

 ConnGRPC

 v0.2.0

 Table of contents

 	Overview

 	Changelog

 	Telemetry

 	Modules

 	ConnGRPC.Channel

 	ConnGRPC.Pool

 	ConnGRPC.Backoff

 	ConnGRPC.Backoff.Exponential

Overview

ConnGRPC allows you to keep persistent channels, and use channel pools with gRPC Elixir.
Installation
Add conn_grpc to your list of dependencies:
def deps do
 [
 {:conn_grpc, "~> 0.1"},

 # You also need to have gRPC Elixir installed
 {:grpc, "~> 0.5"}
]
end
Usage
You can use ConnGRPC with a pool of persistent channels, or with a single persistent channel.
Channel pools
Define a module that uses ConnGRPC.Pool.
defmodule DemoPool do
 use ConnGRPC.Pool,
 pool_size: 5,
 channel: [address: "localhost:50051", opts: []]
end
Then add DemoPool to your supervision tree, and call get_channel/0 from anywhere in your application to get a channel connection:
{:ok, channel} = DemoPool.get_channel()
Each time get_channel is called, a different channel from your pool will be returned using round-robin distribution.
For more info, see ConnGRPC.Pool.
Single channel
For a single persistent channel, define a module that uses ConnGRPC.Channel.
defmodule DemoChannel do
 use ConnGRPC.Channel, address: "localhost:50051", opts: []
end
Then add DemoChannel to your supervision tree, and call get/0 from anywhere in your application to get your channel connection:
{:ok, channel} = DemoChannel.get()
Depending on the load, using a single channel for the entire application may become a bottleneck. In that case, use the ConnGRPC.Pool module, that creates a pool of channels.
For more info, see ConnGRPC.Channel.

Changelog for ConnGRPC

v0.2.0
Added
	mock option on ConnGRPC.Channel

v0.1.0
Added
	ConnGRPC.Channel module
	ConnGRPC.Pool module

Telemetry

ConnGRPC sends telemetry events.
Call :telemetry.attach/4 or :telemetry.attach_many/4 to attach your handler function to any of the following events:
Channel events
	[:conn_grpc, :channel, :get]: reports the duration of the call to ConnGRPC.Channel.get/1. If it's taking too long, the channel process is overwhelmed with messages, and increasing pool size may help.

	[:conn_grpc, :channel, :connected]: reports a successful connection, and how long it took to establish the connection

	[:conn_grpc, :channel, :connection_failed]: reports a failed connection, and how long it took trying to establish the connection

	[:conn_grpc, :channel, :disconnected]: reports a disconnection, and how long the connection stayed up

Pool events
	[:conn_grpc, :pool, :get_channel]: reports the duration of the call to ConnGRPC.Pool.get_channel/1.

	[:conn_grpc, :pool, :status]: reports the pool status, with the expected size (fixed pool size) and current size (amount of channels currently on the pool). This event is reported periodically.

ConnGRPC.Channel

A process that manages a gRPC channel.
When ConnGRPC.Channel is started, it will create a gRPC connection, which can be fetched with
ConnGRPC.Channel.get/1.
You can use this if you want to keep a persistent gRPC channel open to be reused in your application.
Depending on the load, using a single channel for the entire application may become a bottleneck. In that
case, see the ConnGRPC.Pool module, that allows creating a pool of channels.
Module-based channel
To implement a module-based gRPC channel, define a module that uses ConnGRPC.Channel.
defmodule DemoChannel do
 use ConnGRPC.Channel, address: "localhost:50051", opts: []
end
Then, you can add the module to your application supervision tree.
defmodule Demo.Application do
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 DemoChannel
]

 Supervisor.start_link(children, strategy: :one_for_one, name: Demo.Supervisor)
 end
end
To get the connection in your application, call:
DemoChannel.get()
It'll return either {:ok, channel} or {:error, :not_connected}.
Channel without module
If you don't want to define for your channel, you can add ConnGRPC.Channel directly to your
supervision tree and pass the options on the child spec.
defmodule Demo.Application do
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 Supervisor.child_spec(
 {ConnGRPC.Channel, name: :demo_channel, address: "localhost:50051", opts: []},
 id: :demo_channel
)
]

 Supervisor.start_link(children, strategy: :one_for_one, name: Demo.Supervisor)
 end
end
To get the connection in your application, call:
ConnGRPC.Channel.get_channel(:demo_channel)
Options available
For all options available, see start_link/1.
Telemetry
ConnGRPC sends telemetry events. See telemetry.md.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get(channel, opts \\ [])

 Returns the gRPC channel

 start_link(options)

 Starts and links process that keeps a persistent gRPC channel.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 get(channel, opts \\ [])

 View Source

Returns the gRPC channel

 Link to this function

 start_link(options)

 View Source

Starts and links process that keeps a persistent gRPC channel.

 options

 Options

	:address - The gRPC server address. For more details,
see GRPC.Stub.connect/2

	:opts - Options for Elixir gRPC. For more details,
see GRPC.Stub.connect/2

	:name - A name to register the started process (see the :name option
in GenServer.start_link/3)

	:backoff - Minimum and maximum exponential backoff intervals (default: [min: 1000, max: 30_000])

	:backoff_module - Backoff module to be used (default: ConnGRPC.Backoff.Exponential).
If you'd like to implement your own backoff, see the ConnGRPC.Backoff behavior.

	:debug - Write debug logs (default: false)

	:on_connect - Function to run on connect (0-arity)

	:on_disconnect - Function to run on disconnect (0-arity)

	:grpc_stub - GRPC stub module that will receive the connect/2 call (default: GRPC.Stub)

	:mock - A function that if provided, will override calls to get/1.
It can be useful for mocking channel connection in parallel tests.

ConnGRPC.Pool

A process that manages a pool of persistent gRPC channels.
When ConnGRPC.Pool is started, it will start a pool of pre-connected channels. You can
then fetch an individual channel from it by calling ConnGRPC.Pool.get_channel/1, which
uses round-robin to determine the channel returned.
ConnGRPC.Pool doesn't implement any checkout mechanism and acts as a routing pool, or a simple
load balancer. The reason checkout is not implemented is because gRPC allows making multiple
requests in parallel in a single channel, so we don't need to lock the channel to a specific process
while it's being used.
Module-based pool
To implement a module-based gRPC pool, define a module that uses ConnGRPC.Pool.
defmodule DemoPool do
 use ConnGRPC.Pool,
 pool_size: 5,
 channel: [address: "localhost:50051", opts: []]
end
The format of address and opts is the same used by
GRPC.Stub.connect/2
Then, you can add the module to your application supervision tree.
defmodule Demo.Application do
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 DemoPool
]

 Supervisor.start_link(children, strategy: :one_for_one, name: Demo.Supervisor)
 end
end
To get a connection from the pool in your application, call:
DemoPool.get_channel()
It'll return either {:ok, channel} or {:error, :not_connected}.
Pool without module
If you don't want to define a module for your pool, you can add ConnGRPC.Pool directly to your
supervision tree and pass the options on the child spec.
defmodule Demo.Application do
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 Supervisor.child_spec(
 {ConnGRPC.Pool, name: :demo_pool, pool_size: 5, channel: [address: "localhost:50051", opts: []]},
 id: :demo_pool
)
]

 Supervisor.start_link(children, strategy: :one_for_one, name: Demo.Supervisor)
 end
end
The format of address and opts is the same used by
GRPC.Stub.connect/2
To get a connection from the pool in your application, call:
ConnGRPC.Pool.get_channel(:demo_pool)
Options available
For all options available, see start_link/1.
Telemetry
ConnGRPC sends telemetry events. See telemetry.md.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_all_pids(pool_name)

 Returns all pids on the pool

 get_channel(pool_name)

 Returns a gRPC channel from the pool

 start_link(opts)

 Starts and links supervisor that keeps a pool of gRPC channels.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 get_all_pids(pool_name)

 View Source

 @spec get_all_pids(module() | atom()) :: [pid()]

Returns all pids on the pool

 Link to this function

 get_channel(pool_name)

 View Source

 @spec get_channel(module() | atom()) ::
 {:ok, GRPC.Channel.t()} | {:error, :not_connected}

Returns a gRPC channel from the pool

 Link to this function

 start_link(opts)

 View Source

Starts and links supervisor that keeps a pool of gRPC channels.

 options

 Options

	:name - A name to register the started process (see the :name option
in GenServer.start_link/3)

	:pool_size - The size of the channel pool

	:channel - Channel configuration, such as address, connection options, backoff, and callbacks.
For all options, see ConnGRPC.Channel.start_link/1

ConnGRPC.Backoff behaviour

Behaviour for implementing custom backoff.

 Anchor for this section

 Summary

 Callbacks

 backoff(state)

 Generate backoff delay and new state.
This is called each time that we fail to connect.

 new(opts)

 Initializes the backoff state. This is called when the channel process is started.

 reset(state)

 Reset backoff state. This is called when connecting succeeds.

 Anchor for this section

Callbacks

 Link to this callback

 backoff(state)

 View Source

 @callback backoff(state :: any()) :: {delay :: non_neg_integer(), state :: any()}

Generate backoff delay and new state.
This is called each time that we fail to connect.

 Link to this callback

 new(opts)

 View Source

 @callback new(opts :: any()) :: state :: any()

Initializes the backoff state. This is called when the channel process is started.

 Link to this callback

 reset(state)

 View Source

 @callback reset(state :: any()) :: state :: any()

Reset backoff state. This is called when connecting succeeds.

ConnGRPC.Backoff.Exponential

Exponential backoff with jitter.
This is the default retry backoff mechanism used by ConnGRPC.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

