - an optional UUID identifier used to identify which command caused the event.
	correlation_id - an optional UUID identifier used to correlate related commands/events.
	created_at - the datetime, in UTC, indicating when the event was created.

These key/value metadata pairs will use atom keys to differentiate them from the user provided metadata:
defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: "ExampleHandler"

 @impl Commanded.Event.Handler
 def handle(event, metadata) do
 IO.inspect(metadata)
 # %{
 # :causation_id => "db1ebd30-7d3c-40f7-87cd-12cd9966df32",
 # :correlation_id => "1599630b-9c38-433c-9548-0dd793108ba0",
 # :created_at => #DateTime<2017-10-30 11:19:56.178901Z>,
 # :event_id => "5e4a0f38-385b-4d57-823b-a1bcf705b7bb",
 # :event_number => 12345,
 # :stream_id => "e42a588d-2cda-4314-a471-5d008cce01fc",
 # :stream_version => 1,
 # "issuer_id" => "0768d69a-d2b7-48f4-d0e9-083a97f7ebe0",
 # "user_id" => "user@example.com"
 # }

 :ok
 end
end

 Consistency guarantee

You can specify an event handler's consistency guarantee using the consistency option:
defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: "ExampleHandler",
 consistency: :eventual
The available options are :eventual (default) and :strong:
	Strong consistency offers up-to-date data but at the cost of high latency.
	Eventual consistency offers low latency but read model queries may reply with stale data since they may not have processed the persisted events.

You request the consistency guarantee, either :strong or :eventual, when dispatching a command. Strong consistency will block the command dispatch and wait for all strongly consistent event handlers to successfully process all events created by the command. Whereas eventual consistency will immediately return after command dispatch, without waiting for any event handlers, even those configured for strong consistency.

 How does it work?

An event handler is a GenServer process that subscribes to the configured event store. For each event persisted to the store the handle/2 callback is called, passing the domain event and its metadata.

 Upcasting events

Commanded supports upcasting of events at runtime using the Commanded.Event.Upcaster protocol.
By implementing the upcaster protocol you can transform an event before it is used by a consumer. This might be an aggregate, an event handler, or a process manager. Because the upcaster changes the event at runtime, handlers only need to support the latest version. You can also use upcasting to change the type of event.

 Examples

Change the shape of an event by renaming a field:
defimpl Commanded.Event.Upcaster, for: AnEvent do
 def upcast(%AnEvent{} = event, _metadata) do
 %AnEvent{name: name} = event

 %AnEvent{event | first_name: name}
 end
end
Change the type of event by replacing a historical event with a new event:
defimpl Commanded.Event.Upcaster, for: HistoricalEvent do
 def upcast(%HistoricalEvent{} = event, _metadata) do
 %HistoricalEvent{id: id, name: name} = event

 %NewEvent{id: id, name: name}
 end
end

 Reset an EventHandler

An event handler can be reset (using a mix task), it will restart the event store subscription from the configured
start_from. This allow an individual handler to be restart while the app is still running.
You can implement the before_reset/0 callback that will be called before resetting the event handler.
defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: __MODULE__

 require Logger

 alias Commanded.Event.FailureContext

 @impl Commanded.Event.Handler
 def before_reset do
 # Do something
 :ok
 end
end

Process managers

A process manager is responsible for coordinating one or more aggregates. It handles events and dispatches commands in response. You can think of a process manager as the opposite of an aggregate: aggregates handle commands and create events; process managers handle events and create commands. Process managers have state that can be used to track which aggregates are being orchestrated.
Use the Commanded.ProcessManagers.ProcessManager macro in your process manager module and implement the callback functions defined in the behaviour: Commanded.ProcessManagers.ProcessManager.interested?/1, Commanded.ProcessManagers.ProcessManager.handle/2, Commanded.ProcessManagers.ProcessManager.apply/2, and Commanded.ProcessManagers.ProcessManager.error/3.

 interested?/1

The Commanded.ProcessManagers.ProcessManager.interested?/1 function is used to indicate which events the process manager handles. The response is used to route the event to an existing instance or start a new process instance:
	{:start, process_uuid} - create a new instance of the process manager.
	{:start!, process_uuid} - create a new instance of the process manager (strict).
	{:continue, process_uuid} - continue execution of an existing process manager.
	{:continue!, process_uuid} - continue execution of an existing process manager (strict).
	{:stop, process_uuid} - stop an existing process manager, shutdown its
process, and delete its persisted state.
	false - ignore the event.

You can return a list of process identifiers when a single domain event is to be handled by multiple process instances.

 Strict process routing

Using strict routing, with :start! or :continue!, enforces the following validation checks:
	{:start!, process_uuid} - validate process does not already exist.
	{:continue!, process_uuid} - validate process already exists.

If the check fails an error will be passed to the error/3 callback function:
	{:error, {:start!, :process_already_started}}
	{:error, {:continue!, :process_not_started}}

The Commanded.ProcessManagers.ProcessManager.error/3 function can choose to :stop the process or :skip the problematic event.

 handle/2

A handle/2 function can be defined for each :start and :continue tagged event previously specified. It receives the process manager's state and the event to be handled. It must return the commands to be dispatched. This may be none, a single command, or many commands.
The handle/2 function can be omitted if you do not need to dispatch a command and are only mutating the process manager's state.

 apply/2

The Commanded.ProcessManagers.ProcessManager.apply/2 function is used to mutate the process manager's state. It receives the current state and the domain event, and must return the modified state.
This callback function is optional, the default behaviour is to retain the process manager's current state.

 error/3

You can define an Commanded.ProcessManagers.ProcessManager.error/3 callback function to handle any errors or exceptions during event handling or returned by commands dispatched from your process manager. The function is passed the error (e.g. {:error, :failure}), the failed event or command, and a failure context. See Commanded.ProcessManagers.FailureContext for details.
Use pattern matching on the error and/or failed event/command to explicitly handle certain errors, events, or commands. You can choose to retry, skip, ignore, or stop the process manager after a command dispatch error.
The default behaviour, if you don't provide an Commanded.ProcessManagers.ProcessManager.error/3 callback, is to stop the process manager using the exact error reason returned from the event handler function or command dispatch.
The Commanded.ProcessManagers.ProcessManager.error/3 callback function must return one of the following responses depending upon the severity of error and how you choose to handle it:
	{:retry, context} - retry the failed command, provide a context map containing any state passed to subsequent failures. This could be used to count the number of retries, failing after too many attempts.

	{:retry, delay, context} - retry the failed command, after sleeping for the requested delay (in milliseconds). Context is a map as described in {:retry, context} above.

	{:stop, reason} - stop the process manager with the given reason.

For event handling failures, when failure source is an event, you can also return:
	:skip - to skip the problematic event. No commands will be dispatched.

For command dispatch failures, when failure source is a command, you can also return:
	{:continue, commands, context} - continue dispatching the given commands. This allows you to retry the failed command, modify it and retry, drop it, or drop all pending commands by passing an empty list [].

	{:skip, :discard_pending} - discard the failed command and any pending commands.

	{:skip, :continue_pending} - skip the failed command, but continue dispatching any pending commands.

 Supervision

Supervise your process managers to ensure they are restarted on error.
defmodule Bank.Payments.Supervisor do
 use Supervisor

 def start_link(_arg) do
 Supervisor.start_link(__MODULE__, [], name: __MODULE__)
 end

 def init(_arg) do
 Supervisor.init(
 [
 Bank.Payments.TransferMoneyProcessManager
],
 strategy: :one_for_one
)
 end
end

 Supervision caveats

The default error handling strategy is to stop the process manager. When supervised, the process will be restarted and will attempt to handle the same event again, which will likely result in the same error. This could lead to too many restarts of the supervisor, which may eventually cause the application to stop, depending upon your supervision tree and its strategy.
To prevent this you can choose to define the default error handling strategy as :skip to skip over any problematic events.
defmodule ExampleProcessManager do
 use Commanded.ProcessManagers.ProcessManager,
 application: ExampleApp,
 name: __MODULE__

 require Logger

 # By default skip any problematic events
 def error(error, _command_or_event, _failure_context) do
 Logger.error(fn -> "#{__MODULE__} encountered an error: " <> inspect(error) end)

 :skip
 end
end
Alternatively you can define the restart strategy of your process manager as :temporary to prevent it from being restarted on termination. This approach will require manual intervention to fix the stopped process manager, but ensures that it won't miss any events nor crash the application.

 Error handling example

Define an error/3 callback function to determine how to handle errors during event handling and command dispatch.
defmodule ExampleProcessManager do
 use Commanded.ProcessManagers.ProcessManager,
 application: ExampleApp,
 name: "ExampleProcessManager"

 # Stop process manager after three failures
 def error({:error, _failure}, _failed_message, %{context: %{failures: failures}})
 when failures >= 2
 do
 {:stop, :too_many_failures}
 end

 # Retry command, record failure count in context map
 def error({:error, _failure}, _failed_message, %{context: context}) do
 context = Map.update(context, :failures, 1, fn failures -> failures + 1 end)
 {:retry, context}
 end
end
The default behaviour if you don't provide an error/3 callback is to stop the process manager using the same error reason returned from the failed command dispatch.

 Example process manager

defmodule TransferMoneyProcessManager do
 use Commanded.ProcessManagers.ProcessManager,
 application: ExampleApp,
 name: "TransferMoneyProcessManager"

 @derive Jason.Encoder
 defstruct [
 :transfer_uuid,
 :debit_account,
 :credit_account,
 :amount,
 :status
]

 # Process routing

 def interested?(%MoneyTransferRequested{transfer_uuid: transfer_uuid}), do: {:start, transfer_uuid}
 def interested?(%MoneyWithdrawn{transfer_uuid: transfer_uuid}), do: {:continue, transfer_uuid}
 def interested?(%MoneyDeposited{transfer_uuid: transfer_uuid}), do: {:stop, transfer_uuid}
 def interested?(_event), do: false

 # Command dispatch

 def handle(%TransferMoneyProcessManager{}, %MoneyTransferRequested{} = event) do
 %MoneyTransferRequested{transfer_uuid: transfer_uuid, debit_account: debit_account, amount: amount} = event

 %WithdrawMoney{account_number: debit_account, transfer_uuid: transfer_uuid, amount: amount}
 end

 def handle(%TransferMoneyProcessManager{} = pm, %MoneyWithdrawn{}) do
 %TransferMoneyProcessManager{transfer_uuid: transfer_uuid, credit_account: credit_account, amount: amount} = pm

 %DepositMoney{account_number: credit_account, transfer_uuid: transfer_uuid, amount: amount}
 end

 # State mutators

 def apply(%TransferMoneyProcessManager{} = transfer, %MoneyTransferRequested{} = event) do
 %MoneyTransferRequested{transfer_uuid: transfer_uuid, debit_account: debit_account, credit_account: credit_account, amount: amount} = event

 %TransferMoneyProcessManager{transfer |
 transfer_uuid: transfer_uuid,
 debit_account: debit_account,
 credit_account: credit_account,
 amount: amount,
 status: :withdraw_money_from_debit_account
 }
 end

 def apply(%TransferMoneyProcessManager{} = transfer, %MoneyWithdrawn{}) do
 %TransferMoneyProcessManager{transfer |
 status: :deposit_money_in_credit_account
 }
 end
end
The name given to the process manager must be unique. This is used when subscribing to events from the event store to track the last seen event and ensure they are only received once.
{:ok, _pid} = TransferMoneyProcessManager.start_link(start_from: :current)
You can choose to start the process router's event store subscription from the :origin, :current position or an exact event number using the start_from option. The default is to use :origin so it will receive all events. You typically use :current when adding a new process manager to an already deployed system containing historical events.
Process manager instance state is persisted to storage after each handled event. This allows the process manager to resume should the host process terminate.

 Configuration options

	consistency - defined as one of either :strong or :eventual (default) for event handling.
	event_timeout - a timeout for event handling to ensure that events are processed in a timely manner without getting stuck.
	idle_timeout - to reduce memory usage you can configure an idle timeout, in milliseconds, after which an inactive process instance will be shutdown.

Refer to the Commanded.ProcessManagers.ProcessManager module docs for more details.

Supervision

Use an OTP supervisor to host your Commanded application, process managers, event handlers, and read model projectors.
defmodule Bank.Supervisor do
 use Supervisor

 def start_link(arg) do
 Supervisor.start_link(__MODULE__, arg, name: __MODULE__)
 end

 @impl true
 def init(_arg) do
 children = [
 # Application
 BankApp,

 # Event handler
 AccountBalanceHandler,

 # Process manager
 TransferMoneyProcessManager,

 # Read model projector
 AccountsProjector,

 # Optionally, provide runtime configuration
 {WelcomeEmailHandler, start_from: :current},
]

 Supervisor.init(children, strategy: :one_for_one)
 end
end
Your application should start the supervisor:
defmodule Bank do
 use Application

 def start(_type, _args) do
 Bank.Supervisor.start_link()
 end
end

Serialization

 Default JSON serializer

JSON serialization can be used for event data & metadata, and aggregate and process manager snapshots.
To enable JSON serialization with the included Commanded.Serialization.JsonSerializer module add the jason library to your deps:
def deps do
 [{:jason, "~> 1.2"}]
end
Jason, a pure Elixir JSON library, is used for the actual serialization.
You must derive the Jason.Encoder protocol for all structs you plan on encoding.
defmodule ExampleEvent do
 @derive Jason.Encoder
 defstruct [:name, :datetime]
end
Jason provides an extension point if you need to manually encode your event by using the Jason.Encoder protocol:
defimpl Jason.Encoder, for: Person do
 def encode(%{name: name, age: age}, opts) do
 Jason.Encode.string("#{name} (#{age})", options)
 end
end

 Configuring JSON serialization

JSON serialization configuration depends upon which event store you are using with Commanded. Configure the serializer in config/config.exs, or per environment, as follows.
	Postgres EventStore:
config :my_app, MyApp.EventStore,
 serializer: Commanded.Serialization.JsonSerializer
You can also use the EventStore.JsonSerializer (bytea column type) and EventStore.JsonbSerializer (jsonb column type) serializers which are included in the EventStore library.
config :my_app, MyApp.EventStore,
 serializer: EventStore.JsonSerializer
config :my_app, MyApp.EventStore,
 serializer: EventStore.JsonbSerializer
Note that the two EventStore serializers do not implement the Commanded.Serialization.JsonSerializer decoding protocol.

	EventStoreDB:
config :commanded_extreme_adapter,
 serializer: Commanded.Serialization.JsonSerializer

	In-memory event store:
config :commanded, Commanded.EventStore.Adapters.InMemory,
 serializer: Commanded.Serialization.JsonSerializer

 Decoding event structs

The Commanded.Serialization.JsonSerializer module provides an extension point to allow additional decoding of the deserialized data. This can be used for parsing data into valid types, such as datetime parsing from a string.
The example event below has an implementation of the Commanded.Serialization.JsonDecoder protocol to parse the datetime into a DateTime struct.
defmodule ExampleEvent do
 @derive Jason.Encoder
 defstruct [:name, :datetime]
end

defimpl Commanded.Serialization.JsonDecoder, for: ExampleEvent do
 @doc """
 Parse the datetime included in the event.
 """
 def decode(%ExampleEvent{datetime: datetime} = event) do
 {:ok, dt, _} = DateTime.from_iso8601(datetime)

 %ExampleEvent{event | datetime: dt}
 end
end
The above protocol is only supported by the Commanded.Serialization.JsonSerializer serializer.

 Using an alternative serialization format

You can implement your own serializer module to use an alternative serialization format if preferred.
Configure your own serializer in config/config.exs for the event store you are using.
	PostgreSQL EventStore:
config :my_app, MyApp.EventStore, serializer: MyApp.MessagePackSerializer

	EventStoreDB:
config :my_app, MyApp, serializer: MyApp.MessagePackSerializer

	In-memory event store:
config :my_app, MyApp,
 event_store: [
 adapter: Commanded.EventStore.Adapters.InMemory,
 serializer: MyApp.MessagePackSerializer
]

You should not change serialization format once your app has been deployed to production since Commanded will not be able to deserialize any existing events or snapshot data. In this scenario, to change serialization format you would need to also migrate your event store to the new format.

 Customising serialization

To implement custom serialization you could implement your own serializer which extends the behaviour of the existing Commanded.Serialization.JsonSerializer module.
The example below shows how you might compress the serialized data before storage and decompress during deserialization.
defmodule CompressedJsonSerializer do
 def serialize(term) do
 term
 |> Commanded.Serialization.JsonSerializer.serialize()
 |> compress()
 end

 def deserialize(binary, config \\ []) do
 binary
 |> decompress()
 |> Commanded.Serialization.JsonSerializer.deserialize(config)
 end

 defp compress(term), do: ...
 defp decompress(binary), do: ...
end

Read model projections

Your read model can be built using a Commanded event handler and whichever storage provider you prefer. You can choose to use a SQL or NoSQL database, document store, the filesystem, a full text search index, or any other storage mechanism. You may even use multiple storage providers, optimised for the querying they must support.

 Ecto projections

You can use the Commanded Ecto projections library to build a read model using one of the databases supported by Ecto (PostgreSQL, MySQL, et al).

 Example

defmodule MyApp.ExampleProjector do
 use Commanded.Projections.Ecto,
 application: MyApp.ExampleApp,
 name: "ExampleProjector"

 project %AnEvent{name: name}, _metadata do
 Ecto.Multi.insert(multi, :example_projection, %ExampleProjection{name: name})
 end

 project %AnotherEvent{name: name} do
 Ecto.Multi.insert(multi, :example_projection, %ExampleProjection{name: name})
 end
end

 Consistency guarantee

You will often choose to use :strong consistency for read model projections to ensure that you can query data affected by a dispatched command. In a typical web request using the POST/Redirect/GET pattern you want to ensure the read model is up-to-date before redirecting the user to the modified resource.
By opting in to strong consistency you are guaranteed that an :ok reply from command dispatch indicates all strongly consistent read models will have been updated.
Configure the consistency option in your projector:
defmodule MyApp.ExampleProjector do
 use Commanded.Projections.Ecto,
 application: MyApp.ExampleApp,
 name: "ExampleProjector",
 consistency: :strong
end

Testing

When using ES/CQRS, events are first-class citizens. It's critical to be able to assert that specific events are being emitted. Commanded provides test helpers to simplify your life.

 Setting up your test environment / your tests

Please refer to the Testing your application page on the Wiki for help with configuring your test environment.

 Remember projection_versions when truncating tables

If you rely on your read projections in your tests, remember to truncate the projection_versions table in your truncate_readstore_tables/0 function. Otherwise, your projector will ignore everything but the first projection.
defp truncate_readstore_tables do
 """
 TRUNCATE TABLE
 table1,
 table2,
 table3,
 projection_versions
 RESTART IDENTITY
 CASCADE;
 """
 end

 Asserting that an event is published

Often you'll want to make sure a given event is published. Commanded provides assert_receive_event/3 and assert_receive_event/4 functions in the Commanded.Assertions.EventAssertions module to help with this.
In the first case, we check that any event is received and use the argument as an assertion.
In the second case, we also provide a predicate function that we can use to narrow our search down to a specific event.
import Commanded.Assertions.EventAssertions

test "ensure any event of this type is published" do
 :ok = MyApp.dispatch(%Command{id: 4, date: Date.today})

 assert_receive_event(MyApp, Event, fn event ->
 assert event.id == 4
 end)
end

test "ensure an event is published matching the given predicate" do
 :ok = MyApp.dispatch(%Command{id: 4, date: Date.today})

 assert_receive_event(
 MyApp,
 Event,
 fn event -> event.id == 4 end,
 fn event ->
 assert event.date == Date.today
 end
)
end

 Waiting for an event

Use the wait_for_event/2 and wait_for_event/3 functions to pause until a specific type of event, or event type matching a given predicate, is received. This can help you deal with eventual consistency in your tests.
import Commanded.Assertions.EventAssertions

test "pause until specific event is published" do
 :ok = BankApp.dispatch(%OpenBankAccount{account_number: "ACC123", initial_balance: 1_000})

 wait_for_event(BankApp, BankAccountOpened, fn opened -> opened.account_number == "ACC123" end)
end

 Correlation

It's a given that when going through CQRS, sometimes many events are part of the same action, either because they are returned from the aggregate together, or because event handlers trigger new commands which generate new events, etc. We will usually want to know, for audit trail purposes, that these events belong together.
For this purpose, Commanded provides assert_correlated/4 which can be used to ensure that specific events have the same correlation_id:
import Commanded.Assertions.EventAssertions

test "make sure two events are correlated" do
 :ok = BankApp.dispatch(%OpenBankAccount{account_number: "ACC123", initial_balance: 1_000})

 assert_correlated(
 BankApp,
 BankAccountOpened, fn opened -> opened.account_number == "ACC123" end,
 InitialAmountDeposited, fn deposited -> deposited.account_number == "ACC123" end
)
end

 Aggregate state testing

Sometimes it's useful to compare an expected aggregate's state with the previous one. This kind of function should be used
only for testing.
For this purpose, Commanded provides an aggregate_state function which returns the current aggregate state.
import Commanded.Assertions.EventAssertions

alias Commanded.Aggregates.Aggregate

test "make sure aggregate state are what we wanted" do
 account_number = "ACC123"

 :ok = BankApp.dispatch(%OpenBankAccount{account_number: account_number, initial_balance: 1_000})
 :ok = BankApp.dispatch(%WithdrawnMoney{account_number: account_number, amount: 200})

 wait_for_event(BankApp, BankAccountOpened, fn opened -> opened.account_number == "ACC123" end)
 wait_for_event(BankApp, MoneyWithdrawn, fn withdrawn -> withdrawn.balance == 800 end)

 assert Aggregate.aggregate_state(BankApp, BankAccount, account_number) == %BankAccount{
 account_number: account_number,
 balance: 800,
 state: :active
 }
end

Deployment

Commanded supports running on a single node, or multiple nodes run as either a distributed Erlang cluster or as multiple single instance nodes.

 Single node deployment

Running your app using Commanded on a single node requires no configuration as local is the default setting.

 Multi node distributed Erlang deployment

To support deployment to a cluster of nodes and distributed Erlang you must configure:
	A registry which supports distributed Erlang. The :global registry provided by Commanded or the Commanded Swarm registry library.
	Phoenix's distributed pub/sub and presence platform to allow process distribution and communication amongst all nodes in the cluster.

 :global registry

Use Erlang's :global name registration facility with distributed Erlang. The global name server starts automatically when a node is started. The registered names are stored in replicated global name tables on every node. Thus, the translation of a name to a pid is fast, as it is always done locally.
Define the :global registry for your application:
defmodule MyApp.Application do
 use Commanded.Application,
 otp_app: :my_app,
 event_store: [
 adapter: Commanded.EventStore.Adapters.EventStore,
 event_store: MyApp.EventStore
],
 registry: :global
end
Or configure your application to use the :global registry in config:
config/config.exs
config :my_app, MyApp.Application, registry: :global
Note that when clusters are formed dynamically (e.g. using libcluster]), the typical sequence of events is that first all nodes will start all processes, then the cluster is formed and :global will kill off duplicate names. This is ugly in the logs but expected; it also means that if your supervisor's :max_restarts is too low - lower than the number of event handlers/projectors you start - it will immediately exit and if that was your
application supervisor, your app gets shutdown. The solution is simple: keep :max_restarts above the number of event handlers you start under your supervisor and the transition from no cluster to cluster will be clean.

 Commanded Swarm registry

Add commanded_swarm_registry to your list of dependencies in mix.exs:
def deps do
 [{:commanded_swarm_registry, "~> 1.0"}]
end
Fetch mix dependencies:
$ mix deps.get

Configure your application to use the Swarm registry:
config/config.exs
config :my_app, MyApp.Application, registry: Commanded.Registration.SwarmRegistry
This uses the Swarm to distribute processes amongst the available nodes in the cluster.

 Phoenix pub/sub

First, add it as a dependency to your project's mix.exs file:
defp deps do
 [{:phoenix_pubsub, "~> 2.0"}]
end
Fetch mix dependencies and configure the pubsub settings for your application in the environment config file:
config/config.exs
config :my_app, MyApp.Application,
 pubsub: [
 phoenix_pubsub: [
 adapter: Phoenix.PubSub.PG2,
 pool_size: 1
]
]
The PG2 adapter is preferable for cluster deployment since it is provided by Erlang and requires no further dependencies.

 EventStore

If using PostgreSQL-based Elixir EventStore please also refer to its documentation about running on a clustering of nodes.

 Multi-node, but not distributed Erlang deployment

Running multiple nodes, but choosing not to connect the nodes together to form a distributed Erlang cluster, requires that you use the local registry and Phoenix's pub/sub library with its Redis adapter.
You must install and use Phoenix's pub/sub library, as described above.
Since the nodes aren't connected, you are required to use the Redis adapter as a way of communicating between the nodes. Therefore you will need to host a Redis instance for use by your app.
config/config.exs
config :my_app, MyApp.Application,
 registry: :local,
 pubsub: [
 phoenix_pubsub: [
 adapter: Phoenix.PubSub.Redis,
 host: "localhost",
 port: 6379,
 node_name: "localhost"
]
]

Upgrade guide v0.19.x to v1.0

In v0.19.x and earlier a singleton Commanded application was used to host aggregates and support event handlers, process managers, and other infrastructure processes. For v1.0, support for multiple Commanded apps was added allowing you to define and use more than one Commanded app and to control its lifecycle. Follow the following upgrade advice to migrate your application to Commanded v1.0.

 Commanded application

First you must define a Commanded application:
defmodule MyApp.Application do
 use Commanded.Application, otp_app: :my_app

 router(MyApp.Router)
end
The application needs to be configured. You can do so in application config:
config/config.exs
config :my_app, MyApp.Application,
 event_store: [
 adapter: Commanded.EventStore.Adapters.EventStore,
 event_store: MyApp.EventStore
],
 pubsub: :local,
 registry: :local
Alternatively, you can include the event store, pubsub, and registry config when defining the application:
defmodule MyApp.Application do
 use Commanded.Application,
 otp_app: :my_app,
 event_store: [
 adapter: Commanded.EventStore.Adapters.EventStore,
 event_store: MyApp.EventStore
],
 pubsub: :local,
 registry: :local

 router(MyApp.Router)
end

 Event store configuration

To use Commanded v1.0 you must also upgrade the adapter for the event store you are using.
Postgres EventStore
Use the commanded_eventstore_adapter and follow the Getting started guide.
In brief, the upgrade requires you to:
	Define an event store module for your Commanded application:
 defmodule MyApp.EventStore do
 use EventStore, otp_app: :my_app
 end

	Add a config entry containing the PostgreSQL database connection details for your event store module to each environment's mix config file (e.g. config/dev.exs):
 config :my_app, MyApp.EventStore,
 serializer: Commanded.Serialization.JsonSerializer,
 username: "postgres",
 password: "postgres",
 database: "eventstore",
 hostname: "localhost"

	Configure the Commanded application to use the event store:
 defmodule MyApp.Application do
 use Commanded.Application,
 otp_app: :my_app,
 event_store: [
 adapter: Commanded.EventStore.Adapters.EventStore,
 event_store: MyApp.EventStore
]
 end

Event Store
Use the commanded_extreme_adapter and follow the Getting started guide.

 Supervision

The Commanded application must be included and started somewhere in your app's supervision tree. You can include it within the top level application supervisor:
defmodule MyApp do
 use Application

 def start(_type, _args) do
 children = [
 MyApp.Application
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end

 Command dispatch

Previously commands were always dispatched via a router module. Now, you dispatch commands using your Commanded application:
:ok = MyApp.Application.dispatch(%DoSomething{..})
The above should be a straightforward find within your source code to replace the router module (e.g. MyApp.Router) with the new application module (e.g. MyApp.Application).
Optionally, you can dispatch a command using an existing router by configuring the router with the Commanded application:
defmodule MyApp.Router do
 use Commanded.Commands.Router, application: MyApp.Application
end

:ok = MyApp.Router.dispatch(%DoSomething{..})
It is also possible to specify the application during command dispatch:
:ok = MyApp.Router.dispatch(%DoSomething{..}, application: MyApp.Application)

 Event handlers and process managers

Each handler, read model projections, and process manager needs to be provided with the additional application option:
defmodule MyApp.ExampleHandler do
 use Commanded.Event.Handler,
 application: MyApp.Application,
 name: "MyApp.ExampleHandler"
end

 Upgrade Commanded supporting libraries

You will need to upgrade to the v1.0 versions of any Commanded related library used by your application, such as the event store adapter and Ecto read model projections.

Commanded

Use Commanded to build your own Elixir applications following the CQRS/ES pattern.
Provides support for:
	Defining applications.
	Command registration and dispatch.
	Hosting and delegation to aggregates.
	Event handling.
	Long running process managers.

Use Commanded with one of the following event stores for persistence:
	Elixir EventStore using Postgres for persistence
	EventStoreDB

Please check the Getting Started and Usage guides to learn more.

 Summary

 Functions

 aggregate_state(application, aggregate_module, aggregate_uuid, timeout \\ 5000)

 Retrieve aggregate state of an aggregate.

 Functions

 Link to this function

 aggregate_state(application, aggregate_module, aggregate_uuid, timeout \\ 5000)

 View Source

 @spec aggregate_state(
 application :: Commanded.Application.t(),
 aggregate_module :: module(),
 aggregate_uuid :: Commanded.Aggregates.Aggregate.uuid(),
 timeout :: integer()
) :: Commanded.Aggregates.Aggregate.state()

Retrieve aggregate state of an aggregate.
Retrieving aggregate state is done by calling to the opened aggregate,
or querying the event store for an optional state snapshot
and then replaying the aggregate's event stream.

Commanded.Application behaviour

Defines a Commanded application.
The application expects at least an :otp_app option to be specified. It
should point to an OTP application that has the application configuration.
For example, the application:
defmodule MyApp.Application do
 use Commanded.Application, otp_app: :my_app

 router(MyApp.Router)
end
Could be configured with:
config/config.exs
config :my_app, MyApp.Application
 event_store: [
 adapter: Commanded.EventStore.Adapters.EventStore,
 event_store: MyApp.EventStore
],
 pubsub: :local,
 registry: :local
Alternatively, you can include the configuration when defining the
application:
defmodule MyApp.Application do
 use Commanded.Application,
 otp_app: :my_app,
 event_store: [
 adapter: Commanded.EventStore.Adapters.EventStore,
 event_store: MyApp.EventStore
],
 pubsub: :local,
 registry: :local

 router(MyApp.Router)
end
A Commanded application must be started before it can be used:
{:ok, _pid} = MyApp.Application.start_link()
Instead of starting the application manually, you should use a
Supervisor.

 Supervision

Use a supervisor to start your Commanded application:
Supervisor.start_link([
 MyApp.Application
], strategy: :one_for_one)

 Command routing

Commanded applications are also composite routers allowing you to include
one or more routers within an application.

 Example

defmodule MyApp.Application do
 use Commanded.Application, otp_app: :my_app

 router(MyApp.Accounts.Router)
 router(MyApp.Billing.Router)
 router(MyApp.Notifications.Router)
end
See Commanded.Commands.CompositeRouter for details.

 Command dispatch

Once a router has been configured you can dispatch a command via the
application:
:ok = MyApp.dispatch(command, opts)
See dispatch/1 and dispatch/2 for details.

 Dynamic named applications

An application can be provided with a name as an option to start_link/1.
This can be used to start the same application multiple times, each using its
own separately configured and isolated event store. Each application must be
started with a unique name.
Multiple instances of the same event handler or process manager can be
started by referring to a started application by its name. The event store
operations can also be scoped to an application by referring to its name.

 Example

Start an application process for each tenant in a multi-tenanted app,
guaranteeing that the data and processing remains isolated between tenants.
for tenant <- [:tenant1, :tenant2, :tenant3] do
 {:ok, _app} = MyApp.Application.start_link(name: tenant)
end
Typically you would start the applications using a supervisor:
children =
 for tenant <- [:tenant1, :tenant2, :tenant3] do
 {MyApp.Application, name: tenant}
 end

Supervisor.start_link(children, strategy: :one_for_one)
To dispatch a command you must provide the application name:
:ok = MyApp.Application.dispatch(command, application: :tenant1)

 Default dispatch options

An application can be configured with default command dispatch options such as
:consistency, :timeout, and :returning. Any defaults will be used
unless overridden by options provided to the dispatch function.
defmodule MyApp.Application do
 use Commanded.Application,
 otp_app: :my_app,
 default_dispatch_opts: [
 consistency: :eventual,
 returning: :aggregate_version
]
end
See the Commanded.Commands.Router module for more details about the
supported options.

 Telemetry

	[:commanded, :application, :dispatch, :start]
	Description: Emitted when an application starts dispatching a command
	Measurements: %{system_time: integer()}
	Metadata: %{application: Commanded.Application.t(), execution_context: Commanded.Aggregates.ExecutionContext.t()}

	[:commanded, :application, :dispatch, :stop]
	Description: Emitted when an application stops dispatching a command
	Measurements: %{duration: non_neg_integer()}
	Metadata: %{application: Commanded.Application.t(), execution_context: Commanded.Aggregates.ExecutionContext.t(), error: nil | any()}

 Summary

 Types

 options()

 t()

 Callbacks

 config()

 Returns the application configuration stored in the :otp_app environment.

 dispatch(command)

 Dispatch a registered command.

 dispatch(command, timeout_or_opts)

 Dispatch a registered command.

 init(config)

 A callback executed when the application starts.

 start_link(opts)

 Starts the application supervisor.

 stop(pid, timeout)

 Shuts down the application.

 Types

 Link to this type

 options()

 View Source

 @type options() :: [{:name, nil | atom()}]

 Link to this type

 t()

 View Source

 @type t() :: module()

 Callbacks

 Link to this callback

 config()

 View Source

 @callback config() :: Keyword.t()

Returns the application configuration stored in the :otp_app environment.

 Link to this callback

 dispatch(command)

 View Source

 @callback dispatch(command :: struct()) :: Commanded.Commands.Router.dispatch_resp()

Dispatch a registered command.
	command is a command struct which must be registered with a
Commanded.Commands.Router and included in the application.

 Link to this callback

 dispatch(command, timeout_or_opts)

 View Source

 @callback dispatch(
 command :: struct(),
 timeout_or_opts :: non_neg_integer() | :infinity | Keyword.t()
) :: Commanded.Commands.Router.dispatch_resp()

Dispatch a registered command.
	command is a command struct which must be registered with a
Commanded.Commands.Router and included in the application.

	timeout_or_opts is either an integer timeout or a keyword list of
options.
The timeout must be an integer greater than zero which specifies how many
milliseconds to allow the command to be handled, or the atom :infinity
to wait indefinitely. The default timeout value is five seconds.
Alternatively, an options keyword list can be provided, it supports the
following options.
Options:
	causation_id - an optional UUID used to identify the cause of the
command being dispatched.

	correlation_id - an optional UUID used to correlate related
commands/events together.

	consistency - to choose the consistency guarantee of the command dispatch.
The available options are:
	:eventual (default) - a successful command dispatch will return immediately.

	:strong - a successful command dispatch will block until all strongly
consistent event handlers and process managers have handled all events created by the command.

	An explicit list of event handler and process manager modules (or their configured names),
containing only those handlers you'd like to wait for. No other handlers will be awaited on,
regardless of their own configured consistency setting.
e.g. [ExampleHandler, AnotherHandler] or ["ExampleHandler", "AnotherHandler"]

	metadata - an optional map containing key/value pairs comprising
the metadata to be associated with all events created by the
command.

	returning - to choose what response is returned from a successful
 command dispatch. The default is to return an :ok.
 The available options are:
	:aggregate_state - to return the update aggregate state in the
successful response: {:ok, aggregate_state}.

	:aggregate_version - to include the aggregate stream version
in the successful response: {:ok, aggregate_version}.

	:execution_result - to return a Commanded.Commands.ExecutionResult
struct containing the aggregate's identity, version, and any
events produced from the command along with their associated
metadata.

	false - don't return anything except an :ok.

	timeout - as described above.

Returns :ok on success unless the :returning option is specified where
it returns one of {:ok, aggregate_state}, {:ok, aggregate_version}, or
{:ok, %Commanded.Commands.ExecutionResult{}}.
Returns {:error, reason} on failure.

 Example

command = %OpenAccount{account_number: "ACC123", initial_balance: 1_000}

:ok = BankApp.dispatch(command, timeout: 30_000)

 Link to this callback

 init(config)

 View Source

 (optional)

 @callback init(config :: Keyword.t()) :: {:ok, Keyword.t()}

A callback executed when the application starts.
It must return {:ok, keyword} with the updated list of configuration.

 Link to this callback

 start_link(opts)

 View Source

 @callback start_link(opts :: options()) ::
 {:ok, pid()} | {:error, {:already_started, pid()}} | {:error, term()}

Starts the application supervisor.
Returns {:ok, pid} on success, {:error, {:already_started, pid}} if the
application is already started, or {:error, term} in case anything else goes
wrong.

 Link to this callback

 stop(pid, timeout)

 View Source

 @callback stop(pid(), timeout()) :: :ok

Shuts down the application.

Commanded.UUID

Generate and format random, version 4 UUIDs.

 Summary

 Types

 hex()

 A hex-encoded UUID string.

 raw()

 A raw binary representation of a UUID.

 Functions

 binary_to_string!(raw_uuid)

 string_to_binary!(arg)

 Converts a string representing a UUID into a raw binary.

 uuid4()

 Generates a random, version 4 UUID.

 Types

 Link to this type

 hex()

 View Source

 @type hex() :: <<_::288>>

A hex-encoded UUID string.

 Link to this type

 raw()

 View Source

 @type raw() :: <<_::128>>

A raw binary representation of a UUID.

 Functions

 Link to this function

 binary_to_string!(raw_uuid)

 View Source

 @spec binary_to_string!(raw()) :: hex()

 Link to this function

 string_to_binary!(arg)

 View Source

 @spec string_to_binary!(hex()) :: raw()

Converts a string representing a UUID into a raw binary.

 Link to this function

 uuid4()

 View Source

 @spec uuid4() :: hex()

Generates a random, version 4 UUID.

Commanded.Aggregate.Multi

Use Commanded.Aggregate.Multi to generate multiple events from a single
command.
This can be useful when you want to emit multiple events that depend upon the
aggregate state being updated.

 Example

In the example below, money is withdrawn from the bank account and the
updated balance is used to check whether the account is overdrawn.
defmodule BankAccount do
 alias Commanded.Aggregate.Multi

 defstruct [:account_number, :state, balance: 0]

 def withdraw(
 %BankAccount{state: :active} = account,
 %WithdrawMoney{amount: amount})
 when is_number(amount) and amount > 0
 do
 account
 |> Multi.new()
 |> Multi.execute(&withdraw_money(&1, amount))
 |> Multi.execute(&check_balance/1)
 end

 defp withdraw_money(%BankAccount{account_number: account_number, balance: balance}, amount) do
 %MoneyWithdrawn{
 account_number: account_number,
 amount: amount,
 balance: balance - amount
 }
 end

 defp check_balance(%BankAccount{account_number: account_number, balance: balance})
 when balance < 0
 do
 %AccountOverdrawn{account_number: account_number, balance: balance}
 end
 defp check_balance(%BankAccount{}), do: []
end

 Summary

 Types

 t()

 Functions

 execute(multi, step_name \\ false, execute_fun)

 Adds a command execute function to the multi.

 new(aggregate)

 Create a new Commanded.Aggregate.Multi struct.

 reduce(multi, step_name \\ false, enumerable, execute_fun)

 Reduce an enumerable by executing the function for each item.

 run(multi)

 Run the execute functions contained within the multi, returning the updated
aggregate state, the aggregate state for each named step and all created events.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Commanded.Aggregate.Multi{
 aggregate: struct(),
 executions: [{step_name :: atom(), function()}]
}

 Functions

 Link to this function

 execute(multi, step_name \\ false, execute_fun)

 View Source

 @spec execute(t(), atom(), function()) :: t()

Adds a command execute function to the multi.
If step_name is provided, the aggregate state after that step is
stored under that name. That can be useful in a long multi step multi
in which one needs to know what was the agg state while procesisng
the multi. It's possible, then, to pattern match the step name in the
second parameter of the anonymous function to be executed.

 Example

alias Commanded.Aggregate.Multi

aggregate
|> Multi.new()
|> Multi.execute(:interesting_event, fn aggregate ->
 %Event{data: 1}
end)
|> Multi.execute(fn aggregate, %{interesting_event: aggregate_state_after_interesting_event} ->
 %Event{data: 2}
end)

 Link to this function

 new(aggregate)

 View Source

 @spec new(aggregate :: struct()) :: t()

Create a new Commanded.Aggregate.Multi struct.

 Link to this function

 reduce(multi, step_name \\ false, enumerable, execute_fun)

 View Source

 @spec reduce(t(), atom(), Enum.t(), function()) :: t()

Reduce an enumerable by executing the function for each item.
The aggregate apply/2 function will be called after each event returned by
the execute function. This allows you to calculate values from the aggregate
state based upon events produced by previous items in the enumerable, such as
running totals.
If step_name is provided, the aggregate state after that step will be
stored under that name. That can be useful in a long multi step multi
in which one needs to know what was the agg state while procesisng
the multi. It's possible, then, to pattern match the step name in the
third parameter of the anonymous function to be executed.

 Examples

alias Commanded.Aggregate.Multi

aggregate
|> Multi.new()
|> Multi.reduce([1, 2, 3], fn aggregate, item ->
 %AnEvent{item: item, total: aggregate.total + item}
end)

 Example with named steps

alias Commanded.Aggregate.Multi

aggregate
|> Multi.new()
|> Multi.execute(:first, fn aggregate ->
 %AnEvent{item: nil, total: 0}
end)
|> Multi.reduce(:second, [1, 2, 3], fn aggregate, item ->
 %AnEvent{item: item, total: aggregate.total + item}
end)
|> Multi.reduce([4, 5, 6], fn aggregate, item, steps ->
 %{
 first: aggregate_state_after_first_event,
 second: aggregate_state_after_second_event
 } = steps

 %AnEvent{item: item, total: aggregate.total + item}
end)

 Link to this function

 run(multi)

 View Source

 @spec run(t()) ::
 {aggregate :: struct(), [event :: struct()]} | {:error, reason :: any()}

Run the execute functions contained within the multi, returning the updated
aggregate state, the aggregate state for each named step and all created events.

Commanded.Aggregates.Aggregate

Aggregate is a GenServer process used to provide access to an
instance of an event sourced aggregate.
It allows execution of commands against an aggregate instance, and handles
persistence of created events to the configured event store. Concurrent
commands sent to an aggregate instance are serialized and executed in the
order received.
The Commanded.Commands.Router module will locate, or start, an aggregate
instance when a command is dispatched. By default, an aggregate process will
run indefinitely once started. Its lifespan may be controlled by using the
Commanded.Aggregates.AggregateLifespan behaviour.

 Snapshotting

You can configure state snapshots for an aggregate in config. By default
snapshots are not taken for an aggregate. The following options are
available to enable snapshots:
	snapshot_every - snapshot aggregate state every so many events. Use
nil to disable snapshotting, or exclude the configuration entirely.

	snapshot_version - a non-negative integer indicating the version of
the aggregate state snapshot. Incrementing this version forces any
earlier recorded snapshots to be ignored when rebuilding aggregate
state.

 Example

In config/config.exs enable snapshots for MyApp.ExampleAggregate after
every ten events:
config :my_app, MyApp.Application,
 snapshotting: %{
 MyApp.ExampleAggregate => [
 snapshot_every: 10,
 snapshot_version: 1
]
 }

 Telemetry

	[:commanded, :aggregate, :execute, :start]
	Description: Emitted when an aggregate starts executing a command
	Measurements: %{system_time: integer()}
	Metadata: %{application: Commanded.Application.t(), aggregate_uuid: String.t(), aggregate_state: struct(), aggregate_version: non_neg_integer(), caller: pid(), execution_context: Commanded.Aggregates.ExecutionContext.t()}

	[:commanded, :aggregate, :execute, :stop]
	Description: Emitted when an aggregate stops executing a command
	Measurements: %{duration: non_neg_integer()}
	Metadata: %{application: Commanded.Application.t(), aggregate_uuid: String.t(), aggregate_state: struct(), aggregate_version: non_neg_integer(), caller: pid(), execution_context: Commanded.Aggregates.ExecutionContext.t(), events: [map()], error: nil | any()}

	[:commanded, :aggregate, :execute, :exception]
	Description: Emitted when an aggregate raises an exception
	Measurements: %{duration: non_neg_integer()}
	Metadata: %{application: Commanded.Application.t(), aggregate_uuid: String.t(), aggregate_state: struct(), aggregate_version: non_neg_integer(), caller: pid(), execution_context: Commanded.Aggregates.ExecutionContext.t(), kind: :throw | :error | :exit, reason: any(), stacktrace: list()}

 Summary

 Types

 state()

 uuid()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 execute(application, aggregate_module, aggregate_uuid, context, timeout \\ 5000)

 Execute the given command against the aggregate.

 start_link(config, opts)

 Types

 Link to this type

 state()

 View Source

 @type state() :: struct()

 Link to this type

 uuid()

 View Source

 @type uuid() :: String.t()

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 execute(application, aggregate_module, aggregate_uuid, context, timeout \\ 5000)

 View Source

Execute the given command against the aggregate.
	aggregate_module - the aggregate's module (e.g. BankAccount).
	aggregate_uuid - uniquely identifies an instance of the aggregate.
	context - includes command execution arguments
(see Commanded.Aggregates.ExecutionContext for details).
	timeout - an non-negative integer which specifies how many milliseconds
to wait for a reply, or the atom :infinity to wait indefinitely.
The default value is five seconds (5,000ms).

 Return values

Returns {:ok, aggregate_version, events} on success, or {:error, error}
on failure.
	aggregate_version - the updated version of the aggregate after executing
 the command.
	events - events produced by the command, can be an empty list.

 Link to this function

 start_link(config, opts)

 View Source

Commanded.Aggregates.AggregateLifespan behaviour

The Commanded.Aggregates.AggregateLifespan behaviour is used to control the
aggregate GenServer process lifespan.
By default an aggregate instance process will run indefinitely once started.
You can change this default by implementing the
Commanded.Aggregates.AggregateLifespan behaviour in a module and configuring
it in your router.
After a command successfully executes, and creates at least one domain event,
the after_event/1 function is called passing the last created event.
When a command is successfully handled but results in no domain events (by
returning nil or an empty list []), the command struct is passed to the
after_command/1 function.
Finally, if there is an error executing the command, the error reason is
passed to the after_error/1 function.
For all the above, the returned inactivity timeout value is used to shutdown
the aggregate process if no other messages are received.

 Supported return values

	Non-negative integer - specify an inactivity timeout, in millisconds.
	:infinity - prevent the aggregate instance from shutting down.
	:hibernate - send the process into hibernation.
	:stop - immediately shutdown the aggregate process with a :normal exit
reason.
	{:stop, reason} - immediately shutdown the aggregate process with the
given reason.

 Hibernation

A hibernated process will continue its loop once a message is in its message
queue. Hibernating an aggregate causes garbage collection and minimises the
memory used by the process. Hibernating should not be used aggressively as too
much time could be spent garbage collecting.

 Example

Define a module that implements the Commanded.Aggregates.AggregateLifespan
behaviour:
defmodule BankAccountLifespan do
 @behaviour Commanded.Aggregates.AggregateLifespan

 def after_event(%MoneyDeposited{}), do: :timer.hours(1)
 def after_event(%BankAccountClosed{}), do: :stop
 def after_event(_event), do: :infinity

 def after_command(%CloseAccount{}), do: :stop
 def after_command(_command), do: :infinity

 def after_error(:invalid_initial_balance), do: :timer.minutes(5)
 def after_error(_error), do: :stop
end
Then specify the module as the lifespan option when registering the
applicable commands in your router:
defmodule BankRouter do
 use Commanded.Commands.Router

 dispatch [OpenAccount, CloseAccount],
 to: BankAccount,
 lifespan: BankAccountLifespan,
 identity: :account_number
end

 Summary

 Types

 lifespan()

 Callbacks

 after_command(command)

 Aggregate process will be stopped after specified inactivity timeout unless
:infinity, :hibernate, or :stop are returned.

 after_error(any)

 Aggregate process will be stopped after specified inactivity timeout unless
:infinity, :hibernate, or :stop are returned.

 after_event(event)

 Aggregate process will be stopped after specified inactivity timeout unless
:infinity, :hibernate, or :stop are returned.

 Types

 Link to this type

 lifespan()

 View Source

 @type lifespan() :: timeout() | :hibernate | :stop | {:stop, reason :: term()}

 Callbacks

 Link to this callback

 after_command(command)

 View Source

 @callback after_command(command :: struct()) :: lifespan()

Aggregate process will be stopped after specified inactivity timeout unless
:infinity, :hibernate, or :stop are returned.

 Link to this callback

 after_error(any)

 View Source

 @callback after_error(any()) :: lifespan()

Aggregate process will be stopped after specified inactivity timeout unless
:infinity, :hibernate, or :stop are returned.

 Link to this callback

 after_event(event)

 View Source

 @callback after_event(event :: struct()) :: lifespan()

Aggregate process will be stopped after specified inactivity timeout unless
:infinity, :hibernate, or :stop are returned.

Commanded.Aggregates.AggregateStateBuilder

 Summary

 Functions

 populate(state)

 Populate the aggregate's state from a snapshot, if present, and it's events.

 rebuild_from_events(state)

 Load events from the event store, in batches, to rebuild the aggregate state

 Functions

 Link to this function

 populate(state)

 View Source

Populate the aggregate's state from a snapshot, if present, and it's events.
Attempt to fetch a snapshot for the aggregate to use as its initial state.
If the snapshot exists, fetch any subsequent events to rebuild its state.
Otherwise start with the aggregate struct and stream all existing events for
the aggregate from the event store to rebuild its state from those events.

 Link to this function

 rebuild_from_events(state)

 View Source

Load events from the event store, in batches, to rebuild the aggregate state

Commanded.Aggregates.DefaultLifespan

The default implementation of the Commanded.Aggregates.AggregateLifespan
behaviour.
It will ensure that an aggregate instance process runs indefinitely once
started, unless an exception is encountered.

 Summary

 Functions

 after_command(command)

 Aggregate will run indefinitely once started.

 after_error(error)

 Aggregate is stopped on exception, but will run indefinitely for any non-
exception error.

 after_event(event)

 Aggregate will run indefinitely once started.

 Functions

 Link to this function

 after_command(command)

 View Source

Aggregate will run indefinitely once started.

 Link to this function

 after_error(error)

 View Source

Aggregate is stopped on exception, but will run indefinitely for any non-
exception error.

 Link to this function

 after_event(event)

 View Source

Aggregate will run indefinitely once started.

Commanded.Aggregates.ExecutionContext

Defines the arguments used to execute a command for an aggregate.
The available options are:
	command - the command to execute, typically a struct
(e.g. %OpenBankAccount{...}).

	retry_attempts - the number of retries permitted if an
{:error, :wrong_expected_version} is encountered when appending events.

	causation_id - the UUID assigned to the dispatched command.

	correlation_id - a UUID used to correlate related commands/events.

	metadata - a map of key/value pairs containing the metadata to be
associated with all events created by the command.

	handler - the module that handles the command. It may be either the
aggregate module itself or a separate command handler module.

	function - the name of the function, as an atom, that handles the command.
The default value is :execute, used to support command dispatch directly
to the aggregate module. For command handlers the :handle function is
used.

	before_execute - the name of the function, as an atom, that prepares the
command before execution, called just before function. The default value
is nil, disabling it. It should return :ok on success or {:error, any()}
to cancel the dispatch.

	lifespan - a module implementing the Commanded.Aggregates.AggregateLifespan
behaviour to control the aggregate instance process lifespan. The default
value, Commanded.Aggregates.DefaultLifespan, keeps the process running
indefinitely.

 Summary

 Functions

 format_reply(reply, context, aggregate)

 retry(context)

 Functions

 Link to this function

 format_reply(reply, context, aggregate)

 View Source

 Link to this function

 retry(context)

 View Source

Commanded.Aggregates.Supervisor

Supervises Commanded.Aggregates.Aggregate instance processes.

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 init(args)

 Callback implementation for DynamicSupervisor.init/1.

 open_aggregate(application, aggregate_module, aggregate_uuid)

 Open an aggregate instance process for the given aggregate module and unique
identity.

 start_link(opts)

 Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 init(args)

 View Source

Callback implementation for DynamicSupervisor.init/1.

 Link to this function

 open_aggregate(application, aggregate_module, aggregate_uuid)

 View Source

Open an aggregate instance process for the given aggregate module and unique
identity.
Returns {:ok, aggregate_uuid} when a process is successfully started, or is
already running.

 Link to this function

 start_link(opts)

 View Source

Commanded.Commands.CompositeRouter

Composite router allows you to combine multiple router modules into a single
router able to dispatch any registered command from an included child router.
One example usage is to define a router per context and then combine each
context's router into a single top-level composite app router used for all
command dispatching.

 Example

Define a composite router module which imports the commands from each included
router:
defmodule Bank.AppRouter do
 use Commanded.Commands.CompositeRouter

 router(Bank.Accounts.Router)
 router(Bank.MoneyTransfer.Router)
end
 One or more routers or composite routers can be included in a
 Commanded.Application since it is also a composite router:
defmodule BankApp do
 use Commanded.Application

 router(Bank.AppRouter)
end
You can dispatch a command via the application which will then be routed to
the associated child router:
command = %OpenAccount{account_number: "ACC123", initial_balance: 1_000}

:ok = BankApp.dispatch(command)
Or via the composite router itself, specifying the application:
:ok = Bank.AppRouter.dispatch(command, application: BankApp)
A composite router can include composite routers.

 Summary

 Functions

 router(router_module)

 Register a Commanded.Commands.Router module within this composite router.

 Functions

 Link to this macro

 router(router_module)

 View Source

 (macro)

Register a Commanded.Commands.Router module within this composite router.
Will allow the composite router to dispatch any commands registered by the
included router module. Multiple routers can be registered.

Commanded.Commands.ExecutionResult

Contains the aggregate, events, and metadata created by a successfully
executed command.
The available fields are:
	aggregate_uuid - identity of the aggregate instance.

	aggregate_state - resultant state of the aggregate after executing
the command.

	aggregate_version - resultant version of the aggregate after executing
the command.

	events - a list of the created events, it may be an empty list.

	metadata - an map containing the metadata associated with the command
dispatch.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Commanded.Commands.ExecutionResult{
 aggregate_state: struct(),
 aggregate_uuid: String.t(),
 aggregate_version: non_neg_integer(),
 events: [struct()],
 metadata: struct()
}

Commanded.Commands.Handler behaviour

Defines the behaviour a command handler module must implement to support command dispatch.

 Example

An open account handler that delegates to a bank account aggregate:
defmodule OpenAccountHandler do
 @behaviour Commanded.Commands.Handler

 def handle(%BankAccount{} = aggregate, %OpenAccount{} = command) do
 %OpenAccount{account_number: account_number, initial_balance: initial_balance} = command

 BankAccount.open_account(aggregate, account_number, initial_balance)
 end
end

 Summary

 Types

 aggregate()

 command()

 domain_event()

 reason()

 Callbacks

 handle(aggregate, command)

 Apply the given command to the event sourced aggregate.

 Types

 Link to this type

 aggregate()

 View Source

 @type aggregate() :: struct()

 Link to this type

 command()

 View Source

 @type command() :: struct()

 Link to this type

 domain_event()

 View Source

 @type domain_event() :: struct()

 Link to this type

 reason()

 View Source

 @type reason() :: any()

 Callbacks

 Link to this callback

 handle(aggregate, command)

 View Source

 @callback handle(aggregate(), command()) ::
 domain_event()
 | [domain_event()]
 | {:ok, domain_event()}
 | {:ok, [domain_event()]}
 | :ok
 | nil
 | {:error, reason()}

Apply the given command to the event sourced aggregate.
You must return a single domain event, a list containing the pending events,
or nil, [], or :ok when no events are produced.
You should return {:error, reason} on failure.

Commanded.Commands.Router behaviour

Command routing macro to allow configuration of each command to its command handler.

 Example

Define a router module which uses Commanded.Commands.Router and configures
available commands to dispatch:
defmodule BankRouter do
 use Commanded.Commands.Router

 dispatch OpenAccount,
 to: OpenAccountHandler,
 aggregate: BankAccount,
 identity: :account_number
end
The to option determines which module receives the command being dispatched.
This command handler module must implement a handle/2 function. It receives
the aggregate's state and the command to execute. Usually the command handler
module will forward the command to the aggregate.
Once configured, you can either dispatch a command by using the module and
specifying the application:
command = %OpenAccount{account_number: "ACC123", initial_balance: 1_000}

:ok = BankRouter.dispatch(command, application: BankApp)
Or, more simply, you should include the router module in your application:
defmodule BankApp do
 use Commanded.Application, otp_app: :my_app

 router MyApp.Router
end
Then dispatch commands using the app:
command = %OpenAccount{account_number: "ACC123", initial_balance: 1_000}

:ok = BankApp.dispatch(command)

 Dispatch command directly to an aggregate

You can route a command directly to an aggregate, without requiring an
intermediate command handler.

 Example

defmodule BankRouter do
 use Commanded.Commands.Router

 # Will route to `BankAccount.open_account/2`
 dispatch OpenAccount, to: BankAccount, identity: :account_number
end
By default, you must define an execute/2 function on the aggregate module, which will be
called with the aggregate's state and the command to execute. Using this approach, you must
create an execute/2 clause that pattern-matches on each command that the aggregate should
handle.
Alternatively, you may specify the name of a function (also receiving both the aggregate state
and the command) on your aggregate module to which the command will be dispatched:

 Example

defmodule BankRouter do
 use Commanded.Commands.Router

 # Will route to `BankAccount.open_account/2`
 dispatch OpenAccount, to: BankAccount, function: :open_account, identity: :account_number
end

 Define aggregate identity

You can define the identity field for an aggregate once using the identify macro.
The configured identity will be used for all commands registered to the aggregate,
unless overridden by a command registration.

 Example

defmodule BankRouter do
 use Commanded.Commands.Router

 identify BankAccount,
 by: :account_number,
 prefix: "bank-account-"

 dispatch OpenAccount, to: BankAccount
end
An optional identity prefix can be used to distinguish between different
aggregates that would otherwise share the same identity. As an example you
might have a User and a UserPreferences aggregate that you wish
to share the same identity. In this scenario you should specify a prefix
for each aggregate (e.g. "user-" and "user-preference-").
The prefix is used as the stream identity when appending and reading the
aggregate's events: "<identity_prefix><aggregate_uuid>". It can be a string or
a zero arity function returning a string.

 Consistency

You can choose the consistency guarantee when dispatching a command. The
available options are:
	:eventual (default) - don't block command dispatch while waiting for
event handlers
:ok = BankApp.dispatch(command)
:ok = BankApp.dispatch(command, consistency: :eventual)

	:strong - block command dispatch until all strongly
consistent event handlers and process managers have successfully processed
all events created by the command.
Use this when you have event handlers that update read models you need to
query immediately after dispatching the command.
:ok = BankApp.dispatch(command, consistency: :strong)

	Provide an explicit list of event handler and process manager modules (or
their configured names), containing only those handlers you'd like to wait
for. No other handlers will be awaited on, regardless of their own
configured consistency setting.
:ok = BankApp.dispatch(command, consistency: [ExampleHandler, AnotherHandler])
:ok = BankApp.dispatch(command, consistency: ["ExampleHandler", "AnotherHandler"])
Note you cannot opt-in to strong consistency for a handler that has been
configured as eventually consistent.

 Dispatch return

By default a successful command dispatch will return :ok. You can change
this behaviour by specifying a returning option.
The supported options are:
	:aggregate_state - to return the update aggregate state.

	:aggregate_version - to return only the aggregate version.

	:events - to return the resultant domain events. An empty list will be
returned if no events were produced.

	:execution_result - to return a Commanded.Commands.ExecutionResult
struct containing the aggregate's identity, state, version, and any events
produced from the command along with their associated metadata.

	false - don't return anything except an :ok.

 Aggregate state

Return the updated aggregate state as part of the dispatch result:
{:ok, %BankAccount{}} = BankApp.dispatch(command, returning: :aggregate_state)
This is useful when you want to immediately return fields from the aggregate's
state without requiring an read model projection and waiting for the event(s)
to be projected. It may also be appropriate to use this feature for unit
tests.
However, be warned that tightly coupling an aggregate's state with read
requests may be harmful. It's why CQRS enforces the separation of reads from
writes by defining two separate and specialised models.

 Aggregate version

You can optionally choose to return the aggregate's version as part of the
dispatch result:
{:ok, aggregate_version} = BankApp.dispatch(command, returning: :aggregate_version)
This is useful when you need to wait for an event handler, such as a read model
projection, to be up-to-date before querying its data.

 Execution results

You can also choose to return the execution result as part of the dispatch
result:
alias Commanded.Commands.ExecutionResult

{:ok, %ExecutionResult{} = result} = BankApp.dispatch(command, returning: :execution_result)
Or by setting the default_dispatch_return in your application config file:
config/config.exs
config :commanded, default_dispatch_return: :execution_result
Use the execution result struct to get information from the events produced
from the command.

 Metadata

You can associate metadata with all events created by the command.
Supply a map containing key/value pairs comprising the metadata:
:ok = BankApp.dispatch(command, metadata: %{"ip_address" => "127.0.0.1"})

 Summary

 Types

 dispatch_resp()

 Callbacks

 dispatch(command)

 Dispatch the given command to the registered handler.

 dispatch(command, timeout_or_opts)

 Dispatch the given command to the registered handler providing a timeout.

 Functions

 dispatch(command_module_or_modules, opts)

 Configure the command, or list of commands, to be dispatched to the
corresponding handler and aggregate.

 identify(aggregate_module, opts)

 Define an aggregate's identity

 middleware(middleware_module)

 Include the given middleware module to be called before and after
success or failure of each command dispatch

 Types

 Link to this type

 dispatch_resp()

 View Source

 @type dispatch_resp() ::
 :ok
 | {:ok, aggregate_state :: struct()}
 | {:ok, aggregate_version :: non_neg_integer()}
 | {:ok, execution_result :: Commanded.Commands.ExecutionResult.t()}
 | {:error, :unregistered_command}
 | {:error, :consistency_timeout}
 | {:error, reason :: term()}

 Callbacks

 Link to this callback

 dispatch(command)

 View Source

 @callback dispatch(command :: struct()) :: dispatch_resp()

Dispatch the given command to the registered handler.
Returns :ok on success, or {:error, reason} on failure.

 Example

command = %OpenAccount{account_number: "ACC123", initial_balance: 1_000}

:ok = BankRouter.dispatch(command)

 Link to this callback

 dispatch(command, timeout_or_opts)

 View Source

 @callback dispatch(
 command :: struct(),
 timeout_or_opts :: non_neg_integer() | :infinity | Keyword.t()
) :: dispatch_resp()

Dispatch the given command to the registered handler providing a timeout.
	command is a command struct which must be registered with the router.

	timeout_or_opts is either an integer timeout, :infinity, or a keyword
list of options.
The timeout must be an integer greater than zero which specifies how many
milliseconds to allow the command to be handled, or the atom :infinity
to wait indefinitely. The default timeout value is five seconds.
Alternatively, an options keyword list can be provided with the following
options.
Options:
	causation_id - an optional UUID used to identify the cause of the
command being dispatched.

	command_uuid - an optional UUID used to identify the command being
dispatched.

	correlation_id - an optional UUID used to correlate related
commands/events together.

	consistency - one of :eventual (default) or :strong. By
setting the consistency to :strong a successful command dispatch
will block until all strongly consistent event handlers and process
managers have handled all events created by the command.

	metadata - an optional map containing key/value pairs comprising
the metadata to be associated with all events created by the
command.

	returning - to choose what response is returned from a successful
 command dispatch. The default is to return an :ok.
 The available options are:
	:aggregate_state - to return the update aggregate state in the
successful response: {:ok, aggregate_state}.

	:aggregate_version - to include the aggregate stream version
in the successful response: {:ok, aggregate_version}.

	:events - to return the resultant domain events. An empty list
will be returned if no events were produced.

	:execution_result - to return a Commanded.Commands.ExecutionResult
struct containing the aggregate's identity, version, and any
events produced from the command along with their associated
metadata.

	false - don't return anything except an :ok.

	timeout - as described above.

Returns :ok on success unless the :returning option is specified where
it returns one of {:ok, aggregate_state}, {:ok, aggregate_version}, or
{:ok, %Commanded.Commands.ExecutionResult{}}.
Returns {:error, reason} on failure.

 Example

command = %OpenAccount{account_number: "ACC123", initial_balance: 1_000}

:ok = BankRouter.dispatch(command, consistency: :strong, timeout: 30_000)

 Functions

 Link to this macro

 dispatch(command_module_or_modules, opts)

 View Source

 (macro)

Configure the command, or list of commands, to be dispatched to the
corresponding handler and aggregate.

 Example

defmodule BankRouter do
 use Commanded.Commands.Router

 dispatch [OpenAccount, DepositMoney], to: BankAccount, identity: :account_number
end

 Link to this macro

 identify(aggregate_module, opts)

 View Source

 (macro)

Define an aggregate's identity
You can define the identity field for an aggregate using the identify macro.
The configured identity will be used for all commands registered to the
aggregate, unless overridden by a command registration.

 Example

defmodule BankRouter do
 use Commanded.Commands.Router

 identify BankAccount,
 by: :account_number,
 prefix: "bank-account-"
end

 Link to this macro

 middleware(middleware_module)

 View Source

 (macro)

Include the given middleware module to be called before and after
success or failure of each command dispatch
The middleware module must implement the Commanded.Middleware behaviour.
Middleware modules are executed in the order they are defined.

 Example

defmodule BankRouter do
 use Commanded.Commands.Router

 middleware CommandLogger
 middleware MyCommandValidator
 middleware AuthorizeCommand

 dispatch [OpenAccount, DepositMoney], to: BankAccount, identity: :account_number
end

Commanded.Event.FailureContext

Data related to an event handling failure.
The available fields are:
	:application - the associated Commanded.Application.

	:handler_name - the name of the event handler.

	:handler_state - optional event handler state.

	:context - a map that is passed between each failure. Use it to store
any transient state between failures. As an example it could be used to
count error failures and stop or skip the problematic event after too
many.

	:metadata - the metadata associated with the failed event.

	:stacktrace - the stacktrace if the error was an unhandled exception.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Commanded.Event.FailureContext{
 application: Commanded.Application.t(),
 context: map(),
 handler_name: String.t(),
 handler_state: nil | any(),
 metadata: map(),
 stacktrace: Exception.stacktrace() | nil
}

Commanded.Event.Handler behaviour

Defines the behaviour an event handler must implement and
provides a convenience macro that implements the behaviour, allowing you to
handle only the events you are interested in processing.
You should start your event handlers using a Supervisor to
ensure they are restarted on error.

 Example

defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: "ExampleHandler"

 def handle(%AnEvent{..}, _metadata) do
 # ... process the event
 :ok
 end
end
Start your event handler process (or use a Supervisor):
{:ok, _handler} = ExampleHandler.start_link()

 Event handler name

The name you specify is used when subscribing to the event store. You must use
a unique name for each event handler and process manager you start. Also, you
should not change the name once the handler has been deployed. A new
subscription will be created if you change the name and the event handler will
receive already handled events.
You can use the module name of your event handler using the __MODULE__
special form:
defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: __MODULE__
end

 Subscription options

You can choose to start the event handler's event store subscription from
:origin, :current position, or an exact event number using the
start_from option. The default is to use the origin so your handler will
receive all events.
Use the :current position when you don't want newly created event handlers
to go through all previous events. An example would be adding an event handler
to send transactional emails to an already deployed system containing many
historical events.
The start_from option only applies when the subscription is initially
created, the first time the handler starts. Whenever the handler restarts the
subscription will resume from the next event after the last successfully
processed event. Restarting an event handler does not restart its
subscription.

 Example

Set the start_from option (:origin, :current, or an explicit event
number) when using Commanded.Event.Handler:
defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: "ExampleHandler",
 start_from: :origin
end
You can optionally override :start_from by passing it as option when
starting your handler:
{:ok, _handler} = ExampleHandler.start_link(start_from: :current)

 Subscribing to an individual stream

By default event handlers will subscribe to all events appended to any stream.
Provide a subscribe_to option to subscribe to a single stream.
defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: __MODULE__,
 subscribe_to: "stream1234"
end
This will ensure the handler only receives events appended to that stream.

 Runtime event handler configuration

Runtime options can be provided to the event handler's start_link/1 function
or its child spec. The init/1 callback function can also be used to define
runtime configuration.

 Example

Provide runtime configuration to start_link/1:
{:ok, _pid} =
 ExampleHandler.start_link(
 application: ExampleApp,
 name: "ExampleHandler"
)
Or when supervised:
Supervisor.start_link([
 {ExampleHandler, application: ExampleApp, name: "ExampleHandler"}
], strategy: :one_for_one)

 Event handler state

An event handler can define and update state which is held in the GenServer
process memory. It is passed to the handle/2 function as part of the
metadata using the :state key. The state is transient and will be lost
whenever the process restarts.
Initial state can be set in the init/1 callback function by adding a
:state key to the config. It can also be provided when starting the handler
process:
ExampleHandler.start_link(state: initial_state)
Or when supervised:
Supervisor.start_link([
 {ExampleHandler, state: initial_state}
], strategy: :one_for_one)
State can be updated by returning {:ok, new_state} from any handle/2
function. Returning an :ok reply will keep the state unchanged.
Handler state is also included in the Commanded.Event.FailureContext struct
passed to the error/3 callback function.

 Example

defmodule StatefulEventHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: __MODULE__

 def init(config) do
 config = Keyword.put_new(config, :state, %{})

 {:ok, config}
 end

 def handle(event, metadata) do
 %{state: state} = metadata

 new_state = mutate_state(state)

 {:ok, new_state}
 end
end

 Concurrency

An event handler may be configured to start multiple processes to handle the
events concurrently. By default one process will be started, processing events
one at a time in order. The :concurrency option determines how many event
handler processes are started. It must be a positive integer.
Note with concurrent processing events will likely by processed out of order.
If you need to enforce an order, such as per stream or by using a field from
an event, you can define a partition_by/2 callback function in the event
handler module. The function will receive each event and its metadata and must
return a consistent term indicating the event's partition. Events which return
the same term are guaranteed to be processed in order by the same event
handler instance. While events with different partitions may be processed
concurrently by another instance. An attempt will be made to distribute
events as evenly as possible to all running event handler instances.
Only :eventual consistency is supported when multiple handler processes are
configured with a :concurrency of greater than one.

 Example

defmodule ConcurrentProcssingEventHandler do
 alias Commanded.EventStore.RecordedEvent

 use Commanded.Event.Handler,
 application: ExampleApp,
 name: __MODULE__,
 concurrency: 10

 def init(config) do
 # Fetch the index of this event handler instance (0..9 in this example)
 index = Keyword.fetch!(config, :index)

 {:ok, config}
 end

 def handle(event, metadata) do
 :ok
 end

 # Partition events by their stream
 def partition_by(event, metadata) do
 %{stream_id: stream_id} = metadata

 stream_id
 end
end

 Consistency

For each event handler you can define its consistency, as one of either
:strong or :eventual.
This setting is used when dispatching commands and specifying the
consistency option.
When you dispatch a command using :strong consistency, after successful
command dispatch the process will block until all event handlers configured to
use :strong consistency have processed the domain events created by the
command. This is useful when you have a read model updated by an event handler
that you wish to query for data affected by the command dispatch. With
:strong consistency you are guaranteed that the read model will be
up-to-date after the command has successfully dispatched. It can be safely
queried for data updated by any of the events created by the command.
The default setting is :eventual consistency. Command dispatch will return
immediately upon confirmation of event persistence, not waiting for any event
handlers.
Note strong consistency does not imply a transaction covers the command
dispatch and event handling. It only guarantees that the event handler will
have processed all events produced by the command: if event handling fails
the events will have still been persisted.

 Example

Define an event handler with :strong consistency:
defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: "ExampleHandler",
 consistency: :strong
end

 Dynamic application

An event handler's application can be provided as an option to start_link/1.
This can be used to start the same handler multiple times, each using a
separate Commanded application and event store.

 Example

Start an event handler process for each tenant in a multi-tenanted app,
guaranteeing that the data and processing remains isolated between tenants.
for tenant <- [:tenant1, :tenant2, :tenant3] do
 {:ok, _app} = MyApp.Application.start_link(name: tenant)
 {:ok, _handler} = ExampleHandler.start_link(application: tenant)
end
Typically you would start the event handlers using a supervisor:
children =
 for tenant <- [:tenant1, :tenant2, :tenant3] do
 {ExampleHandler, application: tenant}
 end

Supervisor.start_link(children, strategy: :one_for_one)
The above example requires three named Commanded applications to have already
been started.

 Telemetry

	[:commanded, :event, :handle, :start]
	Description: Emitted when an event handler starts handling an event
	Measurements: %{system_time: integer()}
	Metadata: %{application: Commanded.Application.t(), context: map(), handler_name: String.t(), handler_module: atom(), handler_state: map(), recorded_event: RecordedEvent.t()}

	[:commanded, :event, :handle, :stop]
	Description: Emitted when an event handler stops handling an event
	Measurements: %{duration: non_neg_integer()}
	Metadata: %{:application => Commanded.Application.t(), :context => map(), :handler_name => String.t(), :handler_module => atom(), :handler_state => map(), :recorded_event => RecordedEvent.t(), optional(:error) => any()}

	[:commanded, :event, :handle, :exception]
	Description: Emitted when an event handler raises an exception
	Measurements: %{duration: non_neg_integer()}
	Metadata: %{application: Commanded.Application.t(), context: map(), handler_name: String.t(), handler_module: atom(), handler_state: map(), recorded_event: RecordedEvent.t(), kind: :throw | :error | :exit, reason: any(), stacktrace: list()}

 Summary

 Types

 consistency()

 domain_event()

 metadata()

 subscribe_from()

 Callbacks

 after_start(handler_state)

 Optional initialisation callback function called when the handler starts.

 before_reset()

 Called before an event handler gets reset

 error(error, failed_event, failure_context)

 Called when an event handle/2 callback returns an error.

 handle(domain_event, metadata)

 Handle a domain event and its metadata.

 init()

 deprecated

 init(config)

 Optional callback function called to configure the handler before it starts.

 partition_by(domain_event, metadata)

 Determine which partition an event belongs to.

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Types

 Link to this type

 consistency()

 View Source

 @type consistency() :: :eventual | :strong

 Link to this type

 domain_event()

 View Source

 @type domain_event() :: struct()

 Link to this type

 metadata()

 View Source

 @type metadata() :: map()

 Link to this type

 subscribe_from()

 View Source

 @type subscribe_from() :: :origin | :current | non_neg_integer()

 Callbacks

 Link to this callback

 after_start(handler_state)

 View Source

 @callback after_start(handler_state :: term()) ::
 :ok | {:ok, state :: map()} | {:stop, reason :: any()}

Optional initialisation callback function called when the handler starts.
Can be used to start any related processes when the event handler is started.
This callback function must return :ok, {:ok, state} to return new state,
or {:stop, reason} to stop the handler process. Any other return value
will terminate the event handler with an error.

 Example

defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: "ExampleHandler"

 # Optional initialisation
 def after_start(handler_state) do
 new_handler_state = Map.put(handler_state, :foo, "bar")
 {:ok, new_handler_state}
 end

 def handle(%AnEvent{..}, _metadata) do
 # Process the event ...
 :ok
 end
end

 Link to this callback

 before_reset()

 View Source

 (optional)

 @callback before_reset() :: :ok

Called before an event handler gets reset

 Link to this callback

 error(error, failed_event, failure_context)

 View Source

 (optional)

 @callback error(
 error :: term(),
 failed_event :: domain_event(),
 failure_context :: Commanded.Event.FailureContext.t()
) ::
 {:retry, context :: map() | Commanded.Event.FailureContext.t()}
 | {:retry, delay :: non_neg_integer(),
 context :: map() | Commanded.Event.FailureContext.t()}
 | :skip
 | {:stop, reason :: term()}

Called when an event handle/2 callback returns an error.
The error/3 function allows you to control how event handling failures
are handled. The function is passed the error returned by the event handler
(e.g. {:error, :failure}), the event causing the error, and a context map
containing state passed between retries.
Use pattern matching on the error and/or failed event to explicitly handle
certain errors or events. Use the context map to track any transient state you
need to access between retried failures.
You can return one of the following responses depending upon the
error severity:
	{:retry, context} - retry the failed event, provide a context
map, or updated Commanded.Event.FailureContext struct, containing any
state to be passed to subsequent failures. This could be used to count the
number of failures, stopping after too many.

	{:retry, delay, context} - retry the failed event, after sleeping for
the requested delay (in milliseconds). Context is a map or
Commanded.Event.FailureContext struct as described in {:retry, context}
above.

	:skip - skip the failed event by acknowledging receipt.

	{:stop, reason} - stop the event handler with the given reason.

The default behaviour if you don't provide an error/3 callback is to stop
the event handler using the exact error reason returned from the handle/2
function. If the event handler is supervised using restart permanent or
transient stopping on error will cause the handler to be restarted. It will
likely crash again as it will reprocesse the problematic event. This can lead
to cascading failures going up the supervision tree.

 Example error handling

defmodule ExampleHandler do
 use Commanded.Event.Handler,
 application: ExampleApp,
 name: __MODULE__

 require Logger

 alias Commanded.Event.FailureContext

 def handle(%AnEvent{}, _metadata) do
 # simulate event handling failure
 {:error, :failed}
 end

 def error({:error, :failed}, %AnEvent{} = event, %FailureContext{context: context}) do
 context = record_failure(context)

 case Map.get(context, :failures) do
 too_many when too_many >= 3 ->
 # skip bad event after third failure
 Logger.warning("Skipping bad event, too many failures: " <> inspect(event))

 :skip

 _ ->
 # retry event, failure count is included in context map
 {:retry, context}
 end
 end

 defp record_failure(context) do
 Map.update(context, :failures, 1, fn failures -> failures + 1 end)
 end
end

 Link to this callback

 handle(domain_event, metadata)

 View Source

 @callback handle(domain_event(), metadata()) ::
 :ok
 | {:ok, new_state :: any()}
 | {:error, :already_seen_event}
 | {:error, reason :: any()}

Handle a domain event and its metadata.
Return :ok on success, {:error, :already_seen_event} to ack and skip the
event, or {:error, reason} on failure.

 Link to this callback

 init()

 View Source

 (optional)

 This callback is deprecated. Use the after_start/1 callback instead..

 @callback init() :: :ok | {:stop, reason :: any()}

 Link to this callback

 init(config)

 View Source

 (optional)

 @callback init(config :: Keyword.t()) :: {:ok, Keyword.t()}

Optional callback function called to configure the handler before it starts.
It is passed the merged compile-time and runtime config, and must return the
updated config as {:ok, config}.
Note this function is called before the event handler process is started and
is not run from the handler's process. You cannot use self() to access the
handler's PID.

 Example

The init/1 function is used to define the handler's application and name
based upon a value provided at runtime:
defmodule ExampleHandler do
 use Commanded.Event.Handler

 def init(config) do
 {tenant, config} = Keyword.pop!(config, :tenant)

 config =
 config
 |> Keyword.put(:application, Module.concat([ExampleApp, tenant]))
 |> Keyword.put(:name, Module.concat([__MODULE__, tenant]))

 {:ok, config}
 end
end
Usage:
{:ok, _pid} = ExampleHandler.start_link(tenant: :tenant1)

 Link to this callback

 partition_by(domain_event, metadata)

 View Source

 (optional)

 @callback partition_by(domain_event(), metadata()) :: any()

Determine which partition an event belongs to.
Only applicable when an event handler has been configured with more than one
instance via the :concurrency option.

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Commanded.Event.Mapper

Map events to/from the structs used for persistence.

 Example

Map domain event structs to Commanded.EventStore.EventData structs in
preparation for appending to the configured event store:
events = [%ExampleEvent1{}, %ExampleEvent2{}]
event_data = Commanded.Event.Mapper.map_to_event_data(events)

:ok = Commanded.EventStore.append_to_stream("stream-1234", :any_version, event_data)

 Summary

 Types

 event()

 Functions

 map_from_recorded_event(recorded_event)

 Map an Commanded.EventStore.RecordedEvent struct to its event data.

 map_from_recorded_events(recorded_events)

 Map a list of Commanded.EventStore.RecordedEvent structs to their event data.

 map_to_event_data(events, fields \\ [])

 Map a domain event (or list of events) to an
Commanded.EventStore.EventData struct (or list of structs).

 Types

 Link to this type

 event()

 View Source

 @type event() :: struct()

 Functions

 Link to this function

 map_from_recorded_event(recorded_event)

 View Source

 @spec map_from_recorded_event(Commanded.EventStore.RecordedEvent.t()) :: event()

Map an Commanded.EventStore.RecordedEvent struct to its event data.

 Link to this function

 map_from_recorded_events(recorded_events)

 View Source

 @spec map_from_recorded_events([Commanded.EventStore.RecordedEvent.t()]) :: [event()]

Map a list of Commanded.EventStore.RecordedEvent structs to their event data.

 Link to this function

 map_to_event_data(events, fields \\ [])

 View Source

 @spec map_to_event_data([event()], Keyword.t()) :: [
 Commanded.EventStore.EventData.t()
]

 @spec map_to_event_data(
 struct(),
 Keyword.t()
) :: Commanded.EventStore.EventData.t()

Map a domain event (or list of events) to an
Commanded.EventStore.EventData struct (or list of structs).
Optionally, include the causation_id, correlation_id, and metadata
associated with the event(s).

 Examples

event_data = Commanded.Event.Mapper.map_to_event_data(%ExampleEvent{})

event_data =
 Commanded.Event.Mapper.map_to_event_data(
 [
 %ExampleEvent1{},
 %ExampleEvent2{}
],
 causation_id: Commanded.UUID.uuid4(),
 correlation_id: Commanded.UUID.uuid4(),
 metadata: %{"user_id" => user_id}
)

Commanded.Event.Upcaster protocol

Protocol to allow an event to be transformed before being passed to a
consumer.
You can use an upcaster to change the shape of an event (e.g. add a new field
with a default, rename a field) or rename an event.
Upcaster will run for new events and for historical events.
Because the upcaster changes any historical event to the latest version,
consumers (aggregates, event handlers, and process managers) only need
to support the latest version.

 Example

defimpl Commanded.Event.Upcaster, for: AnEvent do
 def upcast(%AnEvent{} = event, _metadata) do
 %AnEvent{name: name} = event

 %AnEvent{event | first_name: name}
 end
end

 Metadata

The upcast/2 function receives the domain event and a map of metadata
associated with that event. The metadata is provided during command dispatch.
In addition to the metadata key/values you provide, the following system
values will be included in the metadata:
	application - the Commanded.Application used to read the event.
	event_id - a globally unique UUID to identify the event.
	event_number - a globally unique, monotonically incrementing integer
used to order the event amongst all events.
	stream_id - the stream identity for the event.
	stream_version - the version of the stream for the event.
	causation_id - an optional UUID identifier used to identify which
command caused the event.
	correlation_id - an optional UUID identifier used to correlate related
commands/events.
	created_at - the datetime, in UTC, indicating when the event was
created.

These key/value metadata pairs will use atom keys to differentiate them from
the user provided metadata which uses string keys.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 upcast(event, metadata)

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 upcast(event, metadata)

 View Source

 @spec upcast(event :: struct(), metadata :: map()) :: struct()

Commanded.ProcessManagers.FailureContext

Data related to a process manager event handling or command dispatch failure.
The available fields are:
	context - the context map passed between each failure and may be used
to track state between retries, such as to count failures.

	enriched_metadata - the enriched metadata associated with the event.

	last_event - the last event the process manager received.

	pending_commands - the pending commands that were not executed yet.

	process_manager_state - the state the process manager would be in
if the event handling or command dispatch had not failed.

	stacktrace - the stacktrace if the error was an unhandled exception.

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Commanded.ProcessManagers.FailureContext{
 context: map(),
 enriched_metadata: Commanded.EventStore.RecordedEvent.enriched_metadata(),
 last_event: Commanded.EventStore.RecordedEvent.t(),
 pending_commands: [struct()],
 process_manager_state: struct(),
 stacktrace: Exception.stacktrace() | nil
}

Commanded.ProcessManagers.ProcessManager behaviour

Macro used to define a process manager.
A process manager is responsible for coordinating one or more aggregates.
It handles events and dispatches commands in response. Process managers have
state that can be used to track which aggregates are being orchestrated.
Process managers can be used to implement long-running transactions by
following the saga pattern. This is a sequence of commands and their
compensating commands which can be used to rollback on failure.
Use the Commanded.ProcessManagers.ProcessManager macro in your process
manager module and implement the callback functions defined in the behaviour:
	interested?/1
	interested?/2
	handle/2
	handle/3
	apply/2
	after_command/2
	after_command/3
	error/3

Please read the Process managers guide for more
detail.

 Example

defmodule ExampleProcessManager do
 use Commanded.ProcessManagers.ProcessManager,
 application: ExampleApp,
 name: "ExampleProcessManager"

 defstruct []

 def interested?(%AnEvent{uuid: uuid}), do: {:start, uuid}

 def interested?(%AnotherEvent{}, metadata),
 do: {:continue, Map.fetch!(metadata, :correlation_id)}

 def handle(%ExampleProcessManager{}, %ExampleEvent{}) do
 [
 %ExampleCommand{}
]
 end

 def handle(%ExampleProcessManager{}, %AnotherEvent{}, _metadata) do
 [
 %AnotherCommand{}
]
 end

 def after_command(%ExampleProcessManager{}, %ExampleCommand{}) do
 :continue
 end

 def after_command(%ExampleProcessManager{}, %AnotherCommand{}, _metadata) do
 :stop
 end

 def error({:error, failure}, %ExampleEvent{}, _failure_context) do
 # Retry, skip, ignore, or stop process manager on error handling event
 :skip
 end

 def error({:error, failure}, %ExampleCommand{}, _failure_context) do
 # Retry, skip, ignore, or stop process manager on error dispatching command
 :skip
 end
end
Start the process manager (or configure as a worker inside a Supervisor)
{:ok, process_manager} = ExampleProcessManager.start_link()

 init/1 callback

An init/1 function can be defined in your process manager which is used to
provide runtime configuration. This callback function must return
{:ok, config} with the updated config.

 Example

The init/1 function is used to define the process manager's application
and name based upon a value provided at runtime:
defmodule ExampleProcessManager do
 use Commanded.ProcessManagers.ProcessManager

 def init(config) do
 {tenant, config} = Keyword.pop!(config, :tenant)

 config =
 config
 |> Keyword.put(:application, Module.concat([ExampleApp, tenant]))
 |> Keyword.put(:name, Module.concat([__MODULE__, tenant]))

 {:ok, config}
 end
end
Usage:
{:ok, _pid} = ExampleProcessManager.start_link(tenant: :tenant1)

 Error handling

You can define an error/3 callback function to handle any errors or
exceptions during event handling or returned by commands dispatched from your
process manager. The function is passed the error (e.g. {:error, :failure}),
the failed event or command, and a failure context.
See Commanded.ProcessManagers.FailureContext for details.
Use pattern matching on the error and/or failed event/command to explicitly
handle certain errors, events, or commands. You can choose to retry, skip,
ignore, or stop the process manager after a command dispatch error.
The default behaviour, if you don't provide an error/3 callback, is to
stop the process manager using the exact error reason returned from the
event handler function or command dispatch. You should supervise your
process managers to ensure they are restarted on error.

 Example

defmodule ExampleProcessManager do
 use Commanded.ProcessManagers.ProcessManager,
 application: ExampleApp,
 name: "ExampleProcessManager"

 # stop process manager after three failures
 def error({:error, _failure}, _failed_command, %{context: %{failures: failures}})
 when failures >= 2
 do
 {:stop, :too_many_failures}
 end

 # retry command, record failure count in context map
 def error({:error, _failure}, _failed_command, %{context: context}) do
 context = Map.update(context, :failures, 1, fn failures -> failures + 1 end)

 {:retry, context}
 end
end

 Idle process timeouts

Each instance of a process manager will run indefinitely once started. To
reduce memory usage you can configure an idle timeout, in milliseconds,
after which the process will be shutdown.
The process will be restarted whenever another event is routed to it and its
state will be rehydrated from the instance snapshot.

 Example

defmodule ExampleProcessManager do
 use Commanded.ProcessManagers.ProcessManager,
 application: ExampleApp,
 name: "ExampleProcessManager"
 idle_timeout: :timer.minutes(10)
end

 Event handling timeout

You can configure a timeout for event handling to ensure that events are
processed in a timely manner without getting stuck.
An event_timeout option, defined in milliseconds, may be provided when using
the Commanded.ProcessManagers.ProcessManager macro at compile time:
defmodule TransferMoneyProcessManager do
 use Commanded.ProcessManagers.ProcessManager,
 application: ExampleApp,
 name: "TransferMoneyProcessManager",
 router: BankRouter,
 event_timeout: :timer.minutes(10)
end
Or may be configured when starting a process manager:
{:ok, _pid} = TransferMoneyProcessManager.start_link(
 event_timeout: :timer.hours(1)
)
After the timeout has elapsed, indicating the process manager has not
processed an event within the configured period, the process manager is
stopped. The process manager will be restarted if supervised and will retry
the event, this should help resolve transient problems.

 Consistency

For each process manager you can define its consistency, as one of either
:strong or :eventual.
This setting is used when dispatching commands and specifying the
consistency option.
When you dispatch a command using :strong consistency, after successful
command dispatch the process will block until all process managers configured
to use :strong consistency have processed the domain events created by the
command.
The default setting is :eventual consistency. Command dispatch will return
immediately upon confirmation of event persistence, not waiting for any
process managers.

 Example

Define a process manager with :strong consistency:
defmodule ExampleProcessManager do
 use Commanded.ProcessManagers.ProcessManager,
 application: ExampleApp,
 name: "ExampleProcessManager",
 consistency: :strong
end

 Dynamic application

A process manager's application can be provided as an option to start_link/1.
This can be used to start the same process manager multiple times, each using a
separate Commanded application and event store.

 Example

Start an process manager for each tenant in a multi-tenanted app, guaranteeing
that the data and processing remains isolated between tenants.
for tenant <- [:tenant1, :tenant2, :tenant3] do
 {:ok, _app} = MyApp.Application.start_link(name: tenant)
 {:ok, _handler} = ExampleProcessManager.start_link(application: tenant)
end
Typically you would start the event handlers using a supervisor:
children =
 for tenant <- [:tenant1, :tenant2, :tenant3] do
 {ExampleProcessManager, application: tenant}
 end

Supervisor.start_link(children, strategy: :one_for_one)
The above example requires three named Commanded applications to have already
been started.

 Telemetry

	[:commanded, :process_manager, :handle, :start]
	Description: Emitted when a process manager starts handling an event
	Measurements: %{system_time: integer()}
	Metadata: %{application: Commanded.Application.t(), process_manager_name: String.t() | Inspect.t(), process_manager_module: module(), process_state: term(), process_uuid: String.t()}

	[:commanded, :process_manager, :handle, :stop]
	Description: Emitted when a process manager stops handling an event
	Measurements: %{duration: non_neg_integer()}
	Metadata: %{application: Commanded.Application.t(), commands: [struct()], error: nil | any(), process_manager_name: String.t() | Inspect.t(), process_manager_module: module(), process_state: term(), process_uuid: String.t()}

	[:commanded, :process_manager, :handle, :exception]
	Description: Emitted when a process manager raises an exception
	Measurements: %{duration: non_neg_integer()}
	Metadata: %{application: Commanded.Application.t(), process_manager_name: String.t() | Inspect.t(), process_manager_module: module(), process_state: term(), process_uuid: String.t(), kind: :throw | :error | :exit, reason: any(), stacktrace: list()}

 Summary

 Types

 command()

 consistency()

 domain_event()

 enriched_metadata()

 process_manager()

 process_uuid()

 Callbacks

 after_command(process_manager, command)

 Stop the process manager instance after a command is successfully
dispatched.

 after_command(process_manager, command, enriched_metadata)

 Stop the process manager instance after a command is successfully
dispatched.

 apply(process_manager, domain_event)

 Mutate the process manager's state by applying the domain event.

 apply(process_manager, domain_event, enriched_metadata)

 Mutate the process manager's state by applying the domain event.

 error(error, failure_source, failure_context)

 Called when a command dispatch or event handling returns an error.

 handle(process_manager, domain_event)

 Process manager instance handles a domain event, returning any commands to
dispatch.

 handle(process_manager, domain_event, enriched_metadata)

 Process manager instance handles a domain event, returning any commands to
dispatch.

 init(config)

 Optional callback function called to configure the process manager before it
starts.

 interested?(domain_event)

 Is the process manager interested in the given event?

 interested?(domain_event, enriched_metadata)

 Is the process manager interested in the given event?

 Functions

 identity()

 Get the identity of the current process instance.

 parse_config!(module, config)

 Types

 Link to this type

 command()

 View Source

 @type command() :: struct()

 Link to this type

 consistency()

 View Source

 @type consistency() :: :eventual | :strong

 Link to this type

 domain_event()

 View Source

 @type domain_event() :: struct()

 Link to this type

 enriched_metadata()

 View Source

 @type enriched_metadata() :: Commanded.EventStore.RecordedEvent.enriched_metadata()

 Link to this type

 process_manager()

 View Source

 @type process_manager() :: struct()

 Link to this type

 process_uuid()

 View Source

 @type process_uuid() :: String.t() | [String.t()]

 Callbacks

 Link to this callback

 after_command(process_manager, command)

 View Source

 (optional)

 @callback after_command(process_manager(), command()) :: :continue | :stop

Stop the process manager instance after a command is successfully
dispatched.
See after_command/3 for details.

 Link to this callback

 after_command(process_manager, command, enriched_metadata)

 View Source

 (optional)

 @callback after_command(process_manager(), command(), enriched_metadata()) ::
 :continue | :stop

Stop the process manager instance after a command is successfully
dispatched.
The after_command/3 function can be omitted if you do not need to stop
after a specific command or if you would instead use the interested?/2
stop mechanism.

 Link to this callback

 apply(process_manager, domain_event)

 View Source

 (optional)

 @callback apply(process_manager(), domain_event()) :: process_manager()

Mutate the process manager's state by applying the domain event.
See apply/3 function for details.

 Link to this callback

 apply(process_manager, domain_event, enriched_metadata)

 View Source

 (optional)

 @callback apply(process_manager(), domain_event(), enriched_metadata()) ::
 process_manager()

Mutate the process manager's state by applying the domain event.
The apply/3 function is used to mutate the process manager's state. It
receives the current state, the domain event and the event metadata, and must
return the modified state.
This callback function is optional, the default behaviour is to retain the
process manager's current state.

 Link to this callback

 error(error, failure_source, failure_context)

 View Source

 (optional)

 @callback error(
 error :: {:error, term()},
 failure_source :: command() | domain_event(),
 failure_context :: Commanded.ProcessManagers.FailureContext.t()
) ::
 {:continue, commands :: [command()], context :: map()}
 | {:retry, context :: map() | Commanded.ProcessManagers.FailureContext.t()}
 | {:retry, delay :: non_neg_integer(),
 context :: map() | Commanded.ProcessManagers.FailureContext.t()}
 | :skip
 | {:skip, :discard_pending}
 | {:skip, :continue_pending}
 | {:stop, reason :: term()}

Called when a command dispatch or event handling returns an error.
The error/3 function allows you to control how event handling and command
dispatch and failures are handled. The function is passed the error (e.g.
{:error, :failure}), the failed event (during failed event handling) or
failed command (during failed dispatch), and a failure context struct (see
Commanded.ProcessManagers.FailureContext for details).
The failure context contains a context map you can use to pass transient state
between failures. For example it can be used to count the number of failures.
You can return one of the following responses depending upon the
error severity:
	{:retry, context} - retry the failed command, provide a context
map or Commanded.ProcessManagers.FailureContext struct, containing any
state passed to subsequent failures. This could be used to count the number
of retries, failing after too many attempts.

	{:retry, delay, context} - retry the failed command, after sleeping for
the requested delay (in milliseconds). Context is a map or
Commanded.ProcessManagers.FailureContext as described in
{:retry, context} above.

	{:stop, reason} - stop the process manager with the given reason.

For event handling failures, when failure source is an event, you can also
return:
	:skip - to skip the problematic event. No commands will be dispatched.

For command dispatch failures, when failure source is a command, you can also
return:
	:skip - skip the failed command and continue dispatching any pending
commands.

	{:skip, :continue_pending} - skip the failed command, but continue
dispatching any pending commands.

	{:skip, :discard_pending} - discard the failed command and any pending
commands.

	{:continue, commands, context} - continue dispatching the given commands.
This allows you to retry the failed command, modify it and retry, drop it
or drop all pending commands by passing an empty list []. Context is a map
as described in {:retry, context} above.

 Link to this callback

 handle(process_manager, domain_event)

 View Source

 (optional)

 @callback handle(process_manager(), domain_event()) ::
 command() | [command()] | {:error, term()}

Process manager instance handles a domain event, returning any commands to
dispatch.
See handle/3 function for details.

 Link to this callback

 handle(process_manager, domain_event, enriched_metadata)

 View Source

 (optional)

 @callback handle(process_manager(), domain_event(), enriched_metadata()) ::
 command() | [command()] | {:error, term()}

Process manager instance handles a domain event, returning any commands to
dispatch.
A handle/3 function can be defined for each :start and :continue
tagged event previously specified. It receives the process manager's state,
event to be handled, and the event's enriched metadata. It must return the
commands to be dispatched. This may be none, a single command, or many
commands.
The handle/3 function can be omitted if you do not need to dispatch a
command and are only mutating the process manager's state.

 Link to this callback

 init(config)

 View Source

 (optional)

 @callback init(config :: Keyword.t()) :: {:ok, Keyword.t()}

Optional callback function called to configure the process manager before it
starts.
It is passed the merged compile-time and runtime config, and must return the
updated config.

 Link to this callback

 interested?(domain_event)

 View Source

 (optional)

 @callback interested?(domain_event()) ::
 {:start, process_uuid()}
 | {:start!, process_uuid()}
 | {:continue, process_uuid()}
 | {:continue!, process_uuid()}
 | {:stop, process_uuid()}
 | false

Is the process manager interested in the given event?
See interested?/2 for details.

 Link to this callback

 interested?(domain_event, enriched_metadata)

 View Source

 (optional)

 @callback interested?(domain_event(), enriched_metadata()) ::
 {:start, process_uuid()}
 | {:start!, process_uuid()}
 | {:continue, process_uuid()}
 | {:continue!, process_uuid()}
 | {:stop, process_uuid()}
 | false

Is the process manager interested in the given event?
The interested?/2 function is used to indicate which events
the process manager receives. The response is used to route the event to an existing
instance or start a new process instance:
	{:start, process_uuid} - create a new instance of the process manager.
	{:start!, process_uuid} - create a new instance of the process manager (strict).
	{:continue, process_uuid} - continue execution of an existing process manager.
	{:continue!, process_uuid} - continue execution of an existing process manager (strict).
	{:stop, process_uuid} - stop an existing process manager, shutdown its
process, and delete its persisted state.
	false - ignore the event.

You can return a list of process identifiers when a single domain event is to
be handled by multiple process instances.

 Strict process routing

Using strict routing, with :start! or :continue, enforces the following
validation checks:
	{:start!, process_uuid} - validate process does not already exist.
	{:continue!, process_uuid} - validate process already exists.

If the check fails an error will be passed to the error/3 callback function:
	{:error, {:start!, :process_already_started}}
	{:error, {:continue!, :process_not_started}}

The error/3 function can choose to :stop the process or :skip the
problematic event.

 Functions

 Link to this function

 identity()

 View Source

Get the identity of the current process instance.
This must only be called within a process manager's handle/2, handle/3, apply/2, or
apply/3 callback functions.

 Example

defmodule ExampleProcessManager do
 use Commanded.ProcessManagers.ProcessManager,
 application: MyApp.Application,
 name: __MODULE__

 def interested?(%ProcessStarted{uuids: uuids}), do: {:start, uuids}

 def handle(%IdentityProcessManager{}, %ProcessStarted{} = event) do
 # Identify which uuid is associated with the current instance from the
 # list of uuids in the event.
 uuid = Commanded.ProcessManagers.ProcessManager.identity()

 # ...
 end
end

 Link to this function

 parse_config!(module, config)

 View Source

Commanded.EventStore

Use the event store configured for a Commanded application.

 Telemetry Events

Adds telemetry events for the following functions. Events are emitted in the form
[:commanded, :event_store, event] with their spannable postfixes (start, stop, exception)
	ack_event/3
	adapter/2
	append_to_stream/4
	delete_snapshot/2
	delete_subscription/3
	read_snapshot/2
	record_snapshot/2
	stream_forward/2
	stream_forward/3
	stream_forward/4
	subscribe/2
	subscribe_to/5
	subscribe_to/6
	unsubscribe/2

 Summary

 Types

 application()

 config()

 Functions

 ack_event(application, subscription, event)

 Acknowledge receipt and successful processing of the given event received from
a subscription to an event stream.

 adapter(application, config)

 Get the configured event store adapter for the given application.

 append_to_stream(application, stream_uuid, expected_version, events, opts \\ [])

 Append one or more events to a stream atomically.

 delete_snapshot(application, source_uuid)

 Delete a previously recorded snapshot for a given source

 delete_subscription(application, subscribe_to, handler_name)

 Delete an existing subscription.

 read_snapshot(application, source_uuid)

 Read a snapshot, if available, for a given source.

 record_snapshot(application, snapshot)

 Record a snapshot of the data and metadata for a given source

 stream_forward(application, stream_uuid, start_version \\ 0, read_batch_size \\ 1000)

 Streams events from the given stream, in the order in which they were originally written.

 subscribe(application, stream_uuid)

 Create a transient subscription to a single event stream.

 subscribe_to(application, stream_uuid, subscription_name, subscriber, start_from, opts \\ [])

 Create a persistent subscription to an event stream.

 unsubscribe(application, subscription)

 Unsubscribe an existing subscriber from event notifications.

 Types

 Link to this type

 application()

 View Source

 @type application() :: Commanded.Application.t()

 Link to this type

 config()

 View Source

 @type config() :: Keyword.t()

 Functions

 Link to this function

 ack_event(application, subscription, event)

 View Source

Acknowledge receipt and successful processing of the given event received from
a subscription to an event stream.

 Link to this function

 adapter(application, config)

 View Source

 @spec adapter(application(), config()) :: {module(), config()}

Get the configured event store adapter for the given application.

 Link to this function

 append_to_stream(application, stream_uuid, expected_version, events, opts \\ [])

 View Source

Append one or more events to a stream atomically.

 Link to this function

 delete_snapshot(application, source_uuid)

 View Source

Delete a previously recorded snapshot for a given source

 Link to this function

 delete_subscription(application, subscribe_to, handler_name)

 View Source

Delete an existing subscription.

 Example

:ok = Commanded.EventStore.delete_subscription(MyApp, :all, "Example")

 Link to this function

 read_snapshot(application, source_uuid)

 View Source

Read a snapshot, if available, for a given source.

 Link to this function

 record_snapshot(application, snapshot)

 View Source

Record a snapshot of the data and metadata for a given source

 Link to this function

 stream_forward(application, stream_uuid, start_version \\ 0, read_batch_size \\ 1000)

 View Source

Streams events from the given stream, in the order in which they were originally written.

 Link to this function

 subscribe(application, stream_uuid)

 View Source

Create a transient subscription to a single event stream.
The event store will publish any events appended to the given stream to the
subscriber process as an {:events, events} message.
The subscriber does not need to acknowledge receipt of the events.

 Link to this function

 subscribe_to(application, stream_uuid, subscription_name, subscriber, start_from, opts \\ [])

 View Source

Create a persistent subscription to an event stream.
To subscribe to all events appended to any stream use :all as the stream
when subscribing.
The event store will remember the subscribers last acknowledged event.
Restarting the named subscription will resume from the next event following
the last seen.
Once subscribed, the subscriber process should be sent a
{:subscribed, subscription} message to allow it to defer initialisation
until the subscription has started.
The subscriber process will be sent all events persisted to the stream. It
will receive a {:events, events} message for each batch of events persisted
for a single aggregate.
The subscriber must ack each received, and successfully processed event, using
Commanded.EventStore.ack_event/3.

 Examples

Subscribe to all streams:
{:ok, subscription} =
 Commanded.EventStore.subscribe_to(MyApp, :all, "Example", self(), :current)
Subscribe to a single stream:
{:ok, subscription} =
 Commanded.EventStore.subscribe_to(MyApp, "stream1", "Example", self(), :origin)

 Link to this function

 unsubscribe(application, subscription)

 View Source

Unsubscribe an existing subscriber from event notifications.
This will not delete the subscription.

 Example

:ok = Commanded.EventStore.unsubscribe(MyApp, subscription)

Commanded.EventStore.Adapter behaviour

Defines the behaviour to be implemented by an event store adapter to be used by Commanded.

 Summary

 Types

 adapter_meta()

 application()

 config()

 error()

 expected_version()

 source_uuid()

 start_from()

 stream_uuid()

 subscriber()

 subscription()

 subscription_name()

 Callbacks

 ack_event(adapter_meta, pid, t)

 Acknowledge receipt and successful processing of the given event received from
a subscription to an event stream.

 append_to_stream(adapter_meta, stream_uuid, expected_version, events, opts)

 Append one or more events to a stream atomically.

 child_spec(application, config)

 Return a child spec defining all processes required by the event store.

 delete_snapshot(adapter_meta, source_uuid)

 Delete a previously recorded snapshot for a given source

 delete_subscription(adapter_meta, arg2, subscription_name)

 Delete an existing subscription.

 read_snapshot(adapter_meta, source_uuid)

 Read a snapshot, if available, for a given source.

 record_snapshot(adapter_meta, t)

 Record a snapshot of the data and metadata for a given source

 stream_forward(adapter_meta, stream_uuid, start_version, read_batch_size)

 Streams events from the given stream, in the order in which they were
originally written.

 subscribe(adapter_meta, arg2)

 Create a transient subscription to a single event stream.

 subscribe_to(adapter_meta, arg2, subscription_name, subscriber, start_from, opts)

 Create a persistent subscription to an event stream.

 unsubscribe(adapter_meta, subscription)

 Unsubscribe an existing subscriber from event notifications.

 Types

 Link to this type

 adapter_meta()

 View Source

 @type adapter_meta() :: map()

 Link to this type

 application()

 View Source

 @type application() :: Commanded.Application.t()

 Link to this type

 config()

 View Source

 @type config() :: Keyword.t()

 Link to this type

 error()

 View Source

 @type error() :: term()

 Link to this type

 expected_version()

 View Source

 @type expected_version() ::
 :any_version | :no_stream | :stream_exists | non_neg_integer()

 Link to this type

 source_uuid()

 View Source

 @type source_uuid() :: String.t()

 Link to this type

 start_from()

 View Source

 @type start_from() :: :origin | :current | integer()

 Link to this type

 stream_uuid()

 View Source

 @type stream_uuid() :: String.t()

 Link to this type

 subscriber()

 View Source

 @type subscriber() :: pid()

 Link to this type

 subscription()

 View Source

 @type subscription() :: any()

 Link to this type

 subscription_name()

 View Source

 @type subscription_name() :: String.t()

 Callbacks

 Link to this callback

 ack_event(adapter_meta, pid, t)

 View Source

 @callback ack_event(adapter_meta(), pid(), Commanded.EventStore.RecordedEvent.t()) :: :ok

Acknowledge receipt and successful processing of the given event received from
a subscription to an event stream.

 Link to this callback

 append_to_stream(adapter_meta, stream_uuid, expected_version, events, opts)

 View Source

 @callback append_to_stream(
 adapter_meta(),
 stream_uuid(),
 expected_version(),
 events :: [Commanded.EventStore.EventData.t()],
 opts :: Keyword.t()
) :: :ok | {:error, :wrong_expected_version} | {:error, error()}

Append one or more events to a stream atomically.

 Link to this callback

 child_spec(application, config)

 View Source

 @callback child_spec(application(), config()) ::
 {:ok, [:supervisor.child_spec() | {module(), term()} | module()],
 adapter_meta()}

Return a child spec defining all processes required by the event store.

 Link to this callback

 delete_snapshot(adapter_meta, source_uuid)

 View Source

 @callback delete_snapshot(adapter_meta(), source_uuid()) :: :ok | {:error, error()}

Delete a previously recorded snapshot for a given source

 Link to this callback

 delete_subscription(adapter_meta, arg2, subscription_name)

 View Source

 @callback delete_subscription(
 adapter_meta(),
 stream_uuid() | :all,
 subscription_name()
) :: :ok | {:error, :subscription_not_found} | {:error, error()}

Delete an existing subscription.

 Link to this callback

 read_snapshot(adapter_meta, source_uuid)

 View Source

 @callback read_snapshot(adapter_meta(), source_uuid()) ::
 {:ok, Commanded.EventStore.SnapshotData.t()} | {:error, :snapshot_not_found}

Read a snapshot, if available, for a given source.

 Link to this callback

 record_snapshot(adapter_meta, t)

 View Source

 @callback record_snapshot(adapter_meta(), Commanded.EventStore.SnapshotData.t()) ::
 :ok | {:error, error()}

Record a snapshot of the data and metadata for a given source

 Link to this callback

 stream_forward(adapter_meta, stream_uuid, start_version, read_batch_size)

 View Source

 @callback stream_forward(
 adapter_meta(),
 stream_uuid(),
 start_version :: non_neg_integer(),
 read_batch_size :: non_neg_integer()
) :: Enumerable.t() | {:error, :stream_not_found} | {:error, error()}

Streams events from the given stream, in the order in which they were
originally written.

 Link to this callback

 subscribe(adapter_meta, arg2)

 View Source

 @callback subscribe(adapter_meta(), stream_uuid() | :all) :: :ok | {:error, error()}

Create a transient subscription to a single event stream.
The event store will publish any events appended to the given stream to the
subscriber process as an {:events, events} message.
The subscriber does not need to acknowledge receipt of the events.

 Link to this callback

 subscribe_to(adapter_meta, arg2, subscription_name, subscriber, start_from, opts)

 View Source

 @callback subscribe_to(
 adapter_meta(),
 stream_uuid() | :all,
 subscription_name(),
 subscriber(),
 start_from(),
 opts :: Keyword.t()
) ::
 {:ok, subscription()}
 | {:error, :subscription_already_exists}
 | {:error, error()}

Create a persistent subscription to an event stream.

 Link to this callback

 unsubscribe(adapter_meta, subscription)

 View Source

 @callback unsubscribe(adapter_meta(), subscription()) :: :ok

Unsubscribe an existing subscriber from event notifications.
This should not delete the subscription.

Commanded.EventStore.Adapters.InMemory

An in-memory event store adapter implemented as a GenServer process which
stores events in memory only.
This is only designed for testing purposes.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 reset!(application, config \\ [])

 start_link(opts \\ [])

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 reset!(application, config \\ [])

 View Source

 Link to this function

 start_link(opts \\ [])

 View Source

Commanded.EventStore.EventData

EventData contains the data for a single event before being persisted to
storage.

 Summary

 Types

 t()

 uuid()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Commanded.EventStore.EventData{
 causation_id: uuid() | nil,
 correlation_id: uuid(),
 data: struct(),
 event_type: String.t(),
 metadata: map()
}

 Link to this type

 uuid()

 View Source

 @type uuid() :: String.t()

Commanded.EventStore.RecordedEvent

Contains the persisted stream identity, type, data, and metadata for a single event.
Events are immutable once recorded.

 Recorded event fields

	event_id - a globally unique UUID to identify the event.

	event_number - a globally unique, monotonically incrementing and gapless
integer used to order the event amongst all events.

	stream_id - the stream identity for the event.

	stream_version - the version of the stream for the event.

	causation_id - an optional UUID identifier used to identify which
message you are responding to.

	correlation_id - an optional UUID identifier used to correlate related
messages.

	data - the event data deserialized into a struct.

	metadata - a string keyed map of metadata associated with the event.

	created_at - the datetime, in UTC, indicating when the event was
created.

 Summary

 Types

 causation_id()

 correlation_id()

 created_at()

 data()

 domain_event()

 enriched_metadata()

 event_id()

 event_number()

 event_type()

 metadata()

 stream_id()

 stream_version()

 t()

 uuid()

 Functions

 enrich_metadata(event, opts)

 Enrich the event's metadata with fields from the RecordedEvent struct and
any additional metadata passed as an option.

 Types

 Link to this type

 causation_id()

 View Source

 @type causation_id() :: uuid() | nil

 Link to this type

 correlation_id()

 View Source

 @type correlation_id() :: uuid() | nil

 Link to this type

 created_at()

 View Source

 @type created_at() :: DateTime.t()

 Link to this type

 data()

 View Source

 @type data() :: domain_event()

 Link to this type

 domain_event()

 View Source

 @type domain_event() :: struct()

 Link to this type

 enriched_metadata()

 View Source

 @type enriched_metadata() :: %{
 :event_id => event_id(),
 :event_number => event_number(),
 :stream_id => stream_id(),
 :stream_version => stream_version(),
 :correlation_id => correlation_id(),
 :causation_id => causation_id(),
 :created_at => created_at(),
 optional(atom()) => term(),
 optional(String.t()) => term()
}

 Link to this type

 event_id()

 View Source

 @type event_id() :: uuid()

 Link to this type

 event_number()

 View Source

 @type event_number() :: non_neg_integer()

 Link to this type

 event_type()

 View Source

 @type event_type() :: String.t()

 Link to this type

 metadata()

 View Source

 @type metadata() :: map()

 Link to this type

 stream_id()

 View Source

 @type stream_id() :: String.t()

 Link to this type

 stream_version()

 View Source

 @type stream_version() :: non_neg_integer()

 Link to this type

 t()

 View Source

 @type t() :: %Commanded.EventStore.RecordedEvent{
 causation_id: causation_id(),
 correlation_id: correlation_id(),
 created_at: created_at(),
 data: data(),
 event_id: event_id(),
 event_number: event_number(),
 event_type: event_type(),
 metadata: metadata(),
 stream_id: stream_id(),
 stream_version: stream_version()
}

 Link to this type

 uuid()

 View Source

 @type uuid() :: String.t()

 Functions

 Link to this function

 enrich_metadata(event, opts)

 View Source

 @spec enrich_metadata(t(), [{:additional_metadata, map()}]) :: enriched_metadata()

Enrich the event's metadata with fields from the RecordedEvent struct and
any additional metadata passed as an option.

Commanded.EventStore.SnapshotData

Snapshot data

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Commanded.EventStore.SnapshotData{
 created_at: DateTime.t(),
 data: binary(),
 metadata: binary(),
 source_type: String.t(),
 source_uuid: String.t(),
 source_version: non_neg_integer()
}

Commanded.EventStore.TypeProvider behaviour

Specification to convert between an Elixir struct and a corresponding string type.

 Summary

 Types

 t()

 type()

 Callbacks

 to_string(struct)

 Type of the given Elixir struct as a string

 to_struct(type)

 Convert the given type string to an Elixir struct

 Functions

 type_provider()

 Get the configured type provider

 Types

 Link to this type

 t()

 View Source

 @type t() :: module()

 Link to this type

 type()

 View Source

 @type type() :: String.t()

 Callbacks

 Link to this callback

 to_string(struct)

 View Source

 @callback to_string(struct()) :: type()

Type of the given Elixir struct as a string

 Link to this callback

 to_struct(type)

 View Source

 @callback to_struct(type()) :: struct()

Convert the given type string to an Elixir struct

 Functions

 Link to this function

 type_provider()

 View Source

 @spec type_provider() :: module()

Get the configured type provider

Commanded.PubSub

Use the pubsub configured for a Commanded application.

 Summary

 Types

 application()

 config()

 Functions

 adapter(application, config)

 Get the configured pub/sub adapter.

 broadcast(application, topic, message)

 Broadcasts message on given topic.

 subscribe(application, topic)

 Subscribes the caller to the PubSub adapter's topic.

 Types

 Link to this type

 application()

 View Source

 @type application() :: Commanded.Application.t()

 Link to this type

 config()

 View Source

 @type config() :: Keyword.t() | atom()

 Functions

 Link to this function

 adapter(application, config)

 View Source

 @spec adapter(application(), config()) :: {module(), config()}

Get the configured pub/sub adapter.
Defaults to a local pub/sub, restricted to running on a single node.

 Link to this function

 broadcast(application, topic, message)

 View Source

Broadcasts message on given topic.
	topic - The topic to broadcast to, ie: "users:123"
	message - The payload of the broadcast

 Link to this function

 subscribe(application, topic)

 View Source

Subscribes the caller to the PubSub adapter's topic.

Commanded.PubSub.Adapter behaviour

Pub/sub behaviour for use by Commanded to subscribe to and broadcast messages.

 Summary

 Types

 adapter_meta()

 application()

 Callbacks

 broadcast(adapter_meta, topic, message)

 Broadcasts message on given topic.

 child_spec(application, config)

 Return an optional supervisor spec for pub/sub.

 list(adapter_meta, topic)

 List tracked PIDs for a given topic.

 subscribe(adapter_meta, topic)

 Subscribes the caller to the PubSub adapter's topic.

 track(adapter_meta, topic, key)

 Track the current process under the given topic, uniquely identified by
key.

 Types

 Link to this type

 adapter_meta()

 View Source

 @type adapter_meta() :: map()

 Link to this type

 application()

 View Source

 @type application() :: Commanded.Application.t()

 Callbacks

 Link to this callback

 broadcast(adapter_meta, topic, message)

 View Source

 @callback broadcast(adapter_meta(), topic :: String.t(), message :: term()) ::
 :ok | {:error, term()}

Broadcasts message on given topic.
	topic - The topic to broadcast to, ie: "users:123"
	message - The payload of the broadcast

 Link to this callback

 child_spec(application, config)

 View Source

 @callback child_spec(application(), config :: Keyword.t()) ::
 {:ok, [:supervisor.child_spec() | {module(), term()} | module()],
 adapter_meta()}

Return an optional supervisor spec for pub/sub.

 Link to this callback

 list(adapter_meta, topic)

 View Source

 @callback list(adapter_meta(), topic :: String.t()) :: [{term(), pid()}]

List tracked PIDs for a given topic.

 Link to this callback

 subscribe(adapter_meta, topic)

 View Source

 @callback subscribe(adapter_meta(), topic :: String.t()) :: :ok | {:error, term()}

Subscribes the caller to the PubSub adapter's topic.

 Link to this callback

 track(adapter_meta, topic, key)

 View Source

 @callback track(adapter_meta(), topic :: String.t(), key :: term()) ::
 :ok | {:error, term()}

Track the current process under the given topic, uniquely identified by
key.

Commanded.PubSub.LocalPubSub

Local pub/sub adapter, restricted to a single node, using Elixir's Registry.
You can configure this adapter in your environment config file:
`config/config.exs`
config :my_app, MyApp.Application, pubsub: :local
This adapter will be used by default when none is specified in config.

 Summary

 Functions

 broadcast(adapter_meta, topic, message)

 Broadcasts message on given topic.

 child_spec(application, config)

 Start a Registry for local pub/sub.

 list(adapter_meta, topic)

 List tracked terms and associated PIDs for a given topic.

 subscribe(adapter_meta, topic)

 Subscribes the caller to the topic.

 track(adapter_meta, topic, key)

 Track the current process under the given topic, uniquely identified by
key.

 Functions

 Link to this function

 broadcast(adapter_meta, topic, message)

 View Source

Broadcasts message on given topic.

 Link to this function

 child_spec(application, config)

 View Source

Start a Registry for local pub/sub.

 Link to this function

 list(adapter_meta, topic)

 View Source

List tracked terms and associated PIDs for a given topic.

 Link to this function

 subscribe(adapter_meta, topic)

 View Source

Subscribes the caller to the topic.

 Link to this function

 track(adapter_meta, topic, key)

 View Source

Track the current process under the given topic, uniquely identified by
key.

Commanded.PubSub.PhoenixPubSub

Pub/sub adapter using Phoenix's distributed pub/sub and presence platform.
To use Phoenix pub/sub you must add it as a dependency in your project's
mix.exs file:
defp deps do
 [
 {:phoenix_pubsub, "~> 1.0"}
]
end
Fetch mix deps and configure the pubsub settings in your environment config
file:
`config/config.exs`
config :my_app, MyApp.Application,
 pubsub: [
 phoenix_pubsub: [
 adapter: Phoenix.PubSub.PG2,
 pool_size: 1
]
]
Specify the Phoenix pub/sub adapter you wish to use from:
	Phoenix.PubSub.PG2 - uses Distributed Elixir, directly exchanging
notifications between servers

	Phoenix.PubSub.Redis - uses Redis to exchange data between servers

 Summary

 Functions

 broadcast(adapter_meta, topic, message)

 Broadcasts message on given topic.

 child_spec(application, config)

 Start the configured Phoenix pub/sub adapter and a presence tracker.

 list(adapter_meta, topic)

 List tracked terms and associated PIDs for a given topic.

 subscribe(adapter_meta, topic)

 Subscribes the caller to the topic.

 track(adapter_meta, topic, key)

 Track the current process under the given topic, uniquely identified by
key.

 Functions

 Link to this function

 broadcast(adapter_meta, topic, message)

 View Source

Broadcasts message on given topic.

 Link to this function

 child_spec(application, config)

 View Source

Start the configured Phoenix pub/sub adapter and a presence tracker.

 Link to this function

 list(adapter_meta, topic)

 View Source

List tracked terms and associated PIDs for a given topic.

 Link to this function

 subscribe(adapter_meta, topic)

 View Source

Subscribes the caller to the topic.

 Link to this function

 track(adapter_meta, topic, key)

 View Source

Track the current process under the given topic, uniquely identified by
key.

Commanded.Registration

Use the process registry configured for a Commanded application.

 Summary

 Types

 application()

 config()

 Functions

 __before_compile__(env)

 Allow a registry adapter to handle the standard GenServer callback
functions.

 __using__(opts)

 Use the Commanded.Registration module to import the registry adapter and
via tuple functions.

 adapter(application, config)

 Get the configured process registry.

 Types

 Link to this type

 application()

 View Source

 @type application() :: Commanded.Application.t()

 Link to this type

 config()

 View Source

 @type config() :: Keyword.t()

 Functions

 Link to this macro

 __before_compile__(env)

 View Source

 (macro)

Allow a registry adapter to handle the standard GenServer callback
functions.

 Link to this macro

 __using__(opts)

 View Source

 (macro)

Use the Commanded.Registration module to import the registry adapter and
via tuple functions.

 Link to this function

 adapter(application, config)

 View Source

 @spec adapter(application(), config()) :: {module(), config()}

Get the configured process registry.
Defaults to a local registry, restricted to running on a single node.

Commanded.Registration.Adapter behaviour

Defines a behaviour for a process registry to be used by Commanded.
By default, Commanded will use a local process registry, defined in
Commanded.Registration.LocalRegistry, that uses Elixir's Registry module
for local process registration. This limits Commanded to only run on a single
node. However the Commanded.Registration behaviour can be implemented by a
library to provide distributed process registration to support running on a
cluster of nodes.

 Summary

 Types

 adapter_meta()

 application()

 config()

 start_child_arg()

 Callbacks

 child_spec(application, config)

 Return an optional supervisor spec for the registry

 start_child(adapter_meta, name, supervisor, child_spec)

 Starts a uniquely named child process of a supervisor using the given module
and args.

 start_link(adapter_meta, name, module, args, start_options)

 Starts a uniquely named GenServer process for the given module and args.

 supervisor_child_spec(adapter_meta, module, arg)

 Use to start a supervisor.

 via_tuple(adapter_meta, name)

 Return a :via tuple to route a message to a process by its registered name

 whereis_name(adapter_meta, name)

 Get the pid of a registered name.

 Types

 Link to this type

 adapter_meta()

 View Source

 @type adapter_meta() :: map()

 Link to this type

 application()

 View Source

 @type application() :: Commanded.Application.t()

 Link to this type

 config()

 View Source

 @type config() :: Keyword.t()

 Link to this type

 start_child_arg()

 View Source

 @type start_child_arg() :: {module(), Keyword.t()} | module()

 Callbacks

 Link to this callback

 child_spec(application, config)

 View Source

 @callback child_spec(application(), config()) ::
 {:ok, [:supervisor.child_spec() | {module(), term()} | module()],
 adapter_meta()}

Return an optional supervisor spec for the registry

 Link to this callback

 start_child(adapter_meta, name, supervisor, child_spec)

 View Source

 @callback start_child(
 adapter_meta(),
 name :: term(),
 supervisor :: module(),
 child_spec :: start_child_arg()
) :: {:ok, pid()} | {:error, term()}

Starts a uniquely named child process of a supervisor using the given module
and args.
Registers the pid with the given name.

 Link to this callback

 start_link(adapter_meta, name, module, args, start_options)

 View Source

 @callback start_link(
 adapter_meta(),
 name :: term(),
 module :: module(),
 args :: any(),
 start_options :: GenServer.options()
) :: {:ok, pid()} | {:error, term()}

Starts a uniquely named GenServer process for the given module and args.
Registers the pid with the given name.

 Link to this callback

 supervisor_child_spec(adapter_meta, module, arg)

 View Source

 @callback supervisor_child_spec(adapter_meta(), module :: atom(), arg :: any()) ::
 :supervisor.child_spec()

Use to start a supervisor.

 Link to this callback

 via_tuple(adapter_meta, name)

 View Source

 @callback via_tuple(adapter_meta(), name :: term()) :: {:via, module(), name :: term()}

Return a :via tuple to route a message to a process by its registered name

 Link to this callback

 whereis_name(adapter_meta, name)

 View Source

 @callback whereis_name(adapter_meta(), name :: term()) :: pid() | :undefined

Get the pid of a registered name.
Returns :undefined if the name is unregistered.

Commanded.Registration.GlobalRegistry

Distributed process registration using Erlangs :global registry[1].
[1] http://erlang.org/doc/man/global.html

 Summary

 Functions

 child_spec(application, config)

 Return an optional supervisor spec for the registry

 start_child(adapter_meta, name, supervisor, child_spec)

 Starts a uniquely named child process of a supervisor using the given module
and args.

 start_link(adapter_meta, name, module, args, start_opts)

 Starts a uniquely named GenServer process for the given module and args.

 supervisor_child_spec(adapter_meta, module, arg)

 Starts a supervisor.

 via_tuple(adapter_meta, name)

 Return a :via tuple to route a message to a process by its registered name

 whereis_name(adapter_meta, name)

 Get the pid of a registered name.

 Functions

 Link to this function

 child_spec(application, config)

 View Source

Return an optional supervisor spec for the registry

 Link to this function

 start_child(adapter_meta, name, supervisor, child_spec)

 View Source

Starts a uniquely named child process of a supervisor using the given module
and args.
Registers the pid with the given name.

 Link to this function

 start_link(adapter_meta, name, module, args, start_opts)

 View Source

Starts a uniquely named GenServer process for the given module and args.
Registers the pid with the given name.

 Link to this function

 supervisor_child_spec(adapter_meta, module, arg)

 View Source

Starts a supervisor.

 Link to this function

 via_tuple(adapter_meta, name)

 View Source

Return a :via tuple to route a message to a process by its registered name

 Link to this function

 whereis_name(adapter_meta, name)

 View Source

Get the pid of a registered name.
Returns :undefined if the name is unregistered.

Commanded.Registration.LocalRegistry

Local process registration, restricted to a single node, using Elixir's
Registry module.

 Summary

 Functions

 child_spec(application, config)

 Return a supervisor spec for the registry.

 start_child(adapter_meta, name, supervisor, child_spec)

 Starts a uniquely named child process of a supervisor using the given module
and args.

 start_link(adapter_meta, name, module, args, start_opts)

 Starts a uniquely named GenServer process for the given module and args.

 supervisor_child_spec(adapter_meta, module, arg)

 Starts a supervisor.

 via_tuple(adapter_meta, name)

 Return a :via tuple to route a message to a process by its registered name.

 whereis_name(adapter_meta, name)

 Get the pid of a registered name.

 Functions

 Link to this function

 child_spec(application, config)

 View Source

Return a supervisor spec for the registry.

 Link to this function

 start_child(adapter_meta, name, supervisor, child_spec)

 View Source

Starts a uniquely named child process of a supervisor using the given module
and args.
Registers the pid with the given name.

 Link to this function

 start_link(adapter_meta, name, module, args, start_opts)

 View Source

Starts a uniquely named GenServer process for the given module and args.
Registers the pid with the given name.

 Link to this function

 supervisor_child_spec(adapter_meta, module, arg)

 View Source

Starts a supervisor.

 Link to this function

 via_tuple(adapter_meta, name)

 View Source

Return a :via tuple to route a message to a process by its registered name.

 Link to this function

 whereis_name(adapter_meta, name)

 View Source

Get the pid of a registered name.
Returns :undefined if the name is unregistered.

Commanded.Serialization.JsonDecoder protocol

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 decode(data)

 Protocol to allow additional decoding of a value that has been deserialized
using the Commanded.Serialization.JsonSerializer.

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 decode(data)

 View Source

Protocol to allow additional decoding of a value that has been deserialized
using the Commanded.Serialization.JsonSerializer.
The protocol is optional. The default behaviour is to to return the value if
an explicit protocol is not defined.

Commanded.Serialization.JsonSerializer

A serializer that uses the JSON format and Jason library.

 Summary

 Functions

 deserialize(binary, config \\ [])

 Deserialize given JSON binary data to the expected type.

 serialize(term)

 Serialize given term to JSON binary data.

 Functions

 Link to this function

 deserialize(binary, config \\ [])

 View Source

Deserialize given JSON binary data to the expected type.

 Link to this function

 serialize(term)

 View Source

Serialize given term to JSON binary data.

Commanded.Serialization.ModuleNameTypeProvider

A type provider that uses the Elixir module name
Example:
	%An.Event{} module mapped to "Elixir.An.Event".

 Summary

 Functions

 to_string(struct)

 Callback implementation for Commanded.EventStore.TypeProvider.to_string/1.

 to_struct(type)

 Callback implementation for Commanded.EventStore.TypeProvider.to_struct/1.

 Functions

 Link to this function

 to_string(struct)

 View Source

Callback implementation for Commanded.EventStore.TypeProvider.to_string/1.

 Link to this function

 to_struct(type)

 View Source

Callback implementation for Commanded.EventStore.TypeProvider.to_struct/1.

Commanded.Middleware behaviour

Middleware provides an extension point to add functions that you want to be
called for every command the router dispatches.
Examples include command validation, authorization, and logging.
Implement the Commanded.Middleware behaviour in your module and define the
before_dispatch/1, after_dispatch/1, and after_failure/1 callback
functions.

 Example middleware

defmodule NoOpMiddleware do
 @behaviour Commanded.Middleware

 alias Commanded.Middleware.Pipeline
 import Pipeline

 def before_dispatch(%Pipeline{command: command} = pipeline) do
 pipeline
 end

 def after_dispatch(%Pipeline{command: command} = pipeline) do
 pipeline
 end

 def after_failure(%Pipeline{command: command} = pipeline) do
 pipeline
 end
end
Import the Commanded.Middleware.Pipeline module to access convenience
functions.
	assign/3 - puts a key and value into the assigns map
	halt/1 - stops execution of further middleware downstream and prevents
dispatch of the command when used in a before_dispatch callback

 Summary

 Types

 pipeline()

 Callbacks

 after_dispatch(pipeline)

 after_failure(pipeline)

 before_dispatch(pipeline)

 Types

 Link to this type

 pipeline()

 View Source

 @type pipeline() :: %Commanded.Middleware.Pipeline{
 application: term(),
 assigns: term(),
 causation_id: term(),
 command: term(),
 command_uuid: term(),
 consistency: term(),
 correlation_id: term(),
 halted: term(),
 identity: term(),
 identity_prefix: term(),
 metadata: term(),
 response: term()
}

 Callbacks

 Link to this callback

 after_dispatch(pipeline)

 View Source

 @callback after_dispatch(pipeline()) :: pipeline()

 Link to this callback

 after_failure(pipeline)

 View Source

 @callback after_failure(pipeline()) :: pipeline()

 Link to this callback

 before_dispatch(pipeline)

 View Source

 @callback before_dispatch(pipeline()) :: pipeline()

Commanded.Middleware.ConsistencyGuarantee

An internal Commanded.Middleware that blocks after successful command
dispatch until the requested dispatch consistency has been met.
Only applies when the requested consistency is :strong. Has no effect for
:eventual consistency.

 Summary

 Functions

 after_dispatch(pipeline)

 Callback implementation for Commanded.Middleware.after_dispatch/1.

 after_failure(pipeline)

 Callback implementation for Commanded.Middleware.after_failure/1.

 before_dispatch(pipeline)

 Callback implementation for Commanded.Middleware.before_dispatch/1.

 Functions

 Link to this function

 after_dispatch(pipeline)

 View Source

Callback implementation for Commanded.Middleware.after_dispatch/1.

 Link to this function

 after_failure(pipeline)

 View Source

Callback implementation for Commanded.Middleware.after_failure/1.

 Link to this function

 before_dispatch(pipeline)

 View Source

Callback implementation for Commanded.Middleware.before_dispatch/1.

Commanded.Middleware.ExtractAggregateIdentity

An internal Commanded.Middleware that extracts the target aggregate's
identity from the command.

 Summary

 Functions

 after_dispatch(pipeline)

 Callback implementation for Commanded.Middleware.after_dispatch/1.

 after_failure(pipeline)

 Callback implementation for Commanded.Middleware.after_failure/1.

 before_dispatch(pipeline)

 Callback implementation for Commanded.Middleware.before_dispatch/1.

 Functions

 Link to this function

 after_dispatch(pipeline)

 View Source

Callback implementation for Commanded.Middleware.after_dispatch/1.

 Link to this function

 after_failure(pipeline)

 View Source

Callback implementation for Commanded.Middleware.after_failure/1.

 Link to this function

 before_dispatch(pipeline)

 View Source

Callback implementation for Commanded.Middleware.before_dispatch/1.

Commanded.Middleware.Logger

A Commanded.Middleware that logs each stage of the command dispatch using
the Elixir Logger:
	Before dispatch.
	After successful dispatch.
	After failed dispatch.

 Summary

 Functions

 after_dispatch(pipeline)

 Callback implementation for Commanded.Middleware.after_dispatch/1.

 after_failure(pipeline)

 Callback implementation for Commanded.Middleware.after_failure/1.

 before_dispatch(pipeline)

 Callback implementation for Commanded.Middleware.before_dispatch/1.

 Functions

 Link to this function

 after_dispatch(pipeline)

 View Source

Callback implementation for Commanded.Middleware.after_dispatch/1.

 Link to this function

 after_failure(pipeline)

 View Source

Callback implementation for Commanded.Middleware.after_failure/1.

 Link to this function

 before_dispatch(pipeline)

 View Source

Callback implementation for Commanded.Middleware.before_dispatch/1.

Commanded.Middleware.Pipeline

Pipeline is a struct used as an argument in the callback functions of modules
implementing the Commanded.Middleware behaviour.
This struct must be returned by each function to be used in the next
middleware based on the configured middleware chain.

 Pipeline fields

	application - the Commanded application.

	assigns - shared user data as a map.

	causation_id - an optional UUID used to identify the cause of the
 command being dispatched.

	correlation_id - an optional UUID used to correlate related
 commands/events together.

	command - command struct being dispatched.

	command_uuid - UUID assigned to the command being dispatched.

	consistency - requested dispatch consistency, either: :eventual
 (default) or :strong.

	halted - flag indicating whether the pipeline was halted.

	identity - an atom specifying a field in the command containing the
 aggregate's identity or a one-arity function that returns an identity
 from the command being dispatched.

	identity_prefix - an optional prefix to the aggregate's identity. It may
 be a string (e.g. "prefix-") or a zero arity function
 (e.g. &MyRouter.identity_prefix/0).

	metadata - the metadata map to be persisted along with the events.

	response - sets the response to send back to the caller.

 Summary

 Functions

 assign(pipeline, key, value)

 Puts the key with value equal to value into assigns map.

 assign_metadata(pipeline, key, value)

 Puts the key with value equal to value into metadata map.

 chain(pipeline, stage, middleware)

 Executes the middleware chain.

 halt(pipeline)

 Halts the pipeline by preventing further middleware downstream from being invoked.

 halted?(pipeline)

 Has the pipeline been halted?

 respond(pipeline, response)

 Sets the response to be returned to the dispatch caller, unless already set.

 response(pipeline)

 Extract the response from the pipeline

 Functions

 Link to this function

 assign(pipeline, key, value)

 View Source

Puts the key with value equal to value into assigns map.

 Link to this function

 assign_metadata(pipeline, key, value)

 View Source

Puts the key with value equal to value into metadata map.
Note: Use of atom keys in metadata is deprecated in favour of binary strings.

 Link to this function

 chain(pipeline, stage, middleware)

 View Source

Executes the middleware chain.

 Link to this function

 halt(pipeline)

 View Source

Halts the pipeline by preventing further middleware downstream from being invoked.
Prevents dispatch of the command if halt occurs in a before_dispatch callback.

 Link to this function

 halted?(pipeline)

 View Source

Has the pipeline been halted?

 Link to this function

 respond(pipeline, response)

 View Source

Sets the response to be returned to the dispatch caller, unless already set.

 Link to this function

 response(pipeline)

 View Source

Extract the response from the pipeline

Commanded.Assertions.EventAssertions

Provides test assertion and wait for event functions to help test applications
built using Commanded.
The default assert and refute receive timeouts are one second.
You can override the default timeout in config (e.g. config/test.exs):
config :commanded,
 assert_receive_event_timeout: 1_000,
 refute_receive_event_timeout: 1_000

 Summary

 Functions

 assert_correlated(application, event_type_a, predicate_a, event_type_b, predicate_b)

 Assert that events matching their respective predicates have a matching
correlation id.

 assert_receive_event(application, event_type, assertion_fn)

 Assert that an event of the given event type is published.
Verify that event using the assertion function.

 assert_receive_event(application, event_type, predicate_fn, assertion_fn)

 Assert that an event of the given event type, matching the predicate, is
published. Verify that event using the assertion function.

 refute_receive_event(application, event_type, refute_fn, opts \\ [])

 Refute that an event of the given type has been received.

 wait_for_event(application, event_type)

 Wait for an event of the given event type to be published.

 wait_for_event(application, event_type, predicate_fn)

 Wait for an event of the given event type, matching the predicate, to be
published.

 Functions

 Link to this function

 assert_correlated(application, event_type_a, predicate_a, event_type_b, predicate_b)

 View Source

Assert that events matching their respective predicates have a matching
correlation id.
Useful when there is a chain of events that is connected through event handlers.

 Example

assert_correlated(
 BankApp,
 BankAccountOpened, fn opened -> opened.id == 1 end,
 InitialAmountDeposited, fn deposited -> deposited.id == 2 end
)

 Link to this function

 assert_receive_event(application, event_type, assertion_fn)

 View Source

Assert that an event of the given event type is published.
Verify that event using the assertion function.

 Example

assert_receive_event(BankApp, BankAccountOpened, fn opened ->
 assert opened.account_number == "ACC123"
end)

 Link to this function

 assert_receive_event(application, event_type, predicate_fn, assertion_fn)

 View Source

Assert that an event of the given event type, matching the predicate, is
published. Verify that event using the assertion function.

 Example

assert_receive_event(BankApp, BankAccountOpened,
 fn opened -> opened.account_number == "ACC123" end,
 fn opened ->
 assert opened.balance == 1_000
 end)

 Link to this function

 refute_receive_event(application, event_type, refute_fn, opts \\ [])

 View Source

Refute that an event of the given type has been received.
An optional predicate may be provided to filter events matching the refuted
type.

 Examples

Refute that ExampleEvent is produced by given anonymous function:
refute_receive_event(ExampleApp, ExampleEvent, fn ->
 :ok = MyApp.dispatch(command)
end)
Refute that ExampleEvent is produced by some_func/0 function:
refute_receive_event(ExampleApp, ExampleEvent, &some_func/0)
Refute that ExampleEvent matching given event_matches?/1 predicate function
is produced by some_func/0 function:
refute_receive_event(ExampleApp, ExampleEvent, &some_func/0,
 predicate: &event_matches?/1
)
Refute that ExampleEvent matching given anonymous predicate function
is produced by some_func/0 function:
refute_receive_event(ExampleApp, ExampleEvent, &some_func/0,
 predicate: fn event -> event.value == 1 end
)
Refute that ExampleEvent produced by some_func/0 function is published to
a given stream:
refute_receive_event(ExampleApp, ExampleEvent, &some_func/0,
 predicate: fn event -> event.value == 1 end,
 stream: "foo-1234"
)

 Link to this function

 wait_for_event(application, event_type)

 View Source

Wait for an event of the given event type to be published.

 Examples

wait_for_event(BankApp, BankAccountOpened)

 Link to this function

 wait_for_event(application, event_type, predicate_fn)

 View Source

Wait for an event of the given event type, matching the predicate, to be
published.

 Examples

wait_for_event(BankApp, BankAccountOpened, fn opened ->
 opened.account_number == "ACC123"
end)

mix commanded.reset

Reset an event handler.

 Usage

mix commanded.reset --app <app> --handler <handler_name>

 Examples

mix commanded.reset --app MyApp --handler MyHandler
mix commanded.reset -a MyApp -h MyHandler

 Command line options

	-a, --app - the Commanded application
	-h, --handler - the name of the event handler to reset
	-q, --quiet - do not log output

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

