

    

        CrucibleBench

        v0.3.2


          [image: Logo]



    


  

    Table of contents

    
      



      	README


      	Changelog





        	
          Modules
          


      	CrucibleBench


      	CrucibleBench.Analysis


      	CrucibleBench.EvalLog


      	CrucibleBench.EvalLog.EvalDataset


      	CrucibleBench.EvalLog.EvalMetric


      	CrucibleBench.EvalLog.EvalResults


      	CrucibleBench.EvalLog.EvalScore


      	CrucibleBench.EvalLog.EvalSpec


      	CrucibleBench.EvalLog.EvalStats


      	CrucibleBench.EvalLog.Extract


      	CrucibleBench.Experiment


      	CrucibleBench.Export


      	CrucibleBench.Result


      	CrucibleBench.Stage


      	CrucibleBench.Stats


      	CrucibleBench.Stats.ANOVA


      	CrucibleBench.Stats.ConfidenceInterval


      	CrucibleBench.Stats.Distributions


      	CrucibleBench.Stats.EffectSize


      	CrucibleBench.Stats.KruskalWallis


      	CrucibleBench.Stats.MannWhitney


      	CrucibleBench.Stats.MultipleComparisons


      	CrucibleBench.Stats.NormalityTests


      	CrucibleBench.Stats.PairedTTest


      	CrucibleBench.Stats.Power


      	CrucibleBench.Stats.TTest


      	CrucibleBench.Stats.VarianceTests


      	CrucibleBench.Stats.Wilcoxon





        



      

    

  

    README

  [image: Bench]
CrucibleBench
[image: Elixir]
[image: Hex.pm]
[image: Documentation]
[image: License]
Statistical Testing Framework for AI Research
A comprehensive statistical testing framework designed specifically for AI/ML research in Elixir. CrucibleBench provides rigorous statistical tests, effect size measures, power analysis, and publication-ready reporting.
Features
	Parametric Tests: t-tests (independent, paired), ANOVA
	Non-Parametric Tests: Mann-Whitney U, Wilcoxon signed-rank, Kruskal-Wallis
	Effect Sizes: Cohen's d, Hedges' g, Glass's delta, eta-squared, omega-squared
	Power Analysis: A priori and post-hoc power calculations
	Confidence Intervals: Bootstrap and analytical methods
	Experiment DSL: High-level API for A/B tests, ablation studies, hyperparameter sweeps
	Export Formats: Markdown, LaTeX, HTML for publication

Design Principles
	Statistical Rigor: All implementations follow established statistical methods
	Interpretability: Every result includes effect sizes and practical significance
	Reproducibility: Complete audit trails for research reproducibility
	Peer-Review Ready: Publication-quality output suitable for academic papers

Installation
Add crucible_bench to your list of dependencies in mix.exs:
def deps do
  [
    {:crucible_bench, "~> 0.3.2"}
  ]
end
Or install from GitHub:
def deps do
  [
    {:crucible_bench, github: "North-Shore-AI/crucible_bench"}
  ]
end
Pipeline Integration
CrucibleBench v0.3.1+ provides CrucibleBench.Stage for seamless integration with crucible_framework pipelines:
# In your pipeline configuration
context = %{
  experiment: %{
    reliability: %{
      stats: %CrucibleIR.Reliability.Stats{
        tests: [:ttest, :bootstrap],
        alpha: 0.05,
        confidence_level: 0.95,
        bootstrap_iterations: 2000
      }
    }
  },
  outputs: [0.85, 0.87, 0.84, 0.86, 0.88]
}

# Run statistical analysis
{:ok, updated_context} = CrucibleBench.Stage.run(context)

# Access results
updated_context.bench.tests
# => %{
#   ttest: %{test_type: :ttest, ...},
#   bootstrap: %{test_type: :bootstrap, confidence_interval: {0.84, 0.88}, ...}
# }

updated_context.bench.summary
# => %{n: 5, mean: 0.86, sd: 0.0141, median: 0.86}
Advanced Stage Configuration
The Stage supports multiple data layouts for different test types:
# Two-group comparison (t-test, Mann-Whitney)
context = %{
  experiment: %{reliability: %{stats: stats_config}},
  control: [0.72, 0.68, 0.75, 0.71, 0.69],
  treatment: [0.78, 0.73, 0.81, 0.76, 0.74]
}

{:ok, ctx} = CrucibleBench.Stage.run(context)
ctx.bench.tests.ttest
# => %{
#   test_type: :ttest,
#   statistic: -3.42,
#   p_value: 0.0089,
#   significant: true,
#   effect_size: %{cohens_d: -2.16, interpretation: "large"},
#   confidence_interval: {-0.095, -0.019}
# }

# Multi-group comparison (ANOVA, Kruskal-Wallis)
context = %{
  experiment: %{
    reliability: %{
      stats: %CrucibleIR.Reliability.Stats{
        tests: [:anova],
        alpha: 0.05
      }
    }
  },
  groups: [
    [0.89, 0.91, 0.88, 0.90, 0.92],  # Model A
    [0.87, 0.89, 0.86, 0.88, 0.90],  # Model B
    [0.84, 0.86, 0.83, 0.85, 0.87]   # Model C
  ]
}

{:ok, ctx} = CrucibleBench.Stage.run(context)
ctx.bench.tests.anova.effect_size.eta_squared
# => 0.72 (large effect)

# Paired comparison (paired t-test, Wilcoxon)
context = %{
  experiment: %{reliability: %{stats: stats_config}},
  before: [0.72, 0.68, 0.75, 0.71, 0.69],
  after: [0.78, 0.73, 0.81, 0.76, 0.74]
}

{:ok, ctx} = CrucibleBench.Stage.run(context)
# Automatically uses paired t-test
Metrics Merging
The Stage automatically merges statistical results into context.metrics:
{:ok, ctx} = CrucibleBench.Stage.run(context)

ctx.metrics.bench_n           # Sample size
ctx.metrics.bench_mean        # Mean value
ctx.metrics.bench_sd          # Standard deviation
ctx.metrics.bench_median      # Median value
ctx.metrics.bench_ttest_p_value  # P-value from t-test (if run)
This enables downstream pipeline stages to access statistical summaries directly.
Inspect-AI Eval Logs
CrucibleBench can adapt EvalEx results into inspect-ai-style eval logs for downstream analysis:
metrics = [
  %{accuracy: 1.0},
  %{accuracy: 0.0},
  %{accuracy: 1.0}
]

result = EvalEx.Result.new("inspect_evals/gsm8k", :testset, metrics, 3, 120)

log = CrucibleBench.EvalLog.from_eval_result(result, scorer_name: "llm_judge")

scores = CrucibleBench.EvalLog.Extract.eval_log_scores_dict(log)
stderr = CrucibleBench.EvalLog.Extract.eval_log_headline_stderr(log)
Using IR Configuration
You can also pass CrucibleIR.Reliability.Stats directly to comparison functions:
config = %CrucibleIR.Reliability.Stats{
  alpha: 0.01,
  confidence_level: 0.99,
  tests: [:ttest]
}

control = [0.72, 0.68, 0.75, 0.71, 0.69]
treatment = [0.78, 0.73, 0.81, 0.76, 0.74]

result = CrucibleBench.compare(control, treatment, config)
# Uses alpha=0.01 and 99% confidence interval
Quick Start
Compare Two Groups
# Compare control vs treatment groups
control = [0.72, 0.68, 0.75, 0.71, 0.69]
treatment = [0.78, 0.73, 0.81, 0.76, 0.74]

result = CrucibleBench.compare(control, treatment)
# => %CrucibleBench.Result{
#   test: :welch_t_test,
#   p_value: 0.0024,
#   effect_size: %{cohens_d: 1.25, interpretation: "large"},
#   confidence_interval: {0.02, 0.14}
# }
Paired Comparison
# Before/after measurements
before = [0.72, 0.68, 0.75, 0.71, 0.69]
after = [0.78, 0.73, 0.81, 0.76, 0.74]

result = CrucibleBench.compare_paired(before, after)
Compare Multiple Groups
# Compare 3+ groups with ANOVA
gpt4 = [0.89, 0.91, 0.88, 0.90, 0.92]
claude = [0.87, 0.89, 0.86, 0.88, 0.90]
gemini = [0.84, 0.86, 0.83, 0.85, 0.87]

result = CrucibleBench.compare_multiple([gpt4, claude, gemini])
Effect Size Analysis
# Calculate Cohen's d
effect = CrucibleBench.effect_size(control, treatment)
# => %{
#   cohens_d: 1.25,
#   interpretation: "large",
#   mean1: 0.71,
#   mean2: 0.764
# }
Confidence Intervals
# Calculate 95% CI for mean
data = [0.85, 0.87, 0.84, 0.86, 0.88]
ci = CrucibleBench.confidence_interval(data, :mean)
# => %{interval: {0.8432, 0.8768}, method: :analytical}

# Bootstrap CI for median
ci = CrucibleBench.confidence_interval(data, :median, method: :bootstrap)
Power Analysis
# A priori: Calculate required sample size
result = CrucibleBench.power_analysis(:t_test,
  analysis_type: :a_priori,
  effect_size: 0.5,    # Medium effect
  alpha: 0.05,
  power: 0.80          # 80% power
)
# => %{n_per_group: 64, recommendation: "Collect at least 64 samples per group..."}

# Post-hoc: Calculate achieved power
result = CrucibleBench.power_analysis(:t_test,
  analysis_type: :post_hoc,
  effect_size: 0.5,
  n_per_group: 30,
  alpha: 0.05
)
# => %{power: 0.548, recommendation: "Marginal power..."}
High-Level Experiment DSL
A/B Testing
result = CrucibleBench.experiment(:ab_test,
  control: control_scores,
  treatment: treatment_scores,
  name: "Prompt Engineering Test"
)

# Comprehensive output includes:
# - Statistical significance
# - Effect size with interpretation
# - Power analysis
# - Recommendations
Ablation Study
result = CrucibleBench.experiment(:ablation,
  baseline: [0.85, 0.87, 0.84, 0.86, 0.88],
  without_component: [0.78, 0.76, 0.79, 0.77, 0.75],
  component_name: "Ensemble Voting"
)

# Shows performance drop and component importance
Hyperparameter Sweep
result = CrucibleBench.experiment(:hyperparameter_sweep,
  configurations: [config_a, config_b, config_c],
  labels: ["Config A", "Config B", "Config C"],
  correction_method: :holm # or :bonferroni, :benjamini_hochberg
)

# Identifies best configuration with pairwise comparisons
# Pairwise p-values are adjusted using the chosen correction method
Assumption Checks (Normality & Variance)
# Normality
NormalityTests.quick_check(data)          # fast skew/kurtosis screen
NormalityTests.assess_normality(data)     # Shapiro-Wilk + skew/kurtosis with recommendation

# Variance equality
VarianceTests.levene_test([g1, g2, g3])   # robust Brown-Forsythe (median-centered)
VarianceTests.f_test(g1, g2)              # classic F-test (assumes normality)
VarianceTests.quick_check(g1, g2)         # fast variance ratio heuristic
	Use normality/variance checks to choose between parametric and non-parametric tests.
	Constant or near-constant data is handled safely (no crashes).

Multiple Comparison Control
p_values = [0.01, 0.03, 0.04, 0.20]

# Adjust p-values
MultipleComparisons.correct(p_values, method: :holm)
MultipleComparisons.correct(p_values, method: :benjamini_hochberg, fdr_level: 0.10)

# Boolean rejections (uses the same alpha/FDR level)
MultipleComparisons.reject(p_values, method: :bonferroni)
	Hyperparameter sweeps automatically apply corrections (:holm default); set correction_method: and optional fdr_level: to change behavior.
	Exports include original and adjusted p-values plus significance under the chosen correction.

Export Results
Markdown
markdown = CrucibleBench.Export.to_markdown(result)
IO.puts(markdown)
LaTeX
latex = CrucibleBench.Export.to_latex(result)
# Generates LaTeX table for academic papers
HTML
html = CrucibleBench.Export.to_html(result)
# Generates styled HTML report
Experiment Reports
report = CrucibleBench.Export.experiment_to_markdown(ab_result)
# Comprehensive markdown report with interpretations
Statistical Tests Reference
Parametric Tests
	Test	Function	Use Case
	Independent t-test	CrucibleBench.Stats.TTest.test/3	Compare 2 independent groups
	Welch's t-test	CrucibleBench.Stats.TTest.test/3	Compare 2 groups (unequal variance)
	Paired t-test	CrucibleBench.Stats.PairedTTest.test/3	Compare 2 related groups
	One-way ANOVA	CrucibleBench.Stats.ANOVA.one_way/2	Compare 3+ independent groups

Non-Parametric Tests
	Test	Function	Use Case
	Mann-Whitney U	CrucibleBench.Stats.MannWhitney.test/3	Non-parametric alternative to t-test
	Wilcoxon signed-rank	CrucibleBench.Stats.Wilcoxon.test/3	Non-parametric alternative to paired t-test
	Kruskal-Wallis	CrucibleBench.Stats.KruskalWallis.test/2	Non-parametric alternative to ANOVA

Effect Sizes
	Measure	Function	Interpretation
	Cohen's d	CrucibleBench.Stats.EffectSize.cohens_d/2	Standardized mean difference
	Hedges' g	CrucibleBench.Stats.EffectSize.hedges_g/2	Bias-corrected Cohen's d
	Glass's delta	CrucibleBench.Stats.EffectSize.glass_delta/2	Using control SD only
	Eta-squared	Included in ANOVA results	Proportion of variance explained

Effect Size Interpretation
Based on Cohen (1988):
	Cohen's d	Interpretation
	< 0.2	Negligible
	0.2 - 0.5	Small
	0.5 - 0.8	Medium
	> 0.8	Large

	Eta-squared (η²)	Interpretation
	< 0.01	Negligible
	0.01 - 0.06	Small
	0.06 - 0.14	Medium
	> 0.14	Large

Module Structure
lib/crucible_bench/
├── bench.ex                          # Main API
├── result.ex                         # Result struct
├── stats.ex                          # Core statistics
├── analysis.ex                       # High-level analysis
├── experiment.ex                     # Experiment DSL
├── export.ex                         # Export/reporting
└── stats/
    ├── t_test.ex                     # Independent t-test
    ├── paired_t_test.ex              # Paired t-test
    ├── anova.ex                      # ANOVA
    ├── mann_whitney.ex               # Mann-Whitney U
    ├── wilcoxon.ex                   # Wilcoxon signed-rank
    ├── kruskal_wallis.ex             # Kruskal-Wallis
    ├── effect_size.ex                # Effect size measures
    ├── confidence_interval.ex        # CI calculations
    ├── power.ex                      # Power analysis
    ├── multiple_comparisons.ex       # p-value corrections (FWER/FDR)
    ├── normality_tests.ex            # Shapiro-Wilk + diagnostics
    ├── variance_tests.ex             # Levene, F-test, variance heuristics
    └── distributions.ex              # Probability distributions
Examples
See examples/basic_usage.exs for comprehensive examples covering:
	Independent samples t-test
	Paired t-test
	One-way ANOVA
	Effect size analysis
	Confidence intervals
	Power analysis
	A/B test experiment
	Ablation study
	Hyperparameter sweep
	Result export

Run examples:
mix run examples/basic_usage.exs

Testing
Run the test suite:
mix test

Run specific tests:
mix test test/bench_test.exs
mix test test/stats_test.exs
mix test test/effect_size_test.exs

Best Practices for AI Research
1. Always Report Effect Sizes
P-values alone don't tell the full story. Always include effect sizes:
result = CrucibleBench.compare(control, treatment)
IO.puts("P-value: #{result.p_value}")
IO.puts("Effect size: #{result.effect_size.cohens_d} (#{result.effect_size.interpretation})")
2. Check Statistical Power
Ensure your study has adequate power:
power = CrucibleBench.power_analysis(:t_test,
  analysis_type: :post_hoc,
  effect_size: observed_effect,
  n_per_group: n,
  alpha: 0.05
)

if power.power < 0.8 do
  IO.puts("Warning: Underpowered study! #{power.recommendation}")
end
3. Use Confidence Intervals
CIs provide more information than p-values:
result = CrucibleBench.compare(group1, group2)
{lower, upper} = result.confidence_interval
IO.puts("95% CI: [#{lower}, #{upper}]")
4. Consider Practical Significance
Statistical significance ≠ practical significance:
if result.p_value < 0.05 and abs(effect.cohens_d) < 0.2 do
  IO.puts("Statistically significant but negligible effect size")
end
5. Use Experiment DSL for Complex Studies
The experiment DSL automates best practices:
result = CrucibleBench.experiment(:ab_test,
  control: control,
  treatment: treatment,
  name: "My Experiment"
)

# Automatically includes:
# - Appropriate test selection
# - Effect size calculation
# - Power analysis
# - Recommendations
Common Use Cases in AI Research
Compare Model Performance
model_a_scores = [0.85, 0.87, 0.84, 0.86, 0.88]
model_b_scores = [0.88, 0.90, 0.89, 0.91, 0.87]

result = CrucibleBench.compare(model_a_scores, model_b_scores)
effect = CrucibleBench.effect_size(model_a_scores, model_b_scores)
Test Prompt Engineering
baseline_prompt = [0.72, 0.68, 0.75, 0.71, 0.69]
optimized_prompt = [0.78, 0.73, 0.81, 0.76, 0.74]

result = CrucibleBench.experiment(:ab_test,
  control: baseline_prompt,
  treatment: optimized_prompt,
  name: "Prompt Optimization"
)
Evaluate Architecture Changes
baseline = [0.85, 0.87, 0.84, 0.86, 0.88]
new_arch = [0.88, 0.90, 0.89, 0.91, 0.87]

result = CrucibleBench.compare(baseline, new_arch)
markdown = CrucibleBench.Export.to_markdown(result)
File.write!("results.md", markdown)
Ablation Studies
full_system = [0.85, 0.87, 0.84, 0.86, 0.88]
without_cache = [0.78, 0.76, 0.79, 0.77, 0.75]

result = CrucibleBench.experiment(:ablation,
  baseline: full_system,
  without_component: without_cache,
  component_name: "Response Cache"
)
Limitations
	Sample Size: Most tests assume n ≥ 30 for asymptotic properties. Use bootstrap methods for smaller samples.
	Normality: Parametric tests assume normality. Bench automatically suggests non-parametric alternatives when assumptions are violated.
	Independence: All tests assume independent observations. Use appropriate designs for repeated measures.

References
Statistical Methods
	Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Routledge.
	Welch, B. L. (1947). The generalization of "Student's" problem when several different population variances are involved. Biometrika, 34(1-2), 28-35.
	Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583-621.

AI Research Statistics
	Dror, R., et al. (2018). The hitchhiker's guide to testing statistical significance in natural language processing. Proceedings of ACL.
	Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1-30.

Advanced Features
Bootstrap Confidence Intervals
For small samples or non-normal data, use bootstrap methods:
# Bootstrap CI for median (robust to outliers)
data = [0.85, 0.87, 0.84, 0.86, 0.88, 0.83, 0.89, 0.85]
ci = CrucibleBench.confidence_interval(data, :median,
  method: :bootstrap,
  iterations: 10000
)
# => %{interval: {0.835, 0.875}, method: :bootstrap, bootstrap_distribution: %{...}}
Multiple Effect Size Measures
# Compare different effect size calculations
cohens_d = Stats.EffectSize.cohens_d(group1, group2)
hedges_g = Stats.EffectSize.hedges_g(group1, group2)  # Bias-corrected
glass_delta = Stats.EffectSize.glass_delta(group1, group2)  # Control SD only

IO.puts("Cohen's d: #{cohens_d.cohens_d}")
IO.puts("Hedges' g: #{hedges_g.hedges_g}")
IO.puts("Glass's Δ: #{glass_delta.glass_delta}")
Power Analysis Curves
Calculate power for different sample sizes:
effect_size = 0.5
for n <- [20, 30, 50, 100] do
  power = CrucibleBench.power_analysis(:t_test,
    analysis_type: :post_hoc,
    effect_size: effect_size,
    n_per_group: n,
    alpha: 0.05
  )
  IO.puts("n=#{n}: power=#{Float.round(power.power * 100, 1)}%")
end
Complete API Reference
Core Functions
CrucibleBench.compare(group1, group2, opts \\\\ [])
Compares two independent groups with automatic test selection.
Options:
	:test - Force specific test (:t_test, :welch_t_test, :mann_whitney)
	:confidence_level - CI level (default: 0.95)
	:check_assumptions - Test normality (default: true)
	:alternative - :two_sided, :less, :greater

Returns: CrucibleBench.Result struct
CrucibleBench.compare_paired(group1, group2, opts \\\\ [])
Compares paired/related groups.
Options: Same as compare/3
CrucibleBench.compare_multiple(groups, opts \\\\ [])
Compares 3+ groups with ANOVA or Kruskal-Wallis.
Options:
	:test - Force :anova or :kruskal_wallis
	:check_assumptions - Test normality (default: true)

CrucibleBench.effect_size(group1, group2, opts \\\\ [])
Calculates Cohen's d effect size.
CrucibleBench.confidence_interval(data, statistic, opts \\\\ [])
Calculates confidence intervals.
Statistics: :mean, :median, :variance, etc.
Methods: :analytical, :bootstrap
CrucibleBench.power_analysis(test_type, opts \\\\ [])
Power analysis calculations.
Types: :a_priori, :post_hoc
Required: :effect_size, :alpha, :power or :n_per_group
Experiment DSL
CrucibleBench.experiment(:ab_test, opts)
Options:
	:control - Control group data
	:treatment - Treatment group data
	:name - Experiment name

CrucibleBench.experiment(:ablation, opts)
Options:
	:baseline - Full system performance
	:without_component - Performance without component
	:component_name - Name of removed component

CrucibleBench.experiment(:hyperparameter_sweep, opts)
Options:
	:configurations - List of performance arrays
	:labels - Configuration names

Export Functions
CrucibleBench.Export.to_markdown(result)
CrucibleBench.Export.to_latex(result)
CrucibleBench.Export.to_html(result)
CrucibleBench.Export.experiment_to_markdown(experiment_result)
Integration Examples
With Phoenix LiveView
defmodule StatsLive do
  use Phoenix.LiveView

  def handle_event("run_test", %{"control" => control, "treatment" => treatment}, socket) do
    result = CrucibleBench.compare(control, treatment)
    markdown = CrucibleBench.Export.to_markdown(result)

    {:noreply, assign(socket, result: result, markdown: markdown)}
  end
end
Research Workflow Integration
defmodule ResearchPipeline do
  def run_experiment(control_data, treatment_data, metadata) do
    # 1. Run statistical test
    result = CrucibleBench.compare(control_data, treatment_data)

    # 2. Check power
    power_analysis = CrucibleBench.power_analysis(:t_test,
      analysis_type: :post_hoc,
      effect_size: abs(result.effect_size.cohens_d),
      n_per_group: length(control_data),
      alpha: 0.05
    )

    # 3. Generate report
    report = CrucibleBench.Export.experiment_to_markdown(%{
      experiment_type: :ab_test,
      name: metadata.name,
      significant?: result.p_value < 0.05,
      p_value: result.p_value,
      effect_size: result.effect_size,
      power: power_analysis.power,
      # ... other fields
    })

    # 4. Save results
    File.write!("results/#{metadata.name}.md", report)

    {:ok, result, power_analysis}
  end
end
Benchmark Integration
defmodule BenchmarkRunner do
  def run_benchmarks(models, dataset) do
    results = for {name, model} <- models do
      scores = Enum.map(dataset, &model.predict/1)
      {name, scores}
    end

    # Statistical comparison of all models
    score_lists = Enum.map(results, fn {_name, scores} -> scores end)
    comparison = CrucibleBench.compare_multiple(score_lists)

    # Pairwise comparisons
    pairwise = for i <- 0..(length(results)-2),
                   j <- (i+1)..(length(results)-1) do
      {name_i, scores_i} = Enum.at(results, i)
      {name_j, scores_j} = Enum.at(results, j)

      result = CrucibleBench.compare(scores_i, scores_j)
      %{comparison: "#{name_i} vs #{name_j}",
        p_value: result.p_value,
        effect_size: result.effect_size.cohens_d}
    end

    %{omnibus: comparison, pairwise: pairwise}
  end
end
Performance Considerations
Memory Usage
	Bootstrap methods with high iteration counts (>10,000) may consume significant memory
	For large datasets, consider using analytical methods when assumptions are met
	Effect size calculations are O(n) in sample size

Computational Complexity
	Operation	Complexity	Notes
	t-test	O(n)	Fast for any n
	ANOVA	O(k×n)	k = number of groups
	Bootstrap CI	O(iterations × n)	Expensive for high precision
	Mann-Whitney	O(n²)	Slow for large n (>1000)
	Kruskal-Wallis	O(n log n)	Better scaling

Optimization Tips
# Use analytical methods when possible
ci = CrucibleBench.confidence_interval(data, :mean, method: :analytical)

# Reduce bootstrap iterations for faster results
ci = CrucibleBench.confidence_interval(data, :median,
  method: :bootstrap,
  iterations: 1000  # Instead of default 10000
)

# Cache results for repeated analyses
@cached_power_analysis Memoize.memoize fn params ->
  CrucibleBench.power_analysis(params)
end
Troubleshooting
Common Issues
Non-significant results despite large differences
# Check if you have enough power
result = CrucibleBench.compare(group1, group2)
power = CrucibleBench.power_analysis(:t_test,
  analysis_type: :post_hoc,
  effect_size: abs(result.effect_size.cohens_d),
  n_per_group: length(group1),
  alpha: 0.05
)

if power.power < 0.8 do
  IO.puts("Underpowered study! Need larger sample size.")
end
Assumption violations
# Check normality
result = CrucibleBench.compare(group1, group2, check_assumptions: true)
# If normality test fails, consider non-parametric tests

# Or manually check
skew1 = CrucibleBench.Stats.skewness(group1)
kurt1 = CrucibleBench.Stats.kurtosis(group1)
Outliers affecting results
# Use robust statistics
median_ci = CrucibleBench.confidence_interval(data, :median, method: :bootstrap)
# Compare with mean-based results
Error Messages
	"Need at least 2 groups": compare_multiple/2 requires 2+ groups
	"Unknown test: xyz": Invalid test type specified
	"Sample size too small": Some tests require minimum n (e.g., normality tests)

Research Methodology
Best Practices Checklist
	[ ] Power Analysis: Calculate required sample size before data collection
	[ ] Effect Sizes: Always report alongside p-values
	[ ] Assumptions: Test normality, homogeneity of variance
	[ ] Multiple Testing: Apply corrections for multiple comparisons
	[ ] Confidence Intervals: Report CIs, not just p-values
	[ ] Replication: Design studies for reproducibility

Common Research Scenarios
Pre-registered Analysis Plan
# Define analysis plan before data collection
analysis_plan = %{
  primary_test: :welch_t_test,
  alpha: 0.05,
  power_target: 0.80,
  effect_size_estimate: 0.5,
  required_n: 64  # From a priori power analysis
}

# Execute plan
result = CrucibleBench.compare(group1, group2, test: analysis_plan.primary_test)
Exploratory Data Analysis
# Multiple effect sizes for robustness
effect_sizes = [
  CrucibleBench.effect_size(group1, group2),
  Stats.EffectSize.hedges_g(group1, group2),
  Stats.EffectSize.glass_delta(group1, group2)
]

# Sensitivity analysis with different tests
results = [
  CrucibleBench.compare(group1, group2, test: :welch_t_test),
  CrucibleBench.compare(group1, group2, test: :mann_whitney)
]
Meta-analysis Preparation
# Calculate effect sizes for meta-analysis
studies = [
  {study1_control, study1_treatment, "Study 1"},
  {study2_control, study2_treatment, "Study 2"}
]

meta_data = for {control, treatment, name} <- studies do
  effect = CrucibleBench.effect_size(control, treatment)
  result = CrucibleBench.compare(control, treatment)

  %{
    study: name,
    cohens_d: effect.cohens_d,
    variance: Stats.effect_size_variance(effect.cohens_d, length(control) + length(treatment)),
    n: length(control) + length(treatment)
  }
end
Contributing
Development Setup
# Clone and setup
git clone https://github.com/North-Shore-AI/crucible_bench.git
cd crucible_bench
mix deps.get

# Run tests
mix test

# Run examples
mix run examples/basic_usage.exs
mix run examples/advanced_usage.exs

# Generate docs
mix docs

Code Standards
	Modules: Follow Elixir naming conventions
	Functions: Clear, descriptive names with comprehensive documentation
	Tests: Unit tests for all public functions, property-based tests where applicable
	Documentation: Complete @doc and @moduledoc with examples

Adding New Tests
# 1. Implement test in appropriate stats module
defmodule CrucibleBench.Stats.NewTest do
  def test(group1, group2, opts \\ []) do
    # Implementation
    # Return CrucibleBench.Result struct
  end
end

# 2. Add to Analysis module
def compare_groups(group1, group2, opts) do
  # ... existing logic
  test_to_use = if new_condition, do: :new_test, else: existing_logic

  case test_to_use do
    :new_test -> NewTest.test(group1, group2, opts)
    # ... other cases
  end
end

# 3. Add comprehensive tests
test "new test handles various inputs" do
  # Test cases
end
Reporting Issues
Please include:
	Elixir/Erlang versions
	Sample data that reproduces the issue
	Expected vs actual behavior
	Full error messages and stack traces

License
MIT License - see LICENSE file for details
Changelog
v0.2.0 (Current)
	Complete statistical testing framework with parametric and non-parametric coverage using accurate distribution functions
	Expanded effect size suite with paired measures, eta/omega squared, and rank-biserial correlation plus interpretation guidance
	Analytical and bootstrap confidence intervals and power analysis with actionable recommendations
	High-level helpers for automatic test selection and experiment DSL for A/B tests, ablations, and hyperparameter sweeps
	Publication-ready exports to Markdown, LaTeX, and HTML with standardized result metadata

v0.1.0
	Initial release with comprehensive statistical testing framework
	Support for parametric and non-parametric tests
	Effect size calculations and power analysis
	Bootstrap confidence intervals
	Experiment DSL for common research patterns
	Export to Markdown, LaTeX, and HTML formats
	Complete documentation and examples



  

    Changelog

All notable changes to this project will be documented in this file.
[0.3.2] - 2025-12-25
Added
	Stage Multi-Group Support - Stage now supports multiple data layouts:	Two-group comparison: control and treatment keys for t-test, Mann-Whitney
	Multi-group comparison: groups key for ANOVA, Kruskal-Wallis
	Paired comparison: before and after keys for paired t-test, Wilcoxon


	Stage Metrics Merging - Results automatically merged into context.metrics:	Summary stats: bench_n, bench_mean, bench_sd, bench_median
	Test p-values: bench_ttest_p_value, bench_anova_p_value, etc.


	Stage Type Specifications - Added @spec declarations for public functions
	Stage Behaviour Compliance - Conditional @behaviour Crucible.Stage when available
	Updated SVG - Professional bell curve design for crucible_bench.svg
	Current State Documentation - Added docs/20251225/current_state.md with complete module reference
	Gap Analysis - Added docs/20251225/gaps.md with improvement opportunities
	Implementation Guide - Added docs/20251225/implementation_prompt.md for Stage enhancements

Fixed
	Credo Strict Compliance - All 18 issues resolved:	Number formatting (20700 → 20_700)
	Alphabetically sorted aliases across 7 files
	Enum.map_join/3 instead of Enum.map/2 |> Enum.join/2
	Reduced function arity using map parameters
	Extracted helpers to reduce cyclomatic complexity and nesting depth
	Replaced length/1 == 0 with Enum.empty?/1



Changed
	Dependencies Updated:	crucible_ir upgraded from ~> 0.1.1 to ~> 0.2.0
	eval_ex upgraded from ~> 0.1.2 to ~> 0.1.4
	Added credo ~> 1.7 as dev/test dependency



Documentation
	README updated with Advanced Stage Configuration section
	README updated with Metrics Merging section

Testing
	New test suite for two-group comparisons
	New test suite for multi-group comparisons (ANOVA, Kruskal-Wallis)
	New test suite for paired comparisons (paired t-test, Wilcoxon)
	New test suite for metrics merging
	New test suite for behaviour compliance

[0.3.1] - 2025-12-24
Added
	EvalLog Schema: Inspect-ai compatible evaluation log structs
	EvalEx Adapter: Convert EvalEx.Result into CrucibleBench.EvalLog
	Metric Extraction: Helpers mirroring inspect-ai analysis extractors

Documentation
	README updated with EvalLog adapter usage
	Inspect-ai parity requirements updated with current status

[0.3.0] - 2025-11-26
Added
	CrucibleIR Integration - Added dependency on crucible_ir ~> 0.1.1 for shared IR structures
	CrucibleBench.Stage - New pipeline stage module for integration with crucible_framework	Implements stage behaviour for use in pipeline orchestration
	Accepts CrucibleIR.Reliability.Stats configuration from experiment context
	Extracts and analyzes data from pipeline context (:outputs or :metrics keys)
	Returns comprehensive statistical analysis in :bench context key
	Supports test selection, confidence intervals, and bootstrap analysis
	Provides describe/1 function for stage introspection


	IR Config Support - Main CrucibleBench.compare/3 function now accepts CrucibleIR.Reliability.Stats struct	Automatically converts IR configuration to internal options format
	Maintains backwards compatibility with keyword list options
	Maps IR test types (:ttest, :bootstrap, etc.) to CrucibleBench implementations



Changed
	Version bumped to 0.3.0 (MINOR version due to new functionality)
	Enhanced CrucibleBench module with multi-clause function definitions for config handling

Documentation
	Complete API documentation for CrucibleBench.Stage module
	Updated README with Stage usage examples
	Enhanced main module documentation with IR config examples

Testing
	New comprehensive test suite for CrucibleBench.Stage (18 tests)
	Tests cover context processing, error handling, config conversion, and integration
	Property-based validation of IR config acceptance

[0.2.1] - 2025-11-25
Added
	Multiple Comparison Corrections - Controls Type I error rates when conducting multiple tests
	Bonferroni correction (most conservative, controls FWER)
	Holm step-down method (less conservative than Bonferroni, still controls FWER)
	Benjamini-Hochberg FDR correction (controls false discovery rate, more powerful)
	New module: CrucibleBench.Stats.MultipleComparisons
	Integration with hyperparameter sweep experiments (automatic p-value adjustment)
	Detailed correction results with original and adjusted p-values


	Formal Normality Tests - Statistical tests for distribution assumptions
	Shapiro-Wilk test (most powerful omnibus test, n = 3 to 5000)
	Comprehensive normality assessment combining multiple approaches
	Quick normality check using skewness/kurtosis thresholds
	New module: CrucibleBench.Stats.NormalityTests


	Variance Equality Tests - Validates homogeneity of variance assumptions
	Levene's test (robust to non-normality, uses median-based deviations)
	F-test for two groups (parametric, sensitive to normality)
	Quick variance check using variance ratios
	New module: CrucibleBench.Stats.VarianceTests



Changed
	Hyperparameter sweep experiments now apply multiple comparison corrections by default (Holm method)
	Export module updated to display adjusted p-values in pairwise comparison tables
	Experiment results include correction method information

Documentation
	Comprehensive enhancement design document in docs/20251125/enhancement_design.md
	Complete API documentation for all new modules
	Examples demonstrating each new feature
	Best practices for multiple comparison handling

Testing
	3 new comprehensive test suites (multiple_comparisons_test, normality_tests_test, variance_tests_test)
	Property-based testing for monotonicity and boundary conditions
	Integration tests demonstrating end-to-end functionality

[0.2.0] - 2025-11-24
Added
	Complete statistical testing framework with parametric (Student's, Welch's, paired t-tests, one-way ANOVA) and non-parametric (Mann-Whitney U, Wilcoxon signed-rank, Kruskal-Wallis) coverage using accurate distribution functions
	Expanded effect size suite including Cohen's d, Hedges' g, Glass's delta, paired Cohen's d, eta-squared/omega-squared, and rank-biserial correlation with interpretation guidance
	Confidence intervals (analytical and bootstrap) and power analysis (a priori and post-hoc for t-tests and ANOVA) with actionable recommendations
	High-level analysis helpers for automatic test selection plus experiment DSL for A/B tests, ablation studies, and hyperparameter sweeps
	Publication-ready exports to Markdown, LaTeX, and HTML with standardized result metadata

[0.1.0] - 2025-10-07
Added
	Initial release
	Comprehensive statistical testing framework for AI/ML research
	Parametric tests (t-tests, ANOVA) and non-parametric tests (Mann-Whitney, Wilcoxon, Kruskal-Wallis)
	Effect size measures (Cohen's d, Hedges' g, Glass's delta, eta-squared, omega-squared)
	Power analysis with a priori and post-hoc calculations
	Confidence intervals using bootstrap and analytical methods
	High-level experiment DSL for A/B tests, ablation studies, and hyperparameter sweeps
	Publication-ready export formats (Markdown, LaTeX, HTML)

Documentation
	Comprehensive README with examples
	API documentation for all statistical tests
	Usage examples for common AI research scenarios
	Best practices guide for statistical rigor in AI research



  

    
CrucibleBench 
    



      
Bench - Statistical Testing Framework for AI Research
A comprehensive statistical testing framework designed specifically for AI/ML research.
Provides rigorous statistical tests, effect size measures, power analysis, and
publication-ready reporting.
Core Capabilities
	Parametric Tests: t-tests, ANOVA
	Non-Parametric Tests: Mann-Whitney U, Wilcoxon signed-rank, Kruskal-Wallis
	Effect Sizes: Cohen's d, Hedges' g, eta-squared, omega-squared
	Power Analysis: A priori and post-hoc power calculations
	Confidence Intervals: Bootstrap and analytical methods
	Multiple Comparison Correction: Bonferroni, Holm, Benjamini-Hochberg

Quick Start
# Compare two groups
control = [0.72, 0.68, 0.75, 0.71, 0.69]
treatment = [0.78, 0.73, 0.81, 0.76, 0.74]

CrucibleBench.compare(control, treatment)
Design Principles
	Statistical Rigor: All implementations validated against R/SciPy
	Interpretability: Every result includes effect sizes
	Reproducibility: Complete audit trails
	Peer-Review Ready: Publication-quality output


      


      
        Summary


  
    Functions
  


    
      
        compare(group1, group2, opts \\ [])

      


        Compare two independent groups with automatic test selection.



    


    
      
        compare_multiple(groups, opts \\ [])

      


        Compare multiple groups (3+) with ANOVA or Kruskal-Wallis.



    


    
      
        compare_paired(group1, group2, opts \\ [])

      


        Perform paired comparison between related groups.



    


    
      
        confidence_interval(data, statistic, opts \\ [])

      


        Calculate confidence interval for a statistic.



    


    
      
        effect_size(group1, group2, opts \\ [])

      


        Calculate effect size between two groups.



    


    
      
        experiment(type, opts \\ [])

      


        Run an experiment with automatic analysis.



    


    
      
        power_analysis(test_type, opts \\ [])

      


        Perform power analysis for a test.



    





      


      
        Functions


        


    

  
    
      
    
    
      compare(group1, group2, opts \\ [])



        
          
        

    

  


  

Compare two independent groups with automatic test selection.
Automatically selects appropriate test based on data characteristics and
assumption checking. Returns comprehensive results including p-value,
effect size, confidence interval, and interpretation.
Options
	:test - Force specific test (:t_test, :welch_t_test, :mann_whitney)
	:confidence_level - Confidence level for CI (default: 0.95)
	:check_assumptions - Test normality and variance (default: true)
	:alternative - :two_sided (default), :less, :greater

Examples
iex> control = [5.1, 4.9, 5.3, 5.0, 5.2]
iex> treatment = [6.2, 6.0, 6.4, 5.9, 6.1]
iex> result = CrucibleBench.compare(control, treatment)
iex> result.p_value < 0.05
true

# Using CrucibleIR.Reliability.Stats configuration
iex> config = %CrucibleIR.Reliability.Stats{alpha: 0.01, confidence_level: 0.99}
iex> c = [5.1, 4.9, 5.3, 5.0, 5.2]
iex> t = [6.2, 6.0, 6.4, 5.9, 6.1]
iex> result = CrucibleBench.compare(c, t, config)
iex> is_map(result)
true
Returns
A CrucibleBench.Result struct containing:
	test: Test type used
	statistic: Test statistic value
	p_value: P-value
	effect_size: Effect size measure
	confidence_interval: CI for mean difference
	interpretation: Human-readable interpretation


  



    

  
    
      
    
    
      compare_multiple(groups, opts \\ [])



        
          
        

    

  


  

Compare multiple groups (3+) with ANOVA or Kruskal-Wallis.
Automatically selects parametric (ANOVA) or non-parametric (Kruskal-Wallis)
test based on assumption checking.
Examples
iex> gpt4 = [0.89, 0.91, 0.88, 0.90, 0.92]
iex> claude = [0.87, 0.89, 0.86, 0.88, 0.90]
iex> gemini = [0.84, 0.86, 0.83, 0.85, 0.87]
iex> result = CrucibleBench.compare_multiple([gpt4, claude, gemini])
iex> result.test in [:anova, :kruskal_wallis]
true

  



    

  
    
      
    
    
      compare_paired(group1, group2, opts \\ [])



        
          
        

    

  


  

Perform paired comparison between related groups.
Use when samples are paired (e.g., before/after measurements on same subjects).
Examples
iex> before = [0.72, 0.68, 0.75, 0.71, 0.69]
iex> after_values = [0.78, 0.73, 0.81, 0.76, 0.74]
iex> result = CrucibleBench.compare_paired(before, after_values)
iex> result.effect_size.mean_diff > 0
true

  



    

  
    
      
    
    
      confidence_interval(data, statistic, opts \\ [])



        
          
        

    

  


  

Calculate confidence interval for a statistic.
Supports both analytical and bootstrap methods.
Options
	:method - :analytical (default) or :bootstrap
	:confidence_level - Confidence level (default: 0.95)
	:iterations - Bootstrap iterations (default: 10000)

Examples
iex> data = [5.0, 5.2, 4.8, 5.1, 4.9, 5.3]
iex> ci = CrucibleBench.confidence_interval(data, :mean)
iex> {lower, upper} = ci.interval
iex> lower < 5.05 and upper > 5.05
true

  



    

  
    
      
    
    
      effect_size(group1, group2, opts \\ [])



        
          
        

    

  


  

Calculate effect size between two groups.
Returns Cohen's d or appropriate effect size measure.
Examples
iex> group1 = [5.0, 5.2, 4.8, 5.1, 4.9]
iex> group2 = [6.0, 6.2, 5.8, 6.1, 5.9]
iex> effect = CrucibleBench.effect_size(group1, group2)
iex> effect.cohens_d < 0
true

  



    

  
    
      
    
    
      experiment(type, opts \\ [])



        
          
        

    

  


  

Run an experiment with automatic analysis.
High-level DSL for common experiment patterns.
Experiment Types
	:ab_test - A/B testing
	:ablation - Ablation study
	:hyperparameter_sweep - Hyperparameter optimization

Examples
iex> control = [0.72, 0.68, 0.75, 0.71, 0.69]
iex> treatment = [0.78, 0.73, 0.81, 0.76, 0.74]
iex> result = CrucibleBench.experiment(:ab_test,
...>   control: control, treatment: treatment,
...>   name: "Prompt Engineering Test")
iex> result.significant?
true

  



    

  
    
      
    
    
      power_analysis(test_type, opts \\ [])



        
          
        

    

  


  

Perform power analysis for a test.
Calculate required sample size or achieved power.
Options
	:analysis_type - :a_priori (sample size) or :post_hoc (power)
	:effect_size - Expected or observed effect size
	:alpha - Significance level (default: 0.05)
	:power - Desired power (default: 0.80)

Examples
iex> # Calculate required sample size
iex> result = CrucibleBench.power_analysis(:t_test,
...>   effect_size: 0.5, alpha: 0.05, power: 0.80)
iex> result.n_per_group > 0
true

  


        

      


  

    
CrucibleBench.Analysis 
    



      
High-level analysis functions with automatic test selection.
Provides smart defaults and automatic assumption checking.

      


      
        Summary


  
    Functions
  


    
      
        compare_groups(group1, group2, opts \\ [])

      


        Compare two independent groups with automatic test selection.



    


    
      
        compare_multiple(groups, opts \\ [])

      


        Compare multiple groups with automatic test selection.



    


    
      
        compare_paired(group1, group2, opts \\ [])

      


        Compare paired groups with automatic test selection.



    





      


      
        Functions


        


    

  
    
      
    
    
      compare_groups(group1, group2, opts \\ [])



        
          
        

    

  


  

Compare two independent groups with automatic test selection.
Automatically checks assumptions and selects appropriate test:
	Normal data + equal variance: Student's t-test
	Normal data + unequal variance: Welch's t-test (default)
	Non-normal data: Mann-Whitney U test

Options
	:test - Force specific test (:t_test, :welch_t_test, :mann_whitney)
	:confidence_level - Confidence level for CI (default: 0.95)
	:check_assumptions - Test normality (default: true)
	:alternative - :two_sided (default), :less, :greater


  



    

  
    
      
    
    
      compare_multiple(groups, opts \\ [])



        
          
        

    

  


  

Compare multiple groups with automatic test selection.
Selects ANOVA for normal data with equal variances,
Kruskal-Wallis for non-normal data.

  



    

  
    
      
    
    
      compare_paired(group1, group2, opts \\ [])



        
          
        

    

  


  

Compare paired groups with automatic test selection.
Selects paired t-test for normal differences, Wilcoxon for non-normal.

  


        

      


  

    
CrucibleBench.EvalLog 
    



      
Inspect-AI compatible evaluation log schema and adapters.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        from_eval_result(result, opts \\ [])

      


        Build an EvalLog from an EvalEx.Result.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %CrucibleBench.EvalLog{
  eval: CrucibleBench.EvalLog.EvalSpec.t(),
  location: String.t(),
  results: CrucibleBench.EvalLog.EvalResults.t() | nil,
  stats: CrucibleBench.EvalLog.EvalStats.t(),
  status: String.t(),
  version: non_neg_integer()
}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      from_eval_result(result, opts \\ [])



        
          
        

    

  


  

      

          @spec from_eval_result(
  EvalEx.Result.t(),
  keyword()
) :: t()


      


Build an EvalLog from an EvalEx.Result.

  


        

      


  

    
CrucibleBench.EvalLog.EvalDataset 
    



      
Dataset metadata for an eval.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %CrucibleBench.EvalLog.EvalDataset{
  location: String.t() | nil,
  name: String.t() | nil,
  sample_ids: [String.t() | integer()] | nil,
  samples: non_neg_integer() | nil,
  shuffled: boolean() | nil
}


      



  


        

      


  

    
CrucibleBench.EvalLog.EvalMetric 
    



      
Metric entry for an evaluation score.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %CrucibleBench.EvalLog.EvalMetric{
  metadata: map() | nil,
  name: String.t(),
  params: map(),
  value: number()
}


      



  


        

      


  

    
CrucibleBench.EvalLog.EvalResults 
    



      
Scoring results from evaluation.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %CrucibleBench.EvalLog.EvalResults{
  completed_samples: non_neg_integer(),
  metadata: map() | nil,
  scores: [CrucibleBench.EvalLog.EvalScore.t()],
  total_samples: non_neg_integer()
}


      



  


        

      


  

    
CrucibleBench.EvalLog.EvalScore 
    



      
Score summary for an evaluation.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %CrucibleBench.EvalLog.EvalScore{
  metadata: map() | nil,
  metrics: map(),
  name: String.t(),
  params: map(),
  reducer: String.t() | nil,
  scored_samples: non_neg_integer() | nil,
  scorer: String.t(),
  unscored_samples: non_neg_integer() | nil
}


      



  


        

      


  

    
CrucibleBench.EvalLog.EvalSpec 
    



      
Identity and configuration for an eval run.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %CrucibleBench.EvalLog.EvalSpec{
  dataset: CrucibleBench.EvalLog.EvalDataset.t() | nil,
  metadata: map() | nil,
  model: String.t() | nil,
  task: String.t(),
  task_display_name: String.t() | nil
}


      



  


        

      


  

    
CrucibleBench.EvalLog.EvalStats 
    



      
Timing and usage statistics.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %CrucibleBench.EvalLog.EvalStats{
  completed_at: String.t(),
  model_usage: map(),
  started_at: String.t()
}


      



  


        

      


  

    
CrucibleBench.EvalLog.Extract 
    



      
Helpers for extracting metrics from EvalLog structures.

      


      
        Summary


  
    Functions
  


    
      
        eval_log_headline_stderr(eval_log)

      


        Extract headline stderr if present.



    


    
      
        eval_log_location(eval_log)

      


        Return log location.



    


    
      
        eval_log_scores_dict(eval_log)

      


        Extract scores as a list of score-name keyed metric maps.



    


    
      
        eval_log_task_display_name(log)

      


        Return display name for the task.



    





      


      
        Functions


        


  
    
      
    
    
      eval_log_headline_stderr(eval_log)



        
          
        

    

  


  

Extract headline stderr if present.

  



  
    
      
    
    
      eval_log_location(eval_log)



        
          
        

    

  


  

Return log location.

  



  
    
      
    
    
      eval_log_scores_dict(eval_log)



        
          
        

    

  


  

Extract scores as a list of score-name keyed metric maps.

  



  
    
      
    
    
      eval_log_task_display_name(log)



        
          
        

    

  


  

Return display name for the task.

  


        

      


  

    
CrucibleBench.Experiment 
    



      
High-level experiment DSL for common research patterns.
Provides convenient functions for A/B testing, ablation studies,
and hyperparameter sweeps.

      


      
        Summary


  
    Functions
  


    
      
        run(atom, opts)

      


        Run an experiment with automatic analysis.



    





      


      
        Functions


        


  
    
      
    
    
      run(atom, opts)



        
          
        

    

  


  

Run an experiment with automatic analysis.
Experiment Types
	:ab_test - Compare control vs treatment
	:ablation - Test impact of removing components
	:hyperparameter_sweep - Compare multiple configurations

Examples
# A/B Test
CrucibleBench.Experiment.run(:ab_test,
  control: [0.72, 0.68, 0.75],
  treatment: [0.78, 0.73, 0.81],
  name: "Prompt Engineering")

# Ablation Study
CrucibleBench.Experiment.run(:ablation,
  baseline: [0.85, 0.87, 0.84],
  without_component: [0.78, 0.76, 0.79],
  component_name: "Ensemble Voting")

  


        

      


  

    
CrucibleBench.Export 
    



      
Export statistical results to various formats.
Supports Markdown, LaTeX, and HTML output for publication.

      


      
        Summary


  
    Functions
  


    
      
        experiment_to_markdown(experiment_result)

      


        Export experiment results to comprehensive report.



    


    
      
        to_html(result)

      


        Export result to HTML format.



    


    
      
        to_latex(result)

      


        Export result to LaTeX format.



    


    
      
        to_markdown(result)

      


        Export result to Markdown format.



    





      


      
        Functions


        


  
    
      
    
    
      experiment_to_markdown(experiment_result)



        
          
        

    

  


  

Export experiment results to comprehensive report.

  



  
    
      
    
    
      to_html(result)



        
          
        

    

  


  

Export result to HTML format.
Generates styled HTML suitable for interactive reports.

  



  
    
      
    
    
      to_latex(result)



        
          
        

    

  


  

Export result to LaTeX format.
Generates LaTeX table suitable for academic papers.

  



  
    
      
    
    
      to_markdown(result)



        
          
        

    

  


  

Export result to Markdown format.
Examples
iex> result = %CrucibleBench.Result{
...>   test: :welch_t_test,
...>   statistic: 5.477,
...>   p_value: 0.001307,
...>   confidence_interval: {0.5, 1.5}
...> }
iex> markdown = CrucibleBench.Export.to_markdown(result)
iex> String.contains?(markdown, "Welch's t-test")
true

  


        

      


  

    
CrucibleBench.Result 
    



      
Standard result structure for statistical tests.
All statistical tests in Bench return a CrucibleBench.Result struct
containing test statistics, p-values, effect sizes, and interpretations.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        significant?(result, alpha \\ 0.05)

      


        Determine if result is statistically significant at given alpha level.



    


    
      
        summarize(result)

      


        Generate human-readable summary of result.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %CrucibleBench.Result{
  confidence_interval: {float(), float()} | nil,
  effect_size: map() | nil,
  interpretation: String.t() | nil,
  metadata: map(),
  p_value: float(),
  statistic: float(),
  test: atom()
}


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      significant?(result, alpha \\ 0.05)



        
          
        

    

  


  

Determine if result is statistically significant at given alpha level.
Examples
iex> result = %CrucibleBench.Result{p_value: 0.03}
iex> CrucibleBench.Result.significant?(result, 0.05)
true

iex> result = %CrucibleBench.Result{p_value: 0.08}
iex> CrucibleBench.Result.significant?(result, 0.05)
false

  



  
    
      
    
    
      summarize(result)



        
          
        

    

  


  

Generate human-readable summary of result.

  


        

      


  

    
CrucibleBench.Stage 
    



      
Pipeline stage for statistical benchmarking.
Implements the Crucible.Stage behaviour for use in crucible_framework pipelines.
Uses CrucibleIR.Reliability.Stats configuration for test selection and parameters.
Context Requirements
The context map must contain:
	experiment.reliability.stats - CrucibleIR.Reliability.Stats configuration

And one of the following data layouts:
	outputs or metrics - Single group data (list of numeric values)
	control and treatment - Two independent groups for t-test, Mann-Whitney
	groups - List of groups for ANOVA, Kruskal-Wallis
	before and after - Paired data for paired t-test, Wilcoxon

Returns
Updated context with:
	:bench key containing detailed statistical analysis results
	:metrics key merged with summary statistics and p-values

Example
# Two-group comparison
context = %{
  experiment: %{
    reliability: %{
      stats: %CrucibleIR.Reliability.Stats{
        tests: [:ttest],
        alpha: 0.05
      }
    }
  },
  control: [0.72, 0.68, 0.75, 0.71, 0.69],
  treatment: [0.78, 0.73, 0.81, 0.76, 0.74]
}

{:ok, updated_context} = CrucibleBench.Stage.run(context)
# updated_context.bench contains test results
# updated_context.metrics contains bench_ttest_p_value, etc.

      


      
        Summary


  
    Types
  


    
      
        context()

      


    


    
      
        data_type()

      


    


    
      
        error_reason()

      


    


    
      
        opts()

      


    





  
    Functions
  


    
      
        describe(opts \\ %{})

      


        Describes this stage for introspection.



    


    
      
        run(context, opts \\ %{})

      


        Runs statistical analysis on experiment outputs.



    





      


      
        Types


        


  
    
      
    
    
      context()



        
          
        

    

  


  

      

          @type context() :: map()


      



  



  
    
      
    
    
      data_type()



        
          
        

    

  


  

      

          @type data_type() ::
  {:single, [number()]}
  | {:paired, [number()], [number()]}
  | {:two_groups, [number()], [number()]}
  | {:multiple_groups, [[number()]]}


      



  



  
    
      
    
    
      error_reason()



        
          
        

    

  


  

      

          @type error_reason() :: String.t()


      



  



  
    
      
    
    
      opts()



        
          
        

    

  


  

      

          @type opts() :: map()


      



  


        

      

      
        Functions


        


    

  
    
      
    
    
      describe(opts \\ %{})



        
          
        

    

  


  

      

          @spec describe(opts()) :: map()


      


Describes this stage for introspection.
Returns metadata about the stage including its purpose, requirements, and
configuration options.
Options
	:verbose - Include detailed information (default: false)


  



    

  
    
      
    
    
      run(context, opts \\ %{})



        
          
        

    

  


  

      

          @spec run(context(), opts()) :: {:ok, context()} | {:error, error_reason()}


      


Runs statistical analysis on experiment outputs.
Accepts a context map with experiment configuration and data. Extracts the
statistical configuration from experiment.reliability.stats and runs the
specified tests on the provided data.
Options
Options can be provided to override IR config:
	:tests - List of tests to run (overrides config)
	:alpha - Significance level (overrides config)
	:confidence_level - Confidence level (overrides config)
	:data_key - Key to extract data from context (default: :outputs)

Returns
	{:ok, context} - Updated context with bench results and merged metrics
	{:error, reason} - If configuration or data is missing/invalid


  


        

      


  

    
CrucibleBench.Stats 
    



      
Core statistical functions and utilities.
Provides basic statistical calculations used throughout the framework.

      


      
        Summary


  
    Functions
  


    
      
        correlation(x, y)

      


        Calculate correlation coefficient between two variables.



    


    
      
        kurtosis(values)

      


        Calculate kurtosis of a distribution.



    


    
      
        mean(values)

      


        Calculate mean (average) of a list of numbers.



    


    
      
        median(values)

      


        Calculate median of a list of numbers.



    


    
      
        quantile(values, p)

      


        Calculate quantile at given probability.



    


    
      
        rank(values)

      


        Rank values in ascending order, handling ties by averaging.



    


    
      
        sem(values)

      


        Calculate standard error of the mean.



    


    
      
        skewness(values)

      


        Calculate skewness of a distribution.



    


    
      
        stdev(values, opts \\ [])

      


        Calculate standard deviation of a list of numbers.



    


    
      
        variance(values, opts \\ [])

      


        Calculate variance of a list of numbers.



    


    
      
        z_scores(values)

      


        Calculate z-score for each value in a list.



    





      


      
        Functions


        


  
    
      
    
    
      correlation(x, y)



        
          
        

    

  


  

Calculate correlation coefficient between two variables.
Returns Pearson correlation coefficient (-1 to 1).
Examples
iex> x = [1, 2, 3, 4, 5]
iex> y = [2, 4, 6, 8, 10]
iex> CrucibleBench.Stats.correlation(x, y)
1.0

  



  
    
      
    
    
      kurtosis(values)



        
          
        

    

  


  

Calculate kurtosis of a distribution.
Excess kurtosis > 0 means heavy tails (leptokurtic).
Excess kurtosis < 0 means light tails (platykurtic).

  



  
    
      
    
    
      mean(values)



        
          
        

    

  


  

Calculate mean (average) of a list of numbers.
Examples
iex> CrucibleBench.Stats.mean([1, 2, 3, 4, 5])
3.0

  



  
    
      
    
    
      median(values)



        
          
        

    

  


  

Calculate median of a list of numbers.
Examples
iex> CrucibleBench.Stats.median([1, 2, 3, 4, 5])
3.0

iex> CrucibleBench.Stats.median([1, 2, 3, 4])
2.5

  



  
    
      
    
    
      quantile(values, p)



        
          
        

    

  


  

Calculate quantile at given probability.
Examples
iex> CrucibleBench.Stats.quantile([1, 2, 3, 4, 5], 0.5)
3.0

  



  
    
      
    
    
      rank(values)



        
          
        

    

  


  

Rank values in ascending order, handling ties by averaging.
Examples
iex> CrucibleBench.Stats.rank([5, 2, 8, 2, 9])
[3.0, 1.5, 4.0, 1.5, 5.0]

  



  
    
      
    
    
      sem(values)



        
          
        

    

  


  

Calculate standard error of the mean.
Examples
iex> CrucibleBench.Stats.sem([1, 2, 3, 4, 5])
0.7071067811865476

  



  
    
      
    
    
      skewness(values)



        
          
        

    

  


  

Calculate skewness of a distribution.
Positive skew means right tail is longer.
Negative skew means left tail is longer.

  



    

  
    
      
    
    
      stdev(values, opts \\ [])



        
          
        

    

  


  

Calculate standard deviation of a list of numbers.
Examples
iex> CrucibleBench.Stats.stdev([1, 2, 3, 4, 5])
1.5811388300841898

  



    

  
    
      
    
    
      variance(values, opts \\ [])



        
          
        

    

  


  

Calculate variance of a list of numbers.
Options
	:sample - If true (default), uses n-1 denominator (sample variance)
	:population - If true, uses n denominator (population variance)

Examples
iex> CrucibleBench.Stats.variance([1, 2, 3, 4, 5])
2.5

  



  
    
      
    
    
      z_scores(values)



        
          
        

    

  


  

Calculate z-score for each value in a list.
Examples
iex> CrucibleBench.Stats.z_scores([1, 2, 3, 4, 5])
[-1.2649110640673518, -0.6324555320336759, 0.0, 0.6324555320336759, 1.2649110640673518]

  


        

      


  

    
CrucibleBench.Stats.ANOVA 
    



      
One-way Analysis of Variance (ANOVA).
Compares means across 3+ independent groups to determine if at least
one group differs significantly from the others.

      


      
        Summary


  
    Functions
  


    
      
        one_way(groups, opts \\ [])

      


        Perform one-way ANOVA.



    





      


      
        Functions


        


    

  
    
      
    
    
      one_way(groups, opts \\ [])



        
          
        

    

  


  

Perform one-way ANOVA.
Options
	:alpha - Significance level (default: 0.05)
	:labels - Group labels for reporting

Examples
iex> gpt4 = [0.89, 0.91, 0.88, 0.90, 0.92]
iex> claude = [0.87, 0.89, 0.86, 0.88, 0.90]
iex> gemini = [0.84, 0.86, 0.83, 0.85, 0.87]
iex> result = CrucibleBench.Stats.ANOVA.one_way([gpt4, claude, gemini])
iex> result.p_value < 0.05
true

  


        

      


  

    
CrucibleBench.Stats.ConfidenceInterval 
    



      
Confidence interval calculations.
Supports both analytical and bootstrap methods for various statistics.

      


      
        Summary


  
    Functions
  


    
      
        analytical_ci(data, atom, conf_level)

      


        Calculate analytical confidence interval for the mean.



    


    
      
        bootstrap_ci(data, statistic, opts \\ [])

      


        Calculate bootstrap confidence interval.



    


    
      
        calculate(data, statistic, opts \\ [])

      


        Calculate confidence interval for a statistic.



    





      


      
        Functions


        


  
    
      
    
    
      analytical_ci(data, atom, conf_level)



        
          
        

    

  


  

Calculate analytical confidence interval for the mean.
Uses t-distribution for small samples.

  



    

  
    
      
    
    
      bootstrap_ci(data, statistic, opts \\ [])



        
          
        

    

  


  

Calculate bootstrap confidence interval.
Uses percentile method for bootstrap CI.
Options
	:confidence_level - Confidence level (default: 0.95)
	:iterations - Number of bootstrap samples (default: 10000)
	:seed - Random seed for reproducibility


  



    

  
    
      
    
    
      calculate(data, statistic, opts \\ [])



        
          
        

    

  


  

Calculate confidence interval for a statistic.
Options
	:method - :analytical (default) or :bootstrap
	:confidence_level - Confidence level (default: 0.95)
	:iterations - Bootstrap iterations (default: 10000)
	:seed - Random seed for reproducibility

Examples
iex> data = [5.0, 5.2, 4.8, 5.1, 4.9, 5.3]
iex> ci = CrucibleBench.Stats.ConfidenceInterval.calculate(data, :mean)
iex> {lower, upper} = ci.interval
iex> lower < 5.05 and upper > 5.05
true

  


        

      


  

    
CrucibleBench.Stats.Distributions 
    



      
Probability distributions and statistical functions.
Provides CDF and quantile functions for common distributions.

      


      
        Summary


  
    Functions
  


    
      
        chi_squared_cdf(x, df)

      


        Chi-squared distribution CDF.



    


    
      
        f_cdf(f, df1, df2)

      


        F-distribution CDF.



    


    
      
        normal_cdf(z, mu \\ 0, sigma \\ 1)

      


        Standard normal cumulative distribution function (CDF).



    


    
      
        normal_quantile(p)

      


        Standard normal quantile (inverse CDF).



    


    
      
        t_cdf(t, df)

      


        Student's t-distribution CDF.



    


    
      
        t_quantile(df, p)

      


        Student's t-distribution quantile.



    





      


      
        Functions


        


  
    
      
    
    
      chi_squared_cdf(x, df)



        
          
        

    

  


  

Chi-squared distribution CDF.
Uses gamma function relationship.

  



  
    
      
    
    
      f_cdf(f, df1, df2)



        
          
        

    

  


  

F-distribution CDF.
Approximation using beta function relationship.

  



    

    

  
    
      
    
    
      normal_cdf(z, mu \\ 0, sigma \\ 1)



        
          
        

    

  


  

Standard normal cumulative distribution function (CDF).
Uses error function approximation for standard normal.

  



  
    
      
    
    
      normal_quantile(p)



        
          
        

    

  


  

Standard normal quantile (inverse CDF).
Approximation of the inverse normal CDF.

  



  
    
      
    
    
      t_cdf(t, df)



        
          
        

    

  


  

Student's t-distribution CDF.
Approximation using beta function relationship.

  



  
    
      
    
    
      t_quantile(df, p)



        
          
        

    

  


  

Student's t-distribution quantile.
Approximation for t-distribution inverse CDF.

  


        

      


  

    
CrucibleBench.Stats.EffectSize 
    



      
Effect size measures for statistical tests.
Effect sizes quantify the magnitude of differences, providing
practical significance beyond p-values.

      


      
        Summary


  
    Functions
  


    
      
        calculate(group1, group2, opts \\ [])

      


        General effect size calculation with automatic method selection.



    


    
      
        cohens_d(group1, group2)

      


        Calculate Cohen's d for two independent groups.



    


    
      
        glass_delta(control, treatment)

      


        Calculate Glass's delta.



    


    
      
        hedges_g(group1, group2)

      


        Calculate Hedges' g (bias-corrected Cohen's d).



    


    
      
        paired_cohens_d(group1, group2)

      


        Calculate effect size for paired data.



    





      


      
        Functions


        


    

  
    
      
    
    
      calculate(group1, group2, opts \\ [])



        
          
        

    

  


  

General effect size calculation with automatic method selection.
Options
	:type - :cohens_d (default), :hedges_g, :glass_delta
	:paired - true for paired data (default: false)

Examples
iex> group1 = [5.0, 5.2, 4.8, 5.1, 4.9]
iex> group2 = [6.0, 6.2, 5.8, 6.1, 5.9]
iex> result = CrucibleBench.Stats.EffectSize.calculate(group1, group2)
iex> Map.has_key?(result, :cohens_d)
true

  



  
    
      
    
    
      cohens_d(group1, group2)



        
          
        

    

  


  

Calculate Cohen's d for two independent groups.
Cohen's d is the standardized mean difference:
d = (mean1 - mean2) / pooled_sd
Interpretation (Cohen, 1988):
	Small: |d| = 0.2
	Medium: |d| = 0.5
	Large: |d| = 0.8

Examples
iex> group1 = [5.0, 5.2, 4.8, 5.1, 4.9]
iex> group2 = [6.0, 6.2, 5.8, 6.1, 5.9]
iex> result = CrucibleBench.Stats.EffectSize.cohens_d(group1, group2)
iex> result.cohens_d > 0
true

  



  
    
      
    
    
      glass_delta(control, treatment)



        
          
        

    

  


  

Calculate Glass's delta.
Uses only the control group's standard deviation,
useful when groups have different variances.
Examples
iex> control = [5.0, 5.2, 4.8, 5.1, 4.9]
iex> treatment = [6.0, 6.5, 5.5, 6.2, 5.8]
iex> result = CrucibleBench.Stats.EffectSize.glass_delta(control, treatment)
iex> result.glass_delta > 0
true

  



  
    
      
    
    
      hedges_g(group1, group2)



        
          
        

    

  


  

Calculate Hedges' g (bias-corrected Cohen's d).
Hedges' g applies a correction factor for small sample sizes,
making it less biased than Cohen's d.
Examples
iex> group1 = [5.0, 5.2, 4.8]
iex> group2 = [6.0, 6.2, 5.8]
iex> result = CrucibleBench.Stats.EffectSize.hedges_g(group1, group2)
iex> result.hedges_g > 0
true

  



  
    
      
    
    
      paired_cohens_d(group1, group2)



        
          
        

    

  


  

Calculate effect size for paired data.
Returns Cohen's d for paired samples, using the standard deviation
of the differences.
Examples
iex> before = [0.72, 0.68, 0.75, 0.71, 0.69]
iex> after_values = [0.78, 0.73, 0.81, 0.76, 0.74]
iex> result = CrucibleBench.Stats.EffectSize.paired_cohens_d(before, after_values)
iex> result.cohens_d > 0
true

  


        

      


  

    
CrucibleBench.Stats.KruskalWallis 
    



      
Kruskal-Wallis H test.
Non-parametric alternative to one-way ANOVA.
Tests if multiple independent samples come from the same distribution.

      


      
        Summary


  
    Functions
  


    
      
        test(groups, opts \\ [])

      


        Perform Kruskal-Wallis test.



    





      


      
        Functions


        


    

  
    
      
    
    
      test(groups, opts \\ [])



        
          
        

    

  


  

Perform Kruskal-Wallis test.
Options
	:alpha - Significance level (default: 0.05)

Examples
iex> group1 = [5, 7, 8, 6, 9]
iex> group2 = [3, 4, 5, 4, 6]
iex> group3 = [1, 2, 3, 2, 4]
iex> result = CrucibleBench.Stats.KruskalWallis.test([group1, group2, group3])
iex> result.test == :kruskal_wallis
true

  


        

      


  

    
CrucibleBench.Stats.MannWhitney 
    



      
Mann-Whitney U test (Wilcoxon rank-sum test).
Non-parametric alternative to independent samples t-test.
Tests if two independent samples come from the same distribution.

      


      
        Summary


  
    Functions
  


    
      
        test(group1, group2, opts \\ [])

      


        Perform Mann-Whitney U test.



    





      


      
        Functions


        


    

  
    
      
    
    
      test(group1, group2, opts \\ [])



        
          
        

    

  


  

Perform Mann-Whitney U test.
Options
	:alternative - :two_sided (default), :less, :greater

Examples
iex> control = [120, 135, 118, 142, 125, 890]  # Has outlier
iex> treatment = [98, 105, 102, 110, 95, 108]
iex> result = CrucibleBench.Stats.MannWhitney.test(control, treatment)
iex> result.test == :mann_whitney
true

  


        

      


  

    
CrucibleBench.Stats.MultipleComparisons 
    



      
Multiple comparison correction methods for controlling Type I error rates.
When conducting multiple hypothesis tests, the probability of at least one
false positive increases. These methods adjust p-values to control either:
	Family-Wise Error Rate (FWER): Probability of at least one false positive
	False Discovery Rate (FDR): Expected proportion of false positives among rejections

Methods
	Bonferroni: Most conservative, controls FWER
	Holm: Less conservative than Bonferroni, still controls FWER
	Benjamini-Hochberg: Controls FDR, more powerful for exploratory research

References
	Bonferroni, C. E. (1936). "Teoria statistica delle classi e calcolo delle probabilità"
	Holm, S. (1979). "A simple sequentially rejective multiple test procedure"
	Benjamini, Y., & Hochberg, Y. (1995). "Controlling the false discovery rate"


      


      
        Summary


  
    Functions
  


    
      
        benjamini_hochberg(p_values, opts \\ [])

      


        Apply Benjamini-Hochberg FDR correction.



    


    
      
        bonferroni(p_values)

      


        Apply Bonferroni correction to p-values.



    


    
      
        bonferroni_alpha(n_tests, family_wise_alpha \\ 0.05)

      


        Calculate the effective alpha level after Bonferroni correction.



    


    
      
        correct(p_values, opts \\ [])

      


        Apply correction and return detailed results.



    


    
      
        holm(p_values)

      


        Apply Holm's step-down method.



    


    
      
        reject(p_values, opts \\ [])

      


        Determine which hypotheses to reject using a correction method.



    





      


      
        Functions


        


    

  
    
      
    
    
      benjamini_hochberg(p_values, opts \\ [])



        
          
        

    

  


  

Apply Benjamini-Hochberg FDR correction.
Controls False Discovery Rate (FDR) rather than Family-Wise Error Rate.
More powerful than Bonferroni/Holm for exploratory research where some
false positives are acceptable.
Algorithm:
	Sort p-values in ascending order
	For the i-th smallest p-value: p_adjusted = p × n / i
	Enforce monotonicity: adjusted should be non-decreasing

Options
	:fdr_level - Target false discovery rate (default: 0.05)

Examples
iex> p_values = [0.01, 0.03, 0.04, 0.20]
iex> CrucibleBench.Stats.MultipleComparisons.benjamini_hochberg(p_values)
[0.04, 0.05333333333333334, 0.05333333333333334, 0.20]

iex> # With custom FDR level
iex> p_values = [0.01, 0.03]
iex> CrucibleBench.Stats.MultipleComparisons.benjamini_hochberg(p_values, fdr_level: 0.10)
[0.02, 0.03]

  



  
    
      
    
    
      bonferroni(p_values)



        
          
        

    

  


  

Apply Bonferroni correction to p-values.
The most conservative method. Adjusts each p-value by multiplying by the
number of tests. Controls family-wise error rate (FWER).
Formula: p_adjusted = min(p_original × n, 1.0)
Examples
iex> p_values = [0.01, 0.03, 0.04, 0.20]
iex> CrucibleBench.Stats.MultipleComparisons.bonferroni(p_values)
[0.04, 0.12, 0.16, 0.80]

iex> # With very small p-values
iex> p_values = [0.001, 0.002]
iex> CrucibleBench.Stats.MultipleComparisons.bonferroni(p_values)
[0.002, 0.004]

  



    

  
    
      
    
    
      bonferroni_alpha(n_tests, family_wise_alpha \\ 0.05)



        
          
        

    

  


  

Calculate the effective alpha level after Bonferroni correction.
When using Bonferroni correction, each individual test uses a more
stringent alpha level to maintain overall family-wise error rate.
Examples
iex> # With 10 tests and α = 0.05, each test uses α = 0.005
iex> CrucibleBench.Stats.MultipleComparisons.bonferroni_alpha(10, 0.05)
0.005

iex> CrucibleBench.Stats.MultipleComparisons.bonferroni_alpha(3, 0.05)
0.016666666666666666

  



    

  
    
      
    
    
      correct(p_values, opts \\ [])



        
          
        

    

  


  

Apply correction and return detailed results.
Returns a list of maps with comprehensive information about each test.
Options
	:method - :bonferroni, :holm, or :benjamini_hochberg (default: :holm)
	:alpha - Significance level for reporting (default: 0.05)
	:fdr_level - For Benjamini-Hochberg only (default: 0.05)

Examples
iex> p_values = [0.01, 0.03, 0.04, 0.20]
iex> results = CrucibleBench.Stats.MultipleComparisons.correct(p_values)
iex> Enum.at(results, 0).original_p_value
0.01

iex> p_values = [0.01, 0.03]
iex> results = CrucibleBench.Stats.MultipleComparisons.correct(p_values, method: :bonferroni)
iex> Enum.at(results, 0).method
:bonferroni

  



  
    
      
    
    
      holm(p_values)



        
          
        

    

  


  

Apply Holm's step-down method.
Less conservative than Bonferroni while still controlling FWER.
Uniformly more powerful than Bonferroni. Tests are rejected in order
from smallest to largest p-value, with adjustment decreasing.
Algorithm:
	Sort p-values in ascending order
	For the i-th smallest p-value: p_adjusted = p × (n - i + 1)
	Enforce monotonicity: adjusted p-values should be non-decreasing

Examples
iex> p_values = [0.01, 0.03, 0.04, 0.20]
iex> CrucibleBench.Stats.MultipleComparisons.holm(p_values)
[0.04, 0.09, 0.09, 0.20]

  



    

  
    
      
    
    
      reject(p_values, opts \\ [])



        
          
        

    

  


  

Determine which hypotheses to reject using a correction method.
Returns a list of booleans indicating which tests reject the null hypothesis.
Examples
iex> p_values = [0.001, 0.01, 0.03, 0.20]
iex> CrucibleBench.Stats.MultipleComparisons.reject(p_values, method: :bonferroni)
[true, true, false, false]

iex> p_values = [0.001, 0.01, 0.03, 0.20]
iex> CrucibleBench.Stats.MultipleComparisons.reject(p_values, method: :holm)
[true, true, false, false]

  


        

      


  

    
CrucibleBench.Stats.NormalityTests 
    



      
Statistical tests for normality of data distributions.
Tests the null hypothesis that data comes from a normal distribution.
Used to validate assumptions for parametric statistical tests.
References
	Shapiro, S. S., & Wilk, M. B. (1965). "An analysis of variance test for normality"
	Royston, P. (1992). "Approximating the Shapiro-Wilk W-Test for non-normality"


      


      
        Summary


  
    Functions
  


    
      
        assess_normality(data, opts \\ [])

      


        Comprehensive normality assessment combining multiple approaches.



    


    
      
        quick_check(data)

      


        Quick normality check using skewness and kurtosis thresholds.



    


    
      
        shapiro_wilk(data)

      


        Shapiro-Wilk test for normality.



    





      


      
        Functions


        


    

  
    
      
    
    
      assess_normality(data, opts \\ [])



        
          
        

    

  


  

Comprehensive normality assessment combining multiple approaches.
Returns a map with:
	Shapiro-Wilk test result
	Skewness and kurtosis
	Overall recommendation

Examples
iex> data = [5.0, 5.1, 4.9, 5.2, 4.8, 5.0, 5.1, 4.9, 5.0, 5.1]
iex> assessment = CrucibleBench.Stats.NormalityTests.assess_normality(data)
iex> is_map(assessment)
true

  



  
    
      
    
    
      quick_check(data)



        
          
        

    

  


  

Quick normality check using skewness and kurtosis thresholds.
Faster than Shapiro-Wilk but less reliable. Use for quick screening.
Examples
iex> data = [5.0, 5.1, 4.9, 5.2, 4.8]
iex> result = CrucibleBench.Stats.NormalityTests.quick_check(data)
iex> is_boolean(result.is_normal)
true

  



  
    
      
    
    
      shapiro_wilk(data)



        
          
        

    

  


  

Shapiro-Wilk test for normality.
Most powerful omnibus test for normality. Tests null hypothesis that
data comes from a normal distribution.
Returns:
	:statistic - W statistic (0 to 1, closer to 1 indicates more normal)
	:p_value - Probability of observing this data if truly normal
	:is_normal - true if p-value > 0.05
	:interpretation - Human-readable result

Limitations:
	Requires 3 ≤ n ≤ 5000
	Sensitive to ties in small samples

Examples
iex> # Approximately normal data
iex> data = [5.0, 5.2, 4.8, 5.1, 4.9, 5.3, 4.7, 5.0, 5.1, 4.9]
iex> result = CrucibleBench.Stats.NormalityTests.shapiro_wilk(data)
iex> result.statistic > 0.3
true

iex> # Clearly non-normal (uniform-like)
iex> data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
iex> result = CrucibleBench.Stats.NormalityTests.shapiro_wilk(data)
iex> is_float(result.statistic)
true

  


        

      


  

    
CrucibleBench.Stats.PairedTTest 
    



      
Paired samples t-test.
Compares means of two related groups (e.g., before/after measurements).

      


      
        Summary


  
    Functions
  


    
      
        test(group1, group2, opts \\ [])

      


        Perform paired samples t-test.



    





      


      
        Functions


        


    

  
    
      
    
    
      test(group1, group2, opts \\ [])



        
          
        

    

  


  

Perform paired samples t-test.
Options
	:mu - Hypothesized mean difference (default: 0.0)
	:alternative - :two_sided (default), :less, :greater
	:confidence_level - Confidence level for CI (default: 0.95)

Examples
iex> before = [0.72, 0.68, 0.75, 0.71, 0.69]
iex> after = [0.78, 0.73, 0.81, 0.76, 0.74]
iex> result = CrucibleBench.Stats.PairedTTest.test(before, after)
iex> result.p_value < 0.05
true

  


        

      


  

    
CrucibleBench.Stats.Power 
    



      
Power analysis for statistical tests.
Calculates statistical power and required sample sizes.

      


      
        Summary


  
    Functions
  


    
      
        analyze(test_type, opts \\ [])

      


        Perform power analysis.



    


    
      
        anova_power(opts)

      


        Calculate achieved power for ANOVA.



    


    
      
        anova_sample_size(opts)

      


        Calculate required sample size for ANOVA.



    


    
      
        t_test_power(opts)

      


        Calculate achieved power for t-test.



    


    
      
        t_test_sample_size(opts)

      


        Calculate required sample size for t-test.



    





      


      
        Functions


        


    

  
    
      
    
    
      analyze(test_type, opts \\ [])



        
          
        

    

  


  

Perform power analysis.
Options
	:analysis_type - :a_priori (sample size) or :post_hoc (power)
	:effect_size - Expected or observed effect size (Cohen's d)
	:alpha - Significance level (default: 0.05)
	:power - Desired power for a priori (default: 0.80)
	:n_per_group - Sample size per group for post-hoc
	:alternative - :two_sided (default), :less, :greater

Examples
# A priori: Calculate required sample size
iex> result = CrucibleBench.Stats.Power.analyze(:t_test,
...>   analysis_type: :a_priori,
...>   effect_size: 0.5,
...>   alpha: 0.05,
...>   power: 0.80)
iex> result.n_per_group > 0
true

# Post-hoc: Calculate achieved power
iex> result = CrucibleBench.Stats.Power.analyze(:t_test,
...>   analysis_type: :post_hoc,
...>   effect_size: 0.5,
...>   n_per_group: 64,
...>   alpha: 0.05)
iex> result.power > 0.7
true

  



  
    
      
    
    
      anova_power(opts)



        
          
        

    

  


  

Calculate achieved power for ANOVA.

  



  
    
      
    
    
      anova_sample_size(opts)



        
          
        

    

  


  

Calculate required sample size for ANOVA.

  



  
    
      
    
    
      t_test_power(opts)



        
          
        

    

  


  

Calculate achieved power for t-test.

  



  
    
      
    
    
      t_test_sample_size(opts)



        
          
        

    

  


  

Calculate required sample size for t-test.
Based on Cohen (1988) power analysis formulas.

  


        

      


  

    
CrucibleBench.Stats.TTest 
    



      
Independent samples t-test with Welch correction.
Compares means of two independent groups to determine if they
differ significantly.

      


      
        Summary


  
    Functions
  


    
      
        test(group1, group2, opts \\ [])

      


        Perform independent samples t-test.



    





      


      
        Functions


        


    

  
    
      
    
    
      test(group1, group2, opts \\ [])



        
          
        

    

  


  

Perform independent samples t-test.
Automatically uses Welch's t-test (does not assume equal variances)
unless explicitly specified otherwise.
Options
	:var_equal - Assume equal variances (default: false)
	:alternative - :two_sided (default), :less, :greater
	:confidence_level - Confidence level for CI (default: 0.95)

Examples
iex> group1 = [5.1, 4.9, 5.3, 5.0, 5.2]
iex> group2 = [6.2, 6.0, 6.4, 5.9, 6.1]
iex> result = CrucibleBench.Stats.TTest.test(group1, group2)
iex> result.p_value < 0.05
true

  


        

      


  

    
CrucibleBench.Stats.VarianceTests 
    



      
Tests for homogeneity of variance (homoscedasticity).
Used to validate the equal variance assumption for t-tests and ANOVA.
References
	Levene, H. (1960). "Robust tests for equality of variances"
	Brown, M. B., & Forsythe, A. B. (1974). "Robust tests for the equality of variances"


      


      
        Summary


  
    Functions
  


    
      
        f_test(group1, group2)

      


        F-test for equality of variances (two groups only).



    


    
      
        levene_test(groups, opts \\ [])

      


        Levene's test for equality of variances.



    


    
      
        quick_check(group1, group2)

      


        Quick variance equality check for two groups.



    





      


      
        Functions


        


  
    
      
    
    
      f_test(group1, group2)



        
          
        

    

  


  

F-test for equality of variances (two groups only).
Classic parametric test. Sensitive to departures from normality.
Prefer Levene's test unless data is known to be normal.
Examples
iex> group1 = [5.0, 5.2, 4.8, 5.1, 4.9]
iex> group2 = [6.0, 6.2, 5.8, 6.1, 5.9]
iex> result = CrucibleBench.Stats.VarianceTests.f_test(group1, group2)
iex> is_float(result.statistic)
true

  



    

  
    
      
    
    
      levene_test(groups, opts \\ [])



        
          
        

    

  


  

Levene's test for equality of variances.
Robust test that works well even when data is not normally distributed.
Uses absolute deviations from group medians (Brown-Forsythe variant).
Returns:
	:statistic - F statistic from ANOVA on absolute deviations
	:p_value - Probability that variances are equal
	:equal_variances - true if p > 0.05
	:df_between - Degrees of freedom between groups
	:df_within - Degrees of freedom within groups

Examples
iex> # Groups with similar variances
iex> group1 = [5.0, 5.2, 4.8, 5.1, 4.9]
iex> group2 = [6.0, 6.2, 5.8, 6.1, 5.9]
iex> result = CrucibleBench.Stats.VarianceTests.levene_test([group1, group2])
iex> is_float(result.statistic)
true

iex> # Groups with very different variances
iex> group1 = [5.0, 5.1, 5.0, 5.1]
iex> group2 = [1.0, 10.0, 2.0, 9.0]
iex> result = CrucibleBench.Stats.VarianceTests.levene_test([group1, group2])
iex> is_float(result.p_value)
true

  



  
    
      
    
    
      quick_check(group1, group2)



        
          
        

    

  


  

Quick variance equality check for two groups.
Uses a simple variance ratio heuristic. Fast but not statistically rigorous.
Examples
iex> group1 = [5.0, 5.1, 5.0]
iex> group2 = [6.0, 6.1, 6.0]
iex> result = CrucibleBench.Stats.VarianceTests.quick_check(group1, group2)
iex> is_boolean(result.equal_variances)
true

  


        

      


  

    
CrucibleBench.Stats.Wilcoxon 
    



      
Wilcoxon signed-rank test.
Non-parametric alternative to paired t-test.
Tests if the median of differences between paired samples is zero.

      


      
        Summary


  
    Functions
  


    
      
        test(group1, group2, opts \\ [])

      


        Perform Wilcoxon signed-rank test.



    





      


      
        Functions


        


    

  
    
      
    
    
      test(group1, group2, opts \\ [])



        
          
        

    

  


  

Perform Wilcoxon signed-rank test.
Options
	:alternative - :two_sided (default), :less, :greater

Examples
iex> before = [0.72, 0.68, 0.75, 0.71, 0.69]
iex> after = [0.78, 0.73, 0.81, 0.76, 0.74]
iex> result = CrucibleBench.Stats.Wilcoxon.test(before, after)
iex> result.p_value < 0.05
true

  


        

      


  OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();




