

 couchbeam

 v2.0.0

 Table of contents

 	Overview

 	Changelog

 	Migration Guide

 	Changes Feed

 	Views

 	License

 	
 Modules

 	json_stream_parse

 	Core

 	couchbeam

 	couchbeam_attachments

 	couchbeam_doc

 	Views & Changes

 	couchbeam_changes

 	couchbeam_view

 	Utilities

 	couchbeam_ejson

 	couchbeam_httpc

 	couchbeam_util

 	couchbeam_uuids

 	Application

 	couchbeam_app

 	couchbeam_sup

 Couchbeam

A simple, idiomatic Erlang client for Apache CouchDB and Barrel.
[image: Hex.pm]
Quick Start
%% Connect to CouchDB
Server = couchbeam:server_connection("http://localhost:5984"),
{ok, _} = couchbeam:server_info(Server),

%% Open a database
{ok, Db} = couchbeam:open_or_create_db(Server, "mydb"),

%% Save a document (documents are maps)
Doc = #{<<"_id">> => <<"hello">>, <<"message">> => <<"world">>},
{ok, Doc1} = couchbeam:save_doc(Db, Doc),

%% Fetch it back
{ok, Doc2} = couchbeam:open_doc(Db, "hello").
Requirements
	OTP 27+ (uses the built-in json module)
	hackney 2.0.1+

Installation
Add to your rebar.config:
{deps, [
 {couchbeam, "2.0.0"}
]}.
Then run rebar3 compile.
Features
	Full CouchDB and Barrel API support
	Streaming views and changes feeds with low memory overhead
	Streaming attachment upload/download
	Documents represented as native Erlang maps
	Simple architecture using hackney's process-per-connection model

Documentation
	API Reference
	Migration Guide - Upgrading from 1.x
	Changes Feed Guide
	Views Guide

Generate docs locally: rebar3 ex_doc
Usage Guide
Starting the Application
In a release, add couchbeam to your application dependencies. For interactive use:
1> application:ensure_all_started(couchbeam).
{ok, [crypto, asn1, public_key, ssl, hackney, couchbeam]}
Connecting to CouchDB
%% Simple connection
Server = couchbeam:server_connection("http://localhost:5984"),

%% With authentication
Server = couchbeam:server_connection("http://localhost:5984", [
 {basic_auth, {"admin", "password"}}
]).
Working with Databases
%% Create a database
{ok, Db} = couchbeam:create_db(Server, "mydb"),

%% Open existing database
{ok, Db} = couchbeam:open_db(Server, "mydb"),

%% Create if doesn't exist
{ok, Db} = couchbeam:open_or_create_db(Server, "mydb"),

%% Delete a database
ok = couchbeam:delete_db(Server, "mydb").
Documents
Documents are Erlang maps with binary keys:
%% Create a document
Doc = #{
 <<"_id">> => <<"mydoc">>,
 <<"type">> => <<"post">>,
 <<"title">> => <<"Hello World">>
},
{ok, Doc1} = couchbeam:save_doc(Db, Doc),

%% Update it
Doc2 = Doc1#{<<"title">> => <<"Updated Title">>},
{ok, Doc3} = couchbeam:save_doc(Db, Doc2),

%% Fetch a document
{ok, Doc4} = couchbeam:open_doc(Db, "mydoc"),

%% Delete a document
{ok, _} = couchbeam:delete_doc(Db, Doc4).
Use couchbeam_doc helpers for document manipulation:
Id = couchbeam_doc:get_id(Doc),
Rev = couchbeam_doc:get_rev(Doc),
Value = couchbeam_doc:get_value(<<"title">>, Doc),
Doc2 = couchbeam_doc:set_value(<<"title">>, <<"New">>, Doc).
Views
Fetch all results at once:
%% All documents
{ok, Rows} = couchbeam_view:all(Db, [include_docs]),

%% Query a view
{ok, Rows} = couchbeam_view:fetch(Db, {<<"design">>, <<"viewname">>}, [
 {limit, 10},
 {startkey, <<"a">>},
 {endkey, <<"z">>}
]).
Stream results for large datasets:
{ok, Ref} = couchbeam_view:stream(Db, {<<"design">>, <<"view">>}, []),

%% Receive rows as messages
receive
 {Ref, {row, Row}} -> handle_row(Row);
 {Ref, done} -> done;
 {Ref, {error, Reason}} -> handle_error(Reason)
end.
Changes Feed
Get changes once:
{ok, LastSeq, Changes} = couchbeam_changes:follow_once(Db, [include_docs]).
Stream continuous changes:
{ok, Ref} = couchbeam_changes:follow(Db, [continuous, heartbeat]),

%% Receive changes as messages
receive
 {Ref, {change, Change}} -> handle_change(Change);
 {Ref, {done, LastSeq}} -> done;
 {Ref, {error, Reason}} -> handle_error(Reason)
end.
Attachments
%% Upload an attachment
{ok, _} = couchbeam:put_attachment(Db, "docid", "file.txt", <<"content">>, []),

%% Download an attachment
{ok, Data} = couchbeam:fetch_attachment(Db, "docid", "file.txt"),

%% Delete an attachment
{ok, Doc} = couchbeam:open_doc(Db, "docid"),
ok = couchbeam:delete_attachment(Db, Doc, "file.txt").
Key Modules
	Module	Purpose
	couchbeam	Main API - connections, databases, documents
	couchbeam_doc	Document manipulation helpers
	couchbeam_view	View queries and streaming
	couchbeam_changes	Changes feed
	couchbeam_attachments	Inline attachment helpers

Contributing
Found a bug or have a feature request? Open an issue.
License
Apache License 2.0 - see LICENSE for details.
Copyright 2009-2026 Benoit Chesneau.

 Changelog

couchbeam NEWS
version 2.0.0 / 2026-01-21
Breaking Changes
	OTP 27+ required: Uses the new json module from OTP stdlib instead of jsx/jiffy
	All JSON now represented as maps: Documents, view results, and all API responses
now use Erlang maps instead of proplists ({Key, Value} lists)
	Removed jsx/jiffy dependencies: No external JSON libraries required
	Simplified streaming architecture: Uses hackney's process-per-connection model
with spawned linked processes instead of gen_server-based stream modules

Removed Modules
The following modules have been removed as part of the architecture simplification:
	gen_changes - behavior for changes handlers
	couchbeam_changes_stream - gen_server for changes streaming
	couchbeam_changes_sup - supervisor for changes streams
	couchbeam_view_stream - gen_server for view streaming
	couchbeam_view_sup - supervisor for view streams

New Features
	Added json_stream_parse module for incremental JSON parsing of streaming responses
	Streaming now uses simple linked processes with monitors for automatic cleanup

API Changes
	couchbeam_doc functions now work with maps instead of proplists
	View and changes results are returned as maps
	Document IDs and revisions are accessed via maps:get/2,3 instead of proplists functions

Dependencies
	hackney 2.0.1 (process-per-connection model)
	OTP 27+ (for stdlib json module)

Migration
See doc/MIGRATION.md for detailed migration instructions from 1.x.
version 1.7.1 / 2025-07-24
	update hackney depdendency to 1.25.0

version 1.7.0 / 2025-05-28
	fix resource leaks and race conditions in stream modules
	fix unclosed hackney connections on error paths
	add proper cleanup for monitor references using try-finally
	fix ETS table race conditions by checking process liveness
	improve stream initialization order to prevent races
	add error handling for hackney operations to prevent leaks
	fix changes stream registration race condition by registering before parent notification

version 1.6.0 / 2025-01-26
	add support for CouchDB _find endpoint
	add ability to query _show functions
	add option for disabling view_stream usage (enabled by default)
	fix error handling in gen_changes callback handling
	fix resource cleanup in stream modules to prevent connection leaks
	improve replication test reliability and timeout handling
	update hackney dependency to 1.23
	update jsx dependency
	add GitHub Actions for CouchDB testing
	fix dialyzer complaints and pattern matching issues
	OTP 27 compatibility improvements

version 1.5.4 / 2025-02-20
	bump hackney 1.22.0

version 1.5.3 / 2024-08-20
	fix packaging

version 1.5.1 / 2024-11-07
	fix pattern matching

version 1.5.1 / 2024-11-07
	fix: handle condition that may cause persistent CLOSE-WAIT sockets

version 1.5.0 / 2023-10-11
	use hackney 1.20.0
	fix compatibility with couchdb 3
	fix compatibility with Erlang >= 23

version 1.4.1 / 2016-09-26
	maintainance update

version 1.4.0 / 2016-09-22
	maintainance update.

version 1.3.1 / 2016-07-01
	fix: accept 202 status in couchbeam:save_doc/4 function (#144)
	fix: spec syntax to build with Erlang 19 (#145)

version 1.3.0 / 2016-03-22
	add couchbeam:all_dbs/2
	add couchbeam:view_cleanup/1
	add couchbeam:design_info/2
	add post_decode function to view stream
	add Elixir mix support
	fix: handle http errors in view stream (#140)
	fix: build with latest rebar3

version 1.2.1 / 2015/11/04
	also support hackney 1.4.4 for rebar2.
	fix hex.pm release to really use 1.4.4

version 1.2.0 / 2015/11/04
	move to eunit for tests.
	hex.pm support
	mix & rebar3 build tools support
	bump hackney to 1.4.4
	bump jsx to 2.2.8

Breaking change
erlang-oauth is now optionnal and won't be installed by default.
version 1.1.8 / 2015-08-27
	use latest stable branch of hackney

version 1.1.7 / 2015-03-11
	bump hackney to 1.1.0
	fix Conten-Type header ehen posting doc IDS in changes #126
	fix documentation

version 1.1.6 / 2015-01-02
	fix included_applications (#122)

version 1.1.5 / 2014-12-09
	improvement: do not force connections options to nodelay
	update to Hackney 1.0.4 fix #120
	fix: retry fecthing UUIDS on error (#121)

version 1.1.4 / 2014-12-01
	update to Hackney 1.0.1: more SSL
certificate authority handling.
	fix: changes stream

version 1.1.3 / 2014-11-30
	update to Hackney 1.0.0

version 1.1.2 / 2014-11-15
	remove spurious prints

version 1.1.1 / 2014-11-11
	update to hackney 0.15.0,
improving performances and concurrency
	fix couchbeam:doc_exists/2(#116)
	fix couchbeam:reply_att/1 (#114) version 1.1.0 / 2014-10-28 -------------------------- - update to [hackney 0.14.3](https://github.com/benoitc/hackney/releases) - fix memory leaks - correctly close sockets - fix streaming issue: don't wait the stream timeout to report the initial error. - update JSX dependency to version 2.1.1 version 1.0.7 / 2014-07-08 -------------------------- - bump to [hackney 0.13.0](https://github.com/benoitc/hackney/releases/tag/0.13.0) version 1.0.6 / 2014-04-18 -------------------------- - bump to [hackney 0.12.1](https://github.com/benoitc/hackney/releases/tag/0.12.2) version 1.0.5 / 2014-04-18 -------------------------- - improve connections with HTTP proxies - improve content-types detection of attachments - improve URL encoding normalzation, useful when connecting to an international domain/URI - URL resolving is faster - bump to [hackney 0.12.0](https://github.com/benoitc/hackney/releases/tag/0.12.0) version 1.0.4 / 2014-04-15 -------------------------- - remove spurious print version 1.0.3 / 2014-04-15 -------------------------- - add support for thenew_editsoption in bulk doc API. - improvement: send a doc as multipart that already contains attachments - bump [hackney](http://github.com/benoitc/hackney) to 0.11.2 - fix path encoding version 1.0.2 / 2014-01-03 -------------------------- - fix: send a doc as multipart that already contains attachments version 1.0.1 / 2013-12-30 -------------------------- - fix connection reusing in changes and view streams - bump hackney version to 0.10.1 version 1.0.0 / 2013-12-21 -------------------------- **First stable release**. This is a supported release. - send a doc and its attachments efficiently using the [multipart API](http://docs.couchdb.org/en/latest/api/document/common.html#creating-multiple-attachments). - addcouchbeam:get_config/{1,2,3},couchbeam:set_config/{4,5}andcouchbeam:delete_config/{3,4}to use the [config API](http://docs.couchdb.org/en/latest/api/server/configuration.html). - addcouchbeam_uuids:random/0andcouchbeam_uuids:utc_random/0to generate UUIDS in your app instead of reusing the UUID generated on the node. By default couchbeam is fetching from the node, which is - add{error, forbidden}and{error, unauthenticated}as possible results of a reply. better if you want to use UUID based on the node time. - fix accept header handling version 0.10.0 / 2013-12-21 --------------------------- - addcouchbeam:copy_doc/{2,3}to support the COPY API - addcouchbeam:get_missing_revs/2to get the list of missing revisions - add support of the [multipart API](http://docs.couchdb.org/en/latest/api/document/common.html#efficient-multiple-attachments-retrieving) when fetching a doc: This change makecouchbeam:open_doc/3return a multipart response{ok, {multipart,
Stream}}when using the settingattachments=trueoption. A new option {accept. <<"multipart/mixed">>}" can also be used with the options
open_revs or revs to fetch the response as a multipart.
	bump the hackney version to
0.9.1 .

With this change you can now efficiently retrieve a doc with all of its
attachments or a doc wit all its revisions.
 master
version 0.9.3 / 2013-12-07
	fix: couchbeam:open_or_create_db/2' version 0.9.2 / 2013-12-07 -------------------------- - bump hackney version to 0.8.3 version 0.9.1 / 2013-12-05 -------------------------- - fix design docid encoding version 0.9.0 / 2013-12-05 -------------------------- This is a major release pre-1.0. API is now frozen and won't change much until the version 1.0. - replaced the use ofibrowsebyhackneyto handle HTTP connections - new [streaming API](https://github.com/benoitc/couchbeam#stream-view-results) in view - breaking change: remobe - breaking change: remove deprecated view API. Everything is now managed in the [couch_view](https://github.com/benoitc/couchbeam/blob/master/doc/couchbeam_view.md) module. - replacecouchbeam_changes:streamandcouchbeam_changes:fetchfunctions bycouchbeam_changes/followandcouchbeam_changes:follow_once. - breaking change: new attachment API - new: JSX a pure erlang JSON encoder/decoder is now the default. Jiffy can be set at the compilation by definingWITH_JIFFY` in the Erlang
options.
- removed mochiweb dependency.

version 0.7.0 / 2011-07-05

This release contains backwards incompatible changes.

- New and more efficient couchbeam_changes API, we now parse json stream
instead of the try catch steps we used before.
- New and more efficient couchbeam_view API. we now parse json stream
instead of getting all results. New couchbeam_view:stream and
couchbeam_view fetch functions have been added. We also don't use any
more a view record in other functions
- HTTP functions have been moved to couchbeam_httpc modules
- gen_changes behaviour has been updated to use the couchbeam_changes
API. It's also abble to restart a lost connection for longpoll and
continuous feeds.

Breaking Changes:

- couchbeam:view and couchbeam:all_docs have been deprecated. Old views
functions using the #view{} record from these functions have been
moved in couchbeam_oldview module.
- couchbeam:wait_changes, couchbeam:wait_changes_once, couchbeam:changes
functions have been deprecated and are now replaced by
couchbeam_changes:stream and couchbeam_changes:fetch functions.

 Migration Guide: Couchbeam 1.x to 2.0

This guide helps you migrate your application from couchbeam 1.x to 2.0.
Requirements
OTP Version
Couchbeam 2.0 requires OTP 27 or later. This is because couchbeam now uses the
json module from OTP's stdlib instead of external JSON libraries (jsx/jiffy).
Check your OTP version:
erlang:system_info(otp_release).
%% Should return "27" or higher
Dependencies
Update your rebar.config:
{deps, [
 {couchbeam, "2.0.0"},
 {hackney, "2.0.1"}
]}.
The following dependencies are no longer required:
	jsx - removed, OTP json module is used
	jiffy - removed, OTP json module is used

JSON Representation Changes
The most significant change in couchbeam 2.0 is that all JSON is now represented
as Erlang maps instead of proplists.
Before (1.x - proplists)
%% Creating a document
Doc = {[
 {<<"_id">>, <<"mydoc">>},
 {<<"name">>, <<"John">>},
 {<<"age">>, 30}
]}.

%% Accessing fields
Id = proplists:get_value(<<"_id">>, element(1, Doc)).
Name = couchbeam_doc:get_value(<<"name">>, Doc).

%% Saving
{ok, Doc1} = couchbeam:save_doc(Db, Doc).
Rev = couchbeam_doc:get_rev(Doc1).
After (2.0 - maps)
%% Creating a document
Doc = #{
 <<"_id">> => <<"mydoc">>,
 <<"name">> => <<"John">>,
 <<"age">> => 30
}.

%% Accessing fields
Id = maps:get(<<"_id">>, Doc).
Name = maps:get(<<"name">>, Doc).

%% Saving
{ok, Doc1} = couchbeam:save_doc(Db, Doc).
Rev = maps:get(<<"_rev">>, Doc1).
View Results
View results are now maps:
Before (1.x)
{ok, Rows} = couchbeam_view:fetch(Db, {<<"design">>, <<"view">>}),
lists:foreach(fun(Row) ->
 Id = proplists:get_value(<<"id">>, element(1, Row))
end, Rows).
After (2.0)
{ok, Rows} = couchbeam_view:fetch(Db, {<<"design">>, <<"view">>}),
lists:foreach(fun(Row) ->
 Id = maps:get(<<"id">>, Row)
end, Rows).
Changes Feed
Changes feed results are now maps:
Before (1.x)
{ok, Ref} = couchbeam_changes:follow(Db, [continuous]),
receive
 {Ref, {change, Change}} ->
 Seq = proplists:get_value(<<"seq">>, element(1, Change))
end.
After (2.0)
{ok, Ref} = couchbeam_changes:follow(Db, [continuous]),
receive
 {Ref, {change, Change}} ->
 Seq = maps:get(<<"seq">>, Change)
end.
Removed Modules
The following modules have been removed:
	Removed Module	Replacement
	gen_changes	Use couchbeam_changes:follow/1,2,3 directly
	couchbeam_changes_stream	Internal, replaced by linked process
	couchbeam_changes_sup	No longer needed
	couchbeam_view_stream	Internal, replaced by linked process
	couchbeam_view_sup	No longer needed

Common Migration Patterns
Pattern 1: Document Field Access
%% Before
get_name(Doc) ->
 couchbeam_doc:get_value(<<"name">>, Doc, <<"Unknown">>).

%% After
get_name(Doc) ->
 maps:get(<<"name">>, Doc, <<"Unknown">>).
Pattern 2: Building Documents
%% Before
build_doc(Id, Name) ->
 {[{<<"_id">>, Id}, {<<"name">>, Name}]}.

%% After
build_doc(Id, Name) ->
 #{<<"_id">> => Id, <<"name">> => Name}.
Pattern 3: Updating Documents
%% Before
update_doc(Doc, NewName) ->
 couchbeam_doc:set_value(<<"name">>, NewName, Doc).

%% After
update_doc(Doc, NewName) ->
 Doc#{<<"name">> => NewName}.
Testing Your Migration
After migrating, run the test suite:
rebar3 eunit
rebar3 dialyzer

 Changes Feed Guide

This guide explains how to use the CouchDB changes feed with couchbeam.
Overview
CouchDB provides a changes feed that notifies you of all document changes in a database.
The couchbeam_changes module provides both synchronous and asynchronous ways to
consume these changes.
Quick Start
Get All Changes (Synchronous)
%% Get all changes up to now
{ok, LastSeq, Changes} = couchbeam_changes:follow_once(Db).

%% Process changes
lists:foreach(fun(Change) ->
 Id = maps:get(<<"id">>, Change),
 Seq = maps:get(<<"seq">>, Change),
 io:format("Doc ~s changed at seq ~p~n", [Id, Seq])
end, Changes).
Follow Changes (Asynchronous)
%% Start following changes
{ok, Ref} = couchbeam_changes:follow(Db, [continuous, heartbeat]),

%% Receive changes in a loop
loop(Ref) ->
 receive
 {Ref, {change, Change}} ->
 Id = maps:get(<<"id">>, Change),
 io:format("Change: ~s~n", [Id]),
 loop(Ref);
 {Ref, {done, LastSeq}} ->
 io:format("Done, last seq: ~p~n", [LastSeq]);
 {Ref, {error, Reason}} ->
 io:format("Error: ~p~n", [Reason])
 end.
API Reference
follow/1, follow/2, follow/3
Start following changes asynchronously.
	Db - Database record from couchbeam:open_db/2,3
	Options - List of options (see Options section)
	To - Process to receive messages (defaults to self())

Returns {ok, Ref} where Ref is used to identify messages from this stream.
follow_once/1, follow_once/2
Fetch all changes synchronously in a single request.
Returns {ok, LastSeq, Changes} or {error, Reason}.
cancel/1
Cancel an active changes stream.
Options
	Option	Description
	continuous	Keep connection open for real-time changes
	longpoll	Long polling mode
	heartbeat	Send empty line periodically to keep connection alive
	include_docs	Include full document in each change
	{since, Seq}	Start from this sequence number
	{since, now}	Start from current sequence (new changes only)
	{filter, Name}	Use a filter function
	{doc_ids, [Id]}	Only return changes for these document IDs
	descending	Return changes in descending order
	{limit, N}	Maximum number of changes to return

Message Protocol
When using follow/1,2,3, messages are sent to the receiving process:
	{Ref, {change, Change}} - A change event (map with id, seq, changes, doc)
	{Ref, {done, LastSeq}} - Stream completed
	{Ref, {error, Reason}} - An error occurred

Examples
Simple Continuous Feed
start_following(Db) ->
 {ok, Ref} = couchbeam_changes:follow(Db, [continuous, heartbeat]),
 loop(Ref).

loop(Ref) ->
 receive
 {Ref, {change, Change}} ->
 Id = maps:get(<<"id">>, Change),
 io:format("Changed: ~s~n", [Id]),
 loop(Ref);
 {Ref, {done, _}} ->
 ok
 end.
Graceful Shutdown
ok = couchbeam_changes:cancel(Ref).
Process Lifecycle
The changes stream spawns a linked process that automatically terminates
if the owner dies, cleaning up the HTTP connection.

 Views Guide

This guide explains how to query CouchDB views with couchbeam.
Overview
CouchDB views are defined in design documents and allow you to query and index your
data. The couchbeam_view module provides both synchronous and streaming ways to
query views.
Quick Start
Fetch All Documents
%% Get all documents in the database
{ok, Rows} = couchbeam_view:all(Db).

%% With options
{ok, Rows} = couchbeam_view:all(Db, [include_docs, {limit, 100}]).
Query a View
%% Query a named view
{ok, Rows} = couchbeam_view:fetch(Db, {<<"mydesign">>, <<"myview">>}).
Stream Results
%% Stream view results
{ok, Ref} = couchbeam_view:stream(Db, 'all_docs'),

loop(Ref) ->
 receive
 {Ref, {row, Row}} ->
 io:format("Row: ~p~n", [Row]),
 loop(Ref);
 {Ref, done} ->
 ok
 end.
API Reference
all/1, all/2
Fetch all documents from the database.
fetch/1, fetch/2, fetch/3
Synchronously fetch all view results.
stream/2, stream/3
Stream view results asynchronously.
cancel_stream/1
Cancel an active view stream.
count/1, count/2, count/3
Count documents in a view.
first/1, first/2, first/3
Get only the first result from a view.
fold/4, fold/5
Fold over view results with an accumulator.
foreach/3, foreach/4
Apply a function to each row.
Options
	Option	Description
	{key, Key}	Return only rows with this exact key
	{keys, [Key]}	Return rows for multiple specific keys
	{start_key, Key}	Start results from this key
	{end_key, Key}	End results at this key
	{limit, N}	Maximum number of rows to return
	{skip, N}	Skip N rows before returning results
	descending	Return results in descending order
	include_docs	Include full documents in results
	reduce	Use the reduce function
	group	Group reduce results

Message Protocol
When using stream/2,3, messages are sent to the receiving process:
	{Ref, {row, Row}} - A row from the view (map with id, key, value, doc)
	{Ref, done} - All rows have been streamed
	{Ref, {error, Reason}} - An error occurred

Examples
Basic Queries
%% All documents
{ok, Rows} = couchbeam_view:all(Db).

%% First 10 documents
{ok, Rows} = couchbeam_view:all(Db, [{limit, 10}]).
Streaming Large Results
{ok, Ref} = couchbeam_view:stream(Db, 'all_docs', [include_docs]),

process_stream(Ref) ->
 receive
 {Ref, {row, Row}} ->
 Doc = maps:get(<<"doc">>, Row),
 process_document(Doc),
 process_stream(Ref);
 {Ref, done} ->
 ok
 end.
Process Lifecycle
View streams spawn a linked process that automatically terminates
if the owner dies, cleaning up the HTTP connection.

 License

2009-2026 (c) Benoit Chesneau

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

json_stream_parse

 Summary

 Functions

 feed(Data, St)

 finish(S)

 init()

 Functions

 feed(Data, St)

 finish(S)

 init()

couchbeam

 Summary

 Types

 db/0

 doc/0

 doc_stream/0

 ejson_object/0

 mp_attachment/0

 mp_attachments/0

 server/0

 Functions

 all_dbs(Server)

 get list of databases on a CouchDB node

 all_dbs(Server, Options)

 get list of databases on a CouchDB node with optional filter

 compact(Db)

 Compaction compresses the database file by removing unused sections created during updates. See http://wiki.apache.org/couchdb/Compaction for more informations

 compact(Db, DesignName)

 Like compact/1 but this compacts the view index from the current version of the design document. See http://wiki.apache.org/couchdb/Compaction#View_compaction for more informations

 copy_doc(Db, Doc)

 duplicate a document using the doc API

 copy_doc(Db, Doc, Dest)

 copy a doc to a destination. If the destination exist it will use the last revision, in other case a new doc is created with the the current doc revision.

 create_db(Server, DbName)

 Equivalent to create_db(Server, DbName, [], []).

 create_db(Server, DbName, Options)

 Equivalent to create_db(Server, DbName, Options, []).

 create_db(Server, DbName0, Options, Params)

 Create a database and a client for connectiong to it.

 db_exists(Server, DbName)

 test if db with dbname exists on the CouchDB node

 db_info(Db)

 get database info

 delete_attachment(Db, Doc, Name)

 Equivalent to delete_attachment(Db, Doc, Name, []).

 delete_attachment(Db, DocOrDocId, Name, Options)

 delete a document attachment

 delete_db(Db)

 Equivalent to delete_db(Server, DbName).

 delete_db(Server, DbName)

 delete database

 delete_doc(Db, Doc)

 Equivalent to delete_doc(Db, Doc, []).

 delete_doc(Db, Doc, Options)

 delete a document if you want to make sure the doc it emptied on delete, use the option {empty_on_delete, true} or pass a doc with just _id and _rev members.

 delete_docs(Db, Docs)

 Equivalent to delete_docs(Db, Docs, []).

 delete_docs(Db, Docs, Options)

 delete a list of documents if you want to make sure the doc it emptied on delete, use the option {empty_on_delete, true} or pass a doc with just _id and _rev members.

 design_info(Db, DesignName)

 doc_exists(Db, DocId)

 test if doc with uuid exists in the given db

 end_doc_stream(_)

 stop to receive the multipart response of the doc api and close the connection.

 ensure_full_commit(Db)

 Equivalent to ensure_full_commit(Db, []).

 ensure_full_commit(Db, Options)

 commit all docs in memory

 fetch_attachment(Db, DocId, Name)

 Equivalent to fetch_attachment(Db, DocId, Name, []).

 fetch_attachment(Db, DocId, Name, Options0)

 fetch a document attachment Options are

 find(Db, Selector, Params)

 get_missing_revs(Db, IdRevs)

 get missing revisions

 get_uuid(Server)

 Get one uuid from the server

 get_uuids(Server, Count)

 Get a list of uuids from the server

 lookup_doc_rev(Db, DocId)

 get the last revision of the document

 lookup_doc_rev(Db, DocId, Params)

 open_db(Server, DbName)

 Equivalent to open_db(Server, DbName, []).

 open_db(Server, DbName, Options)

 Create a client for connection to a database

 open_doc(Db, DocId)

 Equivalent to open_doc(Db, DocId, []).

 open_doc(Db, DocId, Params)

 open a document Params is a list of query argument. Have a look in CouchDb API

 open_or_create_db(Server, DbName)

 Equivalent to open_or_create_db(Server, DbName, [], []).

 open_or_create_db(Server, DbName, Options)

 Equivalent to open_or_create_db(Server, DbName, Options, []).

 open_or_create_db(Server, DbName0, Options, Params)

 Create a client for connecting to a database and create the database if needed.

 put_attachment(Db, DocId, Name, Body)

 Equivalent to put_attachment(Db, DocId, Name, Body, []).

 put_attachment(Db, DocId, Name, Body, Options)

 put an attachment

 replicate(Server, RepObj)

 Handle replication. Pass an object containting all informations It allows to pass for example an authentication info

 replicate(Server, Source, Target)

 Handle replication.

 replicate(Server, Source, Target, Options)

 handle Replication. Allows to pass options with source and target. Source and target can be either simple URI strings or complex document structures with authentication. Options is a Json object. ex

 save_doc(Db, Doc)

 Equivalent to save_doc(Db, Doc, []).

 save_doc(Db, Doc, Options)

 save a *document A document is a Json object like this one

 save_doc(Db, Doc, Atts, Options)

 save a *document with all its attacjments A document is a Json object like this one

 save_docs(Db, Docs)

 Equivalent to save_docs(Db, Docs, []).

 save_docs(Db, Docs, Options)

 save a list of documents

 send_attachment(Ref, Msg)

 send an attachment chunk Msg could be Data, eof to stop sending.

 server_connection()

 Equivalent to server_connection("127.0.0.1", 5984, "", [], false).

 server_connection(URL)

 server_connection(URL, Options0)

 Equivalent to server_connection(Host, Port, "", []).

 server_connection(Host, Port, Prefix, OptionsList)

 Create a server for connectiong to a CouchDB node

 server_info(Server)

 Get Information from the server

 stream_attachment(Ref)

 fetch an attachment chunk. Use this function when you pass the stream option to the couchbeam:fetch_attachment/4 function. This function return the following response

 stream_attachment(Db, DocId, Name)

 Equivalent to fetch_attachment(Db, DocId, Name, [stream]).

 stream_doc(_)

 stream the multipart response of the doc API. Use this function when you get {ok, {multipart, State}} from the function couchbeam:open_doc/3.

 view_cleanup(Db)

 Types

 db/0

 -type db() :: #db{server :: server(), name :: binary(), options :: list()}.

 doc/0

 -type doc() :: ejson_object().

 doc_stream/0

 -opaque doc_stream()

 ejson_object/0

 -type ejson_object() :: map().

 mp_attachment/0

 -type mp_attachment() ::
 {Name :: binary(), Bin :: binary()} |
 {Name :: binary(), Bin :: binary(), Encoding :: binary()} |
 {Name :: binary(), Bin :: binary(), Type :: binary(), Encoding :: binary()} |
 {Name :: binary(), {file, Path :: string()}} |
 {Name :: binary(), {file, Path :: string()}, Encoding :: binary()} |
 {Name :: binary(), Fun :: fun(), Length :: integer()} |
 {Name :: binary(), Fun :: fun(), Length :: integer(), Encoding :: binary()} |
 {Name :: binary(), Fun :: fun(), Length :: integer(), Type :: binary(), Encoding :: binary()} |
 {Name :: binary(), {Fun :: fun(), Acc :: any()}, Length :: integer()} |
 {Name :: binary(), {Fun :: fun(), Acc :: any()}, Length :: integer(), Encoding :: binary()} |
 {Name :: binary(),
 {Fun :: fun(), Acc :: any()},
 Length :: integer(),
 Type :: binary(),
 Encoding :: binary()}.

 mp_attachments/0

 -type mp_attachments() :: [mp_attachment()].

 server/0

 -type server() :: #server{url :: term(), options :: list()}.

 Functions

 all_dbs(Server)

 -spec all_dbs(server()) -> {ok, [binary()]} | {error, term()}.

get list of databases on a CouchDB node

 all_dbs(Server, Options)

 -spec all_dbs(server(), list()) -> {ok, [binary()]} | {error, term()}.

get list of databases on a CouchDB node with optional filter

 compact(Db)

 -spec compact(db()) -> ok | {error, term()}.

Compaction compresses the database file by removing unused sections created during updates. See http://wiki.apache.org/couchdb/Compaction for more informations

 compact(Db, DesignName)

 -spec compact(db(), binary() | string()) -> ok | {error, term()}.

Like compact/1 but this compacts the view index from the current version of the design document. See http://wiki.apache.org/couchdb/Compaction#View_compaction for more informations

 copy_doc(Db, Doc)

duplicate a document using the doc API

 copy_doc(Db, Doc, Dest)

copy a doc to a destination. If the destination exist it will use the last revision, in other case a new doc is created with the the current doc revision.

 create_db(Server, DbName)

Equivalent to create_db(Server, DbName, [], []).
Create a database and a client for connectiong to it.

 create_db(Server, DbName, Options)

Equivalent to create_db(Server, DbName, Options, []).
Create a database and a client for connectiong to it.

 create_db(Server, DbName0, Options, Params)

 -spec create_db(server(), binary() | string(), list(), list()) -> {ok, db()} | {error, term()}.

Create a database and a client for connectiong to it.
Connections are made to:
 http://Host:PortPrefix/DbName
If ssl is set https is used. See server_connections for options. Params is a list of optionnal query argument you want to pass to the db. Useful for bigcouch for example.

 db_exists(Server, DbName)

 -spec db_exists(server(), binary() | string()) -> boolean().

test if db with dbname exists on the CouchDB node

 db_info(Db)

 -spec db_info(db()) -> {ok, map()} | {error, term()}.

get database info

 delete_attachment(Db, Doc, Name)

Equivalent to delete_attachment(Db, Doc, Name, []).
delete a document attachment

 delete_attachment(Db, DocOrDocId, Name, Options)

 -spec delete_attachment(db(), map() | binary() | string(), binary() | string(), list()) ->
 {ok, map()} | {error, term()}.

delete a document attachment

 delete_db(Db)

Equivalent to delete_db(Server, DbName).
delete database

 delete_db(Server, DbName)

 -spec delete_db(server(), binary() | string()) -> {ok, map()} | {error, term()}.

delete database

 delete_doc(Db, Doc)

Equivalent to delete_doc(Db, Doc, []).
delete a document

 delete_doc(Db, Doc, Options)

 -spec delete_doc(db(), map(), list()) -> {ok, list()} | {error, term()}.

delete a document if you want to make sure the doc it emptied on delete, use the option {empty_on_delete, true} or pass a doc with just _id and _rev members.

 delete_docs(Db, Docs)

Equivalent to delete_docs(Db, Docs, []).
delete a list of documents

 delete_docs(Db, Docs, Options)

 -spec delete_docs(db(), [map()], list()) -> {ok, list()} | {error, term()}.

delete a list of documents if you want to make sure the doc it emptied on delete, use the option {empty_on_delete, true} or pass a doc with just _id and _rev members.

 design_info(Db, DesignName)

 doc_exists(Db, DocId)

 -spec doc_exists(db(), binary() | string()) -> boolean().

test if doc with uuid exists in the given db

 end_doc_stream(_)

 -spec end_doc_stream(doc_stream()) -> ok.

stop to receive the multipart response of the doc api and close the connection.

 ensure_full_commit(Db)

Equivalent to ensure_full_commit(Db, []).
commit all docs in memory

 ensure_full_commit(Db, Options)

 -spec ensure_full_commit(Db :: db(), Options :: list()) ->
 {ok, InstancestartTime :: binary()} | {error, term()}.

commit all docs in memory

 fetch_attachment(Db, DocId, Name)

Equivalent to fetch_attachment(Db, DocId, Name, []).
fetch a document attachment

 fetch_attachment(Db, DocId, Name, Options0)

 -spec fetch_attachment(db(), list() | binary(), list() | binary(), list()) ->
 {ok, binary()} | {ok, atom()} | {error, term()}.

fetch a document attachment Options are
	stream: to start streaming an attachment. the function return {ok, Ref} where is a ref to the attachment
	Other options that can be sent using the REST API

 find(Db, Selector, Params)

 -spec find(Db :: db(), Selector :: doc(), Params :: list()) -> {ok, Doc :: doc()} | {error, any()}.

 get_missing_revs(Db, IdRevs)

 -spec get_missing_revs(#db{server :: server(), name :: binary(), options :: list()},
 [{binary(), [binary()]}]) ->
 {ok,
 [{DocId :: binary(),
 [MissingRev :: binary()],
 [PossibleAncestor :: binary()]}]} |
 {error, term()}.

get missing revisions

 get_uuid(Server)

 -spec get_uuid(server()) -> [binary()].

Get one uuid from the server

 get_uuids(Server, Count)

 -spec get_uuids(server(), integer()) -> [binary()].

Get a list of uuids from the server

 lookup_doc_rev(Db, DocId)

get the last revision of the document

 lookup_doc_rev(Db, DocId, Params)

 open_db(Server, DbName)

Equivalent to open_db(Server, DbName, []).
Create a client for connection to a database

 open_db(Server, DbName, Options)

 -spec open_db(server(), binary() | string(), list()) -> {ok, db()}.

Create a client for connection to a database

 open_doc(Db, DocId)

Equivalent to open_doc(Db, DocId, []).
open a document

 open_doc(Db, DocId, Params)

 -spec open_doc(db(), binary() | string(), list()) -> {ok, map()} | {error, term()}.

open a document Params is a list of query argument. Have a look in CouchDb API

 open_or_create_db(Server, DbName)

Equivalent to open_or_create_db(Server, DbName, [], []).
Create a client for connecting to a database and create the database if needed.

 open_or_create_db(Server, DbName, Options)

Equivalent to open_or_create_db(Server, DbName, Options, []).
Create a client for connecting to a database and create the database if needed.

 open_or_create_db(Server, DbName0, Options, Params)

 -spec open_or_create_db(server(), binary() | string(), list(), list()) -> {ok, db()} | {error, term()}.

Create a client for connecting to a database and create the database if needed.

 put_attachment(Db, DocId, Name, Body)

Equivalent to put_attachment(Db, DocId, Name, Body, []).
put an attachment

 put_attachment(Db, DocId, Name, Body, Options)

 -spec put_attachment(db(), binary() | string(), binary() | string(), iodata() | fun(), list()) ->
 {ok, map()} | {error, term()}.

put an attachment

 replicate(Server, RepObj)

 -spec replicate(server(), map()) -> {ok, map()} | {error, term()}.

Handle replication. Pass an object containting all informations It allows to pass for example an authentication info
 RepObj = {[
 {<<"source">>, <<"sourcedb">>},
 {<<"target">>, <<"targetdb">>},
 {<<"create_target">>, true}
]}
 replicate(Server, RepObj).

 replicate(Server, Source, Target)

 -spec replicate(server(), binary() | string(), binary() | string()) -> {ok, map()} | {error, term()}.

Handle replication.

 replicate(Server, Source, Target, Options)

handle Replication. Allows to pass options with source and target. Source and target can be either simple URI strings or complex document structures with authentication. Options is a Json object. ex:
 %% Simple URI replication
 Options = [{<<"create_target">>, true}]},
 couchbeam:replicate(S, "testdb", "testdb2", Options).

 %% Complex replication with authentication
 Source = "http://user:pass@remote.com:5984/db",
 Target = {[{<<"url">>, <<"http://localhost:5984/target_db">>},
 {<<"auth">>, {[{<<"basic">>, {[{<<"username">>, <<"user">>},
 {<<"password">>, <<"pass">>}]}}]}}]},
 couchbeam:replicate(S, Source, Target, [{<<"continuous">>, true}]).

 save_doc(Db, Doc)

Equivalent to save_doc(Db, Doc, []).
save a document

 save_doc(Db, Doc, Options)

 -spec save_doc(db(), map(), list()) -> {ok, map()} | {error, term()}.

save a *document A document is a Json object like this one:
 {[
 {<<"_id">>, <<"myid">>},
 {<<"title">>, <<"test">>}
]}
Options are arguments passed to the request. This function return a new document with last revision and a docid. If _id isn't specified in document it will be created. Id is created by extracting an uuid from the couchdb node.

 save_doc(Db, Doc, Atts, Options)

 -spec save_doc(Db :: db(), doc(), mp_attachments(), Options :: [{binary(), binary() | true}] | binary()) ->
 {ok, doc()} | {error, term()}.

save a *document with all its attacjments A document is a Json object like this one:
 {[
 {<<"_id">>, <<"myid">>},
 {<<"title">>, <<"test">>}
]}
Options are arguments passed to the request. This function return a new document with last revision and a docid. If _id isn't specified in document it will be created. Id is created by extracting an uuid from the couchdb node.
If the attachments is not empty, the doc will be sent as multipart. Attachments are passed as a list of the following tuples:
- {Name :: binary(), Bin :: binary()} - {Name :: binary(), Bin :: binary(), Encoding :: binary()} - { Name :: binary(), Bin :: binary(), Type :: binary(), Encoding :: binary()} - { Name :: binary(), {file, Path :: string()}} - { Name :: binary(), {file, Path :: string()}, Encoding :: binary()} - { Name :: binary(), Fun :: fun(), Length :: integer()} - { Name :: binary(), Fun :: fun(), Length :: integer(), Encoding :: binary()} - {Name :: binary(), Fun :: fun(), Length :: integer(), Type :: binary(), Encoding :: binary()} - { Name :: binary(), {Fun :: fun(), Acc :: any()}, Length :: integer()} - { Name :: binary(), {Fun :: fun(), Acc :: any()}, Length :: integer(), Encoding :: binary()} - { Name :: binary(), {Fun :: fun(), Acc :: any()}, Length :: integer(), Type :: binary(), Encoding :: binary()}.
where Type` is the content-type of the attachments (detected in other case) and `Encoding` the encoding of the attachments: `<<"identity">> if normal or <<"gzip">> if the attachments is gzipped.

 save_docs(Db, Docs)

Equivalent to save_docs(Db, Docs, []).
save a list of documents

 save_docs(Db, Docs, Options)

 -spec save_docs(db(), [map()], list()) -> {ok, list()} | {error, term()}.

save a list of documents

 send_attachment(Ref, Msg)

send an attachment chunk Msg could be Data, eof to stop sending.

 server_connection()

Equivalent to server_connection("127.0.0.1", 5984, "", [], false).
Create a server for connectiong to a CouchDB node

 server_connection(URL)

 server_connection(URL, Options0)

Equivalent to server_connection(Host, Port, "", []).
Create a server for connectiong to a CouchDB node

 server_connection(Host, Port, Prefix, OptionsList)

 -spec server_connection(Host :: string(),
 Port :: non_neg_integer(),
 Prefix :: binary(),
 OptionsList :: list()) ->
 Server :: server().

Create a server for connectiong to a CouchDB node
Connections are made to:
 http://Host:PortPrefix
If ssl is set https is used.
For a description of SSL Options, look in the ssl manpage.

 server_info(Server)

 -spec server_info(server()) -> {ok, map()} | {error, term()}.

Get Information from the server

 stream_attachment(Ref)

 -spec stream_attachment(pid()) -> {ok, binary()} | done | {error, term()}.

fetch an attachment chunk. Use this function when you pass the stream option to the couchbeam:fetch_attachment/4 function. This function return the following response:
	done
	You got all the attachment
	{ok, binary()}
	Part of the attachment
	{error, term()}
	n error occurred

 stream_attachment(Db, DocId, Name)

 -spec stream_attachment(db(), binary(), binary()) -> {ok, pid()} | {error, term()}.

Equivalent to fetch_attachment(Db, DocId, Name, [stream]).
Start streaming an attachment. Returns a reference that can be passed to stream_attachment/1 to receive chunks.

 stream_doc(_)

 -spec stream_doc(doc_stream()) ->
 {doc, doc()} |
 {att, Name :: binary(), doc_stream()} |
 {att_body, Name :: binary(), Chunk :: binary(), doc_stream()} |
 {att_eof, Name :: binary(), doc_stream()} |
 eof |
 {error, term()}.

stream the multipart response of the doc API. Use this function when you get {ok, {multipart, State}} from the function couchbeam:open_doc/3.

 view_cleanup(Db)

couchbeam_attachments

This module contains utilities to manage attachments

 Summary

 Types

 doc/0

 ejson_object/0

 Functions

 add_inline(Doc, Content, AName)

 add attachment to a doc and encode it. Give possibility to send attachments inline.

 add_inline(Doc, Content, AName, ContentType)

 add attachment to a doc and encode it with ContentType fixed.

 add_stub(Doc, Name, ContentType)

 delete_inline(Doc, AName)

 delete an attachment record in doc. This is different from delete_attachment change is only applied in Doc object. Save_doc should be save to save changes.

 Types

 doc/0

 -type doc() :: ejson_object().

 ejson_object/0

 -type ejson_object() :: map().

 Functions

 add_inline(Doc, Content, AName)

 -spec add_inline(doc(), iodata(), string() | binary()) -> doc().

add attachment to a doc and encode it. Give possibility to send attachments inline.

 add_inline(Doc, Content, AName, ContentType)

 -spec add_inline(doc(), iodata(), string() | binary(), string() | binary()) -> doc().

add attachment to a doc and encode it with ContentType fixed.

 add_stub(Doc, Name, ContentType)

 -spec add_stub(doc(), string() | binary(), string() | binary()) -> doc().

 delete_inline(Doc, AName)

 -spec delete_inline(doc(), string() | binary()) -> doc().

delete an attachment record in doc. This is different from delete_attachment change is only applied in Doc object. Save_doc should be save to save changes.

couchbeam_doc

 Summary

 Types

 doc/0

 ejson_array/0

 ejson_number/0

 ejson_object/0

 ejson_string/0

 ejson_term/0

 Functions

 delete_value(Key, JsonObj)

 Deletes all entries associated with Key in json object.

 extend(R, JsonObj)

 extend a jsonobject by a property, list of property or another jsonobject

 extend(Key, Value, JsonObj)

 extend a jsonobject by key, value

 get_id(Doc)

 get document id.

 get_idrev(Doc)

 get a tuple containing docucment id and revision.

 get_rev(Doc)

 get document revision.

 get_value(Key, JsonObj)

 Returns the value of a simple key/value property in json object Equivalent to get_value(Key, JsonObj, undefined).

 get_value(Key, JsonObj, Default)

 Returns the value of a simple key/value property in json object

 is_saved(Doc)

 If document have been saved (revision is defined) return true, else, return false.

 set_value(Key, Value, JsonObj)

 set a value for a key in jsonobj. If key exists it will be updated.

 take_value(Key, JsonObj)

 Returns the value of a simple key/value property in json object and deletes it form json object Equivalent to take_value(Key, JsonObj, undefined).

 take_value(Key, JsonObj, Default)

 Returns the value of a simple key/value property in json object and deletes it from json object

 Types

 doc/0

 -type doc() :: ejson_object().

 ejson_array/0

 -type ejson_array() :: [ejson_term()].

 ejson_number/0

 -type ejson_number() :: float() | integer().

 ejson_object/0

 -type ejson_object() :: map().

 ejson_string/0

 -type ejson_string() :: binary().

 ejson_term/0

 -type ejson_term() ::
 ejson_array() | ejson_object() | ejson_string() | ejson_number() | true | false | null.

 Functions

 delete_value(Key, JsonObj)

 -spec delete_value(binary() | list(), doc()) -> doc().

Deletes all entries associated with Key in json object.

 extend(R, JsonObj)

 -spec extend(term(), doc()) -> doc().

extend a jsonobject by a property, list of property or another jsonobject

 extend(Key, Value, JsonObj)

 -spec extend(binary(), ejson_term(), doc()) -> doc().

extend a jsonobject by key, value

 get_id(Doc)

 -spec get_id(doc()) -> binary().

get document id.

 get_idrev(Doc)

 -spec get_idrev(doc()) -> {binary(), binary()}.

get a tuple containing docucment id and revision.

 get_rev(Doc)

 -spec get_rev(doc()) -> binary().

get document revision.

 get_value(Key, JsonObj)

 -spec get_value(binary() | list(), doc()) -> term().

Returns the value of a simple key/value property in json object Equivalent to get_value(Key, JsonObj, undefined).

 get_value(Key, JsonObj, Default)

 -spec get_value(binary() | list(), doc(), term()) -> term().

Returns the value of a simple key/value property in json object

 is_saved(Doc)

 -spec is_saved(doc()) -> boolean().

If document have been saved (revision is defined) return true, else, return false.

 set_value(Key, Value, JsonObj)

 -spec set_value(binary() | list(), term(), doc()) -> doc().

set a value for a key in jsonobj. If key exists it will be updated.

 take_value(Key, JsonObj)

 -spec take_value(binary() | list(), doc()) -> {term(), doc()}.

Returns the value of a simple key/value property in json object and deletes it form json object Equivalent to take_value(Key, JsonObj, undefined).

 take_value(Key, JsonObj, Default)

 -spec take_value(binary() | list(), doc(), term()) -> {term(), doc()}.

Returns the value of a simple key/value property in json object and deletes it from json object

couchbeam_changes

 Summary

 Types

 db/0

 server/0

 Functions

 cancel(Ref)

 Cancel a changes stream

 follow(Db)

 Start following changes on a database

 follow(Db, Options)

 Start following changes on a database with options

 follow(Db, Options, To)

 Start following changes, sending messages to specified pid

 follow_once(Db)

 Fetch all changes synchronously (non-streaming)

 follow_once(Db, Options)

 Fetch all changes synchronously with options

 init_stream(State)

 stream_next(Ref)

 Request next chunk (for {async, once} mode)

 Types

 db/0

 -type db() :: #db{server :: server(), name :: binary(), options :: list()}.

 server/0

 -type server() :: #server{url :: term(), options :: list()}.

 Functions

 cancel(Ref)

 -spec cancel(Ref :: reference()) -> ok | {error, term()}.

Cancel a changes stream

 follow(Db)

 -spec follow(Db :: db()) -> {ok, reference()} | {error, term()}.

Start following changes on a database

 follow(Db, Options)

 -spec follow(Db :: db(), Options :: list()) -> {ok, reference()}.

Start following changes on a database with options

 follow(Db, Options, To)

 -spec follow(Db :: db(), Options :: list(), To :: pid()) -> {ok, reference()}.

Start following changes, sending messages to specified pid

 follow_once(Db)

 -spec follow_once(Db :: db()) -> {ok, LastSeq :: term(), Changes :: list()} | {error, term()}.

Fetch all changes synchronously (non-streaming)

 follow_once(Db, Options)

 -spec follow_once(Db :: db(), Options :: list()) ->
 {ok, LastSeq :: term(), Changes :: list()} | {error, term()}.

Fetch all changes synchronously with options

 init_stream(State)

 stream_next(Ref)

 -spec stream_next(Ref :: reference()) -> ok | {error, term()}.

Request next chunk (for {async, once} mode)

couchbeam_view

 Summary

 Types

 db/0

 design_name/0

 ejson_object/0

 server/0

 show_option/0

 show_options/0

 stale/0

 view_name/0

 view_option/0

 view_options/0

 view_query_args/0

 Functions

 all(Db)

 Equivalent to fetch(Db, all_docs, []).

 all(Db, Options)

 Equivalent to fetch(Db, all_docs, Options).

 cancel_stream(Ref)

 count(Db)

 Equivalent to count(Db, all_docs, []).

 count(Db, ViewName)

 Equivalent to count(Db, ViewName, []).

 count(Db, ViewName, Options)

 count number of doc in a view (or all docs)

 fetch(Db)

 Equivalent to fetch(Db, all_docs, []).

 fetch(Db, ViewName)

 Equivalent to fetch(Db, ViewName, []).

 fetch(Db, ViewName, Options)

 Collect view results

 first(Db)

 first(Db, ViewName)

 Equivalent to first(Db, ViewName, []).

 first(Db, ViewName, Options)

 get first result of a view

 fold(Function, Acc, Db, ViewName)

 Equivalent to fold(Function, Acc, Db, ViewName, []).

 fold(Function, Acc, Db, ViewName, Options)

 call Function(Row, AccIn) on succesive row, starting with AccIn == Acc. Function/2 must return a new list accumultator or the atom done to stop fetching results. Acc0 is returned if the list is empty. For example

 foreach(Function, Db, ViewName)

 Equivalent to foreach(Function, Db, ViewName, []).

 foreach(Function, Db, ViewName, Options)

 call Function(Row) on succesive row. Example

 maybe_continue_view(View_stream_state)

 parse_view_options(Options)

 parse view options

 show(Db, ShowName)

 show(Db, ShowName, DocId)

 show(Db, _, DocId, Options)

 stream(Db, ViewName)

 Equivalent to stream(Db, ViewName, Client, []).

 stream(Db, ViewName, Options)

 Stream view results to a pid.

 stream_next(Ref)

 Types

 db/0

 -type db() :: #db{server :: server(), name :: binary(), options :: list()}.

 design_name/0

 -type design_name() :: binary() | string().

 ejson_object/0

 -type ejson_object() :: map().

 server/0

 -type server() :: #server{url :: term(), options :: list()}.

 show_option/0

 -type show_option() :: {query_string, binary()}.

 show_options/0

 -type show_options() :: [show_option()].

 stale/0

 -type stale() :: ok | update_after | false.

 view_name/0

 -type view_name() :: binary() | string().

 view_option/0

 -type view_option() ::
 {key, binary()} |
 {startkey_docid, binary()} |
 {start_docid, binary()} |
 {startkey_docid, binary()} |
 {end_docid, binary()} |
 {endkey_docid, binary()} |
 {start_key, binary()} |
 {end_key, binary()} |
 {limit, integer()} |
 {stale, stale()} |
 descending |
 {skip, integer()} |
 group |
 {group_level, exact | integer()} |
 reduce |
 {reduce, boolean()} |
 inclusive_end | include_docs | conflicts |
 {list, binary()} |
 {keys, [binary()]} |
 async_query.

 view_options/0

 -type view_options() :: [view_option()].

 view_query_args/0

 -type view_query_args() ::
 #view_query_args{method :: atom(), options :: view_options(), keys :: [binary()]}.

 Functions

 all(Db)

 -spec all(Db :: db()) ->
 {ok, Rows :: [ejson_object()]} |
 {error, term()} |
 {error, term(), Rows :: [ejson_object()]}.

Equivalent to fetch(Db, all_docs, []).
fetch all docs

 all(Db, Options)

 -spec all(Db :: db(), Options :: view_options()) ->
 {ok, Rows :: [ejson_object()]} |
 {error, term()} |
 {error, term(), Rows :: [ejson_object()]}.

Equivalent to fetch(Db, all_docs, Options).
fetch all docs

 cancel_stream(Ref)

 count(Db)

 -spec count(Db :: db()) -> integer() | {error, term()}.

Equivalent to count(Db, all_docs, []).

 count(Db, ViewName)

 -spec count(Db :: db(), ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()}) ->
 integer() | {error, term()}.

Equivalent to count(Db, ViewName, []).

 count(Db, ViewName, Options)

 -spec count(Db :: db(),
 ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()},
 Options :: view_options()) ->
 integer() | {error, term()}.

count number of doc in a view (or all docs)

 fetch(Db)

 -spec fetch(Db :: db()) ->
 {ok, Rows :: [ejson_object()]} |
 {error, term()} |
 {error, term(), Rows :: [ejson_object()]}.

Equivalent to fetch(Db, all_docs, []).

 fetch(Db, ViewName)

 -spec fetch(Db :: db(), ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()}) ->
 {ok, Rows :: [ejson_object()]} | {error, term()}.

Equivalent to fetch(Db, ViewName, []).

 fetch(Db, ViewName, Options)

 -spec fetch(Db :: db(),
 ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()},
 Options :: view_options()) ->
 {ok, Rows :: [ejson_object()]} | {error, term()}.

Collect view results
Db: a db record
ViewName: 'all_docs' to get all docs or {DesignName, ViewName}
Options :: view_options() [{key, binary()}
 | {start_docid, binary()} | {startkey_docid, binary()}
 | {end_docid, binary()} | {endkey_docid, binary()}
 | {start_key, binary()} | {end_key, binary()}
 | {limit, integer()}
 | {stale, stale()}
 | descending
 | {skip, integer()}
 | group | {group_level, integer()}
 | {inclusive_end, boolean()} | {reduce, boolean()} | reduce | include_docs | conflicts
 | {keys, list(binary())}
 | async_query
See couchbeam_view:stream/4 for more information about options.
Return: {ok, Rows} or {error, Error}

 first(Db)

 -spec first(Db :: db()) -> {ok, Row :: ejson_object()} | {error, term()}.

 first(Db, ViewName)

 -spec first(Db :: db(), ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()}) ->
 {ok, Row :: ejson_object()} | {error, term()}.

Equivalent to first(Db, ViewName, []).

 first(Db, ViewName, Options)

 -spec first(Db :: db(),
 ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()},
 Options :: view_options()) ->
 {ok, Rows :: ejson_object()} | {error, term()}.

get first result of a view
Db: a db record
ViewName: 'all_docs' to get all docs or {DesignName, ViewName}
Options :: view_options() [{key, binary()}
 | {start_docid, binary()} | {startkey_docid, binary()}
 | {end_docid, binary()} | {endkey_docid, binary()}
 | {start_key, binary()} | {end_key, binary()}
 | {limit, integer()}
 | {stale, stale()}
 | descending
 | {skip, integer()}
 | group | {group_level, integer()}
 | {inclusive_end, boolean()} | {reduce, boolean()} | reduce | include_docs | conflicts
 | {keys, list(binary())}
See couchbeam_view:stream/4 for more information about options.
Return: {ok, Row} or {error, Error}

 fold(Function, Acc, Db, ViewName)

 -spec fold(Function :: function(),
 Acc :: any(),
 Db :: db(),
 ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()}) ->
 [term()] | {error, term()}.

Equivalent to fold(Function, Acc, Db, ViewName, []).

 fold(Function, Acc, Db, ViewName, Options)

 -spec fold(Function :: function(),
 Acc :: any(),
 Db :: db(),
 ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()},
 Options :: view_options()) ->
 [term()] | {error, term()}.

call Function(Row, AccIn) on succesive row, starting with AccIn == Acc. Function/2 must return a new list accumultator or the atom done to stop fetching results. Acc0 is returned if the list is empty. For example:
 couchbeam_view:fold(fun(Row, Acc) -> [Row|Acc] end, [], Db, 'all_docs').

 foreach(Function, Db, ViewName)

 -spec foreach(Function :: function(),
 Db :: db(),
 ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()}) ->
 [term()] | {error, term()}.

Equivalent to foreach(Function, Db, ViewName, []).

 foreach(Function, Db, ViewName, Options)

 -spec foreach(Function :: function(),
 Db :: db(),
 ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()},
 Options :: view_options()) ->
 [term()] | {error, term()}.

call Function(Row) on succesive row. Example:
 couchbeam_view:foreach(fun(Row) -> io:format("got row ~p~n", [Row]) end, Db, 'all_docs').

 maybe_continue_view(View_stream_state)

 parse_view_options(Options)

 -spec parse_view_options(Options :: list()) -> view_query_args().

parse view options

 show(Db, ShowName)

 -spec show(db(), {binary(), binary()}) -> {ok, ejson_object()} | {error, term()}.

 show(Db, ShowName, DocId)

 -spec show(db(), {binary(), binary()}, binary()) -> {ok, ejson_object()} | {error, term()}.

 show(Db, _, DocId, Options)

 -spec show(db(), {binary(), binary()}, null | binary(), show_options()) ->
 {ok, ejson_object()} | {error, term()}.

 stream(Db, ViewName)

 -spec stream(Db :: db(), ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()}) ->
 {ok, StartRef :: term(), ViewPid :: pid()} | {error, term()}.

Equivalent to stream(Db, ViewName, Client, []).

 stream(Db, ViewName, Options)

 -spec stream(Db :: db(),
 ViewName :: all_docs | {DesignName :: design_name(), ViewName :: view_name()},
 Options :: view_options()) ->
 {ok, StartRef :: term()} | {error, term()}.

Stream view results to a pid.
Parameters: - Db: a db record - ViewName: all_docs to get all docs or {DesignName, ViewName} - Options: view query options
Messages sent to the receiving process: - {Ref, done} - all results fetched - {Ref, {row, Row}} - a row in the view - {Ref, {error, Error}} - an error occurred
Returns {ok, Ref} or {error, Error}.

 stream_next(Ref)

couchbeam_ejson

 Summary

 Types

 ejson/0

 ejson_array/0

 ejson_number/0

 ejson_object/0

 ejson_string/0

 ejson_term/0

 Functions

 decode(D)

 decode a binary to an EJSON term. Throw an exception if there is any error.

 encode(D)

 encode an erlang term to JSON. Throw an exception if there is any error.

 post_decode(Term)

 Types

 ejson/0

 -type ejson() :: ejson_object() | ejson_array().

 ejson_array/0

 -type ejson_array() :: [ejson_term()].

 ejson_number/0

 -type ejson_number() :: float() | integer().

 ejson_object/0

 -type ejson_object() :: map().

 ejson_string/0

 -type ejson_string() :: binary().

 ejson_term/0

 -type ejson_term() ::
 ejson_array() | ejson_object() | ejson_string() | ejson_number() | true | false | null.

 Functions

 decode(D)

 -spec decode(binary()) -> ejson().

decode a binary to an EJSON term. Throw an exception if there is any error.

 encode(D)

 -spec encode(ejson()) -> binary().

encode an erlang term to JSON. Throw an exception if there is any error.

 post_decode(Term)

couchbeam_httpc

 Summary

 Types

 db/0

 server/0

 Functions

 db_request(Method, Url, Headers, Body, Options)

 db_request(Method, Url, Headers, Body, Options, Expect)

 db_resp(Resp, Expect)

 db_url(Db)

 doc_url(Db, DocId)

 json_body(Ref)

 make_headers(Method, Url, Headers, Options)

 maybe_oauth_header(Method, Url, Headers, Options)

 request(Method, Url, Headers, Body, Options)

 Make an HTTP request via hackney. Returns vary based on options: - Normal request: {ok, Status, Headers, Pid} - HEAD request: {ok, Status, Headers} - Streaming body (body=stream): {ok, Pid} - Async request: {ok, Pid}

 server_url(Server)

 Asemble the server URL for the given client

 Types

 db/0

 -type db() :: #db{server :: server(), name :: binary(), options :: list()}.

 server/0

 -type server() :: #server{url :: term(), options :: list()}.

 Functions

 db_request(Method, Url, Headers, Body, Options)

 db_request(Method, Url, Headers, Body, Options, Expect)

 db_resp(Resp, Expect)

 db_url(Db)

 -spec db_url(db()) -> binary().

 doc_url(Db, DocId)

 -spec doc_url(db(), binary()) -> binary().

 json_body(Ref)

 make_headers(Method, Url, Headers, Options)

 maybe_oauth_header(Method, Url, Headers, Options)

 request(Method, Url, Headers, Body, Options)

 -spec request(atom(), binary(), list(), term(), list()) ->
 {ok, integer(), list(), pid()} |
 {ok, integer(), list()} |
 {ok, pid()} |
 {error, term()}.

Make an HTTP request via hackney. Returns vary based on options: - Normal request: {ok, Status, Headers, Pid} - HEAD request: {ok, Status, Headers} - Streaming body (body=stream): {ok, Pid} - Async request: {ok, Pid}

 server_url(Server)

 -spec server_url(server()) -> binary().

Asemble the server URL for the given client

couchbeam_util

 Summary

 Functions

 binary_env(Key, Default)

 dbname(DbName)

 deprecated(Old, New, When)

 encode_att_name(Name)

 encode_docid1(DocId)

 encode_docid(DocId)

 encode_docid_noop(DocId)

 encode_query(QSL)

 Encode needed value of Query proplists in json

 encode_query_value(K, V)

 Encode value in JSON if needed depending on the key

 force_param(Key, Value, Options)

 replace a value in a proplist

 get_app_env(Env, Default)

 get_value(Key, Prop)

 emulate proplists:get_value/2,3 but use faster lists:keyfind/3

 get_value(Key, Prop, Default)

 oauth_header(Url, Action, OauthProps)

 parse_options(Options)

 make view options a list

 parse_options(Rest, Acc)

 propmerge1(L1, L2)

 Update a proplist with values of the second. In case the same key is in 2 proplists, the value from the first are kept.

 propmerge(F, L1, L2)

 merge 2 proplists. All the Key - Value pairs from both proplists are included in the new proplists. If a key occurs in both dictionaries then Fun is called with the key and both values to return a new value. This a wreapper around dict:merge

 proxy_header(UserName, Roles, Secret)

 proxy_token(Secret, UserName)

 shutdown_sync(Pid)

 start_app_deps(App)

 Start depedent applications of App.

 to_atom(V)

 to_binary(V)

 to_integer(V)

 to_list(V)

 Functions

 binary_env(Key, Default)

 dbname(DbName)

 deprecated(Old, New, When)

 encode_att_name(Name)

 encode_docid1(DocId)

 encode_docid(DocId)

 encode_docid_noop(DocId)

 encode_query(QSL)

Encode needed value of Query proplists in json

 encode_query_value(K, V)

Encode value in JSON if needed depending on the key

 force_param(Key, Value, Options)

replace a value in a proplist

 get_app_env(Env, Default)

 get_value(Key, Prop)

 -spec get_value(Key :: term(), Prop :: [term()]) -> term().

emulate proplists:get_value/2,3 but use faster lists:keyfind/3

 get_value(Key, Prop, Default)

 -spec get_value(Key :: term(), Prop :: [term()], Default :: term()) -> term().

 oauth_header(Url, Action, OauthProps)

 parse_options(Options)

make view options a list

 parse_options(Rest, Acc)

 propmerge1(L1, L2)

Update a proplist with values of the second. In case the same key is in 2 proplists, the value from the first are kept.

 propmerge(F, L1, L2)

merge 2 proplists. All the Key - Value pairs from both proplists are included in the new proplists. If a key occurs in both dictionaries then Fun is called with the key and both values to return a new value. This a wreapper around dict:merge

 proxy_header(UserName, Roles, Secret)

 proxy_token(Secret, UserName)

 shutdown_sync(Pid)

 start_app_deps(App)

 -spec start_app_deps(atom()) -> ok.

Start depedent applications of App.

 to_atom(V)

 to_binary(V)

 to_integer(V)

 to_list(V)

couchbeam_uuids

 Summary

 Types

 server/0

 Functions

 code_change(OldVsn, State, Extra)

 get_uuids(Server, Count)

 Get a list of uuids from the server

 handle_call(_, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 random()

 return a random uuid

 start_link()

 Starts the couchbeam process linked to the calling process. Usually invoked by the supervisor couchbeam_sup

 terminate(Reason, State)

 utc_random()

 return a random uuid based on time

 Types

 server/0

 -type server() :: #server{url :: term(), options :: list()}.

 Functions

 code_change(OldVsn, State, Extra)

 get_uuids(Server, Count)

 -spec get_uuids(server(), integer()) -> [binary()].

Get a list of uuids from the server

 handle_call(_, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 random()

 -spec random() -> binary().

return a random uuid

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Starts the couchbeam process linked to the calling process. Usually invoked by the supervisor couchbeam_sup

 terminate(Reason, State)

 utc_random()

 -spec utc_random() -> binary().

return a random uuid based on time

couchbeam_app

 Summary

 Functions

 start(Type, StartArgs)

 stop(State)

 Functions

 start(Type, StartArgs)

 stop(State)

couchbeam_sup

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 start_link()

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

