

 CrucibleIR

 v0.2.1

 [image: Logo]

 Table of contents

 	README

 	Changelog

 	LICENSE

 	
 Modules

 	CrucibleIR

 	CrucibleIR.BackendRef

 	CrucibleIR.Builder

 	CrucibleIR.DatasetRef

 	CrucibleIR.Deployment.Config

 	CrucibleIR.Deployment.Status

 	CrucibleIR.Experiment

 	CrucibleIR.Feedback.Config

 	CrucibleIR.Feedback.Event

 	CrucibleIR.ModelRef

 	CrucibleIR.ModelVersion

 	CrucibleIR.OutputSpec

 	CrucibleIR.Reliability.Config

 	CrucibleIR.Reliability.Ensemble

 	CrucibleIR.Reliability.Fairness

 	CrucibleIR.Reliability.Guardrail

 	CrucibleIR.Reliability.Hedging

 	CrucibleIR.Reliability.Stats

 	CrucibleIR.Serialization

 	CrucibleIR.StageDef

 	CrucibleIR.Training.Config

 	CrucibleIR.Training.Run

 	CrucibleIR.Validation

 README

[image: CrucibleIR Hexagonal Mark]
CrucibleIR
[image: Hex.pm]
[image: Docs]
[image: License]
Intermediate Representation for the Crucible ML reliability ecosystem.
Full docs: https://hexdocs.pm/crucible_ir
Overview
CrucibleIR provides shared data structures for defining ML reliability experiments across the Crucible ecosystem. It serves as the common language for experiment configuration, enabling consistency across all Crucible tools and components.
Requirements
	Elixir ~> 1.14 (and matching Erlang/OTP)
	jason for JSON encoding (included in deps)

Features
	Experiment Definition: Complete experiment specifications with backends, pipelines, and datasets
	Reliability Configurations: Ensemble voting, hedging, statistical testing, fairness, and guardrails
	Validation: Structural validation for IR structs with detailed error messages (no stage option validation)
	JSON Serialization: Bidirectional JSON conversion with automatic type handling
	Fluent Builder API: Chainable, ergonomic experiment construction
	Type Safety: Full type specifications for all structs
	Comprehensive Documentation: 100% documentation coverage with examples
	Boundary Contract: Data-only IR with no execution or orchestration logic

Installation
Add crucible_ir to your list of dependencies in mix.exs:
def deps do
 [
 {:crucible_ir, "~> 0.2.1"}
]
end
Fetch dependencies:
mix deps.get

Quick Start
alias CrucibleIR.{Experiment, BackendRef, StageDef, DatasetRef}
alias CrucibleIR.Reliability.{Config, Ensemble, Stats}

Define a simple experiment
experiment = CrucibleIR.new_experiment(
 id: :gpt4_benchmark,
 backend: %BackendRef{id: :openai_gpt4},
 pipeline: [
 %StageDef{name: :preprocessing},
 %StageDef{name: :inference},
 %StageDef{name: :evaluation}
],
 dataset: %DatasetRef{name: :mmlu, split: :test}
)

Add reliability mechanisms
experiment = %{experiment |
 reliability: %Config{
 ensemble: %Ensemble{
 strategy: :majority,
 models: [:gpt4, :claude, :gemini],
 execution_mode: :parallel
 },
 stats: %Stats{
 tests: [:ttest, :bootstrap],
 alpha: 0.05
 }
 }
}

Serialize to JSON
{:ok, json} = Jason.encode(experiment)
Examples Directory
See examples/README.md for a full set of API integration examples and setup
notes for accounts and keys.
Usage Workflow
	Define an Experiment with id, backend, and pipeline stages.
	Add a DatasetRef if the experiment targets a dataset.
	Attach Reliability.Config options (ensemble, hedging, stats, fairness, guardrails).
	Add OutputSpec entries to describe where and how to emit results.
	Serialize with Jason.encode/1 to pass the IR into other Crucible services.

Core Components
Experiment Definition
	Experiment - Top-level experiment definition
	BackendRef - Reference to an LLM backend
	DatasetRef - Reference to a dataset
	StageDef - Processing stage definition
	OutputSpec - Output specification

Reliability Mechanisms
	Reliability.Config - Container for all reliability configurations
	Reliability.Ensemble - Multi-model ensemble voting
	Reliability.Hedging - Request hedging for tail latency reduction
	Reliability.Stats - Statistical testing configuration
	Reliability.Fairness - Fairness and bias detection
	Reliability.Guardrail - Security guardrails (prompt injection, PII, etc.)

Struct Field Reference
	Experiment: required id, backend, pipeline; optional description, owner, tags, metadata, dataset, reliability, outputs, created_at, updated_at.
	BackendRef: required id; optional profile (default :default), options.
	DatasetRef: required name; optional provider (default :crucible_datasets), split (default :train), options.
	StageDef: required name; optional module, options, enabled (default true).
	OutputSpec: required name; optional formats (default [:markdown]), sink (default :file), options.
	Reliability.Config: optional ensemble, hedging, stats, fairness, guardrails.	Ensemble: strategy (default :none), execution_mode (default :parallel), models, weights, min_agreement, timeout_ms, options.
	Hedging: strategy (default :off), delay_ms, percentile, max_hedges, budget_percent, options.
	Stats: tests (default [:ttest, :bootstrap]), alpha (default 0.05), confidence_level, effect_size_type, multiple_testing_correction, bootstrap_iterations, options.
	Fairness: enabled (default false), metrics, group_by, threshold, fail_on_violation, options.
	Guardrail: profiles (default [:default]), prompt_injection_detection, jailbreak_detection, pii_detection, pii_redaction, content_moderation, fail_on_detection, options.

New in v0.1.1
Validation
Validate experiments before execution:
alias CrucibleIR.{Experiment, BackendRef, StageDef}

Valid experiment
exp = %Experiment{
 id: :test,
 backend: %BackendRef{id: :gpt4},
 pipeline: [%StageDef{name: :run}]
}

{:ok, ^exp} = CrucibleIR.validate(exp)
true = CrucibleIR.valid?(exp)

Invalid experiment
invalid = %Experiment{id: :test, backend: nil, pipeline: nil}
{:error, errors} = CrucibleIR.validate(invalid)
errors: ["backend is required", "pipeline must be a list"]
JSON Serialization
Serialize to/from JSON with automatic type conversion:
alias CrucibleIR.{Experiment, BackendRef, StageDef}

Create experiment
exp = %Experiment{
 id: :test,
 backend: %BackendRef{id: :gpt4},
 pipeline: [%StageDef{name: :inference}]
}

Serialize to JSON
json = CrucibleIR.to_json(exp)

Deserialize from JSON
{:ok, decoded} = CrucibleIR.from_json(json, Experiment)
decoded.id == :test # true
decoded.backend.id == :gpt4 # true

Works with nested structs and reliability configs
Fluent Builder API
Build experiments with a chainable, ergonomic API:
alias CrucibleIR.Builder

{:ok, exp} =
 Builder.experiment(:comprehensive_test)
 |> Builder.with_description("Production reliability test")
 |> Builder.with_backend(:gpt4, profile: :fast)
 |> Builder.add_stage(:preprocessing, options: %{normalize: true})
 |> Builder.add_stage(:inference)
 |> Builder.add_stage(:postprocessing)
 |> Builder.with_dataset(:mmlu, split: :test)
 |> Builder.with_ensemble(:majority, models: [:gpt4, :claude])
 |> Builder.with_hedging(:fixed, delay_ms: 100)
 |> Builder.with_stats([:ttest, :bootstrap], alpha: 0.01)
 |> Builder.with_fairness(metrics: [:demographic_parity], threshold: 0.8)
 |> Builder.with_guardrails(profiles: [:strict], pii_detection: true)
 |> Builder.add_output(:results, formats: [:json, :html])
 |> Builder.build() # Validates and returns {:ok, exp} or {:error, errors}

Builder automatically validates - build() returns errors if invalid
{:error, errors} =
 Builder.experiment(:invalid)
 |> Builder.build() # Missing backend and pipeline
Or use the convenience function from the main module:
{:ok, exp} =
 CrucibleIR.experiment(:my_test)
 |> Builder.with_backend(:gpt4)
 |> Builder.add_stage(:inference)
 |> Builder.build()
Examples
Ensemble Voting Experiment
experiment = CrucibleIR.new_experiment(
 id: :ensemble_exp,
 backend: %BackendRef{id: :gpt4},
 pipeline: [%StageDef{name: :inference}],
 reliability: %Config{
 ensemble: %Ensemble{
 strategy: :weighted,
 models: [:gpt4, :claude, :gemini],
 weights: %{gpt4: 0.5, claude: 0.3, gemini: 0.2},
 execution_mode: :parallel
 }
 }
)
Hedging for Low Latency
experiment = CrucibleIR.new_experiment(
 id: :low_latency_exp,
 backend: %BackendRef{id: :gpt4},
 pipeline: [%StageDef{name: :inference}],
 reliability: %Config{
 hedging: %Hedging{
 strategy: :percentile,
 percentile: 0.95,
 max_hedges: 2,
 budget_percent: 15
 }
 }
)
Statistical Testing
experiment = CrucibleIR.new_experiment(
 id: :stats_exp,
 backend: %BackendRef{id: :gpt4},
 pipeline: [%StageDef{name: :inference}],
 dataset: %DatasetRef{name: :mmlu},
 reliability: %Config{
 stats: %Stats{
 tests: [:ttest, :mannwhitney, :bootstrap],
 alpha: 0.01,
 effect_size_type: :cohens_d,
 bootstrap_iterations: 10000
 }
 }
)
Fairness Checking
experiment = CrucibleIR.new_experiment(
 id: :fairness_exp,
 backend: %BackendRef{id: :gpt4},
 pipeline: [%StageDef{name: :inference}],
 reliability: %Config{
 fairness: %Fairness{
 enabled: true,
 metrics: [:demographic_parity, :equalized_odds],
 group_by: :gender,
 threshold: 0.8,
 fail_on_violation: true
 }
 }
)
Security Guardrails
experiment = CrucibleIR.new_experiment(
 id: :secure_exp,
 backend: %BackendRef{id: :gpt4},
 pipeline: [%StageDef{name: :inference}],
 reliability: %Config{
 guardrails: %Guardrail{
 profiles: [:strict],
 prompt_injection_detection: true,
 jailbreak_detection: true,
 pii_detection: true,
 pii_redaction: true,
 fail_on_detection: true
 }
 }
)
Architecture
CrucibleIR follows a hierarchical structure:
Experiment (top-level)
├── BackendRef (which LLM to use)
├── Pipeline (list of StageDef)
├── DatasetRef (what data to evaluate)
├── Reliability.Config
│ ├── Ensemble (multi-model voting)
│ ├── Hedging (latency optimization)
│ ├── Stats (statistical testing)
│ ├── Fairness (bias detection)
│ └── Guardrails (security)
└── Outputs (list of OutputSpec)
Testing
All modules have comprehensive test coverage:
mix test

Current test stats: 174 tests, 0 failures (6 doctests + 168 unit tests)
New in v0.1.1:
	41 validation tests
	26 serialization tests
	29 builder tests
	3 new doctests

Documentation
Generate HTML documentation:
mix docs

Integration with Crucible Ecosystem
CrucibleIR is used by:
	crucible_harness - Experiment orchestration
	crucible_ensemble - Ensemble voting implementation
	crucible_hedging - Request hedging implementation
	crucible_bench - Statistical testing
	crucible_telemetry - Metrics and instrumentation
	crucible_trace - Causal transparency

Design Principles
	Immutable Data Structures: All structs are immutable
	Type Safety: Full type specifications with @type and @spec
	JSON-First: All structs support JSON serialization
	Documentation: Every module and public function is documented
	Test Coverage: High test coverage with property-based testing

Boundary and Serialization Contract
	CrucibleIR is data-only: structs, serialization, and structural validation only.
	Stage options (StageDef.options) are opaque maps; stage implementations validate them.
	CrucibleIR.Serialization is the canonical JSON round-trip layer; JSON keys must remain stable.
	Map keys should be JSON-friendly (strings) for stable round-trip in opaque fields like options.

See docs/20251226/ir_boundary/IR_BOUNDARY_AND_CONTRACT.md for the full contract.
Contributing
This library is part of the North-Shore-AI organization. Contributions welcome!
License
MIT License - See LICENSE file for details
Links
	GitHub: https://github.com/North-Shore-AI/crucible_ir
	Documentation: https://hexdocs.pm/crucible_ir
	Crucible Framework: https://github.com/North-Shore-AI/crucible_framework

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
0.2.1 - 2025-12-26
Added
	Examples directory with API integration demos (backends, datasets, model registry, training, deployment, feedback, outputs, serialization)
	IR boundary documentation (docs/20251226/ir_boundary/)
	JSON round-trip tests for model lifecycle, deployment, feedback, and output specs

Changed
	Serialization now decodes experiment model lifecycle fields and reliability feedback configs
	Serialization now normalizes dataset formats, stage modules, backend deployment IDs, and ensemble weights
	Documentation clarifies the IR boundary and serialization contract

0.2.0 - 2025-12-25
Added
	Model Lifecycle Structs	CrucibleIR.ModelRef - Model reference with provider, framework, and artifact URI
	CrucibleIR.ModelVersion - Model version with stage, metrics, and lineage tracking
	CrucibleIR.Training.Config - Training configuration (epochs, batch size, optimizer, device)
	CrucibleIR.Training.Run - Training run tracking (status, metrics history, checkpoints)
	CrucibleIR.Deployment.Config - Deployment configuration (environment, strategy, scaling)
	CrucibleIR.Deployment.Status - Deployment status (state, health, replicas)
	CrucibleIR.Feedback.Config - Feedback collection configuration (sampling, storage, drift detection)
	CrucibleIR.Feedback.Event - Feedback event (input, output, user feedback, latency)

0.1.1 - 2025-11-26
Added
	Validation Module (CrucibleIR.Validation)
	validate/1 - Validates structs and returns {:ok, struct} or {:error, errors}
	valid?/1 - Returns boolean indicating validity
	errors/1 - Returns list of validation errors
	Validates all IR structs including nested configurations
	Validates enum values (strategies, execution modes, etc.)
	Validates numeric ranges (alpha between 0 and 1)
	Provides detailed, actionable error messages
	41 comprehensive validation tests

	Serialization Module (CrucibleIR.Serialization)
	to_json/1 - Encodes structs to JSON strings
	from_json/2 - Decodes JSON to typed structs with automatic conversion
	from_map/2 - Converts maps (string or atom keys) to structs
	Handles nested struct deserialization (Experiment → BackendRef, Reliability.Config, etc.)
	Automatic string-to-atom conversion for identifiers
	Smart dataset name handling (preserves strings with spaces, converts simple names to atoms)
	Round-trip serialization preserves data integrity
	26 comprehensive serialization tests including round-trip tests

	Builder Module (CrucibleIR.Builder)
	Fluent, chainable API for experiment construction
	experiment/1 - Creates new experiment builder
	with_description/2 - Adds description
	with_backend/2 - Configures backend with options
	add_stage/2 - Adds pipeline stages
	with_dataset/2 - Configures dataset
	with_ensemble/2 - Adds ensemble voting configuration
	with_hedging/2 - Adds request hedging configuration
	with_stats/2 - Adds statistical testing configuration
	with_fairness/1 - Adds fairness checking configuration
	with_guardrails/1 - Adds security guardrails configuration
	add_output/2 - Adds output specifications
	build/1 - Validates and finalizes experiment
	All builder methods are chainable
	Automatic validation on build/1
	29 comprehensive builder tests

	Main Module Delegations
	CrucibleIR.validate/1 delegates to Validation.validate/1
	CrucibleIR.valid?/1 delegates to Validation.valid?/1
	CrucibleIR.to_json/1 delegates to Serialization.to_json/1
	CrucibleIR.from_json/2 delegates to Serialization.from_json/2
	CrucibleIR.from_map/2 delegates to Serialization.from_map/2
	CrucibleIR.experiment/1 delegates to Builder.experiment/1

	Documentation
	Comprehensive module documentation with examples
	Updated README with v0.1.1 feature examples
	Validation examples
	Serialization examples
	Builder API examples
	3 new doctests (in addition to existing 3)

Changed
	Test coverage increased from 78 to 174 tests (96 new tests)
	Documentation coverage remains at 100%

Technical Details
	All new modules follow existing patterns (immutability, type specs, comprehensive docs)
	Zero compilation warnings
	All tests pass with zero failures
	Backward compatible with v0.1.0

0.1.0 - 2025-11-26
Added
	Initial release of CrucibleIR
	Core experiment definition structs:	CrucibleIR.Experiment - Top-level experiment definition
	CrucibleIR.BackendRef - LLM backend reference
	CrucibleIR.DatasetRef - Dataset reference
	CrucibleIR.StageDef - Processing stage definition
	CrucibleIR.OutputSpec - Output specification

	Reliability configuration structs:	CrucibleIR.Reliability.Config - Container for all reliability configs
	CrucibleIR.Reliability.Ensemble - Ensemble voting configuration
	CrucibleIR.Reliability.Hedging - Request hedging configuration
	CrucibleIR.Reliability.Stats - Statistical testing configuration
	CrucibleIR.Reliability.Fairness - Fairness checking configuration
	CrucibleIR.Reliability.Guardrail - Security guardrails configuration

	JSON serialization support via Jason.Encoder for all structs
	Full type specifications with @type and @spec
	Comprehensive documentation with examples
	CrucibleIR.new_experiment/1 convenience function
	Test coverage: 78 tests (3 doctests, 75 unit tests), 0 failures

Design Decisions
	All structs are immutable
	JSON-first approach for serialization
	Hierarchical configuration structure
	Required fields enforced with @enforce_keys
	Optional fields default to nil or sensible defaults

 LICENSE

MIT License

Copyright (c) 2025 North-Shore-AI

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

CrucibleIR

Intermediate Representation for the Crucible ML reliability ecosystem.
CrucibleIR provides shared data structures for defining ML reliability
experiments across the Crucible ecosystem. It includes definitions for
experiments, backends, datasets, reliability configurations, and more.
This package is data-only: structs, serialization, and structural validation.
Execution logic and stage option validation belong in domain packages.
Main Components
	CrucibleIR.Experiment - Top-level experiment definition
	CrucibleIR.BackendRef - Reference to an LLM backend
	CrucibleIR.DatasetRef - Reference to a dataset
	CrucibleIR.StageDef - Processing stage definition
	CrucibleIR.OutputSpec - Output specification
	CrucibleIR.Reliability.Config - Container for reliability configurations

Model Lifecycle (v0.2.0)
	CrucibleIR.ModelRef - Reference to a registered model
	CrucibleIR.ModelVersion - Specific model version
	CrucibleIR.Training.Config - Training configuration
	CrucibleIR.Training.Run - Training execution record
	CrucibleIR.Deployment.Config - Deployment configuration
	CrucibleIR.Deployment.Status - Deployment status
	CrucibleIR.Feedback.Event - Feedback data point
	CrucibleIR.Feedback.Config - Feedback collection configuration

Reliability Mechanisms
	CrucibleIR.Reliability.Ensemble - Ensemble voting configuration
	CrucibleIR.Reliability.Hedging - Request hedging configuration
	CrucibleIR.Reliability.Stats - Statistical testing configuration
	CrucibleIR.Reliability.Fairness - Fairness checking configuration
	CrucibleIR.Reliability.Guardrail - Security guardrails configuration

Example
iex> alias CrucibleIR.{Experiment, BackendRef, StageDef}
iex> exp = CrucibleIR.new_experiment(
...> id: :my_exp,
...> backend: %BackendRef{id: :gpt4},
...> pipeline: [%StageDef{name: :inference}]
...>)
iex> exp.backend.id
:gpt4

 Summary

 Functions

 experiment(id)

 Creates a new experiment builder with the given ID.

 from_json(json, type)

 Decodes JSON string to struct of given type.

 from_map(map, type)

 Converts a map to struct of given type.

 new_experiment(attrs)

 Creates a new experiment with the given attributes.

 to_json(struct)

 Encodes a struct to JSON string.

 valid?(struct)

 Returns true if struct is valid, false otherwise.

 validate(struct)

 Validates a struct, returns {:ok, struct} or {:error, errors}.

 Functions

 experiment(id)

Creates a new experiment builder with the given ID.
Delegates to CrucibleIR.Builder.experiment/1.
Examples
iex> exp = CrucibleIR.experiment(:test)
iex> exp.id
:test

 from_json(json, type)

Decodes JSON string to struct of given type.
Delegates to CrucibleIR.Serialization.from_json/2.
Examples
iex> alias CrucibleIR.BackendRef
iex> json = ~s({"id":"gpt4","profile":"default"})
iex> {:ok, backend} = CrucibleIR.from_json(json, BackendRef)
iex> backend.id
:gpt4

 from_map(map, type)

Converts a map to struct of given type.
Delegates to CrucibleIR.Serialization.from_map/2.
Examples
iex> alias CrucibleIR.BackendRef
iex> {:ok, backend} = CrucibleIR.from_map(%{"id" => "gpt4"}, BackendRef)
iex> backend.id
:gpt4

 new_experiment(attrs)

 @spec new_experiment(keyword()) :: CrucibleIR.Experiment.t()

Creates a new experiment with the given attributes.
This is a convenience function for creating CrucibleIR.Experiment structs.
Parameters
	attrs - Keyword list of experiment attributes

Required Attributes
	:id - Unique experiment identifier
	:backend - BackendRef struct
	:pipeline - List of StageDef structs

Optional Attributes
	:description - Experiment description
	:owner - Experiment owner
	:tags - List of tags
	:metadata - Additional metadata map
	:dataset - DatasetRef struct
	:reliability - Reliability.Config struct
	:outputs - List of OutputSpec structs
	:created_at - Creation timestamp
	:updated_at - Update timestamp

Examples
iex> alias CrucibleIR.{BackendRef, StageDef}
iex> exp = CrucibleIR.new_experiment(
...> id: :test,
...> backend: %BackendRef{id: :gpt4},
...> pipeline: [%StageDef{name: :run}]
...>)
iex> exp.id
:test

iex> alias CrucibleIR.{BackendRef, StageDef, DatasetRef}
iex> alias CrucibleIR.Reliability.{Config, Stats}
iex> exp = CrucibleIR.new_experiment(
...> id: :exp1,
...> backend: %BackendRef{id: :gpt4},
...> pipeline: [%StageDef{name: :run}],
...> dataset: %DatasetRef{name: :mmlu},
...> reliability: %Config{stats: %Stats{alpha: 0.01}}
...>)
iex> exp.reliability.stats.alpha
0.01

 to_json(struct)

Encodes a struct to JSON string.
Delegates to CrucibleIR.Serialization.to_json/1.
Examples
iex> alias CrucibleIR.BackendRef
iex> json = CrucibleIR.to_json(%BackendRef{id: :gpt4})
iex> is_binary(json)
true

 valid?(struct)

Returns true if struct is valid, false otherwise.
Delegates to CrucibleIR.Validation.valid?/1.
Examples
iex> alias CrucibleIR.BackendRef
iex> CrucibleIR.valid?(%BackendRef{id: :gpt4})
true

 validate(struct)

Validates a struct, returns {:ok, struct} or {:error, errors}.
Delegates to CrucibleIR.Validation.validate/1.
Examples
iex> alias CrucibleIR.{Experiment, BackendRef, StageDef}
iex> exp = %Experiment{
...> id: :test,
...> backend: %BackendRef{id: :gpt4},
...> pipeline: [%StageDef{name: :run}]
...> }
iex> {:ok, _} = CrucibleIR.validate(exp)

CrucibleIR.BackendRef

Reference to an LLM backend to be used in an experiment.
A BackendRef identifies a specific LLM backend (like GPT-4 or Claude),
with an optional configuration profile and additional options.
Fields
	:id - The backend identifier (required)
	:profile - The configuration profile to use (default: :default)
	:options - Additional backend-specific options
	:model_version - Specific model version string
	:endpoint_url - Custom endpoint URL
	:deployment_id - Link to deployment
	:fallback - Fallback backend reference

Examples
iex> ref = %CrucibleIR.BackendRef{id: :openai_gpt4}
iex> ref.profile
:default

iex> ref = %CrucibleIR.BackendRef{id: :anthropic_claude, profile: :fast}
iex> ref.profile
:fast

iex> ref = %CrucibleIR.BackendRef{id: :openai_gpt4, options: %{temperature: 0.7}}
iex> ref.options
%{temperature: 0.7}

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %CrucibleIR.BackendRef{
 deployment_id: atom() | nil,
 endpoint_url: String.t() | nil,
 fallback: t() | nil,
 id: atom(),
 model_version: String.t() | nil,
 options: map() | nil,
 profile: atom()
}

CrucibleIR.Builder

Fluent builder API for constructing experiments.
The Builder module provides a fluent, chainable API for building complex
CrucibleIR experiments with validation. It simplifies the creation of
experiments by providing convenience methods and automatic validation.
Example
{:ok, exp} =
 CrucibleIR.Builder.experiment(:my_exp)
 |> CrucibleIR.Builder.with_description("Test experiment")
 |> CrucibleIR.Builder.with_backend(:gpt4)
 |> CrucibleIR.Builder.add_stage(:inference)
 |> CrucibleIR.Builder.with_ensemble(:majority)
 |> CrucibleIR.Builder.with_stats([:ttest], alpha: 0.01)
 |> CrucibleIR.Builder.build()
Fluent API
All builder functions return the modified experiment struct, allowing
for method chaining. Use build/1 at the end to validate and finalize.

 Summary

 Types

 builder_experiment()

 Functions

 add_output(exp, name, opts \\ [])

 Adds an output specification to the experiment.

 add_stage(exp, stage_name, opts \\ [])

 Adds a stage to the experiment pipeline.

 build(exp)

 Validates and finalizes the experiment.

 experiment(id)

 Creates a new experiment builder with the given ID.

 with_backend(exp, backend_id, opts \\ [])

 Adds a backend to the experiment.

 with_baseline(exp, model_id, opts \\ [])

 Sets a baseline model for comparison experiments.

 with_dataset(exp, dataset_name, opts \\ [])

 Adds a dataset to the experiment.

 with_description(exp, description)

 Adds a description to the experiment.

 with_ensemble(exp, strategy, opts \\ [])

 Adds ensemble voting configuration to the experiment.

 with_experiment_type(exp, type)

 Sets the experiment type.

 with_fairness(exp, opts \\ [])

 Adds fairness checking configuration to the experiment.

 with_feedback(exp, opts \\ [])

 Adds feedback collection configuration to the experiment.

 with_guardrails(exp, opts \\ [])

 Adds guardrails configuration to the experiment.

 with_hedging(exp, strategy, opts \\ [])

 Adds request hedging configuration to the experiment.

 with_model_version(exp, model_id, version, opts \\ [])

 Sets a model version for the experiment.

 with_stats(exp, tests, opts \\ [])

 Adds statistical testing configuration to the experiment.

 with_training_config(exp, model_ref, dataset_ref, opts \\ [])

 Adds training configuration to the experiment.

 Types

 builder_experiment()

 @type builder_experiment() :: %CrucibleIR.Experiment{
 backend: CrucibleIR.BackendRef.t() | nil,
 baseline: term(),
 created_at: DateTime.t() | nil,
 dataset: CrucibleIR.DatasetRef.t() | nil,
 description: String.t() | nil,
 experiment_type: term(),
 id: atom(),
 metadata: map() | nil,
 model_version: term(),
 outputs: [CrucibleIR.OutputSpec.t()] | nil,
 owner: String.t() | nil,
 pipeline: [CrucibleIR.StageDef.t()],
 reliability: CrucibleIR.Reliability.Config.t() | nil,
 tags: [atom()] | nil,
 training_config: term(),
 updated_at: DateTime.t() | nil
}

 Functions

 add_output(exp, name, opts \\ [])

 @spec add_output(builder_experiment(), atom(), keyword()) :: builder_experiment()

Adds an output specification to the experiment.
Parameters
	exp - Experiment struct
	name - Atom name for the output
	opts - Optional keyword list with :formats, :sink, :options

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.add_output(:results)
iex> hd(exp.outputs).name
:results

iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.add_output(:results, formats: [:json, :html])
iex> hd(exp.outputs).formats
[:json, :html]

 add_stage(exp, stage_name, opts \\ [])

 @spec add_stage(builder_experiment(), atom(), keyword()) :: builder_experiment()

Adds a stage to the experiment pipeline.
Parameters
	exp - Experiment struct
	stage_name - Atom name for the stage
	opts - Optional keyword list with :module, :options, :enabled

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.add_stage(:preprocessing)
iex> hd(exp.pipeline).name
:preprocessing

iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.add_stage(:preprocessing, enabled: false)
iex> hd(exp.pipeline).enabled
false

 build(exp)

 @spec build(builder_experiment()) ::
 {:ok, CrucibleIR.Experiment.t()} | {:error, [String.t()]}

Validates and finalizes the experiment.
Returns {:ok, experiment} if valid, or {:error, errors} if invalid.
Examples
iex> {:ok, exp} = CrucibleIR.Builder.experiment(:test)
...> |> CrucibleIR.Builder.with_backend(:gpt4)
...> |> CrucibleIR.Builder.add_stage(:run)
...> |> CrucibleIR.Builder.build()
iex> exp.id
:test

iex> {:error, errors} = CrucibleIR.Builder.experiment(:test)
...> |> CrucibleIR.Builder.build()
iex> is_list(errors)
true

 experiment(id)

 @spec experiment(atom()) :: builder_experiment()

Creates a new experiment builder with the given ID.
Parameters
	id - Atom identifier for the experiment

Returns
An Experiment struct with only the id set (incomplete, not validated).
Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> exp.id
:test

 with_backend(exp, backend_id, opts \\ [])

 @spec with_backend(builder_experiment(), atom(), keyword()) :: builder_experiment()

Adds a backend to the experiment.
Parameters
	exp - Experiment struct
	backend_id - Atom identifier for the backend
	opts - Optional keyword list with :profile and :options

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_backend(:gpt4)
iex> exp.backend.id
:gpt4

iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_backend(:gpt4, profile: :fast, options: %{temp: 0.7})
iex> exp.backend.profile
:fast

 with_baseline(exp, model_id, opts \\ [])

 @spec with_baseline(builder_experiment(), atom(), keyword()) :: builder_experiment()

Sets a baseline model for comparison experiments.
Parameters
	exp - Experiment struct
	model_id - Baseline model identifier
	opts - Optional keyword list with model options

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_baseline(:gpt3)
iex> exp.baseline.id
:gpt3

 with_dataset(exp, dataset_name, opts \\ [])

 @spec with_dataset(builder_experiment(), atom() | String.t(), keyword()) ::
 builder_experiment()

Adds a dataset to the experiment.
Parameters
	exp - Experiment struct
	dataset_name - Atom or string name for the dataset
	opts - Optional keyword list with :provider, :split, :options

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_dataset(:mmlu)
iex> exp.dataset.name
:mmlu

iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_dataset(:mmlu, split: :test)
iex> exp.dataset.split
:test

 with_description(exp, description)

 @spec with_description(builder_experiment(), String.t()) :: builder_experiment()

Adds a description to the experiment.
Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_description("My experiment")
iex> exp.description
"My experiment"

 with_ensemble(exp, strategy, opts \\ [])

 @spec with_ensemble(builder_experiment(), atom(), keyword()) :: builder_experiment()

Adds ensemble voting configuration to the experiment.
Parameters
	exp - Experiment struct
	strategy - Voting strategy atom
	opts - Optional keyword list with ensemble options

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_ensemble(:majority)
iex> exp.reliability.ensemble.strategy
:majority

iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_ensemble(:weighted, models: [:gpt4, :claude])
iex> exp.reliability.ensemble.models
[:gpt4, :claude]

 with_experiment_type(exp, type)

 @spec with_experiment_type(builder_experiment(), atom()) :: builder_experiment()

Sets the experiment type.
Parameters
	exp - Experiment struct
	type - Experiment type (:evaluation, :training, :comparison, :ablation)

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_experiment_type(:evaluation)
iex> exp.experiment_type
:evaluation

 with_fairness(exp, opts \\ [])

 @spec with_fairness(
 builder_experiment(),
 keyword()
) :: builder_experiment()

Adds fairness checking configuration to the experiment.
Parameters
	exp - Experiment struct
	opts - Keyword list with fairness options

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_fairness(metrics: [:demographic_parity])
iex> exp.reliability.fairness.metrics
[:demographic_parity]

iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_fairness(threshold: 0.8, enabled: true)
iex> exp.reliability.fairness.threshold
0.8

 with_feedback(exp, opts \\ [])

 @spec with_feedback(
 builder_experiment(),
 keyword()
) :: builder_experiment()

Adds feedback collection configuration to the experiment.
Parameters
	exp - Experiment struct
	opts - Keyword list with feedback options

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_feedback(enabled: true, sampling_rate: 0.1)
iex> exp.reliability.feedback.sampling_rate
0.1

 with_guardrails(exp, opts \\ [])

 @spec with_guardrails(
 builder_experiment(),
 keyword()
) :: builder_experiment()

Adds guardrails configuration to the experiment.
Parameters
	exp - Experiment struct
	opts - Keyword list with guardrail options

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_guardrails(profiles: [:strict])
iex> exp.reliability.guardrails.profiles
[:strict]

iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_guardrails(pii_detection: true)
iex> exp.reliability.guardrails.pii_detection
true

 with_hedging(exp, strategy, opts \\ [])

 @spec with_hedging(builder_experiment(), atom(), keyword()) :: builder_experiment()

Adds request hedging configuration to the experiment.
Parameters
	exp - Experiment struct
	strategy - Hedging strategy atom
	opts - Optional keyword list with hedging options

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_hedging(:fixed)
iex> exp.reliability.hedging.strategy
:fixed

iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_hedging(:percentile, delay_ms: 100)
iex> exp.reliability.hedging.delay_ms
100

 with_model_version(exp, model_id, version, opts \\ [])

 @spec with_model_version(builder_experiment(), atom(), String.t(), keyword()) ::
 builder_experiment()

Sets a model version for the experiment.
Parameters
	exp - Experiment struct
	model_id - Model identifier
	version - Version string
	opts - Optional keyword list with version options

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_model_version(:gpt2, "1.0.0")
iex> exp.model_version.version
"1.0.0"

 with_stats(exp, tests, opts \\ [])

 @spec with_stats(builder_experiment(), [atom()], keyword()) :: builder_experiment()

Adds statistical testing configuration to the experiment.
Parameters
	exp - Experiment struct
	tests - List of statistical test atoms
	opts - Optional keyword list with stats options

Examples
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_stats([:ttest])
iex> exp.reliability.stats.tests
[:ttest]

iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_stats([:ttest, :bootstrap], alpha: 0.01)
iex> exp.reliability.stats.alpha
0.01

 with_training_config(exp, model_ref, dataset_ref, opts \\ [])

 @spec with_training_config(
 builder_experiment(),
 CrucibleIR.ModelRef.t(),
 CrucibleIR.DatasetRef.t(),
 keyword()
) :: builder_experiment()

Adds training configuration to the experiment.
Parameters
	exp - Experiment struct
	model_ref - ModelRef struct or keyword to create one
	dataset_ref - DatasetRef struct or keyword to create one
	opts - Optional keyword list with training options

Examples
iex> model = %CrucibleIR.ModelRef{id: :gpt2}
iex> dataset = %CrucibleIR.DatasetRef{name: :wikitext}
iex> exp = CrucibleIR.Builder.experiment(:test)
iex> |> CrucibleIR.Builder.with_training_config(model, dataset, epochs: 10)
iex> exp.training_config.epochs
10

CrucibleIR.DatasetRef

Reference to a dataset to be used in an experiment.
A DatasetRef points to a dataset from a specific provider (like crucible_datasets),
with a specific split (like :train or :test), and optional configuration.
Fields
	:provider - The dataset provider (default: :crucible_datasets)
	:name - The dataset name (required)
	:split - The dataset split to use (default: :train)
	:options - Additional dataset-specific options
	:version - Dataset version
	:format - Data format (parquet, csv, jsonl, arrow)
	:schema - Expected schema

Examples
iex> ref = %CrucibleIR.DatasetRef{name: :mmlu}
iex> ref.provider
:crucible_datasets

iex> ref = %CrucibleIR.DatasetRef{name: :mmlu, split: :test}
iex> ref.split
:test

iex> ref = %CrucibleIR.DatasetRef{name: :custom, provider: :huggingface, options: %{limit: 100}}
iex> ref.options
%{limit: 100}

 Summary

 Types

 format()

 provider()

 split()

 t()

 Types

 format()

 @type format() :: :parquet | :csv | :jsonl | :arrow | atom()

 provider()

 @type provider() :: :crucible_datasets | :huggingface | atom()

 split()

 @type split() :: :train | :test | :validation | atom()

 t()

 @type t() :: %CrucibleIR.DatasetRef{
 format: format() | nil,
 name: atom(),
 options: map() | nil,
 provider: provider(),
 schema: map() | nil,
 split: split(),
 version: String.t() | nil
}

CrucibleIR.Deployment.Config

Configuration for model deployment.
Defines where and how a model version should be deployed,
including resource requirements and scaling settings.
Fields
	:id - Deployment identifier (required)
	:model_version_id - Model version to deploy (required)
	:target - Deployment target configuration
	:replicas - Number of replicas
	:resources - Resource requirements
	:scaling - Auto-scaling configuration
	:environment - Target environment
	:strategy - Deployment strategy
	:health_check - Health check settings
	:endpoint - API endpoint configuration
	:metadata - Additional metadata
	:options - Additional options

Examples
iex> config = %CrucibleIR.Deployment.Config{
...> id: :deploy_prod,
...> model_version_id: :v1_0_0,
...> environment: :production
...> }
iex> config.environment
:production

 Summary

 Types

 environment()

 strategy()

 t()

 Types

 environment()

 @type environment() :: :development | :staging | :production | atom()

 strategy()

 @type strategy() :: :rolling | :blue_green | :canary | :recreate | atom()

 t()

 @type t() :: %CrucibleIR.Deployment.Config{
 endpoint: map() | nil,
 environment: environment(),
 health_check: map() | nil,
 id: atom(),
 metadata: map() | nil,
 model_version_id: atom(),
 options: map() | nil,
 replicas: pos_integer(),
 resources: map() | nil,
 scaling: map() | nil,
 strategy: strategy(),
 target: map() | nil
}

CrucibleIR.Deployment.Status

Status of an active deployment.
Tracks the current state of a deployment including health,
traffic routing, and replica status.
Fields
	:id - Status identifier (required)
	:deployment_id - Associated deployment (required)
	:state - Current deployment state
	:ready_replicas - Number of ready replicas
	:total_replicas - Total number of replicas
	:endpoint_url - Active endpoint URL
	:traffic_percent - Percentage of traffic
	:health - Health status
	:last_health_check - Last health check timestamp
	:error_message - Error if unhealthy
	:created_at - Creation timestamp
	:updated_at - Last update timestamp

Examples
iex> status = %CrucibleIR.Deployment.Status{
...> id: :status_001,
...> deployment_id: :deploy_prod,
...> state: :active
...> }
iex> status.state
:active

 Summary

 Types

 health()

 state()

 t()

 Types

 health()

 @type health() :: :unknown | :healthy | :unhealthy | :degraded | atom()

 state()

 @type state() ::
 :pending | :deploying | :active | :degraded | :failed | :terminated | atom()

 t()

 @type t() :: %CrucibleIR.Deployment.Status{
 created_at: DateTime.t() | nil,
 deployment_id: atom(),
 endpoint_url: String.t() | nil,
 error_message: String.t() | nil,
 health: health(),
 id: atom(),
 last_health_check: DateTime.t() | nil,
 ready_replicas: pos_integer() | nil,
 state: state(),
 total_replicas: pos_integer() | nil,
 traffic_percent: float() | nil,
 updated_at: DateTime.t() | nil
}

CrucibleIR.Experiment

Top-level experiment definition for Crucible ML reliability experiments.
An Experiment defines a complete ML reliability experiment including
the backend to test, the evaluation pipeline, datasets, reliability
mechanisms, and output specifications.
Required Fields
	:id - Unique experiment identifier
	:backend - The LLM backend to evaluate (BackendRef)
	:pipeline - List of processing stages (StageDef)

Optional Fields
	:description - Human-readable experiment description
	:owner - Experiment owner/creator
	:tags - List of tags for categorization
	:metadata - Additional experiment metadata
	:dataset - Dataset reference for evaluation
	:reliability - Reliability configurations (ensemble, hedging, etc.)
	:outputs - Output specifications
	:created_at - Experiment creation timestamp
	:updated_at - Last update timestamp
	:experiment_type - Type of experiment (evaluation, training, comparison, ablation)
	:model_version - Model version being evaluated
	:training_config - Training configuration for training experiments
	:baseline - Baseline model reference for comparison experiments

Examples
iex> exp = %CrucibleIR.Experiment{
...> id: :my_experiment,
...> backend: %CrucibleIR.BackendRef{id: :gpt4},
...> pipeline: [%CrucibleIR.StageDef{name: :inference}]
...> }
iex> exp.id
:my_experiment

iex> exp = %CrucibleIR.Experiment{
...> id: :full_exp,
...> backend: %CrucibleIR.BackendRef{id: :gpt4},
...> pipeline: [%CrucibleIR.StageDef{name: :run}],
...> dataset: %CrucibleIR.DatasetRef{name: :mmlu},
...> reliability: %CrucibleIR.Reliability.Config{
...> stats: %CrucibleIR.Reliability.Stats{alpha: 0.01}
...> }
...> }
iex> exp.reliability.stats.alpha
0.01

 Summary

 Types

 experiment_type()

 t()

 Types

 experiment_type()

 @type experiment_type() :: :evaluation | :training | :comparison | :ablation | atom()

 t()

 @type t() :: %CrucibleIR.Experiment{
 backend: CrucibleIR.BackendRef.t(),
 baseline: CrucibleIR.ModelRef.t() | nil,
 created_at: DateTime.t() | nil,
 dataset: CrucibleIR.DatasetRef.t() | nil,
 description: String.t() | nil,
 experiment_type: experiment_type() | nil,
 id: atom(),
 metadata: map() | nil,
 model_version: CrucibleIR.ModelVersion.t() | nil,
 outputs: [CrucibleIR.OutputSpec.t()] | nil,
 owner: String.t() | nil,
 pipeline: [CrucibleIR.StageDef.t()],
 reliability: CrucibleIR.Reliability.Config.t() | nil,
 tags: [atom()] | nil,
 training_config: CrucibleIR.Training.Config.t() | nil,
 updated_at: DateTime.t() | nil
}

CrucibleIR.Feedback.Config

Configuration for feedback collection.
Defines how feedback should be collected, stored, and processed.
Fields
	:enabled - Whether feedback collection is enabled
	:sampling_rate - Percentage of requests to sample
	:feedback_types - Types of feedback to collect
	:storage - Storage backend
	:retention_days - Data retention period
	:anonymize_pii - Whether to anonymize PII
	:drift_detection - Drift detection settings
	:retraining_trigger - Retraining trigger settings
	:options - Additional options

Examples
iex> config = %CrucibleIR.Feedback.Config{
...> enabled: true,
...> sampling_rate: 0.1
...> }
iex> config.sampling_rate
0.1

 Summary

 Types

 storage()

 t()

 Types

 storage()

 @type storage() :: :postgres | :s3 | :bigquery | :local | atom()

 t()

 @type t() :: %CrucibleIR.Feedback.Config{
 anonymize_pii: boolean(),
 drift_detection: map() | nil,
 enabled: boolean(),
 feedback_types: [atom()],
 options: map() | nil,
 retention_days: pos_integer() | nil,
 retraining_trigger: map() | nil,
 sampling_rate: float(),
 storage: storage()
}

CrucibleIR.Feedback.Event

Individual feedback data point.
Represents user feedback on model output, which can be used
for model improvement and monitoring.
Fields
	:id - Event identifier (required)
	:deployment_id - Source deployment
	:model_version - Model version string
	:input - Model input
	:output - Model output
	:feedback_type - Type of feedback
	:feedback_value - Feedback value/content
	:user_id - User identifier
	:session_id - Session identifier
	:latency_ms - Response latency
	:timestamp - Event timestamp
	:metadata - Additional metadata

Examples
iex> event = %CrucibleIR.Feedback.Event{
...> id: "evt_123",
...> feedback_type: :thumbs,
...> feedback_value: :up
...> }
iex> event.feedback_type
:thumbs

 Summary

 Types

 feedback_type()

 t()

 Types

 feedback_type()

 @type feedback_type() :: :thumbs | :rating | :correction | :label | :flag | atom()

 t()

 @type t() :: %CrucibleIR.Feedback.Event{
 deployment_id: atom() | nil,
 feedback_type: feedback_type(),
 feedback_value: term(),
 id: String.t(),
 input: map() | nil,
 latency_ms: pos_integer() | nil,
 metadata: map() | nil,
 model_version: String.t() | nil,
 output: map() | nil,
 session_id: String.t() | nil,
 timestamp: DateTime.t() | nil,
 user_id: String.t() | nil
}

CrucibleIR.ModelRef

Reference to a registered model in the model registry.
A ModelRef identifies a specific model that can be used for training,
evaluation, or deployment. It supports multiple providers and frameworks.
Fields
	:id - Model identifier (required)
	:name - Human-readable model name
	:version - Semantic version string
	:provider - Model source/provider
	:framework - ML framework
	:architecture - Model architecture type
	:task - ML task type
	:artifact_uri - Path to model artifacts
	:metadata - Additional metadata
	:options - Provider-specific options

Examples
iex> ref = %CrucibleIR.ModelRef{id: :gpt2_base, provider: :huggingface}
iex> ref.provider
:huggingface

 Summary

 Types

 architecture()

 framework()

 provider()

 t()

 task()

 Types

 architecture()

 @type architecture() :: :transformer | :lstm | :cnn | :mlp | atom()

 framework()

 @type framework() :: :nx | :pytorch | :tensorflow | :onnx | :safetensors | atom()

 provider()

 @type provider() :: :local | :huggingface | :openai | :anthropic | :s3 | :gcs | atom()

 t()

 @type t() :: %CrucibleIR.ModelRef{
 architecture: architecture() | nil,
 artifact_uri: String.t() | nil,
 framework: framework(),
 id: atom() | String.t(),
 metadata: map() | nil,
 name: String.t() | nil,
 options: map() | nil,
 provider: provider(),
 task: task() | nil,
 version: String.t() | nil
}

 task()

 @type task() ::
 :text_classification
 | :text_generation
 | :embedding
 | :qa
 | :summarization
 | atom()

CrucibleIR.ModelVersion

Specific version of a registered model.
A ModelVersion represents a concrete, immutable snapshot of a model
at a specific point in time, with associated metrics and lineage.
Fields
	:id - Version identifier (required)
	:model_id - Parent model ID (required)
	:version - Semantic version string (required)
	:stage - Deployment stage
	:training_run_id - Reference to training run
	:metrics - Performance metrics
	:artifact_uri - Path to version artifacts
	:parent_version - Parent version for lineage
	:description - Version description
	:created_at - Creation timestamp
	:created_by - Creator identifier
	:options - Additional options

Examples
iex> version = %CrucibleIR.ModelVersion{
...> id: :v1_0_0,
...> model_id: :gpt2_base,
...> version: "1.0.0",
...> stage: :production
...> }
iex> version.stage
:production

 Summary

 Types

 stage()

 t()

 Types

 stage()

 @type stage() :: :development | :staging | :production | :archived | atom()

 t()

 @type t() :: %CrucibleIR.ModelVersion{
 artifact_uri: String.t() | nil,
 created_at: DateTime.t() | nil,
 created_by: String.t() | nil,
 description: String.t() | nil,
 id: atom(),
 metrics: map() | nil,
 model_id: atom() | String.t(),
 options: map() | nil,
 parent_version: String.t() | nil,
 stage: stage(),
 training_run_id: atom() | nil,
 version: String.t()
}

CrucibleIR.OutputSpec

Specification for experiment output/reporting.
An OutputSpec defines how and where experiment results should be output,
including the output format(s) and destination.
Fields
	:name - The output name/identifier (required)
	:formats - List of output formats (default: [:markdown])
	:sink - The output destination (default: :file)
	:options - Output-specific configuration options

Examples
iex> spec = %CrucibleIR.OutputSpec{name: :results}
iex> spec.formats
[:markdown]

iex> spec = %CrucibleIR.OutputSpec{name: :results, formats: [:json, :html], sink: :stdout}
iex> spec.sink
:stdout

iex> spec = %CrucibleIR.OutputSpec{name: :results, options: %{path: "/tmp/results"}}
iex> spec.options
%{path: "/tmp/results"}

 Summary

 Types

 format()

 sink()

 t()

 Types

 format()

 @type format() :: :markdown | :json | :html | :latex | :csv | atom()

 sink()

 @type sink() :: :file | :stdout | :s3 | :postgres | atom()

 t()

 @type t() :: %CrucibleIR.OutputSpec{
 formats: [format()],
 name: atom(),
 options: map() | nil,
 sink: sink()
}

CrucibleIR.Reliability.Config

Container for all reliability configurations.
The ReliabilityConfig holds configurations for various reliability
mechanisms including ensemble voting, hedging, statistical testing,
fairness checking, and guardrails.
Fields
	:ensemble - Ensemble voting configuration
	:hedging - Request hedging configuration
	:guardrails - Security guardrails configuration
	:stats - Statistical testing configuration
	:fairness - Fairness checking configuration
	:monitoring - Runtime monitoring configuration
	:drift - Drift detection configuration
	:circuit_breaker - Circuit breaker configuration
	:feedback - Feedback collection configuration

Examples
iex> config = %CrucibleIR.Reliability.Config{
...> ensemble: %CrucibleIR.Reliability.Ensemble{strategy: :majority},
...> stats: %CrucibleIR.Reliability.Stats{alpha: 0.01}
...> }
iex> config.ensemble.strategy
:majority

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %CrucibleIR.Reliability.Config{
 circuit_breaker: map() | nil,
 drift: map() | nil,
 ensemble: CrucibleIR.Reliability.Ensemble.t() | nil,
 fairness: CrucibleIR.Reliability.Fairness.t() | nil,
 feedback: CrucibleIR.Feedback.Config.t() | nil,
 guardrails: CrucibleIR.Reliability.Guardrail.t() | nil,
 hedging: CrucibleIR.Reliability.Hedging.t() | nil,
 monitoring: map() | nil,
 stats: CrucibleIR.Reliability.Stats.t() | nil
}

CrucibleIR.Reliability.Ensemble

Configuration for ensemble voting strategies.
Ensemble voting uses multiple models to make predictions and combines
their outputs using various voting strategies.
Fields
	:strategy - The voting strategy (default: :none)
	:execution_mode - How to execute models (default: :parallel)
	:models - List of model identifiers to use in the ensemble
	:weights - Model weights for weighted voting
	:min_agreement - Minimum agreement threshold for voting
	:timeout_ms - Timeout for model execution
	:options - Additional ensemble-specific options

Voting Strategies
	:none - No ensemble (single model)
	:majority - Simple majority vote
	:weighted - Weighted vote based on model weights
	:best_confidence - Select output with highest confidence
	:unanimous - Require all models to agree

Execution Modes
	:parallel - Execute all models simultaneously
	:sequential - Execute models one at a time
	:hedged - Use hedging for parallel execution
	:cascade - Stop when threshold is reached

 Summary

 Types

 execution_mode()

 strategy()

 t()

 Types

 execution_mode()

 @type execution_mode() :: :parallel | :sequential | :hedged | :cascade

 strategy()

 @type strategy() :: :none | :majority | :weighted | :best_confidence | :unanimous

 t()

 @type t() :: %CrucibleIR.Reliability.Ensemble{
 execution_mode: execution_mode(),
 min_agreement: float() | nil,
 models: [atom()] | nil,
 options: map() | nil,
 strategy: strategy(),
 timeout_ms: pos_integer() | nil,
 weights: map() | nil
}

CrucibleIR.Reliability.Fairness

Configuration for fairness and bias detection.
Controls fairness metrics, group definitions, and violation handling.
Fields
	:enabled - Whether fairness checking is enabled (default: false)
	:metrics - List of fairness metrics to compute
	:group_by - Attribute to group by for fairness analysis
	:threshold - Fairness threshold (e.g., 0.8 for 80% rule)
	:fail_on_violation - Whether to fail when violations detected
	:options - Additional fairness options

Available Metrics
	:demographic_parity - Equal positive prediction rates
	:equalized_odds - Equal TPR and FPR across groups
	:equal_opportunity - Equal TPR for qualified candidates
	:predictive_parity - Equal positive predictive values

 Summary

 Types

 metric()

 t()

 Types

 metric()

 @type metric() ::
 :demographic_parity
 | :equalized_odds
 | :equal_opportunity
 | :predictive_parity
 | atom()

 t()

 @type t() :: %CrucibleIR.Reliability.Fairness{
 enabled: boolean(),
 fail_on_violation: boolean() | nil,
 group_by: atom() | nil,
 metrics: [metric()] | nil,
 options: map() | nil,
 threshold: float() | nil
}

CrucibleIR.Reliability.Guardrail

Configuration for LLM guardrails and security.
Controls prompt injection detection, PII protection, and other
safety measures for LLM applications.
Fields
	:profiles - Security profiles to use (default: [:default])
	:prompt_injection_detection - Detect prompt injection attempts
	:jailbreak_detection - Detect jailbreak attempts
	:pii_detection - Detect personally identifiable information
	:pii_redaction - Redact detected PII
	:content_moderation - Moderate content for safety
	:fail_on_detection - Whether to fail when threats detected
	:options - Additional guardrail options

Security Profiles
	:default - Standard security measures
	:strict - High security, may have false positives
	:moderate - Balanced security and usability
	:permissive - Minimal restrictions

 Summary

 Types

 profile()

 t()

 Types

 profile()

 @type profile() :: :default | :strict | :moderate | :permissive | atom()

 t()

 @type t() :: %CrucibleIR.Reliability.Guardrail{
 content_moderation: boolean() | nil,
 fail_on_detection: boolean() | nil,
 jailbreak_detection: boolean() | nil,
 options: map() | nil,
 pii_detection: boolean() | nil,
 pii_redaction: boolean() | nil,
 profiles: [profile()],
 prompt_injection_detection: boolean() | nil
}

CrucibleIR.Reliability.Hedging

Configuration for request hedging to reduce tail latency.
Hedging sends duplicate requests after a delay to reduce the impact
of slow responses (tail latency).
Fields
	:strategy - The hedging strategy (default: :off)
	:delay_ms - Delay before sending hedge request
	:percentile - Percentile to target (for percentile strategy)
	:max_hedges - Maximum number of hedge requests
	:budget_percent - Maximum cost increase allowed
	:options - Additional hedging-specific options

Hedging Strategies
	:off - No hedging
	:fixed - Fixed delay before hedging
	:percentile - Delay based on percentile latency
	:adaptive - Adapt delay based on observed latency
	:workload_aware - Consider workload characteristics
	:exponential_backoff - Adaptive backoff based on success/failure patterns

 Summary

 Types

 strategy()

 t()

 Types

 strategy()

 @type strategy() ::
 :off
 | :fixed
 | :percentile
 | :adaptive
 | :workload_aware
 | :exponential_backoff

 t()

 @type t() :: %CrucibleIR.Reliability.Hedging{
 budget_percent: number() | nil,
 delay_ms: pos_integer() | nil,
 max_hedges: pos_integer() | nil,
 options: map() | nil,
 percentile: float() | nil,
 strategy: strategy()
}

CrucibleIR.Reliability.Stats

Configuration for statistical testing and analysis.
Controls which statistical tests are run, significance levels,
and other analysis parameters.
Fields
	:tests - List of statistical tests to run (default: [:ttest, :bootstrap])
	:alpha - Significance level (default: 0.05)
	:confidence_level - Confidence level for intervals
	:effect_size_type - Type of effect size to calculate
	:multiple_testing_correction - Correction method for multiple tests
	:bootstrap_iterations - Number of bootstrap iterations
	:options - Additional statistics options

Available Tests
	:ttest - Student's t-test
	:bootstrap - Bootstrap resampling
	:anova - Analysis of variance
	:mannwhitney - Mann-Whitney U test
	:wilcoxon - Wilcoxon signed-rank test
	:kruskal - Kruskal-Wallis test

Effect Size Types
	:cohens_d - Cohen's d
	:eta_squared - η² (eta-squared)
	:omega_squared - ω² (omega-squared)

 Summary

 Types

 correction()

 effect_size()

 t()

 test()

 Types

 correction()

 @type correction() :: :bonferroni | :holm | :fdr | atom()

 effect_size()

 @type effect_size() :: :cohens_d | :eta_squared | :omega_squared | atom()

 t()

 @type t() :: %CrucibleIR.Reliability.Stats{
 alpha: float(),
 bootstrap_iterations: pos_integer() | nil,
 confidence_level: float() | nil,
 effect_size_type: effect_size() | nil,
 multiple_testing_correction: correction() | nil,
 options: map() | nil,
 tests: [test()]
}

 test()

 @type test() ::
 :ttest | :bootstrap | :anova | :mannwhitney | :wilcoxon | :kruskal | atom()

CrucibleIR.Serialization

JSON serialization and deserialization for IR structs.
This module provides functions to convert CrucibleIR structs to and from
JSON, enabling persistence, transport, and interoperability with other systems.
Functions
	to_json/1 - Encode struct to JSON string
	from_json/2 - Decode JSON string to struct of given type
	from_map/2 - Convert plain map to struct

Contract Notes
	This module is the canonical JSON round-trip layer for CrucibleIR.
	Fields like options and StageDef.options are treated as opaque maps and
are not coerced or validated.
	For stable round-trip behavior, ensure map keys are JSON-friendly (strings).

Examples
iex> alias CrucibleIR.BackendRef
iex> backend = %BackendRef{id: :gpt4}
iex> json = CrucibleIR.Serialization.to_json(backend)
iex> is_binary(json)
true

iex> alias CrucibleIR.BackendRef
iex> json = ~s({"id":"gpt4","profile":"default"})
iex> {:ok, backend} = CrucibleIR.Serialization.from_json(json, BackendRef)
iex> backend.id
:gpt4

 Summary

 Functions

 from_json(json, type)

 Decodes a JSON string to a struct of the given type.

 from_map(map, arg)

 Converts a plain map to a struct of the given type.

 to_json(struct)

 Encodes a struct to a JSON string.

 Functions

 from_json(json, type)

 @spec from_json(String.t(), module()) :: {:ok, struct()} | {:error, term()}

Decodes a JSON string to a struct of the given type.
Parameters
	json - JSON string to decode
	type - The module name of the target struct type

Returns
	{:ok, struct} - Successfully decoded struct
	{:error, reason} - Decoding failed

Examples
iex> alias CrucibleIR.BackendRef
iex> json = ~s({"id":"gpt4","profile":"default"})
iex> {:ok, backend} = CrucibleIR.Serialization.from_json(json, BackendRef)
iex> backend.id
:gpt4

 from_map(map, arg)

 @spec from_map(map(), module()) :: {:ok, struct()} | {:error, term()}

Converts a plain map to a struct of the given type.
Handles conversion of string keys to atoms and nested struct construction.
Parameters
	map - Map with string or atom keys
	type - The module name of the target struct type

Returns
	{:ok, struct} - Successfully converted struct
	{:error, reason} - Conversion failed

Examples
iex> alias CrucibleIR.BackendRef
iex> map = %{"id" => "gpt4", "profile" => "default"}
iex> {:ok, backend} = CrucibleIR.Serialization.from_map(map, BackendRef)
iex> backend.id
:gpt4

 to_json(struct)

 @spec to_json(struct()) :: String.t()

Encodes a struct to a JSON string.
Parameters
	struct - Any CrucibleIR struct with @derive Jason.Encoder

Returns
	JSON string representation

Examples
iex> alias CrucibleIR.BackendRef
iex> backend = %BackendRef{id: :gpt4}
iex> json = CrucibleIR.Serialization.to_json(backend)
iex> is_binary(json)
true

CrucibleIR.StageDef

Definition of a processing stage in an experiment pipeline.
A StageDef describes a step in the experiment pipeline, which can be
enabled or disabled, and may have associated configuration options.
Fields
	:name - The stage name/identifier (required)
	:module - The module implementing this stage
	:options - Stage-specific configuration options
	:enabled - Whether this stage is active (default: true)

:options is an opaque map. CrucibleIR does not validate or coerce it; stage
implementations in domain packages own option validation.
Examples
iex> stage = %CrucibleIR.StageDef{name: :preprocessing}
iex> stage.enabled
true

iex> stage = %CrucibleIR.StageDef{name: :preprocessing, enabled: false}
iex> stage.enabled
false

iex> stage = %CrucibleIR.StageDef{name: :preprocessing, module: MyApp.Preprocessor, options: %{normalize: true}}
iex> stage.options
%{normalize: true}

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %CrucibleIR.StageDef{
 enabled: boolean(),
 module: module() | nil,
 name: atom(),
 options: map() | nil
}

CrucibleIR.Training.Config

Configuration for model training.
Defines hyperparameters, optimizer settings, and training options
for a training run.
Fields
	:id - Config identifier (required)
	:model_ref - Reference to model to train (required)
	:dataset_ref - Training dataset (required)
	:epochs - Number of training epochs
	:batch_size - Batch size
	:learning_rate - Initial learning rate
	:optimizer - Optimizer type
	:loss_function - Loss function
	:metrics - Metrics to track
	:validation_split - Validation data ratio
	:device - Compute device
	:seed - Random seed
	:mixed_precision - Use mixed precision
	:gradient_clipping - Max gradient norm
	:early_stopping - Early stopping config
	:checkpoint_every - Checkpoint frequency
	:options - Additional options

Examples
iex> config = %CrucibleIR.Training.Config{
...> id: :train_gpt2,
...> model_ref: %CrucibleIR.ModelRef{id: :gpt2},
...> dataset_ref: %CrucibleIR.DatasetRef{name: :wikitext},
...> epochs: 10,
...> batch_size: 32
...> }
iex> config.epochs
10

 Summary

 Types

 device()

 loss()

 optimizer()

 t()

 Types

 device()

 @type device() :: :cpu | :cuda | :mps | :tpu | atom()

 loss()

 @type loss() :: :cross_entropy | :mse | :mae | :bce | atom()

 optimizer()

 @type optimizer() :: :adam | :sgd | :adamw | :rmsprop | atom()

 t()

 @type t() :: %CrucibleIR.Training.Config{
 batch_size: pos_integer(),
 checkpoint_every: pos_integer() | nil,
 dataset_ref: CrucibleIR.DatasetRef.t(),
 device: device(),
 early_stopping: map() | nil,
 epochs: pos_integer(),
 gradient_clipping: float() | nil,
 id: atom(),
 learning_rate: float(),
 loss_function: loss(),
 metrics: [atom()],
 mixed_precision: boolean(),
 model_ref: CrucibleIR.ModelRef.t(),
 optimizer: optimizer(),
 options: map() | nil,
 seed: integer() | nil,
 validation_split: float() | nil
}

CrucibleIR.Training.Run

Represents a training execution.
A TrainingRun tracks the execution of a training configuration,
including status, metrics, artifacts, and timing information.
Fields
	:id - Run identifier (required)
	:config - Training configuration (required)
	:status - Current run status
	:current_epoch - Current training epoch
	:metrics_history - Metrics over time
	:best_metrics - Best achieved metrics
	:checkpoint_uris - Saved checkpoint paths
	:final_model_version - Resulting model version
	:started_at - Start timestamp
	:completed_at - Completion timestamp
	:error_message - Error if failed
	:options - Additional options

Examples
iex> config = %CrucibleIR.Training.Config{
...> id: :train_config,
...> model_ref: %CrucibleIR.ModelRef{id: :gpt2},
...> dataset_ref: %CrucibleIR.DatasetRef{name: :wikitext}
...> }
iex> run = %CrucibleIR.Training.Run{
...> id: :run_001,
...> config: config,
...> status: :running
...> }
iex> run.status
:running

 Summary

 Types

 status()

 t()

 Types

 status()

 @type status() :: :pending | :running | :completed | :failed | :cancelled | atom()

 t()

 @type t() :: %CrucibleIR.Training.Run{
 best_metrics: map() | nil,
 checkpoint_uris: [String.t()] | nil,
 completed_at: DateTime.t() | nil,
 config: CrucibleIR.Training.Config.t(),
 current_epoch: pos_integer() | nil,
 error_message: String.t() | nil,
 final_model_version: atom() | nil,
 id: atom(),
 metrics_history: [map()] | nil,
 options: map() | nil,
 started_at: DateTime.t() | nil,
 status: status()
}

CrucibleIR.Validation

Validation helpers for IR structs.
This module provides functions to validate CrucibleIR data structures
and ensure they meet the required constraints before being used in
experiments.
Functions
	validate/1 - Validates a struct, returns {:ok, struct} or {:error, errors}
	valid?/1 - Returns true if struct is valid, false otherwise
	errors/1 - Returns list of validation errors

Validation here is structural only. Stage option validation and execution
semantics belong to domain packages, not CrucibleIR.
Examples
iex> alias CrucibleIR.{Experiment, BackendRef, StageDef}
iex> exp = %Experiment{
...> id: :test,
...> backend: %BackendRef{id: :gpt4},
...> pipeline: [%StageDef{name: :run}]
...> }
iex> CrucibleIR.Validation.valid?(exp)
true

iex> alias CrucibleIR.BackendRef
iex> backend = %BackendRef{id: nil}
iex> {:error, errors} = CrucibleIR.Validation.validate(backend)
iex> "id must be a non-nil atom" in errors
true

 Summary

 Functions

 errors(struct)

 Returns a list of validation errors for the struct.

 valid?(struct)

 Returns true if the struct is valid, false otherwise.

 validate(exp)

 Validates a struct and returns {:ok, struct} if valid or {:error, errors} if invalid.

 Functions

 errors(struct)

 @spec errors(struct()) :: [String.t()]

Returns a list of validation errors for the struct.
Returns an empty list if the struct is valid.
Parameters
	struct - Any CrucibleIR struct to check

Examples
iex> alias CrucibleIR.BackendRef
iex> backend = %BackendRef{id: :gpt4}
iex> CrucibleIR.Validation.errors(backend)
[]

iex> alias CrucibleIR.BackendRef
iex> backend = %BackendRef{id: nil}
iex> errors = CrucibleIR.Validation.errors(backend)
iex> length(errors) > 0
true

 valid?(struct)

 @spec valid?(struct()) :: boolean()

Returns true if the struct is valid, false otherwise.
Parameters
	struct - Any CrucibleIR struct to check

Examples
iex> alias CrucibleIR.BackendRef
iex> backend = %BackendRef{id: :gpt4}
iex> CrucibleIR.Validation.valid?(backend)
true

iex> alias CrucibleIR.BackendRef
iex> backend = %BackendRef{id: nil}
iex> CrucibleIR.Validation.valid?(backend)
false

 validate(exp)

 @spec validate(struct()) :: {:ok, struct()} | {:error, [String.t()]}

Validates a struct and returns {:ok, struct} if valid or {:error, errors} if invalid.
Parameters
	struct - Any CrucibleIR struct to validate

Returns
	{:ok, struct} - If the struct is valid
	{:error, [error_message]} - If the struct has validation errors

Examples
iex> alias CrucibleIR.BackendRef
iex> backend = %BackendRef{id: :gpt4}
iex> {:ok, ^backend} = CrucibleIR.Validation.validate(backend)
{:ok, %CrucibleIR.BackendRef{id: :gpt4}}

iex> alias CrucibleIR.BackendRef
iex> backend = %BackendRef{id: nil}
iex> {:error, _errors} = CrucibleIR.Validation.validate(backend)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

