

 Corex

 v0.1.0-alpha.13

 Table of contents

 	Installation

 	
 Modules

 	Components

 	Corex.Accordion

 	Corex.Checkbox

 	Corex.Combobox

 	Corex.Select

 	Corex.Switch

 	Corex.Toast

 	Corex.ToggleGroup

 	Helpers

 	Corex.Form

 	Structures

 	Corex.Accordion.Item

 	Corex.Collection.Item

 	Corex.Flash.Error

 	Corex.Flash.Info

 	Corex.Positioning

 	
 Mix Tasks

 	mix corex.design

Corex.Accordion

Phoenix implementation of Zag.js Accordion.
Examples
List
You must use Corex.Accordion.Item struct for items.
The value for each item is optional, useful for controlled mode and API to identify the item.
You can specify disabled for each item.
<.accordion
 class="accordion"
 items={[
 %Corex.Accordion.Item{
 trigger: "Lorem ipsum dolor sit amet",
 content: "Consectetur adipiscing elit. Sed sodales ullamcorper tristique."
 },
 %Corex.Accordion.Item{
 trigger: "Duis dictum gravida odio ac pharetra?",
 content: "Nullam eget vestibulum ligula, at interdum tellus."
 },
 %Corex.Accordion.Item{
 trigger: "Donec condimentum ex mi",
 content: "Congue molestie ipsum gravida a. Sed ac eros luctus."
 }
]}
/>
List Custom
Similar to List but render a custom item slot that will be used for all items.
Use {item.meta.trigger} and {item.meta.content} to render the trigger and content for each item.
This example assumes the import of .icon from Core Components
 <.accordion
 class="accordion"
 items={[
 %Corex.Accordion.Item{
 value: "lorem",
 trigger: "Lorem ipsum dolor sit amet",
 content: "Consectetur adipiscing elit. Sed sodales ullamcorper tristique.",
 meta: %{
 indicator: "hero-chevron-right",
 }
 },
 %Corex.Accordion.Item{
 trigger: "Duis dictum gravida odio ac pharetra?",
 content: "Nullam eget vestibulum ligula, at interdum tellus.",
 meta: %{
 indicator: "hero-chevron-right",
 }
 },
 %Corex.Accordion.Item{
 value: "donec",
 trigger: "Donec condimentum ex mi",
 content: "Congue molestie ipsum gravida a. Sed ac eros luctus.",
 disabled: true,
 meta: %{
 indicator: "hero-chevron-right",
 }
 }
]}
>
 <:item :let={item}>
 <.accordion_trigger item={item}>
 {item.data.trigger}
 <:indicator>
 <.icon name={item.data.meta.indicator} />
 </:indicator>
 </.accordion_trigger>

 <.accordion_content item={item}>
 {item.data.content}
 </.accordion_content>
 </:item>
</.accordion>
Custom
Render a custom item slot per accordion item manually.
Use let={item} to get the item data and pass it to the accordion_trigger/1 and accordion_content/1 components.
The trigger component takes an optional :indicator slot to render the indicator ico
This example assumes the import of .icon from Core Components
<.accordion id="my-accordion" value={["duis"]} class="accordion">
<:item :let={item} value="lorem" disabled>
 <.accordion_trigger item={item}>
 Lorem ipsum dolor sit amet
 <:indicator>
 <.icon name="hero-chevron-right" />
 </:indicator>
 </.accordion_trigger>
 <.accordion_content item={item}>
 Consectetur adipiscing elit. Sed sodales ullamcorper tristique. Proin quis risus feugiat tellus iaculis fringilla.
 </.accordion_content>
</:item>
<:item :let={item} value="duis">
 <.accordion_trigger item={item}>
 Duis dictum gravida odio ac pharetra?
 <:indicator>
 <.icon name="hero-chevron-right" />
 </:indicator>
 </.accordion_trigger>
 <.accordion_content item={item}>
 Nullam eget vestibulum ligula, at interdum tellus. Quisque feugiat, dui ut fermentum sodales, lectus metus dignissim ex.
 </.accordion_content>
</:item>
</.accordion>
Controlled
Render an accordion controlled by the server.
You must use the on_value_change event to update the value on the server and pass the value as a list of strings.
The event will receive the value as a map with the key value and the id of the accordion.
defmodule MyAppWeb.AccordionLive do
use MyAppWeb, :live_view

def mount(_params, _session, socket) do
 {:ok, assign(socket, :value, ["lorem"])}
end

def handle_event("on_value_change", %{"value" => value}, socket) do
 {:noreply, assign(socket, :value, value)}
end

def render(assigns) do
 ~H"""
 <.accordion value={@value} on_value_change="on_value_change" class="accordion">
 <:item :let={item} value="lorem">
 <.accordion_trigger item={item}>
 Lorem ipsum dolor sit amet
 </.accordion_trigger>
 <.accordion_content item={item}>
 Consectetur adipiscing elit. Sed sodales ullamcorper tristique. Proin quis risus feugiat tellus iaculis fringilla.
 </.accordion_content>
 </:item>
 <:item :let={item} value="duis">
 <.accordion_trigger item={item}>
 Duis dictum gravida odio ac pharetra?
 </.accordion_trigger>
 <.accordion_content item={item}>
 Nullam eget vestibulum ligula, at interdum tellus. Quisque feugiat, dui ut fermentum sodales, lectus metus dignissim ex.
 </.accordion_content>
 </:item>
 </.accordion>
"""
end
end

Async
When the initial props are not available on mount, you can use the Phoenix.LiveView.assign_async function to assign the props asynchronously
You can use the optional Corex.Accordion.accordion_skeleton/1 to render a loading or error state
defmodule MyAppWeb.AccordionAsyncLive do
use MyAppWeb, :live_view

def mount(_params, _session, socket) do
 socket =
 socket
 |> assign_async(:accordion, fn ->
 Process.sleep(1000)

 items = [
 %Corex.Accordion.Item{
 value: "lorem",
 trigger: "Lorem ipsum dolor sit amet",
 content: "Consectetur adipiscing elit. Sed sodales ullamcorper tristique.",
 disabled: true
 },
 %Corex.Accordion.Item{
 value: "duis",
 trigger: "Duis dictum gravida odio ac pharetra?",
 content: "Nullam eget vestibulum ligula, at interdum tellus."
 },
 %Corex.Accordion.Item{
 value: "donec",
 trigger: "Donec condimentum ex mi",
 content: "Congue molestie ipsum gravida a. Sed ac eros luctus."
 }
]

 {:ok,
 %{
 accordion: %{
 items: items,
 value: ["duis", "donec"]
 }
 }}
 end)

 {:ok, socket}
end

def render(assigns) do
 ~H"""
 <Layouts.app flash={@flash}>
 <div class="layout__row">
 <h1>Accordion</h1>
 <h2>Async</h2>
 </div>

 <.async_result :let={accordion} assign={@accordion}>
 <:loading>
 <.accordion_skeleton count={3} class="accordion" />
 </:loading>

 <:failed>
 there was an error loading the accordion
 </:failed>

 <.accordion
 id="async-accordion"
 class="accordion"
 items={accordion.items}
 value={accordion.value}
 />
 </.async_result>
 </Layouts.app>
 """
end
end

API Control
Client-side
<button phx-click={Corex.Accordion.set_value("my-accordion", ["item-1"])}>
 Open Item 1
</button>

Server-side
def handle_event("open_item", _, socket) do
 {:noreply, Corex.Accordion.set_value(socket, "my-accordion", ["item-1"])}
end
Styling
Use data attributes to target elements:
[data-scope="accordion"][data-part="root"] {}
[data-scope="accordion"][data-part="item"] {}
[data-scope="accordion"][data-part="item-trigger"] {}
[data-scope="accordion"][data-part="item-content"] {}
[data-scope="accordion"][data-part="item-indicator"] {}

 Summary

 Components

 accordion(assigns)

 Renders an accordion component.

 accordion_content(assigns)

 Renders the accordion content area.

 accordion_skeleton(assigns)

 Renders a loading skeleton for the accordion component.

 accordion_trigger(assigns)

 Renders the accordion trigger button. Includes optional :indicator slot.

 API

 set_value(accordion_id, value)

 Sets the accordion value from client-side. Returns a Phoenix.LiveView.JS command.

 set_value(socket, accordion_id, value)

 Sets the accordion value from server-side. Pushes a LiveView event.

 Components

 accordion(assigns)

Renders an accordion component.
You can use either:
	The :item slot for manual item definition with full control
	The :items attribute for programmatic item generation from a list of %Corex.Accordion.Item{} structs

When using :items, each item MUST be a %Corex.Accordion.Item{} struct with:
	:value (required) - unique identifier for the item
	:trigger (required) - content for the trigger button
	:content (optional, default: "") - content for the accordion panel
	:disabled (optional, default: false) - whether the item is disabled

Attributes
	id (:string) - The id of the accordion, useful for API to identify the accordion.
	items (:list) - The items of the accordion, must be a list of %Corex.Accordion.Item{} structs. Defaults to nil.
	value (:list) - The initial value or the controlled value of the accordion, must be a list of strings. Defaults to [].
	controlled (:boolean) - Whether the accordion is controlled. Only in LiveView, the on_value_change event is required. Defaults to false.
	collapsible (:boolean) - Whether the accordion is collapsible. Defaults to true.
	disabled (:boolean) - Whether the accordion is disabled. Defaults to false.
	multiple (:boolean) - Whether the accordion allows multiple items to be selected. Defaults to true.
	orientation (:string) - The orientation of the accordion. Defaults to "vertical". Must be one of "horizontal", or "vertical".
	dir (:string) - The direction of the accordion. Defaults to "ltr". Must be one of "ltr", or "rtl".
	on_value_change (:string) - The server event name when the value change. Defaults to nil.
	on_value_change_client (:string) - The client event name when the value change. Defaults to nil.
	on_focus_change (:string) - The server event name when the focus change. Defaults to nil.
	on_focus_change_client (:string) - The client event name when the focus change. Defaults to nil.
	Global attributes are accepted.

Slots
	item - Accepts attributes:	value (:string) - The value of the item, useful in controlled mode and for API to identify the item.
	disabled (:boolean) - Whether the item is disabled.

 accordion_content(assigns)

Renders the accordion content area.
Attributes
	item (:map) (required)

Slots
	inner_block (required)

 accordion_skeleton(assigns)

Renders a loading skeleton for the accordion component.
Attributes
	count (:integer) - Defaults to 3.
	Global attributes are accepted.

Slots
	trigger
	indicator
	content

 accordion_trigger(assigns)

Renders the accordion trigger button. Includes optional :indicator slot.
Attributes
	item (:map) (required)

Slots
	inner_block (required)
	indicator

 API

 set_value(accordion_id, value)

Sets the accordion value from client-side. Returns a Phoenix.LiveView.JS command.
Examples
<button phx-click={Corex.Accordion.set_value("my-accordion", ["item-1"])}>
 Open Item 1
</button>

 set_value(socket, accordion_id, value)

Sets the accordion value from server-side. Pushes a LiveView event.
Examples
def handle_event("open_item", _params, socket) do
 socket = Corex.Accordion.set_value(socket, "my-accordion", ["item-1"])
 {:noreply, socket}
end

Corex.Checkbox

Phoenix implementation of Zag.js Checkbox.
Examples
Minimal
<.checkbox id="my-checkbox">
 <:label>Accept terms</:label>
</.checkbox>
Custom Control
This example assumes the import of .icon from Core Components, you are free to replace it
<.checkbox class="checkbox">
 <:label>
 Accept the terms
 </:label>
 <:control>
 <.icon name="hero-check" class="data-checked" />
 </:control>
</.checkbox>
Custom Error
This example assumes the import of .icon from Core Components, you are free to replace it
<.checkbox class="checkbox">
 <:label>
 Accept the terms
 </:label>
 <:error :let={msg}>
 <.icon name="hero-exclamation-circle" class="icon" />
 {msg}
 </:error>
</.checkbox>
Phoenix Form Integration
When using with Phoenix forms, you must add an id to the form using the Corex.Form.get_form_id/1 function.
Controller
<.form :let={f} for={@changeset} id={get_form_id(@changeset)}>
 <.checkbox field={f[:terms]} class="checkbox">
 <:label>I accept the terms</:label>
 </.checkbox>
 <button type="submit">Submit</button>
</.form>
Live View
When using Phoenix form in a Live view you must also add controlled mode. This allows the Live view to be the source of truth and the component to be in sync accordingly
<.form for={@form} id={get_form_id(@form)} phx-change="validate" phx-submit="save">
 <.checkbox field={@form[:terms_accepted]} controlled>
 <:label>I accept the terms and conditions</:label>
 <:error :let={msg}>{msg}</:error>
 </.checkbox>
</.form>
The field attribute automatically handles:
	Setting the id from the form field
	Setting the name for form submission
	Mapping the form value to the checked state
	Displaying validation errors
	Integration with Phoenix changesets

API Control
Client-side
<button phx-click={Corex.Checkbox.set_checked("my-checkbox", true)}>
 Check
</button>

<button phx-click={Corex.Checkbox.toggle_checked("my-checkbox")}>
 Toggle
</button>

Server-side
def handle_event("check", _, socket) do
 {:noreply, Corex.Checkbox.set_checked(socket, "my-checkbox", true)}
end

def handle_event("toggle", _, socket) do
 {:noreply, Corex.Checkbox.toggle_checked(socket, "my-checkbox")}
end
Styling
Use data attributes to target elements:
	[data-scope="checkbox"][data-part="root"] - Label wrapper
	[data-scope="checkbox"][data-part="control"] - Checkbox control
	[data-scope="checkbox"][data-part="label"] - Label text
	[data-scope="checkbox"][data-part="input"] - Hidden input
	[data-scope="checkbox"][data-part="error"] - Error message

State-specific styling:
	[data-state="checked"] - When checkbox is checked
	[data-state="unchecked"] - When checkbox is unchecked
	[data-disabled] - When checkbox is disabled
	[data-readonly] - When checkbox is read-only
	[data-invalid] - When checkbox has validation errors

 Summary

 Components

 checkbox(assigns)

 Renders a checkbox component.

 API

 set_checked(checkbox_id, checked)

 Sets the checkbox checked state from client-side. Returns a Phoenix.LiveView.JS command.

 set_checked(socket, checkbox_id, checked)

 Sets the checkbox checked state from server-side. Pushes a LiveView event.

 toggle_checked(checkbox_id)

 Toggles the checkbox checked state from client-side. Returns a Phoenix.LiveView.JS command.

 toggle_checked(socket, checkbox_id)

 Toggles the checkbox checked state from server-side. Pushes a LiveView event.

 Components

 checkbox(assigns)

Renders a checkbox component.
Attributes
	id (:string) - The id of the checkbox, useful for API to identify the checkbox.
	checked (:boolean) - The initial checked state or the controlled checked state. Defaults to false.
	controlled (:boolean) - Whether the checkbox is controlled. Defaults to false.
	name (:string) - The name of the checkbox input for form submission.
	form (:string) - The form id to associate the checkbox with.
	aria_label (:string) - The accessible label for the checkbox. Defaults to "Label".
	disabled (:boolean) - Whether the checkbox is disabled. Defaults to false.
	value (:string) - The value of the checkbox when checked. Defaults to "true".
	dir (:string) - The direction of the checkbox. Defaults to "ltr". Must be one of "ltr", or "rtl".
	read_only (:boolean) - Whether the checkbox is read-only. Defaults to false.
	invalid (:boolean) - Whether the checkbox has validation errors. Defaults to false.
	required (:boolean) - Whether the checkbox is required. Defaults to false.
	on_checked_change (:string) - The server event name when the checked state changes. Defaults to nil.
	on_checked_change_client (:string) - The client event name when the checked state changes. Defaults to nil.
	errors (:list) - List of error messages to display. Defaults to [].
	field (Phoenix.HTML.FormField) - A form field struct retrieved from the form, for example: @form[:email]. Automatically sets id, name, checked state, and errors from the form field.
	Global attributes are accepted.

Slots
	label - Accepts attributes:	class (:string)

	control - Accepts attributes:	class (:string)

	error - Accepts attributes:	class (:string)

 API

 set_checked(checkbox_id, checked)

Sets the checkbox checked state from client-side. Returns a Phoenix.LiveView.JS command.
Examples
<button phx-click={Corex.Checkbox.set_checked("my-checkbox", true)}>
 Check
</button>

<button phx-click={Corex.Checkbox.set_checked("my-checkbox", false)}>
 Uncheck
</button>

 set_checked(socket, checkbox_id, checked)

Sets the checkbox checked state from server-side. Pushes a LiveView event.
Examples
def handle_event("check", _params, socket) do
 socket = Corex.Checkbox.set_checked(socket, "my-checkbox", true)
 {:noreply, socket}
end

 toggle_checked(checkbox_id)

Toggles the checkbox checked state from client-side. Returns a Phoenix.LiveView.JS command.
Examples
<button phx-click={Corex.Checkbox.toggle_checked("my-checkbox")}>
 Toggle
</button>

 toggle_checked(socket, checkbox_id)

Toggles the checkbox checked state from server-side. Pushes a LiveView event.
Examples
def handle_event("toggle", _params, socket) do
 socket = Corex.Checkbox.toggle_checked(socket, "my-checkbox")
 {:noreply, socket}
end

Corex.Combobox

Phoenix implementation of Zag.js Combobox.
Minimal
This example assumes the import of .icon from Core Components, you are free to replace it
<.combobox
 class="combobox"
 placeholder="Select a country"
 collection={[
 %{label: "France", id: "fra", disabled: true},
 %{label: "Belgium", id: "bel"},
 %{label: "Germany", id: "deu"},
 %{label: "Netherlands", id: "nld"},
 %{label: "Switzerland", id: "che"},
 %{label: "Austria", id: "aut"}
]}
 >
 <:trigger>
 <.icon name="hero-chevron-down" />
 </:trigger>
 </.combobox>
Grouped
<.combobox
 class="combobox"
 placeholder="Select a country"
 collection={[
 %{label: "France", id: "fra", group: "Europe"},
 %{label: "Belgium", id: "bel", group: "Europe"},
 %{label: "Germany", id: "deu", group: "Europe"},
 %{label: "Netherlands", id: "nld", group: "Europe"},
 %{label: "Switzerland", id: "che", group: "Europe"},
 %{label: "Austria", id: "aut", group: "Europe"},
 %{label: "Japan", id: "jpn", group: "Asia"},
 %{label: "China", id: "chn", group: "Asia"},
 %{label: "South Korea", id: "kor", group: "Asia"},
 %{label: "Thailand", id: "tha", group: "Asia"},
 %{label: "USA", id: "usa", group: "North America"},
 %{label: "Canada", id: "can", group: "North America"},
 %{label: "Mexico", id: "mex", group: "North America"}
]}
 >
 <:trigger>
 <.icon name="hero-chevron-down" />
 </:trigger>
 </.combobox>
Extended
This example requires the installation of Flagpack to display the use of custom item rendering.
This example assumes the import of .icon from Core Components, you are free to replace it
 <.combobox
 class="combobox"
 placeholder="Select a country"
 collection={[
 %{label: "France", id: "fra"},
 %{label: "Belgium", id: "bel"},
 %{label: "Germany", id: "deu"},
 %{label: "Netherlands", id: "nld"},
 %{label: "Switzerland", id: "che"},
 %{label: "Austria", id: "aut"}
]}
 >
 <:item :let={item}>
 <Flagpack.flag name={String.to_atom(item.id)} />
 {item.label}
 </:item>
 <:trigger>
 <.icon name="hero-chevron-down" />
 </:trigger>
 <:clear_trigger>
 <.icon name="hero-backspace" />
 </:clear_trigger>
 <:item_indicator>
 <.icon name="hero-check" />
 </:item_indicator>
 </.combobox>
Extended Grouped
This example requires the installation of Flagpack to display the use of custom item rendering.
This example assumes the import of .icon from Core Components, you are free to replace it
<.combobox
 class="combobox"
 placeholder="Select a country"
 collection={[
 %{label: "France", id: "fra", group: "Europe"},
 %{label: "Belgium", id: "bel", group: "Europe"},
 %{label: "Germany", id: "deu", group: "Europe"},
 %{label: "Japan", id: "jpn", group: "Asia"},
 %{label: "China", id: "chn", group: "Asia"},
 %{label: "South Korea", id: "kor", group: "Asia"}
]}
 >
 <:item :let={item}>
 <Flagpack.flag name={String.to_atom(item.id)} />
 {item.label}
 </:item>
 <:trigger>
 <.icon name="hero-chevron-down" />
 </:trigger>
 <:clear_trigger>
 <.icon name="hero-backspace" />
 </:clear_trigger>
 <:item_indicator>
 <.icon name="hero-check" />
 </:item_indicator>
 </.combobox>
Styling
Use data attributes to target elements:
	[data-scope="combobox"][data-part="root"] - Container
	[data-scope="combobox"][data-part="control"] - Control wrapper
	[data-scope="combobox"][data-part="input"] - Input field
	[data-scope="combobox"][data-part="trigger"] - Trigger button
	[data-scope="combobox"][data-part="clear-trigger"] - Clear button
	[data-scope="combobox"][data-part="content"] - Dropdown content
	[data-scope="combobox"][data-part="item-group"] - Group container
	[data-scope="combobox"][data-part="item-group-label"] - Group label
	[data-scope="combobox"][data-part="item"] - Item wrapper
	[data-scope="combobox"][data-part="item-text"] - Item text
	[data-scope="combobox"][data-part="item-indicator"] - Optional indicator

 Summary

 Components

 combobox(assigns)

 Renders a combobox component.

 Components

 combobox(assigns)

Renders a combobox component.
Attributes
	id (:string) - The id of the combobox, useful for API to identify the combobox.
	collection (:list) - The collection of items to display in the combobox. Defaults to [].
	controlled (:boolean) - Whether the combobox is controlled. Defaults to false.
	on_open_change (:string) - The server event name to trigger on open change. Defaults to nil.
	on_open_change_client (:string) - The client event name to trigger on open change. Defaults to nil.
	bubble (:boolean) - Whether the client events are bubbled. Defaults to false.
	disabled (:boolean) - Whether the combobox is disabled. Defaults to false.
	open (:boolean) - Whether the combobox is open. Defaults to false.
	value (:list) - The value of the combobox. Defaults to [].
	placeholder (:string) - The placeholder of the combobox. Defaults to nil.
	always_submit_on_enter (:boolean) - Whether to always submit on enter. Defaults to false.
	auto_focus (:boolean) - Whether to auto focus the combobox. Defaults to false.
	close_on_select (:boolean) - Whether to close the combobox on select. Defaults to true.
	dir (:string) - The direction of the combobox. Defaults to "ltr".
	input_behavior (:string) - The input behavior of the combobox. Defaults to "autohighlight".
	loop_focus (:boolean) - Whether to loop focus the combobox. Defaults to false.
	multiple (:boolean) - Whether to allow multiple selection. Defaults to false.
	invalid (:boolean) - Whether the combobox is invalid. Defaults to false.
	name (:string) - The name of the combobox.
	form (:string) - The id of the form of the combobox.
	read_only (:boolean) - Whether the combobox is read only. Defaults to false.
	required (:boolean) - Whether the combobox is required. Defaults to false.
	on_input_value_change (:string) - The server event name to trigger on input value change. Defaults to nil.
	on_value_change (:string) - The server event name to trigger on value change. Defaults to nil.
	positioning (:map) - The positioning of the combobox. Defaults to %Corex.Positioning{hide_when_detached: true, strategy: "fixed", placement: "bottom", gutter: 0, shift: 0, overflow_padding: 0, arrow_padding: 4, flip: true, slide: true, overlap: false, same_width: true, fit_viewport: false}.
	field (Phoenix.HTML.FormField) - A form field struct retrieved from the form, for example: @form[:country]. Automatically sets id, name, value, and errors from the form field.
	errors (:list) - List of error messages to display. Defaults to [].
	Global attributes are accepted.

Slots
	label - The label content.
	trigger (required) - The trigger button content.
	clear_trigger - The clear button content.
	item_indicator - Optional indicator for selected items.
	error - Accepts attributes:	class (:string)

	item - Custom content for each item. Receives the item as :let binding.

Corex.Select

Phoenix implementation of Zag.js Select.
Examples
Minimal
This example assumes the import of .icon from Core Components, you are free to replace it
<.select
 id="my-select"
 class="select"
 placeholder="Select a country"
 collection={[
 %{label: "France", id: "fra", disabled: true},
 %{label: "Belgium", id: "bel"},
 %{label: "Germany", id: "deu"},
 %{label: "Netherlands", id: "nld"},
 %{label: "Switzerland", id: "che"},
 %{label: "Austria", id: "aut"}
]}
>
 <:trigger>
 <.icon name="hero-chevron-down" />
 </:trigger>
</.select>
Grouped
This example assumes the import of .icon from Core Components, you are free to replace it
<.select
 class="select"
 placeholder="Select a country"
 collection={[
 %{label: "France", id: "fra", group: "Europe"},
 %{label: "Belgium", id: "bel", group: "Europe"},
 %{label: "Germany", id: "deu", group: "Europe"},
 %{label: "Netherlands", id: "nld", group: "Europe"},
 %{label: "Switzerland", id: "che", group: "Europe"},
 %{label: "Austria", id: "aut", group: "Europe"},
 %{label: "Japan", id: "jpn", group: "Asia"},
 %{label: "China", id: "chn", group: "Asia"},
 %{label: "South Korea", id: "kor", group: "Asia"},
 %{label: "Thailand", id: "tha", group: "Asia"},
 %{label: "USA", id: "usa", group: "North America"},
 %{label: "Canada", id: "can", group: "North America"},
 %{label: "Mexico", id: "mex", group: "North America"}
]}
>
 <:trigger>
 <.icon name="hero-chevron-down" />
 </:trigger>
</.select>
 ### Custom
This example requires the installation of Flagpack to display the use of custom item rendering.
This example assumes the import of .icon from Core Components, you are free to replace it
<.select
 class="select"
 placeholder="Select a country"
 collection={[
 %{label: "France", id: "fra"},
 %{label: "Belgium", id: "bel"},
 %{label: "Germany", id: "deu"},
 %{label: "Netherlands", id: "nld"},
 %{label: "Switzerland", id: "che"},
 %{label: "Austria", id: "aut"}
]}
>
 <:label>
 Country of residence
 </:label>
 <:item :let={item}>
 <Flagpack.flag name={String.to_atom(item.id)} />
 {item.label}
 </:item>
 <:trigger>
 <.icon name="hero-chevron-down" />
 </:trigger>
 <:item_indicator>
 <.icon name="hero-check" />
 </:item_indicator>
</.select>
Custom Grouped
This example requires the installation of Flagpack to display the use of custom item rendering.
This example assumes the import of .icon from Core Components, you are free to replace it
<.select
 class="select"
 placeholder="Select a country"
 collection={[
 %{label: "France", id: "fra", group: "Europe"},
 %{label: "Belgium", id: "bel", group: "Europe"},
 %{label: "Germany", id: "deu", group: "Europe"},
 %{label: "Japan", id: "jpn", group: "Asia"},
 %{label: "China", id: "chn", group: "Asia"},
 %{label: "South Korea", id: "kor", group: "Asia"}
]}
>
 <:item :let={item}>
 <Flagpack.flag name={String.to_atom(item.id)} />
 {item.label}
 </:item>
 <:trigger>
 <.icon name="hero-chevron-down" />
 </:trigger>
 <:item_indicator>
 <.icon name="hero-check" />
 </:item_indicator>
</.select>
Phoenix Form Integration
When using with Phoenix forms, you must add an id to the form using the Corex.Form.get_form_id/1 function.
Controller
<.form :let={f} for={@changeset} id={get_form_id(@changeset)}>
 <.select
 class="select"
 field={f[:country]}
 placeholder="Select a country"
 collection={[
 %{label: "France", id: "fra", disabled: true},
 %{label: "Belgium", id: "bel"},
 %{label: "Germany", id: "deu"},
 %{label: "Netherlands", id: "nld"},
 %{label: "Switzerland", id: "che"},
 %{label: "Austria", id: "aut"}
]}
>
 <:label>
 Your country of residence
 </:label>
 <:trigger>
 <.icon name="hero-chevron-down" />
 </:trigger>
 <:error :let={msg}>
 <.icon name="hero-exclamation-circle" class="icon" />
 {msg}
 </:error>
</.select>
 <button type="submit">Submit</button>
</.form>
Live View
When using Phoenix form in a Live view you must also add controlled mode. This allows the Live view to be the source of truth and the component to be in sync accordingly
<.form for={@form} id={get_form_id(@form)} phx-change="validate" phx-submit="save">
 <.select
 class="select"
 field={@form[:country]}
 controlled
 placeholder="Select a country"
 collection={[
 %{label: "France", id: "fra", disabled: true},
 %{label: "Belgium", id: "bel"},
 %{label: "Germany", id: "deu"},
 %{label: "Netherlands", id: "nld"},
 %{label: "Switzerland", id: "che"},
 %{label: "Austria", id: "aut"}
]}
 >
 <:label>
 Your country of residence
 </:label>
 <:trigger>
 <.icon name="hero-chevron-down" />
 </:trigger>
 <:error :let={msg}>
 <.icon name="hero-exclamation-circle" class="icon" />
 {msg}
 </:error>
 </.select>
</.form>
The field attribute automatically handles:
	Setting the id from the form field
	Setting the name for form submission
	Mapping the form value to the select value
	Displaying validation errors
	Integration with Phoenix changesets

API Control
Client-side
<button phx-click={Corex.Select.set_value("my-select", "fra")}>
 Check
</button>

<button phx-click={Corex.Select.toggle_value("my-select")}>
 Toggle
</button>

Server-side
def handle_event("set_value", _, socket) do
 {:noreply, Corex.Select.set_value(socket, "my-select", "fra")}
end
Styling
Use data attributes to target elements:
	[data-scope="select"][data-part="root"] - Label wrapper
	[data-scope="select"][data-part="control"] - Select control
	[data-scope="select"][data-part="label"] - Label text
	[data-scope="select"][data-part="input"] - Hidden input
	[data-scope="select"][data-part="error"] - Error message

State-specific styling:
	[data-state="open"] - When select is open
	[data-state="closed"] - When select is closed
	[data-disabled] - When select is disabled
	[data-readonly] - When select is read-only
	[data-invalid] - When select has validation errors

 Summary

 Functions

 select(assigns)

 Functions

 select(assigns)

Attributes
	id (:string)
	collection (:list) - Defaults to [].
	controlled (:boolean) - Whether the select is controlled. Defaults to false.
	placeholder (:string) - The placeholder of the select. Defaults to nil.
	value (:list) - The value of the select. Defaults to [].
	disabled (:boolean) - Whether the select is disabled. Defaults to false.
	close_on_select (:boolean) - Whether to close the select on select. Defaults to true.
	dir (:string) - The direction of the select. Defaults to "ltr".
	loop_focus (:boolean) - Whether to loop focus the select. Defaults to false.
	multiple (:boolean) - Whether to allow multiple selection. Defaults to false.
	invalid (:boolean) - Whether the select is invalid. Defaults to false.
	name (:string) - The name of the select.
	form (:string) - The id of the form of the select.
	read_only (:boolean) - Whether the select is read only. Defaults to false.
	required (:boolean) - Whether the select is required. Defaults to false.
	prompt (:string) - the prompt for select inputs. Defaults to nil.
	on_value_change (:string) - The server event name to trigger on value change. Defaults to nil.
	on_value_change_client (:string) - The client event name to trigger on value change. Defaults to nil.
	bubble (:boolean) - Whether the client events are bubbled. Defaults to false.
	positioning (Corex.Positioning) - Positioning options for the dropdown. Defaults to %Corex.Positioning{hide_when_detached: true, strategy: "fixed", placement: "bottom", gutter: 0, shift: 0, overflow_padding: 0, arrow_padding: 4, flip: true, slide: true, overlap: false, same_width: true, fit_viewport: false}.
	field (Phoenix.HTML.FormField) - A form field struct retrieved from the form, for example: @form[:country]. Automatically sets id, name, value, and errors from the form field.
	errors (:list) - List of error messages to display. Defaults to [].
	Global attributes are accepted.

Slots
	label - The label content.
	trigger (required) - The trigger button content.
	item_indicator - Optional indicator for selected items.
	error - Accepts attributes:	class (:string)

	item - Custom content for each item. Receives the item as :let binding.

Corex.Switch

Phoenix implementation of Zag.js Switch.
Examples
Basic Usage
<.switch id="my-switch">
 <:label>Enable notifications</:label>
</.switch>
Controlled Mode
<.switch
 id="my-switch"
 controlled
 checked={@switch_checked}
 on_checked_change="switch_changed">
 <:label>Enable notifications</:label>
</.switch>
def handle_event("switch_changed", %{"checked" => checked}, socket) do
 {:noreply, assign(socket, :switch_checked, checked)}
end
Phoenix Form Integration
When using with Phoenix forms, the switch automatically integrates with form validation:
<.form for={@form} phx-change="validate" phx-submit="save">
 <.switch field={@form[:terms_accepted]}>
 <:label>I accept the terms and conditions</:label>
 <:error :let={msg}>{msg}</:error>
 </.switch>
</.form>
The field attribute automatically handles:
	Setting the id from the form field
	Setting the name for form submission
	Mapping the form value to the checked state
	Displaying validation errors
	Integration with Phoenix changesets

Programmatic Control
Client-side
<button phx-click={Corex.Switch.set_checked("my-switch", true)}>
 Turn On
</button>

<button phx-click={Corex.Switch.toggle_checked("my-switch")}>
 Toggle
</button>

Server-side
def handle_event("turn_on", _, socket) do
 {:noreply, Corex.Switch.set_checked(socket, "my-switch", true)}
end

def handle_event("toggle", _, socket) do
 {:noreply, Corex.Switch.toggle_checked(socket, "my-switch")}
end
Styling
Use data attributes to target elements:
	[data-scope="switch"][data-part="root"] - Label wrapper
	[data-scope="switch"][data-part="control"] - Switch track
	[data-scope="switch"][data-part="thumb"] - Switch thumb/handle
	[data-scope="switch"][data-part="label"] - Label text
	[data-scope="switch"][data-part="input"] - Hidden input
	[data-scope="switch"][data-part="error"] - Error message

State-specific styling:
	[data-state="checked"] - When switch is on
	[data-state="unchecked"] - When switch is off
	[data-disabled] - When switch is disabled
	[data-readonly] - When switch is read-only
	[data-invalid] - When switch has validation errors

 Summary

 Components

 switch(assigns)

 Renders a switch component.

 API

 set_checked(switch_id, checked)

 Sets the switch checked state from client-side. Returns a Phoenix.LiveView.JS command.

 set_checked(socket, switch_id, checked)

 Sets the switch checked state from server-side. Pushes a LiveView event.

 toggle_checked(switch_id)

 Toggles the switch checked state from client-side. Returns a Phoenix.LiveView.JS command.

 toggle_checked(socket, switch_id)

 Toggles the switch checked state from server-side. Pushes a LiveView event.

 Components

 switch(assigns)

Renders a switch component.
Attributes
	id (:string) - The id of the switch, useful for API to identify the switch.
	checked (:boolean) - The initial checked state or the controlled checked state. Defaults to false.
	controlled (:boolean) - Whether the switch is controlled. Defaults to false.
	name (:string) - The name of the switch input for form submission.
	form (:string) - The form id to associate the switch with.
	aria_label (:string) - The accessible label for the switch. Defaults to "Label".
	disabled (:boolean) - Whether the switch is disabled. Defaults to false.
	value (:string) - The value of the switch when checked. Defaults to "true".
	dir (:string) - The direction of the switch. Defaults to "ltr". Must be one of "ltr", or "rtl".
	read_only (:boolean) - Whether the switch is read-only. Defaults to false.
	invalid (:boolean) - Whether the switch has validation errors. Defaults to false.
	required (:boolean) - Whether the switch is required. Defaults to false.
	on_checked_change (:string) - The server event name when the checked state changes. Defaults to nil.
	on_checked_change_client (:string) - The client event name when the checked state changes. Defaults to nil.
	errors (:list) - List of error messages to display. Defaults to [].
	field (Phoenix.HTML.FormField) - A form field struct retrieved from the form, for example: @form[:email]. Automatically sets id, name, checked state, and errors from the form field.
	Global attributes are accepted.

Slots
	label - Accepts attributes:	class (:string)

	error - Accepts attributes:	class (:string)

 API

 set_checked(switch_id, checked)

Sets the switch checked state from client-side. Returns a Phoenix.LiveView.JS command.
Examples
<button phx-click={Corex.Switch.set_checked("my-switch", true)}>
 Turn On
</button>

<button phx-click={Corex.Switch.set_checked("my-switch", false)}>
 Turn Off
</button>

 set_checked(socket, switch_id, checked)

Sets the switch checked state from server-side. Pushes a LiveView event.
Examples
def handle_event("turn_on", _params, socket) do
 socket = Corex.Switch.set_checked(socket, "my-switch", true)
 {:noreply, socket}
end

 toggle_checked(switch_id)

Toggles the switch checked state from client-side. Returns a Phoenix.LiveView.JS command.
Examples
<button phx-click={Corex.Switch.toggle_checked("my-switch")}>
 Toggle
</button>

 toggle_checked(socket, switch_id)

Toggles the switch checked state from server-side. Pushes a LiveView event.
Examples
def handle_event("toggle", _params, socket) do
 socket = Corex.Switch.toggle_checked(socket, "my-switch")
 {:noreply, socket}
end

Corex.Toast

Phoenix implementation of Zag.js Toast.
Examples
 <.toast_group flash={@flash}/>
API Control
Client-side
<button phx-click={Corex.Toast.push_toast("This is an info toast", "This is an info toast description", :info)} class="button">
 Create Info Toast
</button>

<div phx-disconnected={Corex.Toast.create_toast("We can't find the internet", "Attempting to reconnect", :loading, duration: :infinity)}></div>

Server-side
def handle_event("create_info_toast", _, socket) do
 {:noreply, Corex.Toast.push_toast(socket, "This is an info toast", "This is an info toast description", :info)}
end
Flash Messages
You can use the flash attribute to display flash messages as toasts.
<.toast_group
flash={@flash}
flash_info={%Corex.Flash.Info{title: "Success", type: :success, duration: 5000}}
flash_error={%Corex.Flash.Error{title: "Error", type: :error, duration: :infinity}}/>

 Summary

 Components

 toast_client_error(assigns)

 Renders a div that creates a toast notification when a client error occurs.

 toast_connected(assigns)

 Renders a div that creates a toast notification when the connection is restored.

 toast_disconnected(assigns)

 Renders a div that creates a toast notification when the connection is lost.

 toast_group(assigns)

 Renders a toast group (toaster) that manages multiple toast notifications.

 toast_server_error(assigns)

 Renders a div that creates a toast notification when a server error occurs.

 API

 create_toast(title, description \\ nil, type \\ :info, opts \\ [])

 Creates a toast notification programmatically (client-side).

 push_toast(socket, title, description \\ nil, type \\ :info, duration \\ 5000)

 Server-side function to push a toast event to the client.

 Components

 toast_client_error(assigns)

Renders a div that creates a toast notification when a client error occurs.
This component should be placed in your layout and will automatically
create a toast when Phoenix LiveView detects a client-side connection error.
Examples
<.toast_client_error
 title="We can't find the internet"
 description="Attempting to reconnect"
 type={:loading}
 duration={:infinity}
/>
Attributes
	id (:string) - Defaults to "client-error-toast".
	title (:string) (required)
	description (:string) - Defaults to nil.
	type (:atom) - Defaults to :info. Must be one of :info, :success, or :error.
	duration (:any) - Defaults to :infinity.

 toast_connected(assigns)

Renders a div that creates a toast notification when the connection is restored.
This component should be placed in your layout and will automatically
create a toast when Phoenix LiveView detects that the connection has been restored.
Examples
<.toast_connected
 title="Connection restored"
 description="You're back online"
 type={:success}
/>
Attributes
	id (:string) - Defaults to "connected-toast".
	title (:string) (required)
	description (:string) - Defaults to nil.
	type (:atom) - Defaults to :success. Must be one of :info, :success, or :error.
	duration (:any) - Defaults to 5000.

 toast_disconnected(assigns)

Renders a div that creates a toast notification when the connection is lost.
This component should be placed in your layout and will automatically
create a toast when Phoenix LiveView detects that the connection has been lost.
Examples
<.toast_disconnected
 title="Connection lost"
 description="Attempting to reconnect"
 type={:warning}
 duration={:infinity}
/>
Attributes
	id (:string) - Defaults to "disconnected-toast".
	title (:string) (required)
	description (:string) - Defaults to nil.
	type (:atom) - Defaults to :info. Must be one of :info, :success, or :error.
	duration (:any) - Defaults to :infinity.

 toast_group(assigns)

Renders a toast group (toaster) that manages multiple toast notifications.
This component should be rendered once in your layout.
Examples
 <.toast_group />
 <div phx-disconnected={Corex.Toast.create_toast("We can't find the internet", "Attempting to reconnect", :loading, duration: :infinity)}></div>
API Control
Client-side
<button phx-click={Corex.Toast.create_toast("This is an info toast", "This is an info toast description", :info)} class="button">
 Create Info Toast
</button>

Server-side
def handle_event("create_info_toast", _, socket) do
 {:noreply, Corex.Toast.push_toast(socket, "This is an info toast", "This is an info toast description", :info)}
end
Attributes
	id (:string) - Defaults to nil.
	placement (:string) - Defaults to "bottom-end". Must be one of "top-start", "top", "top-end", "bottom-start", "bottom", or "bottom-end".
	overlap (:boolean) - Defaults to true.
	max (:integer) - Defaults to 5.
	gap (:integer) - Defaults to nil.
	offset (:string) - Defaults to nil.
	pause_on_page_idle (:boolean) - Defaults to false.
	flash (:map) - the map of flash messages to display as toasts. Defaults to %{}.
	flash_info (Corex.Flash.Info) - configuration for info flash messages (Corex.Flash.Info struct).
	flash_error (Corex.Flash.Error) - configuration for error flash messages (Corex.Flash.Error struct).

Slots
	loading (required) - the loading spinner icon to display when duration is infinity.

 toast_server_error(assigns)

Renders a div that creates a toast notification when a server error occurs.
This component should be placed in your layout and will automatically
create a toast when Phoenix LiveView detects a server-side connection error.
Examples
<.toast_server_error
 title="Something went wrong!"
 description="Attempting to reconnect"
 type={:error}
 duration={:infinity}
/>
Attributes
	id (:string) - Defaults to "server-error-toast".
	title (:string) (required)
	description (:string) - Defaults to nil.
	type (:atom) - Defaults to :error. Must be one of :info, :success, or :error.
	duration (:any) - Defaults to :infinity.

 API

 create_toast(title, description \\ nil, type \\ :info, opts \\ [])

Creates a toast notification programmatically (client-side).
This function returns a JS command that can be used in event handlers.
Examples
def handle_event("save", _params, socket) do
 # ... save logic ...
 {:noreply, push_event(socket, "toast-create", %{
 title: "Saved!",
 description: "Your changes have been saved.",
 type: "success"
 })}
end
Or use the JS command version:
<button phx-click={Corex.Toast.create("Saved!", "Your changes have been saved.", :success)}>
 Save
</button>

<button phx-click={Corex.Toast.create("Loading...", nil, :loading, duration: :infinity)}>
 Show Loading
</button>

 push_toast(socket, title, description \\ nil, type \\ :info, duration \\ 5000)

Server-side function to push a toast event to the client.
Use this in your LiveView event handlers.
Examples
def handle_event("save", _params, socket) do
 # ... save logic ...
 {:noreply, push_toast(socket, "Saved!", "Your changes have been saved.", :success)}
end

Corex.ToggleGroup

Phoenix implementation of Zag.js Toggle Group.
Minimal
 <.toggle_group
 class="toggle-group">
 <:item value="a">
 A
 </:item>
 <:item value="b">
 B
 </:item>
 <:item value="c">
 C
 </:item>
 </.toggle_group>
Extended
This example assumes the import of .icon from Core Components

 <.toggle_group multiple={false}
 on_value_change="on_value_change"
 id="toggle-group-id"
 value=["center"]
 class="toggle-group">
 <:item value="left">
 <.icon name="hero-bars-3-bottom-left" />
 </:item>
 <:item value="center">
 <.icon name="hero-bars-3" />
 </:item>
 <:item value="right">
 <.icon name="hero-bars-3-bottom-right" />
 </:item>
 </.toggle_group>

Controlled
defmodule MyAppWeb.ToggleGroupLive do
use MyAppWeb, :live_view

def mount(_params, _session, socket) do
 {:ok, assign(socket, :value, ["lorem"])}
end

def handle_event("on_value_change", %{"value" => value}, socket) do
 {:noreply, assign(socket, :value, value)}
end

def render(assigns) do
 ~H"""
 <.toggle_group
 class="toggle-group"
 controlled
 value={@value} on_value_change="on_value_change" >
 <:item value="a">
 A
 </:item>
 <:item value="b">
 B
 </:item>
 <:item value="c">
 C
 </:item>
 </.toggle_group>
"""
end
end

Programmatic Control
Client-side
<button phx-click={Corex.ToggleGroup.set_value("my-toggle-group", ["item-1"])}>
 Toggle Group Item 1
</button>

 Server-side
def handle_event("open_item", _, socket) do
 {:noreply, Corex.ToggleGroup.set_value(socket, "my-toggle-group", ["item-1"])}
end
Styling
Use data attributes to target elements:
- [data-scope="toggle-group"][data-part="root"] - Container
- [data-scope="toggle-group"][data-part="item"] - Item wrapper

 Summary

 Components

 toggle_group(assigns)

 Renders a toggle group component.

 API

 set_value(toggle_group_id, value)

 Sets the toggle group value from client-side. Returns a Phoenix.LiveView.JS command.

 set_value(socket, toggle_group_id, value)

 Sets the toggle group value from server-side. Pushes a LiveView event.

 Components

 toggle_group(assigns)

Renders a toggle group component.
Attributes
	id (:string) - The id of the toggle group, useful for API to identify the toggle group.
	value (:list) - The initial value or the controlled value of the toggle group, must be a list of strings. Defaults to [].
	controlled (:boolean) - Whether the toggle group is controlled. Defaults to false.
	deselectable (:boolean) - Whether the toggle group is deselectable. Defaults to false.
	loopFocus (:boolean) - Whether the toggle group is loopFocus. Defaults to true.
	rovingFocus (:boolean) - Whether the toggle group is rovingFocus. Defaults to true.
	disabled (:boolean) - Whether the toggle group is disabled. Defaults to false.
	multiple (:boolean) - Whether the toggle group allows multiple items to be selected. Defaults to true.
	orientation (:string) - The orientation of the toggle group. Defaults to "horizontal". Must be one of "horizontal", or "vertical".
	dir (:string) - The direction of the toggle group. Defaults to "ltr". Must be one of "ltr", or "rtl".
	on_value_change (:string) - The server event name when the value change. Defaults to nil.
	on_value_change_client (:string) - The client event name when the value change. Defaults to nil.
	Global attributes are accepted.

Slots
	item (required) - Accepts attributes:	value (:string) - The value of the item, useful in controlled mode and for API to identify the item.
	disabled (:boolean) - Whether the item is disabled.

 API

 set_value(toggle_group_id, value)

Sets the toggle group value from client-side. Returns a Phoenix.LiveView.JS command.
Examples
<button phx-click={Corex.ToggleGroup.set_value("my-toggle-group", ["item-1"])}>
 Open Item 1
</button>

 set_value(socket, toggle_group_id, value)

Sets the toggle group value from server-side. Pushes a LiveView event.
Examples
def handle_event("open_item", _params, socket) do
 socket = Corex.ToggleGroup.set_value(socket, "my-toggle-group", ["item-1"])
 {:noreply, socket}
end

Corex.Form

Helper functions to work with forms.
Corex form components such as Corex.Checkbox and Corex.Select with classic form and with Phoenix form using the Phoenix.Component.form/1 function.
Examples
Classic Form
In a classic form, you can use the name attribute to identify the checkbox.
The generated parameters will be as follows: /?terms=true
This works in Controller View and Live View
<form id="my-form">
 <.checkbox name="terms" class="checkbox">
 <:label>I accept the terms</:label>
 </.checkbox>
 <button type="submit">Submit</button>
</form>
Phoenix Form
In a Phoenix form, you can use the field attribute to identify the checkbox.
The generated parameters will be as follows: /?terms=true
Required
You must use the Corex.Form.get_form_id/1 function to get the form id and pass it to the form component.
In a Controller
<.form :let={f} for={@changeset} id={get_form_id(@changeset)}>
 <.checkbox field={f[:terms]} class="checkbox">
 <:label>I accept the terms</:label>
 </.checkbox>
 <button type="submit">Submit</button>
</.form>
In a Live View
Required
	You must use the Corex.Form.get_form_id/1 function to get the form id and pass it to the form component.
	You must enable the controlled mode. This allows the Live View to be the source of truth and the component to be in sync accordingly

<.form for={@form} id={get_form_id(@form)}>
 <.checkbox field={@form[:terms]} controlled class="checkbox">
 <:label>I accept the terms</:label>
 </.checkbox>
 <button type="submit">Submit</button>
</.form>

 Summary

 Functions

 get_form_id(changeset)

 Returns the form id.

 Functions

 get_form_id(changeset)

 @spec get_form_id(Phoenix.HTML.Form.t() | Ecto.Changeset.t()) :: binary()

Returns the form id.
Accepts either:
	an Ecto.Changeset
	a Phoenix.HTML.Form

Examples
In a Controller
<.form :let={f} for={@changeset} id={get_form_id(@changeset)}>
 <.checkbox field={f[:terms]} class="checkbox">
 <:label>I accept the terms</:label>
 </.checkbox>
 <button type="submit">Submit</button>
</.form>
In a Live View
<.form for={@form} id={get_form_id(@form)}>
 <.checkbox field={@form[:terms]} controlled class="checkbox">
 <:label>I accept the terms</:label>
 </.checkbox>
 <button type="submit">Submit</button>
</.form>

Corex.Accordion.Item

List item structure for use with Accordion component.
Use it to create a list of items for Accordion
Fields
	:trigger - (required) Content to display in the accordion trigger/button
	:content - (required) Content to display in the accordion panel
	:value - (optional) Unique identifier for the item
	:disabled - (optional) Whether the item is disabled
	:meta - (optional) Additional metadata for the item

The fields are available in the item slot as {item.meta.trigger} and {item.meta.content} etc
Example
This example assumes the import of .icon from Core Components
<.accordion
 class="accordion"
 items={[
 %Corex.Accordion.Item{
 value: "lorem",
 trigger: "Lorem ipsum dolor sit amet",
 content: "Consectetur adipiscing elit. Sed sodales ullamcorper tristique.",
 meta: %{
 indicator: "hero-chevron-right",
 }
 },
 %Corex.Accordion.Item{
 trigger: "Duis dictum gravida odio ac pharetra?",
 content: "Nullam eget vestibulum ligula, at interdum tellus.",
 meta: %{
 indicator: "hero-chevron-right",
 }
 },
 %Corex.Accordion.Item{
 value: "donec",
 trigger: "Donec condimentum ex mi",
 content: "Congue molestie ipsum gravida a. Sed ac eros luctus.",
 disabled: true,
 meta: %{
 indicator: "hero-chevron-right",
 }
 }
]}
>
 <:item :let={item}>
 <.accordion_trigger item={item}>
 {item.meta.trigger}
 <:indicator>
 <.icon name={item.meta.indicator} />
 </:indicator>
 </.accordion_trigger>

 <.accordion_content item={item}>
 {item.meta.content}
 </.accordion_content>
 </:item>
</.accordion>

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Corex.Accordion.Item{
 content: String.t(),
 disabled: boolean(),
 meta: map(),
 trigger: String.t(),
 value: String.t()
}

Corex.Collection.Item

Collection module. Use it to create a collection of items for the following components:
	Combobox

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Corex.Collection.Item{
 disabled: boolean(),
 group: String.t(),
 id: String.t(),
 label: String.t(),
 meta: map()
}

Corex.Flash.Error

This struct is used to configure the error flash message toast notifications in Corex.Toast.toast_group/1

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Corex.Flash.Error{
 duration: integer() | :infinity,
 title: String.t(),
 type: :info | :success | :error
}

Corex.Flash.Info

This struct is used to configure the info flash message toast notifications in Corex.Toast.toast_group/1

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Corex.Flash.Info{
 duration: integer() | :infinity,
 title: String.t(),
 type: :info | :success | :error
}

Corex.Positioning

Positioning options for floating elements (popovers, dropdowns, etc.)
Maps to Zag.js PositioningOptions interface.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Corex.Positioning{
 arrow_padding: integer(),
 fit_viewport: boolean(),
 flip: boolean() | [String.t()],
 gutter: integer(),
 hide_when_detached: boolean(),
 overflow_padding: integer(),
 overlap: boolean(),
 placement: String.t(),
 same_width: boolean(),
 shift: integer(),
 slide: boolean(),
 strategy: String.t()
}

mix corex.design

Setup Corex design assets into your project.
You can select a target directory, defaults to assets/corex.
You can use the --force option to overwrite existing files.
Examples
mix corex.design
mix corex.design assets/design
mix corex.design --force
mix corex.design --designex

With Design Tokens
You can also generate Tailwind CSS tokens and utilities from design tokens directly in Elixir using
Style Dictionary and Token Studio.
First install designex, add to your mix.exs:
def deps do
 [
 {:designex, "~> 1.0", only: :dev}
]
end
 Add the configuration for Designex
config :designex,
version: "1.0.2",
commit: "1da4b31",
cd: Path.expand("../assets", __DIR__),
dir: "corex",
corex: [
build_args: ~w(
--dir=design
--script=build.mjs
--tokens=tokens
)
]
Then run the task with the --designex option:
This will copy the Corex design file including the design tokens and build scripts
You may have to use the --force option to overwrite existing files.
mix corex.design --designex
mix corex.design --designex --force

You can now build the design tokens
mix designex corex

Optionally you can add the build into your assets build pipeline by adding the following to your mix.exs:
"assets.build": ["compile", "tailwind my_app", "esbuild my_app", "designex corex"],
the designex corex task will be run automatically when you run mix assets.build.
You can also watch for changes in the design tokens by adding the following to your config/dev.exs:
watchers: [
 esbuild: {Esbuild, :install_and_run, [:my_app, ~w(--sourcemap=inline --watch)]},
 tailwind: {Tailwind, :install_and_run, [:my_app, ~w(--watch)]},
 designex: {Designex, :install_and_run, [:corex, ~w(--watch)]}
]

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

