

 CrucibleFramework

 v0.5.2

 [image: Logo]

 Table of contents

 	README

 	Changelog

 	LICENSE

 	Guides

 	Getting Started with Crucible Framework

 	Creating Custom Stages

 	Configuration Guide

 	
 Modules

 	Crucible.Context

 	Crucible.Pipeline.Runner

 	Crucible.Protocols.DeepJason

 	Crucible.Registry

 	Crucible.Stage

 	Crucible.Stage.Bench

 	Crucible.Stage.DataChecks

 	Crucible.Stage.Guardrails

 	Crucible.Stage.Guardrails.Adapter

 	Crucible.Stage.Guardrails.Noop

 	Crucible.Stage.Report

 	Crucible.Stage.Schema

 	Crucible.Stage.Schema.Normalizer

 	Crucible.Stage.Validate

 	Crucible.Stage.Validator

 	Crucible.TraceIntegration

 	CrucibleFramework

 	CrucibleFramework.Application

 	CrucibleFramework.Persistence

 	CrucibleFramework.Persistence.ArtifactRecord

 	CrucibleFramework.Persistence.ExperimentRecord

 	CrucibleFramework.Persistence.RunRecord

 	CrucibleFramework.Repo

 	
 Mix Tasks

 	mix crucible.stages

 README

[image: Crucible Framework Logo]
CrucibleFramework
Thin orchestration layer for ML experiment pipelines
[image: Elixir]
[image: OTP]
[image: License]

What's New (v0.5.2 - 2025-12-28)
	Oban-style Repo injection: Host applications now provide their own Repo via config :crucible_framework, repo: MyApp.Repo
	No auto-start by default: Repo is NOT started automatically; set start_repo: true for legacy behavior
	New repo/0 and repo!/0 functions: Access the configured Repo module programmatically
	Dependency updates: crucible_trace bumped to ~> 0.3.1, telemetry to ~> 1.3

What's New (v0.5.1 - 2025-12-27)
	Optional dependencies: crucible_bench and crucible_trace are optional; missing bench errors fast, missing trace disables tracing with a warning
	Examples refresh: New runnable examples plus examples/run_all.sh runner
	Dependency update: crucible_bench bumped to ~> 0.4.0
	Postgres driver: postgrex minimum version raised to >= 0.21.1
	Persistence tests: Integration tests are opt-in via CRUCIBLE_DB_ENABLED=true

What's New (v0.5.0 - 2025-12-27)
	BREAKING: describe/1 callback is now required (removed from @optional_callbacks)
	Schema Module: New Crucible.Stage.Schema for canonical schema definition and validation
	Schema Normalizer: New Crucible.Stage.Schema.Normalizer for legacy schema conversion
	Options Validator: New Crucible.Stage.Validator for runtime options validation
	Registry Enhancements: list_stages_with_schemas/0 and stage_schema/1 for schema access
	Mix Task: New mix crucible.stages command for stage discovery
	Pipeline Validation: Opt-in validate_options: :warn | :error mode in runner

	Conformance Tests: Comprehensive tests for all framework stages

See CHANGELOG.md for the complete migration guide.
What's New (v0.4.1 - 2025-12-26)
	Stage Contract: Enforced describe/1 policy for all stage implementations
	Enhanced Documentation: Comprehensive Crucible.Stage behaviour docs with schema specification
	Runner Documentation: Clarified that Crucible.Pipeline.Runner is the authoritative runner
	Schema Types: Defined type specifications for stage option schemas
	Built-in Stages: Updated all built-in stages with proper describe/1 schemas

What's New (v0.4.0 - 2025-12-25)
	BREAKING: Simplified to pure orchestration layer (~2,000 LOC from ~5,300 LOC)
	Removed: Backend infrastructure (moved to crucible_train)
	Removed: Data loading stages (domain-specific)
	Removed: Analysis adapters (domain-specific)
	Removed: Fairness stages (moved to ExFairness)
	Removed: BackendCall stage (moved to crucible_train)
	Simplified: Context struct with Phoenix-style assigns for domain data
	Updated: crucible_ir ~> 0.2.0 with new Training/Deployment/Feedback IR

Purpose
CrucibleFramework provides:
	Pipeline Execution - Sequential stage execution with Context threading
	Stage Behaviour - Clean interface for composable pipeline stages
	Optional Persistence - Ecto-backed experiment run tracking
	Telemetry Integration - Event emission for observability

This library focuses purely on orchestration. Domain-specific functionality belongs in specialized packages:
	Domain	Package
	Training	crucible_train (future)
	CNS Dialectics	cns_crucible
	Fairness	ExFairness
	XAI	crucible_xai

Quick Start
def deps do
 [
 {:crucible_framework, "~> 0.5.1"}
]
end
Define and Run an Experiment
experiment = %CrucibleIR.Experiment{
 id: "my-experiment",
 backend: %CrucibleIR.BackendRef{id: :my_backend},
 pipeline: [
 %CrucibleIR.StageDef{name: :validate},
 %CrucibleIR.StageDef{name: :data_checks},
 %CrucibleIR.StageDef{name: :bench},
 %CrucibleIR.StageDef{name: :report}
]
}

{:ok, ctx} = CrucibleFramework.run(experiment)

Examples
Runnable scripts live under examples/. Start with:
mix run examples/01_core_pipeline.exs

Run the full set with:
./examples/run_all.sh

See examples/README.md for descriptions and optional dependency notes.
Core Modules
Crucible.Context
Runtime context threaded through pipeline stages. Uses Phoenix-style assigns for domain-specific data:
ctx = %Crucible.Context{
 experiment_id: "exp-1",
 run_id: "run-1",
 experiment: experiment
}

Add metrics
ctx = Crucible.Context.put_metric(ctx, :accuracy, 0.95)

Store domain data in assigns (training stages, CNS stages, etc.)
ctx = Crucible.Context.assign(ctx, :dataset, my_data)
ctx = Crucible.Context.assign(ctx, :backend_session, session)
ctx = Crucible.Context.assign(ctx, :snos, extracted_snos)

Track stage completion
ctx = Crucible.Context.mark_stage_complete(ctx, :data_load)
Context Helper Functions
	Category	Functions
	Metrics	put_metric/3, get_metric/3, update_metric/3, merge_metrics/2, has_metric?/2
	Outputs	add_output/2, add_outputs/2
	Artifacts	put_artifact/3, get_artifact/3, has_artifact?/2
	Assigns	assign/2, assign/3
	Stages	mark_stage_complete/2, stage_completed?/2, completed_stages/1

Crucible.Stage
Behaviour for pipeline stages. All stages must implement both run/2 and describe/1:
defmodule MyApp.Stage.CustomStage do
 @behaviour Crucible.Stage

 @impl true
 def run(%Crucible.Context{} = ctx, opts) do
 # Do work, update ctx
 {:ok, updated_ctx}
 end

 @impl true
 def describe(_opts) do
 %{
 name: :custom,
 description: "My custom stage",
 required: [:input_path],
 optional: [:format, :verbose],
 types: %{
 input_path: :string,
 format: {:enum, [:json, :csv]},
 verbose: :boolean
 },
 defaults: %{
 format: :json,
 verbose: false
 }
 }
 end
end
Stage Contract
All stages must implement describe/1 returning a canonical schema:
	Field	Required	Type	Description
	name	Yes	atom	Stage identifier
	description	Yes	string	Human-readable description
	required	Yes	list of atoms	Required option keys
	optional	Yes	list of atoms	Optional option keys
	types	Yes	map	Type specifications for options
	defaults	No	map	Default values for optional fields
	version	No	string	Stage version
	__extensions__	No	map	Domain-specific metadata

Use mix crucible.stages to list available stages and their schemas:
$ mix crucible.stages
$ mix crucible.stages --name bench

Built-in Stages
	Stage	Purpose
	Crucible.Stage.Validate	Pre-flight pipeline validation
	Crucible.Stage.DataChecks	Lightweight data validation (reads from assigns[:examples])
	Crucible.Stage.Guardrails	Safety checks via adapters
	Crucible.Stage.Bench	Statistical analysis (requires crucible_bench)
	Crucible.Stage.Report	Output generation

Crucible.Registry
Stage module resolution from config:
In config.exs
config :crucible_framework,
 stage_registry: %{
 validate: Crucible.Stage.Validate,
 bench: Crucible.Stage.Bench,
 my_stage: MyApp.Stage.Custom
 }

Architecture
CrucibleFramework.run(experiment)
 |
 v
Crucible.Pipeline.Runner
 |
 +-> Stage 1: Validate
 +-> Stage 2: CustomDataLoader (domain-specific)
 +-> Stage 3: CustomBackendCall (domain-specific)
 +-> Stage 4: Bench
 +-> Stage 5: Report
 |
 v
{:ok, final_context}
Domain-Specific Stages
Training, CNS, and other domain-specific stages should be implemented in their respective packages and registered via config:
crucible_train would provide:
config :crucible_framework,
 stage_registry: %{
 data_load: CrucibleTrain.Stage.DataLoad,
 backend_call: CrucibleTrain.Stage.BackendCall,
 # ...
 }

cns_crucible would provide:
config :crucible_framework,
 stage_registry: %{
 cns_extract: CnsCrucible.Stage.SNOExtraction,
 cns_topology: CnsCrucible.Stage.TopologyAnalysis,
 # ...
 }

Configuration
Database Configuration (Oban Pattern)
CrucibleFramework uses dynamic repo injection - your host application provides the Repo:
config/config.exs
config :crucible_framework,
 repo: MyApp.Repo, # Required: host app's Repo module
 stage_registry: %{
 validate: Crucible.Stage.Validate,
 data_checks: Crucible.Stage.DataChecks,
 guardrails: Crucible.Stage.Guardrails,
 bench: Crucible.Stage.Bench,
 report: Crucible.Stage.Report
 },
 guardrail_adapter: Crucible.Stage.Guardrails.Noop

Your host app's Repo configuration
config :my_app, MyApp.Repo,
 database: "my_app_dev",
 username: "postgres",
 password: "postgres",
 hostname: "localhost"
Then start your Repo in your application's supervision tree:
lib/my_app/application.ex
children = [
 MyApp.Repo,
 # ... other children
]
Migrations
Copy migrations from deps/crucible_framework/priv/repo/migrations/ or run:
mix crucible_framework.install

Legacy Mode
For backwards compatibility, set start_repo: true to auto-start CrucibleFramework.Repo:
config :crucible_framework,
 start_repo: true,
 ecto_repos: [CrucibleFramework.Repo]

config :crucible_framework, CrucibleFramework.Repo,
 database: "crucible_dev",
 username: "crucible_dev",
 password: "crucible_dev_pw",
 hostname: "localhost"

Dependencies
	crucible_ir - Shared experiment IR structs (v0.2.0+)
	crucible_bench - Statistical testing (optional; required for Crucible.Stage.Bench)
	crucible_trace - Causal reasoning traces (optional)

Optional Dependencies
CrucibleFramework runs without the optional packages below; they enable specific features.
crucible_bench
	Enables Crucible.Stage.Bench and statistical testing helpers
	If missing and :bench is used, the stage returns {:error, {:missing_dependency, :crucible_bench}}

crucible_trace
	Enables trace lifecycle helpers and enable_trace: true in the runner
	If missing, tracing is disabled and a warning is logged; export/load helpers return nil or {:error, {:missing_dependency, :crucible_trace}}

Enabling optional packages
def deps do
 [
 {:crucible_framework, "~> 0.5.1"},
 {:crucible_bench, "~> 0.4.0"},
 {:crucible_trace, "~> 0.3.0"}
]
end
If you do not need bench or tracing, omit those deps and remove :bench from your pipeline (or from stage_registry) to keep the core slim. See examples/02_bench_optional.exs and examples/03_trace_optional.exs for optional-dep usage.

Development
Setup
mix deps.get && mix compile

Tests
mix test

Integration tests (persistence; requires CRUCIBLE_DB_ENABLED=true)
CRUCIBLE_DB_ENABLED=true MIX_ENV=test mix test --include integration

Quality checks
mix format
mix credo --strict
mix dialyzer

Related Repositories
	Repository	Purpose
	crucible_ir	Shared IR structs
	crucible_bench	Statistical testing
	crucible_trace	Causal transparency
	cns	CNS dialectical reasoning
	cns_crucible	CNS + Crucible integration

License
MIT. See LICENSE.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[0.5.2] - 2025-12-28
Changed
	Oban-style repo injection: Configure repo: MyApp.Repo instead of auto-starting internal Repo
	start_repo replaces enable_repo: Defaults to false; set true for legacy behavior
	Added CrucibleFramework.repo/0 and repo!/0 accessors
	Bumped crucible_trace to ~> 0.3.1, telemetry to ~> 1.3

[0.5.1] - 2025-12-27
Added
	Refreshed examples to match the current pipeline and IR
	Added examples/run_all.sh to run all examples at once
	New guides/ directory with hex-doc-friendly documentation:	guides/getting_started.md - Installation and quick start
	guides/stages.md - Creating custom stages with schema specification
	guides/configuration.md - Registry, adapters, and optional dependencies

Changed
	Made crucible_bench and crucible_trace optional dependencies to keep the core slim
	Guarded optional dependencies: bench stage fails fast when crucible_bench is missing; tracing disables with a warning when crucible_trace is missing
	Normalized stage options to an empty map when omitted to prevent nil option crashes
	Report rendering now sanitizes metrics/outputs for JSON encoding
	Bumped crucible_bench to ~> 0.4.0
	Raised postgrex minimum version to >= 0.21.1
	Made persistence integration tests opt-in via CRUCIBLE_DB_ENABLED=true in test config
	Updated mix.exs doc configuration to use guides/ directory structure

Removed
	Removed stale root documentation files that documented separate packages:	ADVERSARIAL_ROBUSTNESS.md, DATASETS.md, ENSEMBLE_GUIDE.md,
HEDGING_GUIDE.md, INSTRUMENTATION.md, STATISTICAL_TESTING.md,
CAUSAL_TRANSPARENCY.md (moved to respective packages)
	GETTING_STARTED.md, ARCHITECTURE.md, RESEARCH_METHODOLOGY.md (replaced by guides/)
	FAQ.md, PUBLICATIONS.md, CONTRIBUTING.md (stale umbrella-era docs)

[0.5.0] - 2025-12-27
Added
Schema Infrastructure
	Crucible.Stage.Schema: Canonical schema definition module with:
	validate/1 - Validates schema conformance
	valid_type_spec?/1 - Type specification validation
	Complete type system: primitives, structs, enums, lists, maps, functions, unions, tuples

	Crucible.Stage.Schema.Normalizer: Legacy schema conversion module
	Converts :stage key to :name
	Converts string names to atoms
	Adds missing required, optional, types fields
	Moves non-core fields to __extensions__

	Crucible.Stage.Validator: Runtime options validation
	Validates required options presence
	Type-checks option values against schema
	Supports all type specifications from Schema

Registry Enhancements
	Crucible.Registry.list_stages_with_schemas/0: Returns all stages with their schemas
	Crucible.Registry.stage_schema/1: Gets normalized schema for a specific stage
	Crucible.Registry.list_stages/0: Lists all registered stage names

Pipeline Runner Validation
	validate_options option: Opt-in validation mode for CrucibleFramework.run/2	:off (default) - No validation
	:warn - Log warnings but continue
	:error - Fail on validation errors

Mix Task
	mix crucible.stages: CLI for stage discovery	Lists all registered stages with descriptions
	--name <stage> shows detailed schema for a stage
	Shows required/optional fields and type specifications

Conformance Testing
	Crucible.Stage.ConformanceTest: Comprehensive tests for all framework stages	Existence tests (describe/1, run/2)
	Schema structure validation
	Type coherence checks
	Required/optional overlap detection

Changed
	describe/1 is now REQUIRED - Removed from @optional_callbacks
	Crucible.Stage moduledoc - Updated to reflect required describe/1

Breaking Changes
	All stages must implement describe/1 callback
	Stages without describe/1 will cause compilation warnings

Migration Guide
Add describe/1 to Your Stages
Before (0.4.x):
defmodule MyStage do
 @behaviour Crucible.Stage

 @impl true
 def run(ctx, opts), do: {:ok, ctx}
 # describe/1 was optional
end
After (0.5.0):
defmodule MyStage do
 @behaviour Crucible.Stage

 @impl true
 def run(ctx, opts), do: {:ok, ctx}

 @impl true
 def describe(_opts) do
 %{
 name: :my_stage,
 description: "What this stage does",
 required: [],
 optional: [:option1],
 types: %{option1: :string}
 }
 end
end
Enable Options Validation (Optional)
Warn on invalid options
CrucibleFramework.run(experiment, validate_options: :warn)

Fail on invalid options
CrucibleFramework.run(experiment, validate_options: :error)
[0.4.1] - 2025-12-26
Added
Stage Contract Enforcement
	Crucible.Stage Behaviour Documentation: Comprehensive documentation for the stage contract including:
	Runner location clarification (crucible_framework owns execution, crucible_ir defines specs only)
	Required run/2 callback semantics
	Policy-required describe/1 callback with schema specification
	Type specifications for option schemas (:string, :integer, {:struct, Module}, {:enum, [values]}, etc.)

	Pipeline Runner Documentation: Enhanced Crucible.Pipeline.Runner moduledoc clarifying:
	Authoritative runner location in crucible_framework
	Pipeline execution flow and stage resolution
	Trace integration for observability

Built-in Stage Schemas
All built-in stages now implement proper describe/1 schemas:
	Crucible.Stage.Validate - validation options schema
	Crucible.Stage.Bench - statistical testing options schema
	Crucible.Stage.DataChecks - data validation options schema
	Crucible.Stage.Guardrails - guardrail adapter options schema
	Crucible.Stage.Report - report generation options schema (new)

Changed
	describe/1 Schema Format: Updated all built-in stages to return standardized schema:%{
 name: :stage_name,
 description: "Human-readable description",
 required: [:key1, :key2],
 optional: [:key3, :key4],
 types: %{key1: :string, key2: {:struct, Module}}
}

Ecosystem Updates
The following external repositories were updated to implement describe/1:
	crucible_train: SupervisedTrain, Distillation, DPOTrain, RLTrain stages
	crucible_model_registry: Register, Promote stages
	crucible_deployment: Deploy, Promote, Rollback stages (also added @behaviour Crucible.Stage)
	crucible_feedback: CheckTriggers, ExportFeedback stages

Notes
	The describe/1 callback remains optional at the behaviour level but is required by policy
	Stages own their options schema and validation; IR remains opaque
	External stages (crucible_bench, crucible_ensemble, crucible_hedging, ExFairness) already had describe/1

[0.4.0] - 2025-12-23
Changed
	BREAKING: Now depends on crucible_ir package for shared IR structs
	All internal IR definitions removed in favor of crucible_ir dependency
	Ensemble config field renamed from members to models to match CrucibleIR
	Hedging config field renamed from max_extra_requests to max_hedges to match CrucibleIR
	Pipeline Runner: Now automatically marks stages as complete during execution
	Context Module: Enhanced with comprehensive documentation and 20+ helper functions (fully backward compatible)

Added
CrucibleIR Migration
	Backwards-compatible Crucible.IR module with aliases to CrucibleIR structs
	Override declaration for crucible_ir dependency to support local path development

Enhanced Context Ergonomics
	Metrics Management: Added put_metric/3, get_metric/3, update_metric/3, merge_metrics/2, and has_metric?/2 helper functions for cleaner metric manipulation
	Output Management: Added add_output/2 and add_outputs/2 for ergonomic output collection
	Artifact Management: Added put_artifact/3, get_artifact/3, and has_artifact?/2 for artifact storage and retrieval
	Assigns Management: Added Phoenix-style assign/2 and assign/3 functions for flexible context assignments
	Query Functions: Added has_data?/1, has_backend_session?/2, and get_backend_session/2 for querying context state
	Stage Tracking: Added mark_stage_complete/2, stage_completed?/2, and completed_stages/1 for pipeline progress tracking

Pre-Flight Validation
	Crucible.Stage.Validate: New validation stage for catching configuration errors before pipeline execution	Backend registration validation
	Pipeline stage module resolution
	Dataset provider verification
	Reliability configuration validation
	Output specification validation
	Strict mode for warnings-as-errors
	Configurable validation skip options

	Validation Metrics: Validation results stored in context.metrics.validation with detailed error/warning information

Removed
	lib/crucible/ir/ directory (all IR structs now from crucible_ir package)	Removed: experiment.ex, dataset_ref.ex, backend_ref.ex, stage_def.ex, output_spec.ex
	Removed: reliability_config.ex, ensemble_config.ex, hedging_config.ex
	Removed: stats_config.ex, fairness_config.ex, guardrail_config.ex

Documentation
	Added comprehensive inline documentation for all Context helper functions
	Added design document in docs/20251125/enhancements_design.md detailing v0.4.0 enhancements
	Updated README.md with v0.4.0 feature highlights

Testing
	Added 180+ new tests covering all enhancements
	test/crucible/context_test.exs: 50+ tests for Context helper functions
	test/crucible/stage/validate_test.exs: 30+ tests for validation stage
	All tests passing with zero compilation warnings

Developer Experience Improvements
	Reduced boilerplate code by 40-60% for common context operations
	Clearer error messages from validation stage
	Better debugging via stage completion tracking
	Phoenix-style context manipulation patterns

Notes
	Backwards Compatible Aliases: Crucible.IR.* aliases provided for smooth migration
	Performance: Helper functions have negligible overhead (<1% measured)

Migration Guide
Update Imports
Old:
alias Crucible.IR.Experiment
alias Crucible.IR.{BackendRef, DatasetRef}
New (recommended):
alias CrucibleIR.Experiment
alias CrucibleIR.{BackendRef, DatasetRef}
Backwards compatible (deprecated):
Still works but will be removed in v1.0.0
alias Crucible.IR.Experiment
Update Config References
Ensemble config:
Old
%EnsembleConfig{members: [...]}

New
%CrucibleIR.Reliability.Ensemble{models: [...]}
Hedging config:
Old
%HedgingConfig{max_extra_requests: 2}

New
%CrucibleIR.Reliability.Hedging{max_hedges: 2}
Update Reliability Config
Old:
alias Crucible.IR.{ReliabilityConfig, EnsembleConfig, HedgingConfig}

%ReliabilityConfig{
 ensemble: %EnsembleConfig{...},
 hedging: %HedgingConfig{...}
}
New:
alias CrucibleIR.Reliability.{Config, Ensemble, Hedging}

%Config{
 ensemble: %Ensemble{...},
 hedging: %Hedging{...}
}
[0.3.0] - 2025-11-23
Changed
	Introduced a declarative Experiment IR (Crucible.IR.*) with serializable structs for datasets, stages, backends, and outputs.
	Replaced legacy harness/runner with a stage-based pipeline engine (Crucible.Pipeline.Runner) and core stages for data loading, checks, guardrails, backend calls, CNS metrics, bench hooks, and reporting.
	Added Crucible.Backend behaviour and a mockable Tinkex backend implementation that delegates to the tinkex SDK via swappable clients.
	Added an Ecto/Postgres persistence layer (experiments, runs, artifacts) plus a turnkey bootstrap script scripts/setup_db.sh.
	Added examples/tinkex_live.exs as a live, end-to-end demo using the new pipeline and IR.

[0.2.1] - 2025-11-21
Fixed
	AdaptiveRouting init args - Crucible.Hedging.AdaptiveRouting.start_link/1 and init/1 now normalize maps and keyword lists so Supertester.OTPHelpers.setup_isolated_genserver/3 can forward :init_args unchanged without double-wrapping, keeping the GenServer init contract stable.

[0.2.0] - 2025-11-21
Added
Tinkex Integration - Unified ML Training API
	Crucible.Tinkex Adapter: Complete integration with Tinkex SDK for LoRA fine-tuning	Crucible.Tinkex.Config - API credentials, retry policies, default LoRA hyperparameters, quality targets
	Crucible.Tinkex.Experiment - Declarative experiment structure for datasets, sweeps, checkpoints, and replications
	Crucible.Tinkex.QualityValidator - CNS3-derived schema/citation/entailment quality gates
	Crucible.Tinkex.Results - Training/eval aggregation with CSV export and best-run selection
	Crucible.Tinkex.Telemetry - Standardized [:crucible, :tinkex, ...] events

LoRA Training Interface
	Crucible.Lora: High-level adapter-agnostic training interface	create_experiment/1 - Create new training experiments with configuration
	train/3 - Run LoRA fine-tuning with automatic checkpointing and quality targets
	evaluate/3 - Evaluate trained models against test datasets
	resume/2 - Resume training from checkpoint
	batch_dataset/2 - Efficient dataset batching
	format_training_data/1 - Format data for training backend
	checkpoint_name/2 - Deterministic artifact naming

	Crucible.Lora.Adapter: Behaviour for implementing custom training backends	Swap adapters via config :crucible_framework, :lora_adapter, MyAdapter

Ensemble Inference with LoRA Adapters
	Crucible.Ensemble.create/1: Create ensembles from multiple fine-tuned LoRA adapters
	Crucible.Ensemble.infer/3: Run ensemble inference with voting and hedging
	Crucible.Ensemble.batch_infer/3: Batch processing for multiple prompts
	Support for weighted adapter configurations in ensemble voting

Configuration Architecture
	Hierarchical configuration: application-level, component-level, per-experiment
	Environment variable support via {:system, "VAR_NAME"} syntax
	Per-experiment configuration overrides at runtime

New Telemetry Events
	[:crucible, :training, :start | :stop | :exception] - Training lifecycle

	[:crucible, :inference, :start | :stop | :exception] - Inference lifecycle

	[:crucible, :checkpoint, :save | :load] - Checkpoint operations

	[:crucible, :tinkex, :forward_backward | :optim_step | :save_weights] - Low-level Tinkex operations

Documentation
	Updated README with LoRA training workflow quick start
	Updated ARCHITECTURE.md with Tinkex integration layer diagrams
	Updated GETTING_STARTED.md with complete training walkthrough
	Added data flow diagrams for training and inference paths

Changed
	mix.exs: Added tinkex ~> 0.1.1 as core dependency
	Version: Bumped to 0.2.0 reflecting significant new functionality
	Error handling: Unified structured errors via Crucible.Error across all components
	Telemetry: Enhanced instrumentation with experiment context propagation

Migration Guide from 0.1.x
1. Add Tinkex Configuration
config/config.exs
config :crucible_framework, Crucible.Tinkex,
 api_key: System.get_env("TINKEX_API_KEY"),
 base_url: "https://api.tinker.example.com",
 timeout: 60_000,
 pool_size: 10

config :crucible_framework,
 lora_adapter: Crucible.Tinkex,
 telemetry_backend: :ets,
 default_hedging: :percentile_75
2. Update Experiment Creation
Old approach (0.1.x)
experiment = %{name: "my-experiment", ...}

New approach (0.2.0)
{:ok, experiment} = Crucible.Lora.create_experiment(
 name: "my-experiment",
 config: %{
 base_model: "llama-3-8b",
 lora_rank: 16,
 learning_rate: 1.0e-4
 }
)
3. Update Ensemble Usage
Old approach (using crucible_ensemble directly)
{:ok, result} = CrucibleEnsemble.vote(models, prompt, strategy)

New approach (unified API with adapters)
{:ok, ensemble} = Crucible.Ensemble.create(
 adapters: [
 %{name: "adapter-v1", weight: 0.4},
 %{name: "adapter-v2", weight: 0.3},
 %{name: "adapter-v3", weight: 0.3}
],
 strategy: :weighted_majority
)
{:ok, result} = Crucible.Ensemble.infer(ensemble, prompt)
4. Telemetry Handler Updates
New events to handle
:telemetry.attach_many(
 "my-handler",
 [
 [:crucible, :training, :stop],
 [:crucible, :inference, :stop],
 [:crucible, :checkpoint, :save]
],
 &MyApp.TelemetryHandler.handle_event/4,
 nil
)
[0.1.5] - 2025-11-21
Fixed
	mix.exs metadata - Corrected a small bug in mix.exs so the package version and documentation source references align for the v0.1.5 release.

[0.1.4] - 2025-11-12
Changed
	Tinkex overlay configuration namespace - Moved API auth, config, job queue/runner, and related documentation/tests to read application env under :crucible_framework instead of :crucible_tinkex, ensuring credentials and hooks resolve through the framework app configuration.

[0.1.3] - 2025-11-21
Added
	Tinkex Integration Layer	Crucible.Tinkex, Config, Experiment, QualityValidator, Results, and Telemetry modules for orchestrating LoRA fine-tuning, telemetry capture, and report generation
	Helpers for batching datasets, formatting training data, checkpoint naming, and sampling parameter management
	Quality validation reports and monitoring callbacks aligned with CNS3 targets
	Experiment management primitives for sweeps, run generation, and lifecycle transitions
	Result aggregation utilities with CSV export, best-run selection, and report data production

	LoRA Adapter Abstraction	Added Crucible.Lora facade plus Crucible.Lora.Adapter behaviour so Crucible can target any fine-tuning backend
	Default adapter (Crucible.Tinkex) now implements the behaviour and can be swapped via config :crucible_framework, :lora_adapter, MyAdapter

	Comprehensive Test Coverage	6 new ExUnit files spanning configuration, experiments, results, telemetry, and top-level helpers
	Property-based fixtures via stream_data and mocking hooks via mox

	Dependency Support	Added tinkex, mox, and stream_data to mix.exs along with the corresponding lock entries

Changed
	Updated README with MIT licensing, the new LoRA adapter layer overview, and reproducibility metadata for v0.1.3
	Expanded GETTING_STARTED guide with the adapter architecture, refreshed version metadata, and Hex dependency snippets
	Set package license metadata to MIT and documented the change across docs

[0.1.2] - 2025-10-29
Added
	Core Library Implementation - Added practical Elixir modules for framework usage	CrucibleFramework module with version info, component status, and system information
	CrucibleFramework.Experiment module for defining and validating experiments
	CrucibleFramework.Statistics module with fundamental statistical functions (mean, median, std dev, variance, percentiles)

	Comprehensive Test Suite - 72 tests (24 doctests + 48 unit tests) with 100% pass rate	Full test coverage for all modules and functions
	Doctest examples in all public functions
	Edge case testing and validation

	Working Examples - Four complete, runnable examples in examples/ directory	01_basic_usage.exs - Framework information and component status
	02_statistics.exs - Statistical analysis of experimental data
	03_experiment_definition.exs - Experiment configuration and validation
	04_statistical_analysis.exs - Complete research workflow with cost-benefit analysis
	examples/README.md - Comprehensive guide for all examples

	Enhanced Documentation	Detailed module documentation with examples
	Clear learning path for new users
	Troubleshooting guides

Changed
	Transformed from documentation-only package to functional library with working code
	Updated package structure to include lib/ and test/ directories
	Enhanced mix.exs configuration for better code organization

[0.1.1] - 2025-10-28
Added
	ADVERSARIAL_ROBUSTNESS.md - Comprehensive adversarial defense guide covering the complete security stack	Documentation for 21 attack types across 5 categories (character, word, semantic, prompt injection, jailbreak)
	Defense mechanisms: detection, filtering, and sanitization with risk scoring
	Integration guide for 4-layer security stack: CrucibleAdversary, LlmGuard, ExFairness, ExDataCheck
	Fairness metrics and EEOC 80% rule compliance checking
	Data quality validation with 22 expectations and drift detection (KS test, PSI)
	Complete production security pipeline examples with defense-in-depth patterns
	Performance benchmarks and best practices for adversarial robustness
	Links to all 4 component GitHub repositories with technical deep dives

	Updated README.md with "Security & Adversarial Robustness" section
	Added adversarial robustness documentation to HexDocs configuration

Changed
	Organized documentation to highlight adversarial defense capabilities alongside other framework components
	Enhanced documentation navigation with adversarial robustness in Component Guides section

[0.1.0] - 2024-10-09
Added
	Initial release of Crucible documentation framework
	Migrated from Spectra umbrella project to independent organization
	Complete guide collection for all Crucible components
	Comprehensive documentation hub for the Crucible framework
	Architecture documentation
	Research methodology guides
	Component-specific guides (Ensemble, Hedging, Statistical Testing, etc.)
	Contribution guidelines
	FAQ and publications

 LICENSE

MIT License

Copyright (c) 2025 North Shore AI

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Getting Started with Crucible Framework

A thin orchestration layer for ML experimentation pipelines.
Installation
Add crucible_framework to your mix.exs:
def deps do
 [
 {:crucible_framework, "~> 0.5.0"},
 {:crucible_ir, "~> 0.1.0"} # Required for experiment/stage definitions
]
end
Then fetch dependencies:
mix deps.get

Quick Start
1. Define an Experiment
Experiments are defined using CrucibleIR.Experiment structs:
alias CrucibleIR.{Experiment, StageDef}

experiment = %Experiment{
 id: "my-first-experiment",
 name: "My First Experiment",
 stages: [
 %StageDef{name: :validate},
 %StageDef{name: :data_checks, options: %{required_fields: [:input, :expected]}},
 %StageDef{name: :report, options: %{format: :markdown, sink: :stdout}}
]
}
2. Run the Pipeline
{:ok, context} = CrucibleFramework.run(experiment,
 assigns: %{examples: my_data}
)

Access results
IO.inspect(context.outputs)
IO.inspect(context.metrics)
3. Options
CrucibleFramework.run(experiment,
 run_id: "custom-run-id", # Custom run identifier (default: UUID)
 persist: false, # Disable database persistence
 enable_trace: true, # Enable causal tracing (requires crucible_trace)
 assigns: %{examples: data}, # Initial context data
 validate_options: :warn # :off, :warn, or :error
)
Built-in Stages
Crucible Framework includes five built-in stages:
	Stage	Purpose
	:validate	Pre-flight validation of pipeline stages
	:data_checks	Validate examples in context.assigns[:examples]
	:guardrails	Apply safety guardrail checks via adapter
	:bench	Statistical analysis (requires crucible_bench)
	:report	Generate and output reports

Example: Validation Pipeline
experiment = %Experiment{
 id: "validation-check",
 name: "Validate Pipeline Configuration",
 stages: [
 %StageDef{name: :validate, options: %{strict: true}}
]
}

{:ok, ctx} = CrucibleFramework.run(experiment)
Example: Data Processing Pipeline
experiment = %Experiment{
 id: "data-processing",
 name: "Process and Report",
 stages: [
 %StageDef{name: :data_checks, options: %{
 required_fields: [:id, :input, :expected],
 fail_fast: false
 }},
 %StageDef{name: :report, options: %{
 format: :json,
 sink: {:file, "output/results.json"}
 }}
]
}

examples = [
 %{id: 1, input: "test", expected: "result"},
 %{id: 2, input: "test2", expected: "result2"}
]

{:ok, ctx} = CrucibleFramework.run(experiment,
 assigns: %{examples: examples}
)
Working with Context
The Crucible.Context struct flows through all stages:
Access after pipeline completes
context.outputs # List of stage outputs
context.metrics # Map of collected metrics
context.artifacts # Map of generated artifacts
context.assigns # Domain-specific data

Check stage completion
Crucible.Context.stage_completed?(context, :validate)
Crucible.Context.completed_stages(context)
List Available Stages
Use the Mix task to see registered stages:
List all stages
mix crucible.stages

Show schema for specific stage
mix crucible.stages --name validate

Next Steps
	Creating Custom Stages - Build your own pipeline stages
	Configuration Guide - Registry, adapters, and optional dependencies

 Creating Custom Stages

Stages are composable pipeline steps that implement the Crucible.Stage behaviour.
Stage Behaviour
Every stage must implement two callbacks:
@callback describe(keyword()) :: map()
@callback run(Crucible.Context.t(), map()) :: {:ok, Crucible.Context.t()} | {:error, term()}
Minimal Stage Example
defmodule MyApp.Stages.Transform do
 @behaviour Crucible.Stage

 @impl true
 def describe(_opts) do
 %{
 name: :transform,
 description: "Transforms input data",
 required: [],
 optional: [:multiplier],
 types: %{
 multiplier: :integer
 },
 defaults: %{
 multiplier: 1
 }
 }
 end

 @impl true
 def run(context, opts) do
 multiplier = Map.get(opts, :multiplier, 1)

 examples = context.assigns[:examples] || []
 transformed = Enum.map(examples, fn ex ->
 Map.update(ex, :value, 0, &(&1 * multiplier))
 end)

 {:ok, Crucible.Context.assign(context, :examples, transformed)}
 end
end
Schema Specification
The describe/1 callback returns a canonical schema:
%{
 # Required fields
 name: :my_stage, # Stage identifier (atom)
 description: "What this stage does", # Human-readable description
 required: [:input_field], # Required option keys
 optional: [:timeout, :format], # Optional option keys
 types: %{ # Type specifications
 input_field: :atom,
 timeout: :integer,
 format: {:enum, [:json, :csv]}
 },

 # Optional fields
 defaults: %{ # Default values
 timeout: 5000,
 format: :json
 },
 version: "1.0.0" # Schema version
}
Supported Types
	Type	Example
	:string	"hello"
	:integer	42
	:float	3.14
	:boolean	true
	:atom	:example
	:map	%{key: "value"}
	:list	[1, 2, 3]
	:module	MyModule
	:any	Any value
	{:struct, Module}	%MyStruct{}
	{:enum, [values]}	{:enum, [:a, :b, :c]}
	{:list, inner_type}	{:list, :string}
	{:map, key_type, val_type}	{:map, :atom, :string}
	{:tuple, [types]}	{:tuple, [:atom, :integer]}
	{:function, arity}	{:function, 2}
	{:union, [types]}	{:union, [:string, :integer]}

Using Context Helpers
The Crucible.Context module provides helpers for stage implementations:
def run(context, opts) do
 # Store metrics
 context = Crucible.Context.put_metric(context, :processed_count, 100)
 context = Crucible.Context.update_metric(context, :total, &(&1 + 1))

 # Add outputs
 context = Crucible.Context.add_output(context, %{result: "data"})

 # Store artifacts
 context = Crucible.Context.put_artifact(context, :report, %{
 path: "/tmp/report.md",
 format: :markdown
 })

 # Access/modify assigns
 data = context.assigns[:examples]
 context = Crucible.Context.assign(context, :processed, true)

 {:ok, context}
end
Registering Custom Stages
Add stages to the registry in your config:
config/config.exs
config :crucible_framework,
 stage_registry: %{
 validate: Crucible.Stage.Validate,
 data_checks: Crucible.Stage.DataChecks,
 transform: MyApp.Stages.Transform, # Your custom stage
 analyze: MyApp.Stages.Analyze # Another custom stage
 }
Then use by name in experiments:
%Experiment{
 stages: [
 %StageDef{name: :transform, options: %{multiplier: 2}},
 %StageDef{name: :analyze}
]
}
Using Explicit Modules
Alternatively, specify the module directly:
%Experiment{
 stages: [
 %StageDef{module: MyApp.Stages.Transform, options: %{multiplier: 2}}
]
}
Error Handling
Return {:error, reason} to halt the pipeline:
def run(context, opts) do
 case validate_input(context.assigns[:data]) do
 :ok ->
 {:ok, process(context)}
 {:error, reason} ->
 {:error, {:validation_failed, reason}}
 end
end
The pipeline runner wraps errors with stage context:
{:error, {:stage_name, original_error, context_at_failure}}
Options Validation
Enable validation to check options against your schema:
CrucibleFramework.run(experiment,
 validate_options: :error # :off, :warn, or :error
)
	:off - No validation (default, fastest)
	:warn - Log warnings but continue
	:error - Fail immediately on validation errors

Testing Stages
defmodule MyApp.Stages.TransformTest do
 use ExUnit.Case

 alias Crucible.Context
 alias MyApp.Stages.Transform

 test "describe/1 returns valid schema" do
 schema = Transform.describe([])
 assert schema.name == :transform
 assert :multiplier in schema.optional
 end

 test "run/2 transforms examples" do
 context = %Context{
 assigns: %{examples: [%{value: 10}, %{value: 20}]}
 }

 {:ok, result} = Transform.run(context, %{multiplier: 2})

 assert [%{value: 20}, %{value: 40}] = result.assigns[:examples]
 end
end

 Configuration Guide

Configure Crucible Framework through application environment.
Stage Registry
Map stage names to modules:
config/config.exs
config :crucible_framework,
 stage_registry: %{
 validate: Crucible.Stage.Validate,
 data_checks: Crucible.Stage.DataChecks,
 guardrails: Crucible.Stage.Guardrails,
 bench: Crucible.Stage.Bench,
 report: Crucible.Stage.Report,
 # Add your custom stages
 my_stage: MyApp.Stages.MyStage
 }
Persistence
Configure database persistence (optional):
config :crucible_framework,
 ecto_repos: [CrucibleFramework.Repo],
 enable_repo: true # Set to false to disable persistence
Database URL in runtime config:
config/runtime.exs
config :crucible_framework, CrucibleFramework.Repo,
 url: System.get_env("DATABASE_URL")
Disable persistence per-run:
CrucibleFramework.run(experiment, persist: false)
Guardrails Adapter
Configure the guardrails adapter:
config :crucible_framework,
 guardrail_adapter: Crucible.Stage.Guardrails.Noop # Default: no-op
Implement custom adapter:
defmodule MyApp.GuardrailAdapter do
 @behaviour Crucible.Stage.Guardrails.Adapter

 @impl true
 def check(examples, opts) do
 # Return {:ok, []} for no violations
 # Return {:ok, violations} with list of violation maps
 {:ok, []}
 end
end

config/config.exs
config :crucible_framework,
 guardrail_adapter: MyApp.GuardrailAdapter
Optional Dependencies
crucible_bench (Statistical Analysis)
The :bench stage requires crucible_bench:
mix.exs
{:crucible_bench, "~> 0.1.0"}
Without it, the stage returns:
{:error, {:missing_dependency, :crucible_bench}}
crucible_trace (Causal Tracing)
Enable tracing with crucible_trace:
mix.exs
{:crucible_trace, "~> 0.1.0"}
Enable per-run:
CrucibleFramework.run(experiment, enable_trace: true)
Without the dependency, tracing is disabled with a warning.
Environment-Specific Config
config/dev.exs
config :crucible_framework,
 enable_repo: true

config/test.exs
config :crucible_framework,
 enable_repo: false # Use in-memory for tests

config/prod.exs
config :crucible_framework,
 enable_repo: true
Full Configuration Example
config/config.exs
import Config

config :crucible_framework,
 ecto_repos: [CrucibleFramework.Repo],
 enable_repo: true,
 stage_registry: %{
 validate: Crucible.Stage.Validate,
 data_checks: Crucible.Stage.DataChecks,
 guardrails: Crucible.Stage.Guardrails,
 bench: Crucible.Stage.Bench,
 report: Crucible.Stage.Report
 },
 guardrail_adapter: Crucible.Stage.Guardrails.Noop

import_config "#{config_env()}.exs"
Querying the Registry
Programmatically access registered stages:
Get module for a stage name
{:ok, module} = Crucible.Registry.stage_module(:validate)

List all registered stage names
Crucible.Registry.list_stages()
#=> [:validate, :data_checks, :guardrails, :bench, :report]

Get all stages with their schemas
Crucible.Registry.list_stages_with_schemas()

Get schema for specific stage
{:ok, schema} = Crucible.Registry.stage_schema(:validate)
CLI Stage Discovery
List all registered stages
mix crucible.stages

Show detailed schema for a stage
mix crucible.stages --name validate
mix crucible.stages -n data_checks

Crucible.Context

Runtime context threaded through experiment pipeline stages.
This is a simplified, generic context struct that doesn't assume any
specific domain (training, CNS, etc.). Domain-specific data should
be stored in assigns.
Fields
	experiment_id - Unique identifier for the experiment
	run_id - Unique identifier for this run
	experiment - The CrucibleIR.Experiment struct
	outputs - List of outputs generated by stages
	metrics - Map of metrics collected during execution
	artifacts - Map of artifacts (files, reports, etc.)
	trace - Optional trace chain for observability
	telemetry_context - Telemetry metadata
	assigns - Extension point for domain-specific data

Helper Functions
Metrics Management
	put_metric/3 - Add or update a metric
	get_metric/3 - Get a metric value
	update_metric/3 - Update metric using function
	merge_metrics/2 - Merge multiple metrics
	has_metric?/2 - Check if metric exists

Output Management
	add_output/2 - Add single output
	add_outputs/2 - Add multiple outputs

Artifact Management
	put_artifact/3 - Store an artifact
	get_artifact/3 - Retrieve an artifact
	has_artifact?/2 - Check if artifact exists

Assigns Management (Phoenix-style)
	assign/2 - Assign single or multiple values
	assign/3 - Assign single key-value pair

Stage Tracking
	mark_stage_complete/2 - Mark stage as completed
	stage_completed?/2 - Check if stage completed
	completed_stages/1 - List all completed stages

Examples
Create a context with required fields
ctx = %Crucible.Context{
 experiment_id: "exp1",
 run_id: "run1",
 experiment: %CrucibleIR.Experiment{id: "exp1"}
}

Add metrics
ctx = Crucible.Context.put_metric(ctx, :accuracy, 0.95)
Crucible.Context.get_metric(ctx, :accuracy)
=> 0.95

Phoenix-style assigns for domain-specific data
ctx = Crucible.Context.assign(ctx, user: "alice", priority: :high)
ctx.assigns.user
=> "alice"

Training stages store their data in assigns
ctx = Crucible.Context.assign(ctx, :dataset, my_dataset)
ctx = Crucible.Context.assign(ctx, :backend_session, session)

Track stage completion
ctx = Crucible.Context.mark_stage_complete(ctx, :data_load)
Crucible.Context.stage_completed?(ctx, :data_load)
=> true

 Summary

 Types

 t()

 Functions

 add_output(ctx, output)

 Adds a single output to the context.

 add_outputs(ctx, outputs)

 Adds multiple outputs to the context.

 assign(ctx, assigns)

 Assigns multiple values to the context assigns.

 assign(ctx, key, value)

 Assigns a single key-value pair to the context assigns.

 completed_stages(ctx)

 Returns a list of all completed stages.

 get_artifact(ctx, key, default \\ nil)

 Retrieves an artifact from the context.

 get_metric(ctx, key, default \\ nil)

 Gets a metric from the context, returning a default if not found.

 has_artifact?(ctx, key)

 Checks if an artifact exists in the context.

 has_metric?(ctx, key)

 Checks if a metric exists in the context.

 mark_stage_complete(ctx, stage_name)

 Marks a stage as completed in the context.

 merge_metrics(ctx, metrics)

 Merges multiple metrics into the context.

 put_artifact(ctx, key, artifact)

 Stores an artifact in the context.

 put_metric(ctx, key, value)

 Puts a metric into the context.

 stage_completed?(ctx, stage_name)

 Checks if a stage has been completed.

 update_metric(ctx, key, update_fn)

 Updates a metric using a function.

 Types

 t()

 @type t() :: %Crucible.Context{
 artifacts: map(),
 assigns: map(),
 experiment: CrucibleIR.Experiment.t(),
 experiment_id: String.t(),
 metrics: map(),
 outputs: list(),
 run_id: String.t(),
 telemetry_context: map(),
 trace: term() | nil
}

 Functions

 add_output(ctx, output)

 @spec add_output(t(), term()) :: t()

Adds a single output to the context.
Examples
ctx = add_output(ctx, %{result: "success"})
length(ctx.outputs)
=> 1

 add_outputs(ctx, outputs)

 @spec add_outputs(t(), list()) :: t()

Adds multiple outputs to the context.
Examples
ctx = add_outputs(ctx, [%{result: "a"}, %{result: "b"}])
length(ctx.outputs)
=> 2

 assign(ctx, assigns)

 @spec assign(t(), keyword() | map()) :: t()

Assigns multiple values to the context assigns.
Examples
ctx = assign(ctx, user: "alice", priority: :high)
ctx.assigns.user
=> "alice"

 assign(ctx, key, value)

 @spec assign(t(), atom(), term()) :: t()

Assigns a single key-value pair to the context assigns.
Examples
ctx = assign(ctx, :user, "alice")
ctx.assigns.user
=> "alice"

 completed_stages(ctx)

 @spec completed_stages(t()) :: [atom()]

Returns a list of all completed stages.
Examples
completed_stages(ctx)
=> [:data_load, :backend_call, :bench]

 get_artifact(ctx, key, default \\ nil)

 @spec get_artifact(t(), atom(), term()) :: term()

Retrieves an artifact from the context.
Examples
get_artifact(ctx, :report)
=> "report.html"

get_artifact(ctx, :missing, :not_found)
=> :not_found

 get_metric(ctx, key, default \\ nil)

 @spec get_metric(t(), atom(), term()) :: term()

Gets a metric from the context, returning a default if not found.
Examples
get_metric(ctx, :accuracy)
=> 0.95

get_metric(ctx, :missing, :default)
=> :default

 has_artifact?(ctx, key)

 @spec has_artifact?(t(), atom()) :: boolean()

Checks if an artifact exists in the context.
Examples
has_artifact?(ctx, :report)
=> true

 has_metric?(ctx, key)

 @spec has_metric?(t(), atom()) :: boolean()

Checks if a metric exists in the context.
Examples
has_metric?(ctx, :accuracy)
=> true

has_metric?(ctx, :missing)
=> false

 mark_stage_complete(ctx, stage_name)

 @spec mark_stage_complete(t(), atom()) :: t()

Marks a stage as completed in the context.
Examples
ctx = mark_stage_complete(ctx, :data_load)
stage_completed?(ctx, :data_load)
=> true

 merge_metrics(ctx, metrics)

 @spec merge_metrics(t(), map()) :: t()

Merges multiple metrics into the context.
Examples
ctx = merge_metrics(ctx, %{accuracy: 0.95, loss: 0.05})
get_metric(ctx, :accuracy)
=> 0.95

 put_artifact(ctx, key, artifact)

 @spec put_artifact(t(), atom(), term()) :: t()

Stores an artifact in the context.
Examples
ctx = put_artifact(ctx, :report, "report.html")
get_artifact(ctx, :report)
=> "report.html"

 put_metric(ctx, key, value)

 @spec put_metric(t(), atom(), term()) :: t()

Puts a metric into the context.
Examples
ctx = put_metric(ctx, :accuracy, 0.95)
ctx.metrics.accuracy
=> 0.95

 stage_completed?(ctx, stage_name)

 @spec stage_completed?(t(), atom()) :: boolean()

Checks if a stage has been completed.
Examples
stage_completed?(ctx, :data_load)
=> true

stage_completed?(ctx, :not_run)
=> false

 update_metric(ctx, key, update_fn)

 @spec update_metric(t(), atom(), (term() -> term())) :: t()

Updates a metric using a function.
Examples
ctx = put_metric(ctx, :count, 1)
ctx = update_metric(ctx, :count, &(&1 + 1))
get_metric(ctx, :count)
=> 2

Crucible.Pipeline.Runner

Executes experiment pipelines stage-by-stage.
Location and Ownership
This is the authoritative pipeline runner for the Crucible ecosystem.
It lives in crucible_framework and is the only component that executes
experiment pipelines. crucible_ir defines specs only; it does not execute.
Public Entrypoint
Users should call CrucibleFramework.run/2 rather than this module directly:
{:ok, ctx} = CrucibleFramework.run(experiment)
Pipeline Execution
The runner:
	Initializes a %Crucible.Context{} from the experiment
	Optionally persists run state to the database
	Executes each %CrucibleIR.StageDef{} in sequence
	Resolves stage modules via Crucible.Registry or explicit :module field
	Optionally validates stage options against describe/1 schema
	Calls stage_module.run(context, opts) for each stage
	Marks stages complete and emits trace events
	Finalizes the run with success or failure status

Stage Resolution
Stages are resolved in order:
	If StageDef.module is set, use that module directly
	Otherwise, look up StageDef.name in Crucible.Registry

Options Validation
The runner supports opt-in validation of stage options against the schema
returned by each stage's describe/1 callback:
CrucibleFramework.run(experiment, validate_options: :error)
	:off (default) - No validation
	:warn - Log warnings for invalid options but continue execution
	:error - Fail immediately on invalid options

Trace Integration
When :enable_trace is passed, the runner emits stage lifecycle events
via Crucible.TraceIntegration for observability and debugging.

 Summary

 Functions

 run(experiment, opts \\ [])

 Runs an experiment, optionally persisting run state.

 Functions

 run(experiment, opts \\ [])

 @spec run(
 CrucibleIR.Experiment.t(),
 keyword()
) :: {:ok, Crucible.Context.t()} | {:error, term()}

Runs an experiment, optionally persisting run state.
Options
	:run_id - Custom run ID (defaults to UUID)
	:persist - Whether to persist run state (default: true)
	:enable_trace - Enable trace integration (default: false)
	:assigns - Initial context assigns (default: %{})
	:validate_options - Options validation mode:	:off (default) - No validation
	:warn - Log warnings but continue
	:error - Fail on validation errors

Crucible.Protocols.DeepJason protocol

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_map(term)

 Helper protocol to convert nested structs into Jason-friendly maps.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 to_map(term)

Helper protocol to convert nested structs into Jason-friendly maps.

Crucible.Registry

Resolves stage modules from application configuration.
Stages can be resolved either by:
	Explicit module specification in the StageDef struct
	Name-based lookup from the configured stage registry

Configuration
Configure the stage registry in your application config:
config :crucible_framework,
 stage_registry: %{
 validate: Crucible.Stage.Validate,
 bench: Crucible.Stage.Bench,
 report: Crucible.Stage.Report,
 # Add custom stages here
 my_stage: MyApp.Stage.Custom
 }
Schema Access
The registry provides functions to access stage schemas:
Crucible.Registry.list_stages_with_schemas()
=> [{:bench, Crucible.Stage.Bench, %{name: :bench, ...}}, ...]

Crucible.Registry.stage_schema(:bench)
=> {:ok, %{name: :bench, description: "...", ...}}

 Summary

 Functions

 list_stages()

 Lists all registered stage names.

 list_stages_with_schemas()

 Lists all registered stages with their modules and schemas.

 stage_module(name)

 Resolves a stage module by name from the configured registry.

 stage_schema(name)

 Gets the schema for a specific registered stage by name.

 Functions

 list_stages()

 @spec list_stages() :: [atom()]

Lists all registered stage names.
Examples
Crucible.Registry.list_stages()
=> [:bench, :data_checks, :guardrails, :report, :validate]

 list_stages_with_schemas()

 @spec list_stages_with_schemas() :: [{atom(), module(), map()}]

Lists all registered stages with their modules and schemas.
Returns a list of tuples {name, module, schema} for each registered stage.
Schemas are normalized to canonical format.
Examples
Crucible.Registry.list_stages_with_schemas()
=> [
{:bench, Crucible.Stage.Bench, %{name: :bench, ...}},
{:validate, Crucible.Stage.Validate, %{name: :validate, ...}}
]

 stage_module(name)

 @spec stage_module(atom()) :: {:ok, module()} | {:error, term()}

Resolves a stage module by name from the configured registry.
Examples
{:ok, Crucible.Stage.Bench} = Crucible.Registry.stage_module(:bench)
{:error, {:unknown_stage, :missing}} = Crucible.Registry.stage_module(:missing)

 stage_schema(name)

 @spec stage_schema(atom()) ::
 {:ok, Crucible.Stage.Schema.t()}
 | {:error,
 :no_stage_registry
 | {:no_describe_callback, atom()}
 | {:unknown_stage, atom()}}

Gets the schema for a specific registered stage by name.
Returns {:ok, schema} with the normalized schema, or
{:error, reason} if the stage is not found or has no schema.
Examples
{:ok, schema} = Crucible.Registry.stage_schema(:bench)
schema.name
=> :bench

{:error, {:unknown_stage, :missing}} = Crucible.Registry.stage_schema(:missing)

Crucible.Stage behaviour

Behaviour for a single experiment pipeline stage.
Stages transform a %Crucible.Context{} and may enrich metrics, outputs,
or orchestrate I/O with backends and external systems.
Runner Location
The pipeline runner lives in crucible_framework:
	Crucible.Pipeline.Runner - executes experiment pipelines stage-by-stage
	CrucibleFramework.run/2 - public entrypoint

crucible_ir does not execute anything; it only defines specs. All execution
logic is owned by crucible_framework.
Required Callback: run/2
Every stage must implement run/2:
@impl true
def run(%Crucible.Context{} = ctx, opts) do
 # Transform context, perform work
 {:ok, updated_ctx}
end
	Returns {:ok, %Crucible.Context{}} on success
	Returns {:error, reason} on failure
	Must not mutate global state or bypass persistence helpers
	Should be network-mockable and testable in isolation

Required Callback: describe/1
The describe/1 callback is required for all stage implementations.
It provides a discoverable schema for stage options:
@impl true
def describe(_opts) do
 %{
 name: :my_stage,
 description: "Human-readable description of what this stage does",
 required: [:model_name, :dataset_path],
 optional: [:batch_size, :seed, :log_level],
 types: %{
 model_name: :string,
 dataset_path: :string,
 batch_size: :integer,
 seed: :integer,
 log_level: {:enum, [:debug, :info, :warn, :error]}
 }
 }
end
Schema Keys
	:name - Stage identifier (atom)
	:description - Human-readable description (string)
	:required - List of required option keys (list of atoms)
	:optional - List of optional option keys (list of atoms)
	:types - Map of key to type specification

Type Specifications
	:string - String value
	:integer - Integer value
	:float - Float value
	:boolean - Boolean value
	:atom - Atom value
	:map - Map value
	:list - List value
	{:struct, Module} - Struct of the given module
	{:enum, [values]} - One of the enumerated values
	{:function, arity} - Function with given arity

Options Handling
	CrucibleIR.StageDef.options is an opaque map owned by each stage
	Stages own their own options schema and validation
	Stages may accept typed configs (e.g., %CrucibleIR.Training.Config{})
but must normalize internally

 Summary

 Types

 opts()

 Callbacks

 describe(opts)

 Returns a schema describing the stage's purpose and options.

 run(context, opts)

 Executes the stage logic on the given context.

 Types

 opts()

 @type opts() :: map()

 Callbacks

 describe(opts)

 @callback describe(opts :: opts()) :: map()

Returns a schema describing the stage's purpose and options.
This callback is required for all stage implementations.
See module documentation for the expected schema format.
Return Value
Must return a map conforming to Crucible.Stage.Schema.t():
%{
 name: :stage_name,
 description: "Human-readable description",
 required: [:key1],
 optional: [:key2, :key3],
 types: %{
 key1: :string,
 key2: :integer,
 key3: {:enum, [:a, :b, :c]}
 }
}
See Crucible.Stage.Schema for the complete schema specification.

 run(context, opts)

 @callback run(context :: Crucible.Context.t(), opts :: opts()) ::
 {:ok, Crucible.Context.t()} | {:error, term()}

Executes the stage logic on the given context.
Parameters
	context - The %Crucible.Context{} struct threaded through the pipeline
	opts - Stage-specific options (from StageDef.options)

Returns
	{:ok, %Crucible.Context{}} - Updated context on success
	{:error, reason} - Error tuple on failure

Crucible.Stage.Bench

Statistical benchmarking stage using crucible_bench.
This stage performs statistical analysis on experiment outputs or metrics.
Configure tests via stage options or experiment reliability config.
Supported Tests
	:ttest - Two-sample t-test for comparing means
	:paired_ttest - Paired t-test for matched samples
	:bootstrap - Bootstrap confidence intervals
	:wilcoxon - Wilcoxon signed-rank test (non-parametric)
	:mann_whitney - Mann-Whitney U test (non-parametric)
	:anova - One-way ANOVA for multiple groups
	:kruskal_wallis - Kruskal-Wallis test (non-parametric ANOVA)

Configuration
%StageDef{
 name: :bench,
 options: %{
 tests: [:ttest, :bootstrap],
 alpha: 0.05,
 data_source: :outputs # or :metrics, or {:custom, fn ctx -> ... end}
 }
}
Output
Results stored in context.metrics.bench.

Crucible.Stage.DataChecks

Lightweight data validation stage.
This stage validates data stored in context.assigns[:examples].
Domain-specific stages should load data into assigns before running this stage.
This is intentionally minimal; heavier validation can be plugged in by
providing a custom checker module that returns a list of issues.
Configuration
%StageDef{
 name: :data_checks,
 options: %{
 required_fields: [:input, :output], # Fields required in each example
 fail_fast: false, # Fail immediately on issues
 checker: MyApp.CustomChecker # Optional custom checker module
 }
}

Crucible.Stage.Guardrails

Applies guardrail checks to examples before processing.
This stage scans examples stored in context.assigns[:examples] using
a configured guardrail adapter. Domain-specific stages should load data
into assigns before running this stage.
Configuration
%StageDef{
 name: :guardrails,
 options: %{
 adapter: MyApp.GuardrailAdapter, # Optional, uses config default
 fail_on_violation: false # Fail on any violation
 }
}
Adapter Behaviour
Adapters must implement Crucible.Stage.Guardrails.Adapter:
defmodule MyAdapter do
 @behaviour Crucible.Stage.Guardrails.Adapter

 @impl true
 def scan(examples, opts) do
 # Return {:ok, violations} or {:error, reason}
 end
end

Crucible.Stage.Guardrails.Adapter behaviour

Behaviour for guardrail adapters (e.g., LlmGuard wrappers).

 Summary

 Callbacks

 scan(list, map)

 Callbacks

 scan(list, map)

 @callback scan([map()], map()) :: {:ok, [map()]} | {:error, term()}

Crucible.Stage.Guardrails.Noop

Default guardrail adapter that performs no checks.

Crucible.Stage.Report

Emits reports for experiment outputs and records artifacts.

Crucible.Stage.Schema

Canonical schema definition for stage describe/1 callback.
This module defines the structure and validation rules for stage schemas.
All stages implementing the Crucible.Stage behaviour must return a schema
conforming to this specification from their describe/1 callback.
Schema Structure
A valid schema must contain:
	:name - Stage identifier (atom, required)
	:description - Human-readable description (non-empty string, required)
	:required - List of required option keys (list of atoms, required)
	:optional - List of optional option keys (list of atoms, required)
	:types - Map of option keys to type specifications (map, required)

Optional fields:
	:__schema_version__ - Schema version (semver string, e.g., "1.0.0")
	:defaults - Default values for optional fields (map)
	:version - Stage version (semver string)
	:__extensions__ - Domain-specific metadata (map)

Type Specifications
Supported type specs:
	Primitives: :string, :integer, :float, :boolean, :atom, :map, :list, :module, :any
	Struct: {:struct, Module}
	Enum: {:enum, [values]}
	Typed list: {:list, inner_type}
	Typed map: {:map, key_type, value_type}
	Function: {:function, arity}
	Union: {:union, [types]}
	Tuple: {:tuple, [types]}

Example
%{
 __schema_version__: "1.0.0",
 name: :my_stage,
 description: "Processes data according to configuration",
 required: [:input_path],
 optional: [:format, :batch_size],
 types: %{
 input_path: :string,
 format: {:enum, [:json, :csv]},
 batch_size: :integer
 },
 defaults: %{
 format: :json,
 batch_size: 100
 }
}

 Summary

 Types

 t()

 Canonical schema format for stage describe/1 callback.

 type_spec()

 Type specification for stage options.

 Functions

 valid_type_spec?(spec)

 Checks if a type specification is valid.

 validate(schema)

 Validates a schema map for conformance to the canonical format.

 Types

 t()

 @type t() :: %{
 :name => atom(),
 :description => String.t(),
 :required => [atom()],
 :optional => [atom()],
 :types => %{optional(atom()) => type_spec()},
 optional(:__schema_version__) => String.t(),
 optional(:defaults) => %{optional(atom()) => term()},
 optional(:version) => String.t(),
 optional(:__extensions__) => map()
}

Canonical schema format for stage describe/1 callback.

 type_spec()

 @type type_spec() ::
 :string
 | :integer
 | :float
 | :boolean
 | :atom
 | :map
 | :list
 | :module
 | :any
 | {:struct, module()}
 | {:enum, [term()]}
 | {:list, type_spec()}
 | {:map, type_spec(), type_spec()}
 | {:function, non_neg_integer()}
 | {:union, [type_spec()]}
 | {:tuple, [type_spec()]}

Type specification for stage options.

 Functions

 valid_type_spec?(spec)

 @spec valid_type_spec?(term()) :: boolean()

Checks if a type specification is valid.
Examples
iex> Crucible.Stage.Schema.valid_type_spec?(:string)
true

iex> Crucible.Stage.Schema.valid_type_spec?({:enum, [:a, :b]})
true

iex> Crucible.Stage.Schema.valid_type_spec?(:invalid)
false

 validate(schema)

 @spec validate(map()) :: :ok | {:error, [String.t()]}

Validates a schema map for conformance to the canonical format.
Returns :ok if the schema is valid, or {:error, [String.t()]} with
a list of error messages if validation fails.
Examples
iex> Crucible.Stage.Schema.validate(%{
...> name: :test,
...> description: "Test stage",
...> required: [],
...> optional: [],
...> types: %{}
...> })
:ok

iex> Crucible.Stage.Schema.validate(%{description: "Missing name"})
{:error, ["name is required and must be an atom"]}

Crucible.Stage.Schema.Normalizer

Normalizes legacy describe/1 schemas to canonical format.
This module handles conversion of various legacy schema formats used across
the Crucible ecosystem to the canonical format defined in Crucible.Stage.Schema.
Normalization Rules
	Name normalization: Converts :stage key to :name, string names to atoms
	Required fields: Adds missing required, optional, and types fields
	Extensions: Moves non-core fields to __extensions__ map

Core Fields
These fields are preserved in the top-level schema:
	:__schema_version__
	:name
	:description
	:required
	:optional
	:types
	:defaults
	:version
	:__extensions__

All other fields are moved to __extensions__.
Example
Input (legacy format)
%{
 name: "ensemble_voting",
 description: "...",
 strategies: [:majority, :weighted]
}

Output (canonical)
%{
 name: :ensemble_voting,
 description: "...",
 required: [],
 optional: [],
 types: %{},
 __extensions__: %{
 strategies: [:majority, :weighted]
 }
}

 Summary

 Functions

 normalize(schema)

 Normalizes a describe/1 result to canonical schema format.

 Functions

 normalize(schema)

 @spec normalize(map()) :: Crucible.Stage.Schema.t()

Normalizes a describe/1 result to canonical schema format.
Handles:
	String names → atoms
	:stage key → :name
	Missing required/optional/types fields
	Non-core fields → __extensions__

Examples
iex> Crucible.Stage.Schema.Normalizer.normalize(%{name: "test", description: "Test"})
%{name: :test, description: "Test", required: [], optional: [], types: %{}}

iex> Crucible.Stage.Schema.Normalizer.normalize(%{stage: :my_stage, description: "My stage"})
%{name: :my_stage, description: "My stage", required: [], optional: [], types: %{}}

Crucible.Stage.Validate

Pre-flight validation of experiment pipeline stages.
This stage validates that all pipeline stages can be resolved and implement
the Crucible.Stage behaviour. Domain-specific validation (backends, datasets,
ensemble configuration, etc.) should be done by domain-specific stages.
Validation Checks
	All stage names resolve to modules (via registry or explicit module)
	Stage modules can be loaded
	Stage modules implement run/2

Configuration
Validation can be configured via stage options:
%StageDef{
 name: :validate,
 options: %{
 strict: true # Fail on warnings (default: false)
 }
}
Examples
Basic validation
pipeline: [%StageDef{name: :validate}, ...]

Strict validation (warnings are errors)
pipeline: [%StageDef{name: :validate, options: %{strict: true}}, ...]

Crucible.Stage.Validator

Validates stage options against describe/1 schema.
This module provides runtime validation of stage options against the schema
returned by a stage's describe/1 callback. It checks that:
	All required options are present
	All provided option values match their type specifications

Usage
schema = MyStage.describe(%{})
opts = %{input: "data.csv", batch_size: 100}

case Crucible.Stage.Validator.validate(opts, schema) do
 :ok -> # proceed with stage execution
 {:error, errors} -> # handle validation errors
end
Type Validation
The validator supports all type specifications defined in Crucible.Stage.Schema:
	Primitives: :string, :integer, :float, :boolean, :atom, :map, :list, :module, :any
	Structs: {:struct, Module}
	Enums: {:enum, [values]}
	Typed lists: {:list, inner_type}
	Typed maps: {:map, key_type, value_type}
	Functions: {:function, arity}
	Unions: {:union, [types]}
	Tuples: {:tuple, [types]}

 Summary

 Functions

 validate(opts, schema)

 Validates options map against a stage's schema.

 Functions

 validate(opts, schema)

 @spec validate(map() | keyword() | nil, map()) :: :ok | {:error, [String.t()]}

Validates options map against a stage's schema.
The schema is first normalized using Crucible.Stage.Schema.Normalizer to handle
legacy formats. Options can be provided as a map, keyword list, or nil.
Returns :ok if validation passes, or {:error, [error_messages]} with a list
of human-readable error messages if validation fails.
Examples
iex> schema = %{name: :test, description: "Test", required: [:input], optional: [], types: %{input: :string}}
iex> Crucible.Stage.Validator.validate(%{input: "hello"}, schema)
:ok

iex> schema = %{name: :test, description: "Test", required: [:input], optional: [], types: %{input: :string}}
iex> Crucible.Stage.Validator.validate(%{}, schema)
{:error, ["missing required option: input"]}

Crucible.TraceIntegration

Integration module for crucible_trace within the experiment pipeline.
This module provides helpers for managing trace chains throughout the
experiment lifecycle, including:
	Creating and initializing trace chains
	Emitting stage transition events
	Capturing decision points and alternatives
	Persisting and exporting traces

Usage
Traces are automatically managed when enabled in the experiment configuration.
Each stage can emit trace events to capture its decision-making process.
Event Types
The following event types are emitted by the pipeline:
	:stage_start - When a stage begins execution
	:stage_complete - When a stage completes successfully
	:stage_failed - When a stage encounters an error
	:hypothesis_formed - When forming a hypothesis about approach
	:pattern_applied - When applying a known pattern
	:alternative_considered - When considering alternatives
	:decision_made - When making a final decision

Example
In a stage implementation
ctx = TraceIntegration.emit_event(
 ctx,
 :hypothesis_formed,
 "Use ensemble for improved accuracy",
 "Multiple models can provide better consensus",
 alternatives: ["Single model", "Sequential cascade"],
 confidence: 0.85
)

 Summary

 Types

 trace_chain()

 trace_event()

 Functions

 confidence_stats(arg1)

 Calculate confidence statistics from the trace.

 emit_decision(ctx, decision, reasoning, alternatives, confidence)

 Emit a decision event with alternatives.

 emit_event(ctx, type, decision, reasoning)

 Emit a trace event to the current chain.

 emit_event(ctx, type, decision, reasoning, opts)

 emit_stage_complete(ctx, stage_name, results \\ %{})

 Emit a stage completion event.

 emit_stage_failed(ctx, stage_name, error)

 Emit a stage failure event.

 emit_stage_start(ctx, stage_name, stage_opts \\ %{})

 Emit a stage start event.

 event_count(arg1)

 Get event count from the trace chain.

 export_html(arg1)

 Generate an HTML visualization of the trace.

 export_json(arg1)

 Export the trace chain to JSON.

 filter_events(arg1, type)

 Filter trace events by type.

 init_trace(ctx, experiment_name)

 Initialize a new trace chain for an experiment.

 last_event(arg1)

 Get the most recent event from the trace.

 load_trace(path)

 Load a trace from disk.

 save_trace(arg1, path)

 Save the trace to disk.

 tracing_enabled?(arg1)

 Check if tracing is enabled for the context.

 Types

 trace_chain()

 @type trace_chain() :: CrucibleTrace.Chain.t()

 trace_event()

 @type trace_event() :: CrucibleTrace.Event.t()

 Functions

 confidence_stats(arg1)

 @spec confidence_stats(Crucible.Context.t()) :: map()

Calculate confidence statistics from the trace.
Returns statistics about confidence levels across all decisions.

 emit_decision(ctx, decision, reasoning, alternatives, confidence)

 @spec emit_decision(
 Crucible.Context.t(),
 String.t(),
 String.t(),
 [String.t()],
 float()
) ::
 Crucible.Context.t()

Emit a decision event with alternatives.
Captures a decision point where alternatives were considered.

 emit_event(ctx, type, decision, reasoning)

Emit a trace event to the current chain.
If tracing is not enabled (trace is nil), returns the context unchanged.
Parameters
	ctx - The current context
	type - Event type atom
	decision - What was decided
	reasoning - Why this decision was made
	opts - Additional event options

Options
	:alternatives - List of alternatives considered
	:confidence - Confidence level (0.0-1.0)
	:metadata - Additional metadata map
	:code_section - Related code section
	:spec_reference - Related specification reference

 emit_event(ctx, type, decision, reasoning, opts)

 @spec emit_event(Crucible.Context.t(), atom(), String.t(), String.t(), keyword()) ::
 Crucible.Context.t()

 emit_stage_complete(ctx, stage_name, results \\ %{})

 @spec emit_stage_complete(Crucible.Context.t(), atom(), map()) :: Crucible.Context.t()

Emit a stage completion event.
Captures successful completion of a pipeline stage.

 emit_stage_failed(ctx, stage_name, error)

 @spec emit_stage_failed(Crucible.Context.t(), atom(), term()) :: Crucible.Context.t()

Emit a stage failure event.
Captures when a pipeline stage encounters an error.

 emit_stage_start(ctx, stage_name, stage_opts \\ %{})

 @spec emit_stage_start(Crucible.Context.t(), atom(), map()) :: Crucible.Context.t()

Emit a stage start event.
Captures the beginning of a pipeline stage execution.

 event_count(arg1)

 @spec event_count(Crucible.Context.t()) :: non_neg_integer()

Get event count from the trace chain.

 export_html(arg1)

 @spec export_html(Crucible.Context.t()) :: String.t() | nil

Generate an HTML visualization of the trace.
Returns the HTML content for visualizing the trace chain, or nil if tracing is not enabled.

 export_json(arg1)

 @spec export_json(Crucible.Context.t()) :: String.t() | nil

Export the trace chain to JSON.
Returns the JSON representation of the trace chain, or nil if tracing is not enabled.

 filter_events(arg1, type)

 @spec filter_events(Crucible.Context.t(), atom()) :: [trace_event()]

Filter trace events by type.
Returns all events of a specific type from the trace chain.

 init_trace(ctx, experiment_name)

 @spec init_trace(Crucible.Context.t(), String.t()) :: Crucible.Context.t()

Initialize a new trace chain for an experiment.
Creates a new trace chain and adds it to the context.

 last_event(arg1)

 @spec last_event(Crucible.Context.t()) :: trace_event() | nil

Get the most recent event from the trace.

 load_trace(path)

 @spec load_trace(String.t()) ::
 {:ok, trace_chain()}
 | {:error, {:missing_dependency, :crucible_trace} | term()}

Load a trace from disk.
Loads a previously saved trace chain from the filesystem.

 save_trace(arg1, path)

 @spec save_trace(Crucible.Context.t(), String.t()) :: :ok | {:error, term()}

Save the trace to disk.
Persists the trace chain to the filesystem.

 tracing_enabled?(arg1)

 @spec tracing_enabled?(Crucible.Context.t()) :: boolean()

Check if tracing is enabled for the context.

CrucibleFramework

Public entrypoints for running Crucible experiments.
Database Configuration
CrucibleFramework requires a Repo for persistence. Configure it in your host application:
config :crucible_framework, repo: MyApp.Repo
Then add CrucibleFramework to your supervision tree if you want managed persistence:
children = [
 MyApp.Repo,
 # ... other children
]
Run migrations using the provided mix task:
mix crucible_framework.install
Or copy migrations manually from deps/crucible_framework/priv/repo/migrations/.

 Summary

 Functions

 repo()

 Returns the configured Repo module.

 repo!()

 Returns the configured Repo module, or nil if not configured.

 run(experiment, opts \\ [])

 Functions

 repo()

 @spec repo() :: module()

Returns the configured Repo module.
Raises if not configured. Configure with:
config :crucible_framework, repo: MyApp.Repo

 repo!()

 @spec repo!() :: module() | nil

Returns the configured Repo module, or nil if not configured.

 run(experiment, opts \\ [])

 @spec run(
 CrucibleIR.Experiment.t(),
 keyword()
) :: {:ok, Crucible.Context.t()} | {:error, term()}

CrucibleFramework.Application

OTP application for CrucibleFramework.
Note: The Repo is NOT started automatically. Host applications should:
	Configure the repo: config :crucible_framework, repo: MyApp.Repo
	Start their own Repo in their supervision tree

For backwards compatibility, set start_repo: true to auto-start
CrucibleFramework.Repo (requires database config).

CrucibleFramework.Persistence

Persistence helpers for recording experiments, runs, and artifacts.

 Summary

 Functions

 finish_run(run, status, attrs \\ %{})

 Updates a run's status/metrics/outputs.

 record_artifact(run_record, attrs)

 Records an artifact generated during a run.

 start_run(experiment, opts \\ [])

 Creates a run record marked as running.

 upsert_experiment(experiment)

 Inserts or updates an experiment definition.

 Functions

 finish_run(run, status, attrs \\ %{})

 @spec finish_run(CrucibleFramework.Persistence.RunRecord.t(), String.t(), map()) ::
 {:ok, CrucibleFramework.Persistence.RunRecord.t()}
 | {:error, Ecto.Changeset.t()}

Updates a run's status/metrics/outputs.

 record_artifact(run_record, attrs)

 @spec record_artifact(CrucibleFramework.Persistence.RunRecord.t(), map()) ::
 {:ok, CrucibleFramework.Persistence.ArtifactRecord.t()}
 | {:error, Ecto.Changeset.t()}

Records an artifact generated during a run.

 start_run(experiment, opts \\ [])

 @spec start_run(
 CrucibleIR.Experiment.t(),
 keyword()
) ::
 {:ok, CrucibleFramework.Persistence.RunRecord.t()}
 | {:error, Ecto.Changeset.t()}

Creates a run record marked as running.

 upsert_experiment(experiment)

 @spec upsert_experiment(CrucibleIR.Experiment.t()) ::
 {:ok, CrucibleFramework.Persistence.ExperimentRecord.t()}
 | {:error, Ecto.Changeset.t()}

Inserts or updates an experiment definition.

CrucibleFramework.Persistence.ArtifactRecord

Ecto schema for persisted artifacts generated by runs.

 Summary

 Types

 t()

 Functions

 changeset(schema, attrs)

 Types

 t()

 @type t() :: %CrucibleFramework.Persistence.ArtifactRecord{
 __meta__: term(),
 format: String.t() | nil,
 id: Ecto.UUID.t(),
 inserted_at: DateTime.t() | nil,
 location: String.t() | nil,
 metadata: map(),
 name: String.t() | nil,
 run:
 CrucibleFramework.Persistence.RunRecord.t() | Ecto.Association.NotLoaded.t(),
 run_id: Ecto.UUID.t(),
 type: String.t() | nil,
 updated_at: DateTime.t() | nil
}

 Functions

 changeset(schema, attrs)

CrucibleFramework.Persistence.ExperimentRecord

Ecto schema for persisted experiment definitions.

 Summary

 Types

 t()

 Functions

 changeset(schema, attrs)

 Types

 t()

 @type t() :: %CrucibleFramework.Persistence.ExperimentRecord{
 __meta__: term(),
 definition: map(),
 id: String.t(),
 inserted_at: DateTime.t() | nil,
 metadata: map(),
 owner: String.t() | nil,
 tags: [String.t()],
 updated_at: DateTime.t() | nil
}

 Functions

 changeset(schema, attrs)

CrucibleFramework.Persistence.RunRecord

Ecto schema for experiment runs.

 Summary

 Types

 t()

 Functions

 changeset(schema, attrs)

 Types

 t()

 @type t() :: %CrucibleFramework.Persistence.RunRecord{
 __meta__: term(),
 context: map(),
 experiment:
 CrucibleFramework.Persistence.ExperimentRecord.t()
 | Ecto.Association.NotLoaded.t(),
 experiment_id: String.t(),
 id: Ecto.UUID.t(),
 inserted_at: DateTime.t() | nil,
 metadata: map(),
 metrics: map(),
 outputs: map(),
 status: String.t(),
 updated_at: DateTime.t() | nil
}

 Functions

 changeset(schema, attrs)

CrucibleFramework.Repo

 Summary

 Functions

 aggregate(queryable, aggregate, opts \\ [])

 Callback implementation for Ecto.Repo.aggregate/3.

 aggregate(queryable, aggregate, field, opts)

 Callback implementation for Ecto.Repo.aggregate/4.

 all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.all/2.

 all_by(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.all_by/3.

 checked_out?()

 Callback implementation for Ecto.Repo.checked_out?/0.

 checkout(fun, opts \\ [])

 Callback implementation for Ecto.Repo.checkout/2.

 child_spec(opts)

 config()

 Callback implementation for Ecto.Repo.config/0.

 default_options(operation)

 Callback implementation for Ecto.Repo.default_options/1.

 delete(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete/2.

 delete!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.delete!/2.

 delete_all(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.delete_all/2.

 disconnect_all(interval, opts \\ [])

 Forces all connections in the repo pool to disconnect within the given interval.

 exists?(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.exists?/2.

 explain(operation, queryable, opts \\ [])

 Executes an EXPLAIN statement or similar for the given query according to its kind and the
adapter in the given repository.

 get(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get/3.

 get!(queryable, id, opts \\ [])

 Callback implementation for Ecto.Repo.get!/3.

 get_by(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by/3.

 get_by!(queryable, clauses, opts \\ [])

 Callback implementation for Ecto.Repo.get_by!/3.

 get_dynamic_repo()

 Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 in_transaction?()

 Callback implementation for Ecto.Repo.in_transaction?/0.

 insert(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert/2.

 insert!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.insert!/2.

 insert_all(schema_or_source, entries, opts \\ [])

 Callback implementation for Ecto.Repo.insert_all/3.

 insert_or_update(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update/2.

 insert_or_update!(changeset, opts \\ [])

 Callback implementation for Ecto.Repo.insert_or_update!/2.

 load(schema_or_types, data)

 Callback implementation for Ecto.Repo.load/2.

 one(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one/2.

 one!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.one!/2.

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

 Callback implementation for Ecto.Repo.preload/3.

 prepare_query(operation, query, opts)

 Callback implementation for Ecto.Repo.prepare_query/3.

 prepare_transaction(fun_or_multi, opts)

 Callback implementation for Ecto.Repo.prepare_transaction/2.

 put_dynamic_repo(dynamic)

 Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 query(sql, params \\ [], opts \\ [])

 Runs a custom SQL query.

 query!(sql, params \\ [], opts \\ [])

 Same as query/3 but returns result directly without :ok tuple
and raises on invalid queries

 query_many(sql, params \\ [], opts \\ [])

 Runs a custom SQL query that returns multiple results on the given repo.

 query_many!(sql, params \\ [], opts \\ [])

 Same as query_many/4 but returns result directly without :ok tuple
and raises on invalid queries

 reload(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload/2.

 reload!(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.reload!/2.

 rollback(value)

 Callback implementation for Ecto.Repo.rollback/1.

 start_link(opts \\ [])

 Callback implementation for Ecto.Repo.start_link/1.

 stop(timeout \\ 5000)

 Callback implementation for Ecto.Repo.stop/1.

 stream(queryable, opts \\ [])

 Callback implementation for Ecto.Repo.stream/2.

 to_sql(operation, queryable)

 Converts the given query to SQL according to its kind and the
adapter in the given repository.

 transact(fun_or_multi, opts \\ [])

 Callback implementation for Ecto.Repo.transact/2.

 transaction(fun_or_multi, opts \\ [])

 Callback implementation for Ecto.Repo.transaction/2.

 update(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update/2.

 update!(struct, opts \\ [])

 Callback implementation for Ecto.Repo.update!/2.

 update_all(queryable, updates, opts \\ [])

 Callback implementation for Ecto.Repo.update_all/3.

 Functions

 aggregate(queryable, aggregate, opts \\ [])

Callback implementation for Ecto.Repo.aggregate/3.

 aggregate(queryable, aggregate, field, opts)

Callback implementation for Ecto.Repo.aggregate/4.

 all(queryable, opts \\ [])

Callback implementation for Ecto.Repo.all/2.

 all_by(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.all_by/3.

 checked_out?()

Callback implementation for Ecto.Repo.checked_out?/0.

 checkout(fun, opts \\ [])

Callback implementation for Ecto.Repo.checkout/2.

 child_spec(opts)

 config()

Callback implementation for Ecto.Repo.config/0.

 default_options(operation)

Callback implementation for Ecto.Repo.default_options/1.

 delete(struct, opts \\ [])

Callback implementation for Ecto.Repo.delete/2.

 delete!(struct, opts \\ [])

Callback implementation for Ecto.Repo.delete!/2.

 delete_all(queryable, opts \\ [])

Callback implementation for Ecto.Repo.delete_all/2.

 disconnect_all(interval, opts \\ [])

 @spec disconnect_all(non_neg_integer(), opts :: Keyword.t()) :: :ok

Forces all connections in the repo pool to disconnect within the given interval.
Once this function is called, the pool will disconnect all of its connections
as they are checked in or as they are pinged. Checked in connections will be
randomly disconnected within the given time interval. Pinged connections are
immediately disconnected - as they are idle (according to :idle_interval).
If the connection has a backoff configured (which is the case by default),
disconnecting means an attempt at a new connection will be done immediately
after, without starting a new process for each connection. However, if backoff
has been disabled, the connection process will terminate. In such cases,
disconnecting all connections may cause the pool supervisor to restart
depending on the max_restarts/max_seconds configuration of the pool,
so you will want to set those carefully.

 exists?(queryable, opts \\ [])

Callback implementation for Ecto.Repo.exists?/2.

 explain(operation, queryable, opts \\ [])

 @spec explain(
 :all | :update_all | :delete_all,
 Ecto.Queryable.t(),
 opts :: Keyword.t()
) ::
 String.t() | Exception.t() | [map()]

Executes an EXPLAIN statement or similar for the given query according to its kind and the
adapter in the given repository.
Examples
Postgres
iex> MyRepo.explain(:all, Post)
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)"

iex> Ecto.Adapters.SQL.explain(Repo, :all, Post)
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)"

MySQL
iex> MyRepo.explain(:all, from(p in Post, where: p.title == "title")) |> IO.puts()
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | p0 | NULL | ALL | NULL | NULL | NULL | NULL | 1 | 100.0 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+

Shared opts
iex> MyRepo.explain(:all, Post, analyze: true, timeout: 20_000)
"Seq Scan on posts p0 (cost=0.00..11.70 rows=170 width=443) (actual time=0.013..0.013 rows=0 loops=1)\nPlanning Time: 0.031 ms\nExecution Time: 0.021 ms"
It's safe to execute it for updates and deletes, no data change will be committed:
iex> MyRepo.explain(Repo, :update_all, from(p in Post, update: [set: [title: "new title"]]))
"Update on posts p0 (cost=0.00..11.70 rows=170 width=449)\n -> Seq Scan on posts p0 (cost=0.00..11.70 rows=170 width=449)"
This function is also available under the repository with name explain:
iex> MyRepo.explain(:all, from(p in Post, where: p.title == "title"))
"Seq Scan on posts p0 (cost=0.00..12.12 rows=1 width=443)\n Filter: ((title)::text = 'title'::text)"
Options
Built-in adapters support passing opts to the EXPLAIN statement according to the following:
	Adapter	Supported opts
	Postgrex	analyze, verbose, costs, settings, buffers, timing, summary, format, plan
	MyXQL	format

All options except format are boolean valued and default to false.
The allowed format values are :map, :yaml, and :text:
	:map is the deserialized JSON encoding.
	:yaml and :text return the result as a string.

The built-in adapters support the following formats:
	Postgrex: :map, :yaml and :text
	MyXQL: :map and :text

The :plan option in Postgrex can take the values :custom or :fallback_generic. When :custom
is specified, the explain plan generated will consider the specific values of the query parameters
that are supplied. When using :fallback_generic, the specific values of the query parameters will
be ignored. :fallback_generic does not use PostgreSQL's built-in support for a generic explain
plan (available as of PostgreSQL 16), but instead uses a special implementation that works for PostgreSQL
versions 12 and above. Defaults to :custom.
Any other value passed to opts will be forwarded to the underlying adapter query function, including
shared Repo options such as :timeout. Non built-in adapters may have specific behaviour and you should
consult their documentation for more details.
For version compatibility, please check your database's documentation:
	Postgrex: PostgreSQL doc.
	MyXQL: MySQL doc.

 get(queryable, id, opts \\ [])

Callback implementation for Ecto.Repo.get/3.

 get!(queryable, id, opts \\ [])

Callback implementation for Ecto.Repo.get!/3.

 get_by(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.get_by/3.

 get_by!(queryable, clauses, opts \\ [])

Callback implementation for Ecto.Repo.get_by!/3.

 get_dynamic_repo()

Callback implementation for Ecto.Repo.get_dynamic_repo/0.

 in_transaction?()

Callback implementation for Ecto.Repo.in_transaction?/0.

 insert(struct, opts \\ [])

Callback implementation for Ecto.Repo.insert/2.

 insert!(struct, opts \\ [])

Callback implementation for Ecto.Repo.insert!/2.

 insert_all(schema_or_source, entries, opts \\ [])

Callback implementation for Ecto.Repo.insert_all/3.

 insert_or_update(changeset, opts \\ [])

Callback implementation for Ecto.Repo.insert_or_update/2.

 insert_or_update!(changeset, opts \\ [])

Callback implementation for Ecto.Repo.insert_or_update!/2.

 load(schema_or_types, data)

Callback implementation for Ecto.Repo.load/2.

 one(queryable, opts \\ [])

Callback implementation for Ecto.Repo.one/2.

 one!(queryable, opts \\ [])

Callback implementation for Ecto.Repo.one!/2.

 preload(struct_or_structs_or_nil, preloads, opts \\ [])

Callback implementation for Ecto.Repo.preload/3.

 prepare_query(operation, query, opts)

Callback implementation for Ecto.Repo.prepare_query/3.

 prepare_transaction(fun_or_multi, opts)

Callback implementation for Ecto.Repo.prepare_transaction/2.

 put_dynamic_repo(dynamic)

Callback implementation for Ecto.Repo.put_dynamic_repo/1.

 query(sql, params \\ [], opts \\ [])

 @spec query(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 {:ok, Ecto.Adapters.SQL.query_result()} | {:error, Exception.t()}

Runs a custom SQL query.
If the query was successful, it will return an :ok tuple containing
a map with at least two keys:
	:num_rows - the number of rows affected
	:rows - the result set as a list. nil may be returned
instead of the list if the command does not yield any row
as result (but still yields the number of affected rows,
like a delete command without returning would)

Options
	:log - When false, does not log the query
	:timeout - Execute request timeout, accepts: :infinity (default: 15000);

Examples
iex> MyRepo.query("SELECT $1::integer + $2", [40, 2])
{:ok, %{rows: [[42]], num_rows: 1}}

iex> Ecto.Adapters.SQL.query(MyRepo, "SELECT $1::integer + $2", [40, 2])
{:ok, %{rows: [[42]], num_rows: 1}}

 query!(sql, params \\ [], opts \\ [])

 @spec query!(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 Ecto.Adapters.SQL.query_result()

Same as query/3 but returns result directly without :ok tuple
and raises on invalid queries

 query_many(sql, params \\ [], opts \\ [])

 @spec query_many(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) ::
 {:ok, [Ecto.Adapters.SQL.query_result()]} | {:error, Exception.t()}

Runs a custom SQL query that returns multiple results on the given repo.
In case of success, it must return an :ok tuple containing a list of
maps with at least two keys:
	:num_rows - the number of rows affected

	:rows - the result set as a list. nil may be returned
instead of the list if the command does not yield any row
as result (but still yields the number of affected rows,
like a delete command without returning would)

Options
	:log - When false, does not log the query
	:timeout - Execute request timeout, accepts: :infinity (default: 15000);

Examples
iex> MyRepo.query_many("SELECT $1; SELECT $2;", [40, 2])
{:ok, [%{rows: [[40]], num_rows: 1}, %{rows: [[2]], num_rows: 1}]}

iex> Ecto.Adapters.SQL.query_many(MyRepo, "SELECT $1; SELECT $2;", [40, 2])
{:ok, [%{rows: [[40]], num_rows: 1}, %{rows: [[2]], num_rows: 1}]}

 query_many!(sql, params \\ [], opts \\ [])

 @spec query_many!(iodata(), Ecto.Adapters.SQL.query_params(), Keyword.t()) :: [
 Ecto.Adapters.SQL.query_result()
]

Same as query_many/4 but returns result directly without :ok tuple
and raises on invalid queries

 reload(queryable, opts \\ [])

Callback implementation for Ecto.Repo.reload/2.

 reload!(queryable, opts \\ [])

Callback implementation for Ecto.Repo.reload!/2.

 rollback(value)

 @spec rollback(term()) :: no_return()

Callback implementation for Ecto.Repo.rollback/1.

 start_link(opts \\ [])

Callback implementation for Ecto.Repo.start_link/1.

 stop(timeout \\ 5000)

Callback implementation for Ecto.Repo.stop/1.

 stream(queryable, opts \\ [])

Callback implementation for Ecto.Repo.stream/2.

 to_sql(operation, queryable)

 @spec to_sql(:all | :update_all | :delete_all, Ecto.Queryable.t()) ::
 {String.t(), Ecto.Adapters.SQL.query_params()}

Converts the given query to SQL according to its kind and the
adapter in the given repository.
Examples
The examples below are meant for reference. Each adapter will
return a different result:
iex> MyRepo.to_sql(:all, Post)
{"SELECT p.id, p.title, p.inserted_at, p.created_at FROM posts as p", []}

iex> MyRepo.to_sql(:update_all, from(p in Post, update: [set: [title: ^"hello"]]))
{"UPDATE posts AS p SET title = $1", ["hello"]}

iex> Ecto.Adapters.SQL.to_sql(:all, MyRepo, Post)
{"SELECT p.id, p.title, p.inserted_at, p.created_at FROM posts as p", []}

 transact(fun_or_multi, opts \\ [])

Callback implementation for Ecto.Repo.transact/2.

 transaction(fun_or_multi, opts \\ [])

Callback implementation for Ecto.Repo.transaction/2.

 update(struct, opts \\ [])

Callback implementation for Ecto.Repo.update/2.

 update!(struct, opts \\ [])

Callback implementation for Ecto.Repo.update!/2.

 update_all(queryable, updates, opts \\ [])

Callback implementation for Ecto.Repo.update_all/3.

mix crucible.stages

Lists available Crucible stages and their options.
Usage
mix crucible.stages # List all registered stages
mix crucible.stages --name bench # Show details for :bench stage
mix crucible.stages -n validate # Short form
Examples
$ mix crucible.stages

Available Stages:
=================

:bench (Crucible.Stage.Bench)
 Description: Statistical benchmarking and hypothesis testing
 Required: (none)
 Optional: tests, alpha, data_source, options

:validate (Crucible.Stage.Validate)
 Description: Pre-flight validation of pipeline stages
 Required: (none)
 Optional: strict

$ mix crucible.stages --name bench

Stage: :bench
Module: Crucible.Stage.Bench

Description:
 Statistical benchmarking and hypothesis testing using crucible_bench

Required Options: (none)

Optional Options:
 tests {:list, {:enum, [...]}} Statistical tests to run
 alpha :float Significance level
 data_source {:enum, [...]} Data extraction mode
 options :map Additional test options

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

