

 CrucibleTrace

 v0.3.1

 [image: Logo]

 Table of contents

 	README

 	Changelog

 	
 Modules

 	CrucibleTrace

 	CrucibleTrace.Chain

 	CrucibleTrace.Diff

 	CrucibleTrace.Event

 	CrucibleTrace.Mermaid

 	CrucibleTrace.Parser

 	CrucibleTrace.Query

 	CrucibleTrace.Stage

 	CrucibleTrace.Storage

 	CrucibleTrace.Telemetry

 	CrucibleTrace.Training

 	CrucibleTrace.Viewer

 README

 [image: Trace]
CrucibleTrace
[image: Elixir]
[image: Hex.pm]
[image: Documentation]
[image: License]
Structured causal reasoning chain logging for LLM code generation
CausalTrace enables transparency and debugging in LLM-based code generation by capturing the decision-making process. It logs causal reasoning chains with events, alternatives considered, confidence levels, and supporting rationale.
Features
	Event Tracking: Capture decision points with alternatives and reasoning
	Chain Management: Organize events into coherent reasoning chains
	LLM Integration: Parse events directly from LLM output with XML tags
	Persistent Storage: Save chains to disk in JSON format with search capabilities
	Interactive Visualization: Generate beautiful HTML views with filtering and statistics
	Analysis Tools: Query events, calculate statistics, find decision points
	Multiple Export Formats: JSON, Markdown, CSV, and Mermaid diagrams
	Chain Comparison: Diff two chains to identify changes, track confidence evolution (v0.2.0)
	Mermaid Diagrams: Export to flowchart, sequence, timeline, or graph formats for documentation (v0.2.0)

Installation
Add causal_trace to your list of dependencies in mix.exs:
def deps do
 [
 {:crucible_trace, "~> 0.3.1"}
]
end
Or install from GitHub:
def deps do
 [
]
end
Quick Start
Creating Events Manually
Create a new chain
chain = CrucibleTrace.new_chain("API Implementation")

Create an event
event = CrucibleTrace.create_event(
 :hypothesis_formed,
 "Use Phoenix framework",
 "Well-established with great documentation and active community",
 alternatives: ["Plug alone", "Custom HTTP server"],
 confidence: 0.9
)

Add event to chain
chain = CrucibleTrace.add_event(chain, event)

View statistics
stats = CrucibleTrace.statistics(chain)
=> %{total_events: 1, avg_confidence: 0.9, ...}
Parsing LLM Output
llm_output = """
<event type="hypothesis_formed">
 <decision>Use GenServer for state management</decision>
 <alternatives>Agent, ETS table, Database</alternatives>
 <reasoning>GenServer provides good balance of simplicity and features</reasoning>
 <confidence>0.85</confidence>
 <code_section>StateManager</code_section>
</event>

<code>
defmodule StateManager do
 use GenServer
 # ... implementation
end
</code>
"""

Parse into a chain
{:ok, chain} = CrucibleTrace.parse_llm_output(llm_output, "State Manager Implementation")

Extract just the code
code = CrucibleTrace.extract_code(llm_output)
Building Prompts for LLMs
base_spec = """
Implement a caching layer for database queries with:
- TTL support for cache entries
- Cache invalidation on writes
- Thread-safe operations
"""

Generate a prompt that instructs the LLM to emit causal trace events
prompt = CrucibleTrace.build_causal_prompt(base_spec)

Send prompt to your LLM, it will include event tags in its response
Visualization
Generate interactive HTML visualization
html = CrucibleTrace.visualize(chain, style: :light)

Save to file
{:ok, path} = CrucibleTrace.save_visualization(chain, "trace.html")

Or open directly in browser
{:ok, _path} = CrucibleTrace.open_visualization(chain)
Storage and Retrieval
Save chain to disk
{:ok, path} = CrucibleTrace.save(chain)

Load by ID
{:ok, loaded_chain} = CrucibleTrace.load(chain.id)

List all chains
{:ok, chains} = CrucibleTrace.list_chains()

Search with criteria
{:ok, results} = CrucibleTrace.search(
 name_contains: "API",
 min_events: 5,
 created_after: ~U[2024-01-01 00:00:00Z]
)

Export to different formats
{:ok, markdown} = CrucibleTrace.export(chain, :markdown)
{:ok, csv} = CrucibleTrace.export(chain, :csv)
Analysis
Find decision points with alternatives
decisions = CrucibleTrace.find_decision_points(chain)

Find low confidence events
uncertain = CrucibleTrace.find_low_confidence(chain, 0.7)

Filter by event type
hypotheses = CrucibleTrace.get_events_by_type(chain, :hypothesis_formed)

Custom filtering
high_conf = CrucibleTrace.filter_events(chain, fn e ->
 e.confidence >= 0.9
end)

Chain statistics
stats = CrucibleTrace.statistics(chain)
=> %{
total_events: 10,
event_type_counts: %{hypothesis_formed: 3, pattern_applied: 2, ...},
avg_confidence: 0.87,
duration_seconds: 45
}
Chain Comparison (v0.2.0)
Compare two reasoning chains to analyze differences:
Compare chains from different LLM runs
{:ok, diff} = CrucibleTrace.diff_chains(chain1, chain2)

View summary
IO.puts(diff.summary)
=> "2 added, 1 removed, 3 modified"

Check similarity
IO.puts("Similarity: #{diff.similarity_score * 100}%")

Export diff reports
text_diff = CrucibleTrace.diff_to_text(diff)
html_diff = CrucibleTrace.diff_to_html(diff, chain1, chain2)

Track confidence changes
diff.confidence_deltas
=> %{"event_id" => 0.15, ...}
Use cases:
	A/B Testing: Compare reasoning from different models or prompts
	Regression Detection: Ensure prompt changes don't degrade reasoning quality
	Confidence Evolution: Track how confidence changes between iterations

Mermaid Diagram Export (v0.2.0)
Export chains as Mermaid diagrams for documentation:
Export as flowchart
mermaid = CrucibleTrace.export_mermaid(chain, :flowchart,
 color_by_type: true,
 include_confidence: true
)

Embed in markdown
File.write!("decisions.md", """
Decision Log

#{mermaid}
""")

Other formats
CrucibleTrace.export_mermaid(chain, :sequence) # Sequence diagram
CrucibleTrace.export_mermaid(chain, :timeline) # Timeline view
CrucibleTrace.export_mermaid(chain, :graph) # Graph with relationships

Via unified export API
{:ok, mermaid} = CrucibleTrace.export(chain, :mermaid_flowchart)
Generated Mermaid diagrams are compatible with:
	GitHub (renders in README.md, issues, PRs)
	GitLab (renders in merge requests, wikis)
	Obsidian, Notion, VS Code
	Any tool supporting Mermaid.js

Event Types
CausalTrace supports six event types:
	:hypothesis_formed - Initial approach or solution hypothesis
	:alternative_rejected - Explicit rejection of an alternative approach
	:constraint_evaluated - Evaluation of a constraint or requirement
	:pattern_applied - Application of a specific design pattern
	:ambiguity_flagged - Ambiguity encountered in specification
	:confidence_updated - Change in confidence for a decision

Event Schema
Each event contains:
%CrucibleTrace.Event{
 id: "unique_event_id",
 timestamp: ~U[2024-01-15 10:30:00Z],
 type: :hypothesis_formed,
 decision: "What was decided",
 alternatives: ["Alternative 1", "Alternative 2"],
 reasoning: "Why this decision was made",
 confidence: 0.85, # 0.0 to 1.0
 code_section: "ModuleName", # optional
 spec_reference: "Section 3.2", # optional
 metadata: %{} # optional
}
LLM Integration
When using CausalTrace with LLMs, instruct them to emit events in this XML format:
<event type="hypothesis_formed">
 <decision>Your decision</decision>
 <alternatives>Alt1, Alt2, Alt3</alternatives>
 <reasoning>Your reasoning</reasoning>
 <confidence>0.85</confidence>
 <code_section>ModuleName</code_section>
 <spec_reference>Spec Section</spec_reference>
</event>
Use CrucibleTrace.build_causal_prompt/1 to automatically generate prompts with these instructions.
Architecture
CausalTrace is organized into six main modules:
	CausalTrace - Main API and convenience functions
	CrucibleTrace.Event - Event struct and operations
	CrucibleTrace.Chain - Chain struct and collection management
	CrucibleTrace.Parser - LLM output parsing and prompt building
	CrucibleTrace.Storage - Persistence and retrieval
	CrucibleTrace.Viewer - HTML visualization generation

Examples
The library includes comprehensive example files demonstrating various use cases:
Basic Usage (examples/basic_usage.exs)
	Creating events manually
	Parsing LLM output
	Analyzing chains
	Building prompts
	Storage operations
	HTML visualization
	Chain merging

Advanced Analysis (examples/advanced_analysis.exs)
	Complex reasoning chains
	Comprehensive statistics
	Issue identification (low confidence, ambiguities, rejections)
	Decision point analysis
	Confidence trend analysis
	Export for documentation
	Custom filtering and analysis
	Alternative comparison

LLM Integration (examples/llm_integration.exs)
	Parsing realistic LLM-generated output
	Building causal trace prompts
	Validating LLM responses
	Multi-round conversation tracking
	Quality assurance checks for LLM outputs

Storage and Search (examples/storage_and_search.exs)
	Creating and saving multiple chains
	Listing all saved chains
	Loading specific chains
	Advanced searching with filters
	Exporting chains in multiple formats (JSON, Markdown, CSV)
	Chain deletion and archiving
	Batch operations and storage statistics

Chain Comparison (examples/chain_comparison.exs)
	Compare reasoning chains from different runs
	Track added/removed/modified events
	Analyze confidence deltas
	Generate HTML diff reports for side-by-side review

Mermaid Export (examples/mermaid_export.exs)
	Export flowchart, sequence, timeline, and graph diagrams
	Embed diagrams in Markdown/README files
	Demonstrate GitHub/GitLab/Obsidian compatibility
	Show unified export API via CrucibleTrace.export/3

Run any example with:
mix run examples/basic_usage.exs
mix run examples/advanced_analysis.exs
mix run examples/llm_integration.exs
mix run examples/storage_and_search.exs
mix run examples/chain_comparison.exs
mix run examples/mermaid_export.exs

Run them all at once:
./examples/run_examples.sh

Example outputs (JSON/Markdown/HTML) are written to example_traces/ by default (gitignored). Override with EXAMPLES_OUTPUT_DIR=/your/path ./examples/run_examples.sh.
Testing
The library has comprehensive test coverage across all modules:
	Event tests: 11 tests covering event creation, validation, and serialization
	Chain tests: 18 tests covering chain operations, statistics, and filtering
	Parser tests: 21 tests covering LLM output parsing and validation
	Storage tests: 21 tests covering persistence, search, and export
	Viewer tests: 30 tests covering HTML generation and visualization
	Integration tests: 2 tests covering end-to-end functionality

Total: 103+ tests with 100% pass rate
Run the test suite:
mix test

Run with coverage:
mix test --cover

Run with strict warnings:
mix test --warnings-as-errors

Configuration
CausalTrace can be configured in your config/config.exs:
config :causal_trace,
 storage_dir: "causal_traces", # Default storage directory
 default_format: :json, # Default storage format
 visualization_style: :light # Default HTML theme (:light or :dark)
Use Cases
Debugging LLM Code Generation
Track why an LLM made specific implementation choices:
Parse LLM output with reasoning
{:ok, chain} = CrucibleTrace.parse_llm_output(llm_response, "Feature Implementation")

Find low confidence decisions that need review
uncertain = CrucibleTrace.find_low_confidence(chain, 0.7)

Visualize to understand the reasoning flow
CrucibleTrace.open_visualization(chain)
Comparing Alternative Approaches
Analyze which alternatives were considered:
decisions = CrucibleTrace.find_decision_points(chain)

Enum.each(decisions, fn d ->
 IO.puts("Chose: #{d.decision}")
 IO.puts("Over: #{Enum.join(d.alternatives, ", ")}")
 IO.puts("Because: #{d.reasoning}\n")
end)
Building Training Data
Export reasoning chains for fine-tuning:
{:ok, chains} = CrucibleTrace.list_chains()

training_data =
 chains
 |> Enum.filter(&(&1.event_count > 5))
 |> Enum.map(fn metadata ->
 {:ok, chain} = CrucibleTrace.load(metadata.id)
 CrucibleTrace.export(chain, :json)
 end)
Auditing AI Decisions
Maintain transparent records of AI reasoning:
Save all chains with metadata
CrucibleTrace.save(chain,
 metadata: %{
 model: "gpt-4",
 user: "john@example.com",
 project: "payment-system"
 }
)

Search audit logs
{:ok, results} = CrucibleTrace.search(
 created_after: ~U[2024-01-01 00:00:00Z],
 name_contains: "payment"
)
Performance
	Event creation: < 1ms
	Parsing: ~10ms per event
	Storage: ~50ms per chain (depends on event count)
	Visualization: ~100ms for typical chains (20-50 events)

Limitations
	XML parsing is regex-based (simple but not fully robust)
	Storage is file-based (no database backend yet)
	HTML visualization uses inline CSS (no external assets)
	No real-time collaboration features

ML Training Integration (v0.3.0)
CrucibleTrace now provides first-class support for ML training workflows:
Training Events
Start training
event = CrucibleTrace.training_started(
 "Begin ResNet training",
 "Transfer learning from ImageNet",
 model_name: "resnet50",
 experiment_id: "exp-001"
)

Record epoch completion
event = CrucibleTrace.epoch_completed(5, %{
 train_loss: 0.234,
 val_loss: 0.289,
 accuracy: 0.876
})

Record checkpoint
event = CrucibleTrace.checkpoint_saved(
 "/models/checkpoint_epoch_5.pt",
 metrics: %{val_accuracy: 0.876}
)

Wrap training function with automatic events
{chain, result} = CrucibleTrace.trace_training(chain, fn ->
 train_model(data)
end)
Event Relationships
Events can now reference parent events and dependencies:
parent = CrucibleTrace.create_event(:training_started, "Start", "Reason")
child = CrucibleTrace.create_event(:epoch_completed, "Epoch 1", "Done",
 parent_id: parent.id,
 experiment_id: "exp-001"
)

Query relationships
{:ok, children} = CrucibleTrace.get_children(chain, parent.id)
roots = CrucibleTrace.get_root_events(chain)
leaves = CrucibleTrace.get_leaf_events(chain)

Validate no circular dependencies
{:ok, _} = CrucibleTrace.validate_relationships(chain)
Telemetry Integration
Automatically trace pipeline events:
Attach handlers to capture crucible_framework events
CrucibleTrace.attach_telemetry()

Events are automatically created for pipeline stage execution

Detach when done
CrucibleTrace.detach_telemetry()
Advanced Querying
Content search
events = CrucibleTrace.search_events(chain, "GenServer",
 type: [:hypothesis_formed, :pattern_applied],
 min_confidence: 0.8
)

Regex search
events = CrucibleTrace.search_regex(chain, ~r/epoch \d+/i)

Advanced boolean queries
events = CrucibleTrace.query_events(chain, %{
 or: [
 %{type: :training_started},
 %{confidence: {:gte, 0.9}}
],
 and: [
 %{stage_id: "training"}
]
})

Aggregate by field
counts = CrucibleTrace.aggregate_by(chain, :type, &length/1)
Stage Tracing
Wrap pipeline stages with automatic tracing:
{chain, result} = CrucibleTrace.trace_stage(chain, "preprocessing", fn ->
 preprocess_data(data)
end, experiment_id: "exp-001")
Roadmap
Completed
	[x] Diff visualization between chains (v0.2.0)
	[x] Export to Mermaid diagrams (v0.2.0)
	[x] ML training event types (v0.3.0)
	[x] Event relationships (v0.3.0)
	[x] Telemetry integration (v0.3.0)
	[x] Advanced querying (v0.3.0)
	[x] Stage tracing (v0.3.0)

Planned
	[] More robust XML/JSON parsing
	[] Database storage backend option
	[] Real-time chain updates via Phoenix LiveView
	[] Cryptographic verification
	[] Distributed training support

Contributing
This is part of the Elixir AI Research project. Contributions welcome!
License
MIT License - see LICENSE file for details
Documentation
Full documentation can be generated with ExDoc:
mix docs

Then open doc/index.html in your browser.
Support
For questions or issues, please open an issue on the GitHub repository.

 Changelog

All notable changes to this project will be documented in this file.
[0.3.1] - 2025-12-28
Changed
	Bump crucible_ir dependency from ~> 0.2.0 to ~> 0.2.1
	Bump telemetry dependency from ~> 1.2 to ~> 1.3
	Credo cleanup: use Enum.map_join, Enum.empty?, extract helper functions, alphabetize aliases

[0.2.1] - 2025-11-26
Added
	Added crucible_ir dependency for shared IR types across Crucible framework components

[0.2.0] - 2025-11-25
Added
	Chain Comparison & Diffing - Compare two reasoning chains to identify differences	CrucibleTrace.diff_chains/3 - Compare chains and generate diff structure
	CrucibleTrace.diff_to_text/1 - Export diff as human-readable text
	CrucibleTrace.diff_to_html/3 - Generate HTML visualization of chain differences
	Similarity scoring to quantify how similar two chains are
	Confidence delta tracking to see how confidence changes between versions
	Side-by-side comparison in HTML viewer

	Mermaid Diagram Export - Export chains as Mermaid diagrams for documentation	CrucibleTrace.export_mermaid/3 - Export to flowchart, sequence, timeline, or graph formats
	CrucibleTrace.Mermaid module with specialized formatters
	Color-coding by event type
	Optional confidence level display
	Label truncation for readability
	Integration with Storage.export/3 for unified export API

	New Example Scripts	examples/chain_comparison.exs - Demonstrates diff functionality with A/B testing scenarios
	examples/mermaid_export.exs - Shows all Mermaid export formats with documentation integration

	Documentation Enhancements	Comprehensive design document in docs/20251125/enhancement_design.md
	Updated API documentation for all new functions
	Examples of GitHub/GitLab compatible diagram embedding

Changed
	Extended Storage.export/3 to support Mermaid formats (:mermaid_flowchart, :mermaid_sequence, :mermaid_timeline, :mermaid_graph)
	Updated README with new feature descriptions and examples
	Enhanced main module documentation with diff and Mermaid examples

Technical Details
	New modules: CrucibleTrace.Diff and CrucibleTrace.Mermaid
	Comprehensive test suites for new functionality (30+ new tests)
	All new features are backward compatible with v0.1.0
	Zero breaking changes - purely additive enhancements

[0.1.0] - 2025-10-07
Added
	Initial release
	Structured causal reasoning chain logging for LLM code generation
	Event tracking with six event types (hypothesis_formed, alternative_rejected, constraint_evaluated, pattern_applied, ambiguity_flagged, confidence_updated)
	LLM integration with XML-based event parsing
	Chain management for organizing reasoning events
	Persistent storage with JSON format and search capabilities
	Interactive HTML visualization with filtering and statistics
	Analysis tools for querying events, calculating statistics, and finding decision points
	Multiple export formats (JSON, Markdown, CSV)

Documentation
	Comprehensive README with examples
	API documentation for all modules
	Usage examples for LLM integration and debugging
	Best practices for transparency in AI code generation

CrucibleTrace

CausalTrace - Structured causal reasoning chain logging for LLM code generation.
This library provides tools for capturing, analyzing, and visualizing the
decision-making process of LLMs during code generation. It enables transparency
and debugging by logging causal reasoning chains with events, alternatives,
and confidence levels.
Quick Start
Parse LLM output containing event tags
{:ok, chain} = CrucibleTrace.parse_llm_output(llm_response, "My Task")

Create events manually
event = CrucibleTrace.create_event(
 :hypothesis_formed,
 "Use GenServer for state management",
 "Need concurrent access and fault tolerance",
 alternatives: ["ETS table", "Agent"],
 confidence: 0.85
)

Add to a chain
chain = CrucibleTrace.new_chain("API Implementation")
chain = CrucibleTrace.add_event(chain, event)

Save and visualize
CrucibleTrace.save(chain)
CrucibleTrace.visualize(chain)
Main Features
	Event Tracking: Capture decision points with alternatives and reasoning
	Chain Management: Organize events into coherent reasoning chains
	LLM Parsing: Extract events from LLM output automatically
	Storage: Persist chains to disk in JSON format
	Visualization: Generate interactive HTML views of reasoning chains
	Analysis: Query and filter events, calculate statistics

 Summary

 Functions

 add_event(chain, event)

 Adds an event to a chain.

 add_events(chain, events)

 Adds multiple events to a chain.

 aggregate_by(chain, field, aggregation_fn)

 Aggregates events by a field.

 attach_telemetry(opts \\ [])

 Attaches telemetry handlers for automatic trace collection.

 build_causal_prompt(base_spec)

 Builds a prompt that instructs the LLM to emit causal trace events.

 chain_from_map(map)

 Creates a chain from a map (e.g., from JSON parsing).

 chain_to_map(chain)

 Converts a chain to a map suitable for JSON encoding.

 checkpoint_saved(path, opts \\ [])

 Creates a checkpoint_saved event.

 create_event(type, decision, reasoning, opts \\ [])

 Creates a new event.

 delete(chain_id, opts \\ [])

 Deletes a chain from disk.

 detach_telemetry()

 Detaches telemetry handlers.

 diff_chains(chain1, chain2, opts \\ [])

 Compares two chains and returns a diff structure.

 diff_to_html(diff, chain1, chain2)

 Generates an HTML visualization of the diff.

 diff_to_text(diff)

 Converts a diff to human-readable text format.

 epoch_completed(epoch, metrics, opts \\ [])

 Creates an epoch_completed event.

 event_from_map(map)

 Creates an event from a map (e.g., from JSON parsing).

 event_to_map(event)

 Converts an event to a map suitable for JSON encoding.

 export(chain, format, opts \\ [])

 Exports a chain to a different format.

 export_mermaid(chain, format, opts \\ [])

 Exports a chain as a Mermaid flowchart diagram.

 extract_code(text)

 Extracts just the code from LLM output, removing event tags.

 filter_events(chain, predicate_fn)

 Filters events in a chain based on a predicate function.

 find_decision_points(chain)

 Finds decision points where alternatives were rejected.

 find_low_confidence(chain, threshold \\ 0.7)

 Finds events with low confidence (below threshold).

 from_training_metrics(metrics_list, opts \\ [])

 Creates events from training metrics history.

 get_children(chain, event_id)

 Gets child events of a given event.

 get_events_by_experiment(chain, experiment_id)

 Gets all events for a given experiment_id.

 get_events_by_stage(chain, stage_id)

 Gets all events for a given stage_id.

 get_events_by_type(chain, type)

 Gets events of a specific type from the chain.

 get_leaf_events(chain)

 Gets leaf events (no children).

 get_parent(chain, event_id)

 Gets parent event of a given event.

 get_root_events(chain)

 Gets root events (no parent).

 list_chains(opts \\ [])

 Lists all saved chains.

 load(chain_id, opts \\ [])

 Loads a chain from disk by ID.

 loss_computed(loss_value, opts \\ [])

 Creates a loss_computed event.

 merge_chains(chain1, chain2)

 Merges two chains together, combining their events.

 new_chain(name, opts \\ [])

 Creates a new empty chain.

 open_visualization(chain, opts \\ [])

 Opens the chain visualization in the default browser.

 parse_events(text)

 Parses LLM output and returns just the events.

 parse_llm_output(text, chain_name, opts \\ [])

 Parses LLM output to extract causal trace events.

 query_events(chain, query_map)

 Advanced query with boolean logic.

 save(chain, opts \\ [])

 Saves a chain to disk.

 save_visualization(chain, file_path, opts \\ [])

 Saves an HTML visualization to a file.

 search(query, opts \\ [])

 Searches for chains matching criteria.

 search_events(chain, content, opts \\ [])

 Searches events by content.

 search_regex(chain, pattern, opts \\ [])

 Searches events with regex pattern.

 sort_by_timestamp(chain, order \\ :asc)

 Sorts events in a chain by timestamp.

 statistics(chain)

 Gets statistics about a chain.

 trace_stage(chain, stage_id, stage_fn, opts \\ [])

 Wraps a stage function with tracing.

 trace_training(chain, training_fn, opts \\ [])

 Wraps a training function with automatic trace events.

 training_completed(decision, reasoning, opts \\ [])

 Creates a training_completed event.

 training_started(decision, reasoning, opts \\ [])

 Creates a training_started event.

 validate_event(event)

 Validates an event.

 validate_events(text)

 Validates that text contains properly formatted events.

 validate_relationships(chain)

 Validates relationship integrity.

 visualize(chain, opts \\ [])

 Generates an HTML visualization of a chain.

 Functions

 add_event(chain, event)

Adds an event to a chain.

 add_events(chain, events)

Adds multiple events to a chain.

 aggregate_by(chain, field, aggregation_fn)

Aggregates events by a field.
See CrucibleTrace.Query.aggregate_by/3 for options.

 attach_telemetry(opts \\ [])

Attaches telemetry handlers for automatic trace collection.
See CrucibleTrace.Telemetry.attach_handlers/1 for options.

 build_causal_prompt(base_spec)

Builds a prompt that instructs the LLM to emit causal trace events.
Takes your base specification and wraps it with event emission instructions.
Examples
See tests and documentation for usage examples.

 chain_from_map(map)

Creates a chain from a map (e.g., from JSON parsing).

 chain_to_map(chain)

Converts a chain to a map suitable for JSON encoding.

 checkpoint_saved(path, opts \\ [])

Creates a checkpoint_saved event.
See CrucibleTrace.Training.checkpoint_saved/2 for options.

 create_event(type, decision, reasoning, opts \\ [])

Creates a new event.
Parameters
	type - Event type atom (see CrucibleTrace.Event for types)
	decision - What was decided
	reasoning - Why this decision was made
	opts - Optional fields:	:alternatives - List of alternatives considered
	:confidence - Confidence level (0.0-1.0)
	:code_section - Related code section
	:spec_reference - Related specification reference
	:metadata - Additional metadata map

Examples
iex> event = CrucibleTrace.create_event(
...> :pattern_applied,
...> "Use Supervisor for fault tolerance",
...> "Application needs to recover from crashes",
...> alternatives: ["Manual restart", "No supervision"],
...> confidence: 0.95
...>)
iex> event.type
:pattern_applied

 delete(chain_id, opts \\ [])

Deletes a chain from disk.
Returns :ok if successful, {:error, reason} otherwise.

 detach_telemetry()

Detaches telemetry handlers.

 diff_chains(chain1, chain2, opts \\ [])

Compares two chains and returns a diff structure.
Examples
{:ok, diff} = CrucibleTrace.diff_chains(chain1, chain2)
IO.puts(diff.summary)

 diff_to_html(diff, chain1, chain2)

Generates an HTML visualization of the diff.

 diff_to_text(diff)

Converts a diff to human-readable text format.

 epoch_completed(epoch, metrics, opts \\ [])

Creates an epoch_completed event.
See CrucibleTrace.Training.epoch_completed/3 for options.

 event_from_map(map)

Creates an event from a map (e.g., from JSON parsing).

 event_to_map(event)

Converts an event to a map suitable for JSON encoding.

 export(chain, format, opts \\ [])

Exports a chain to a different format.
Supported formats: :json, :markdown, :csv
Returns {:ok, content} if successful, {:error, reason} otherwise.

 export_mermaid(chain, format, opts \\ [])

Exports a chain as a Mermaid flowchart diagram.
Examples
mermaid = CrucibleTrace.export_mermaid(chain, :flowchart)
File.write!("diagram.md", "```mermaid\n#{mermaid}\n```")

 extract_code(text)

Extracts just the code from LLM output, removing event tags.
Useful for getting clean code after parsing events.
Examples
See tests and documentation for usage examples.

 filter_events(chain, predicate_fn)

Filters events in a chain based on a predicate function.
Examples
See tests and documentation for usage examples.

 find_decision_points(chain)

Finds decision points where alternatives were rejected.
Returns a list of decision events with their alternatives.

 find_low_confidence(chain, threshold \\ 0.7)

Finds events with low confidence (below threshold).
Default threshold is 0.7.
Examples
See tests and documentation for usage examples.

 from_training_metrics(metrics_list, opts \\ [])

Creates events from training metrics history.
See CrucibleTrace.Training.from_training_metrics/2 for options.

 get_children(chain, event_id)

Gets child events of a given event.

 get_events_by_experiment(chain, experiment_id)

Gets all events for a given experiment_id.

 get_events_by_stage(chain, stage_id)

Gets all events for a given stage_id.

 get_events_by_type(chain, type)

Gets events of a specific type from the chain.
Examples
See tests and documentation for usage examples.

 get_leaf_events(chain)

Gets leaf events (no children).

 get_parent(chain, event_id)

Gets parent event of a given event.

 get_root_events(chain)

Gets root events (no parent).

 list_chains(opts \\ [])

Lists all saved chains.
Returns {:ok, chain_list} with metadata for each chain.

 load(chain_id, opts \\ [])

Loads a chain from disk by ID.
Returns {:ok, chain} if found, {:error, reason} otherwise.

 loss_computed(loss_value, opts \\ [])

Creates a loss_computed event.
See CrucibleTrace.Training.loss_computed/2 for options.

 merge_chains(chain1, chain2)

Merges two chains together, combining their events.

 new_chain(name, opts \\ [])

Creates a new empty chain.
Examples
iex> chain = CrucibleTrace.new_chain("User Authentication")
iex> chain.name
"User Authentication"

 open_visualization(chain, opts \\ [])

Opens the chain visualization in the default browser.
Creates a temporary HTML file and opens it.
Returns {:ok, temp_file_path} if successful, {:error, reason} otherwise.

 parse_events(text)

Parses LLM output and returns just the events.
Returns {:ok, events} if successful, {:error, reason} otherwise.

 parse_llm_output(text, chain_name, opts \\ [])

Parses LLM output to extract causal trace events.
The LLM output should contain XML-style event tags as generated by
prompts from build_causal_prompt/1.
Returns {:ok, chain} if successful, {:error, reason} otherwise.
Examples
See tests and documentation for usage examples.

 query_events(chain, query_map)

Advanced query with boolean logic.
See CrucibleTrace.Query.query/2 for query format.

 save(chain, opts \\ [])

Saves a chain to disk.
Options
	:storage_dir - Directory to store chains (default: "causal_traces")
	:format - Storage format, currently only :json (default: :json)

Returns {:ok, file_path} if successful, {:error, reason} otherwise.
Examples
See tests and documentation for usage examples.

 save_visualization(chain, file_path, opts \\ [])

Saves an HTML visualization to a file.
Returns {:ok, file_path} if successful, {:error, reason} otherwise.

 search(query, opts \\ [])

Searches for chains matching criteria.
Options
	:name_contains - Filter by name substring
	:created_after - Filter by creation date
	:created_before - Filter by creation date
	:min_events - Minimum number of events
	:max_events - Maximum number of events

Examples
See tests and documentation for usage examples.

 search_events(chain, content, opts \\ [])

Searches events by content.
See CrucibleTrace.Query.search_events/3 for options.

 search_regex(chain, pattern, opts \\ [])

Searches events with regex pattern.
See CrucibleTrace.Query.search_regex/3 for options.

 sort_by_timestamp(chain, order \\ :asc)

Sorts events in a chain by timestamp.
Order can be :asc or :desc.

 statistics(chain)

Gets statistics about a chain.
Returns a map with:
	total_events - Total number of events
	event_type_counts - Count per event type
	avg_confidence - Average confidence across all events
	duration_seconds - Time from first to last event

Examples
See tests and documentation for usage examples.

 trace_stage(chain, stage_id, stage_fn, opts \\ [])

Wraps a stage function with tracing.
See CrucibleTrace.Stage.trace_stage/4 for options.

 trace_training(chain, training_fn, opts \\ [])

Wraps a training function with automatic trace events.
See CrucibleTrace.Training.trace_training/3 for options.

 training_completed(decision, reasoning, opts \\ [])

Creates a training_completed event.
See CrucibleTrace.Training.training_completed/3 for options.

 training_started(decision, reasoning, opts \\ [])

Creates a training_started event.
See CrucibleTrace.Training.training_started/3 for options.

 validate_event(event)

Validates an event.
Returns {:ok, event} if valid, {:error, reason} otherwise.

 validate_events(text)

Validates that text contains properly formatted events.
Returns {:ok, count} or {:error, issues}.

 validate_relationships(chain)

Validates relationship integrity.

 visualize(chain, opts \\ [])

Generates an HTML visualization of a chain.
Options
	:title - Page title (default: chain name)
	:style - CSS theme, :light or :dark (default: :light)
	:include_statistics - Show statistics panel (default: true)
	:include_timeline - Show timeline visualization (default: true)

Returns the HTML content as a string.
Examples
See tests and documentation for usage examples.

CrucibleTrace.Chain

Manages a collection of causal reasoning events forming a decision chain.
A chain represents the complete reasoning trace for a single code generation task,
containing all decisions, alternatives, and reasoning steps taken by the LLM.

 Summary

 Types

 t()

 Functions

 add_event(chain, event)

 Adds an event to the chain.

 add_events(chain, events)

 Adds multiple events to the chain.

 filter_events(chain, predicate_fn)

 Filters events in a chain based on a predicate function.

 find_decision_points(chain)

 Finds decision points where alternatives were rejected.

 find_low_confidence(chain, threshold \\ 0.7)

 Finds low confidence decisions (below threshold).

 from_map(map)

 Creates a chain from a map (e.g., from JSON parsing).

 get_children(chain, event_id)

 Gets child events of a given event.

 get_event(chain, event_id)

 Gets an event by ID from the chain.

 get_events_by_experiment(chain, experiment_id)

 Gets all events for a given experiment_id.

 get_events_by_stage(chain, stage_id)

 Gets all events for a given stage_id.

 get_events_by_type(chain, type)

 Gets all events of a specific type from the chain.

 get_events_in_range(chain, start_time, end_time)

 Gets events within a time range.

 get_leaf_events(chain)

 Gets leaf events (events with no children).

 get_parent(chain, event_id)

 Gets the parent event of a given event.

 get_root_events(chain)

 Gets root events (events with no parent).

 merge(chain1, chain2)

 Merges two chains together, combining their events.

 new(name, opts \\ [])

 Creates a new chain with the given name and options.

 sort_by_timestamp(chain, order \\ :asc)

 Sorts events in a chain by timestamp.

 statistics(chain)

 Calculates statistics about the chain.

 to_map(chain)

 Converts the chain to a map suitable for JSON encoding.

 validate_relationships(chain)

 Validates that no circular dependencies exist in the chain.

 Types

 t()

 @type t() :: %CrucibleTrace.Chain{
 created_at: DateTime.t(),
 description: String.t() | nil,
 events: [CrucibleTrace.Event.t()],
 id: String.t(),
 metadata: map(),
 name: String.t(),
 updated_at: DateTime.t()
}

 Functions

 add_event(chain, event)

Adds an event to the chain.
Returns the updated chain with the event appended.

 add_events(chain, events)

Adds multiple events to the chain.

 filter_events(chain, predicate_fn)

Filters events in a chain based on a predicate function.

 find_decision_points(chain)

Finds decision points where alternatives were rejected.
Returns events of type :alternative_rejected with their associated decisions.

 find_low_confidence(chain, threshold \\ 0.7)

Finds low confidence decisions (below threshold).

 from_map(map)

Creates a chain from a map (e.g., from JSON parsing).

 get_children(chain, event_id)

 @spec get_children(t(), String.t()) ::
 {:ok, [CrucibleTrace.Event.t()]} | {:error, String.t()}

Gets child events of a given event.
Returns {:ok, children} with the list of child events,
or {:error, reason} if the parent event is not found.

 get_event(chain, event_id)

Gets an event by ID from the chain.
Returns {:ok, event} if found, :error otherwise.

 get_events_by_experiment(chain, experiment_id)

 @spec get_events_by_experiment(t(), String.t()) :: [CrucibleTrace.Event.t()]

Gets all events for a given experiment_id.

 get_events_by_stage(chain, stage_id)

 @spec get_events_by_stage(t(), String.t()) :: [CrucibleTrace.Event.t()]

Gets all events for a given stage_id.

 get_events_by_type(chain, type)

Gets all events of a specific type from the chain.

 get_events_in_range(chain, start_time, end_time)

Gets events within a time range.

 get_leaf_events(chain)

 @spec get_leaf_events(t()) :: [CrucibleTrace.Event.t()]

Gets leaf events (events with no children).

 get_parent(chain, event_id)

 @spec get_parent(t(), String.t()) ::
 {:ok, CrucibleTrace.Event.t() | nil} | {:error, String.t()}

Gets the parent event of a given event.
Returns {:ok, parent} where parent is the parent event or nil if no parent,
or {:error, reason} if the event is not found.

 get_root_events(chain)

 @spec get_root_events(t()) :: [CrucibleTrace.Event.t()]

Gets root events (events with no parent).

 merge(chain1, chain2)

Merges two chains together, combining their events.

 new(name, opts \\ [])

Creates a new chain with the given name and options.
Examples
iex> CrucibleTrace.Chain.new("API Endpoint Implementation")
%CrucibleTrace.Chain{name: "API Endpoint Implementation"}

 sort_by_timestamp(chain, order \\ :asc)

Sorts events in a chain by timestamp.

 statistics(chain)

Calculates statistics about the chain.
Returns a map with:
	total_events: total number of events
	event_type_counts: count per event type
	avg_confidence: average confidence across all events
	duration_seconds: time from first to last event

 to_map(chain)

Converts the chain to a map suitable for JSON encoding.

 validate_relationships(chain)

 @spec validate_relationships(t()) :: {:ok, t()} | {:error, String.t()}

Validates that no circular dependencies exist in the chain.
Returns {:ok, chain} if valid, {:error, reason} otherwise.

CrucibleTrace.Diff

Compares two reasoning chains and generates diff reports.
Enables analysis of how LLM reasoning changes between different runs,
models, or prompt variations.

 Summary

 Types

 change()

 changes()

 t()

 Functions

 compare(chain1, chain2, opts \\ [])

 Compares two chains and returns a diff structure.

 to_html(diff, chain1, chain2)

 Generates an HTML visualization of the diff with side-by-side comparison.

 to_text(diff)

 Converts a diff to human-readable text format.

 Types

 change()

 @type change() :: {:changed, old_value :: term(), new_value :: term()}

 changes()

 @type changes() :: %{required(atom()) => change()}

 t()

 @type t() :: %CrucibleTrace.Diff{
 added_events: [CrucibleTrace.Event.t()],
 confidence_deltas: %{required(String.t()) => float()},
 modified_events: [{String.t(), changes()}],
 removed_events: [CrucibleTrace.Event.t()],
 similarity_score: float(),
 summary: String.t()
}

 Functions

 compare(chain1, chain2, opts \\ [])

Compares two chains and returns a diff structure.
Options
	:match_by - How to match events: :id (default), :position, :content
	:ignore_timestamps - Ignore timestamp differences (default: true)

Examples
{:ok, diff} = CrucibleTrace.Diff.compare(chain1, chain2)
IO.puts(diff.summary)
=> "2 added, 1 removed, 3 modified"

 to_html(diff, chain1, chain2)

Generates an HTML visualization of the diff with side-by-side comparison.

 to_text(diff)

Converts a diff to human-readable text format.

CrucibleTrace.Event

Represents a single causal reasoning event in the decision chain.
Events capture the decision-making process of LLMs during code generation,
including what was chosen, what alternatives were considered, and why.

 Summary

 Types

 event_type()

 t()

 Functions

 from_map(map)

 Creates an event from a map (e.g., from JSON parsing).

 new(type, decision, reasoning, opts \\ [])

 Creates a new event with the given attributes.

 to_map(event)

 Converts an event to a map suitable for JSON encoding.

 validate(event)

 Validates an event struct.

 Types

 event_type()

 @type event_type() ::
 :hypothesis_formed
 | :alternative_rejected
 | :constraint_evaluated
 | :pattern_applied
 | :ambiguity_flagged
 | :confidence_updated
 | :training_started
 | :training_completed
 | :epoch_started
 | :epoch_completed
 | :batch_processed
 | :loss_computed
 | :metric_recorded
 | :gradient_computed
 | :checkpoint_saved
 | :checkpoint_loaded
 | :early_stopped
 | :deployment_started
 | :model_loaded
 | :inference_completed
 | :deployment_completed
 | :reward_received
 | :policy_updated
 | :experience_sampled
 | :stage_started
 | :stage_completed

 t()

 @type t() :: %CrucibleTrace.Event{
 alternatives: [String.t()],
 code_section: String.t() | nil,
 confidence: float(),
 decision: String.t(),
 depends_on: [String.t()],
 experiment_id: String.t() | nil,
 id: String.t(),
 metadata: map(),
 parent_id: String.t() | nil,
 reasoning: String.t(),
 spec_reference: String.t() | nil,
 stage_id: String.t() | nil,
 timestamp: DateTime.t(),
 type: event_type()
}

 Functions

 from_map(map)

Creates an event from a map (e.g., from JSON parsing).

 new(type, decision, reasoning, opts \\ [])

Creates a new event with the given attributes.
Examples
iex> CrucibleTrace.Event.new(:hypothesis_formed, "Use GenServer for state", "Need concurrent state management")
%CrucibleTrace.Event{
 type: :hypothesis_formed,
 decision: "Use GenServer for state",
 reasoning: "Need concurrent state management"
}

 to_map(event)

Converts an event to a map suitable for JSON encoding.

 validate(event)

Validates an event struct.
Returns {:ok, event} if valid, {:error, reason} otherwise.

CrucibleTrace.Mermaid

Exports reasoning chains as Mermaid diagrams.
Mermaid is a popular text-based diagram format supported by GitHub, GitLab,
Obsidian, and many other markdown renderers.

 Summary

 Functions

 escape_label(text)

 Escapes special characters in Mermaid labels.

 to_flowchart(chain, opts \\ [])

 Exports a chain as a Mermaid flowchart.

 to_graph(chain, opts \\ [])

 Exports a chain as a Mermaid graph (supports relationships).

 to_sequence(chain, opts \\ [])

 Exports a chain as a Mermaid sequence diagram.

 to_timeline(chain, opts \\ [])

 Exports a chain as a Mermaid timeline.

 truncate_label(text, max_length)

 Truncates a label to maximum length with ellipsis.

 Functions

 escape_label(text)

Escapes special characters in Mermaid labels.
Handles quotes, newlines, brackets, and other special chars.

 to_flowchart(chain, opts \\ [])

Exports a chain as a Mermaid flowchart.
Options
	:include_confidence - Show confidence levels (default: false)
	:color_by_type - Color-code events by type (default: true)
	:max_label_length - Maximum label length before truncation (default: 60)
	:show_alternatives - Show alternatives as notes (default: false)

Examples
chain = CrucibleTrace.new_chain("My Chain")
|> CrucibleTrace.add_event(event)

mermaid = CrucibleTrace.Mermaid.to_flowchart(chain)
File.write!("diagram.md", "```mermaid\n#{mermaid}\n```")

 to_graph(chain, opts \\ [])

Exports a chain as a Mermaid graph (supports relationships).
When events have parent_id or depends_on fields, this creates
a proper directed graph showing dependencies.

 to_sequence(chain, opts \\ [])

Exports a chain as a Mermaid sequence diagram.
Shows the progression of reasoning as a sequence of steps.
Options
	:show_alternatives - Include alternatives as notes (default: true)
	:max_label_length - Maximum label length (default: 60)

 to_timeline(chain, opts \\ [])

Exports a chain as a Mermaid timeline.
Groups events by time periods.
Options
	:title - Timeline title (default: chain name)

 truncate_label(text, max_length)

Truncates a label to maximum length with ellipsis.

CrucibleTrace.Parser

Parses causal reasoning events from LLM output.
Supports XML-style event tags and extracts structured event data from
LLM-generated text containing decision traces.

 Summary

 Functions

 build_causal_prompt(base_spec)

 Builds a causal trace prompt that instructs the LLM to emit events.

 extract_code(text)

 Extracts just the code sections from LLM output, removing event tags.

 extract_metadata(text)

 Extracts metadata from LLM output, such as model info or generation params.

 parse(text)

 Parses events from LLM output text.

 parse_to_chain(text, chain_name, opts \\ [])

 Parses events and creates a chain with the given name.

 split_events_and_code(text)

 Splits LLM output into events section and code section.

 validate_events(text)

 Validates that a text contains properly formatted event tags.

 Functions

 build_causal_prompt(base_spec)

Builds a causal trace prompt that instructs the LLM to emit events.
Takes a base specification and wraps it with event emission instructions.

 extract_code(text)

Extracts just the code sections from LLM output, removing event tags.
Returns the cleaned code text.

 extract_metadata(text)

Extracts metadata from LLM output, such as model info or generation params.
Looks for metadata in comments or special tags.

 parse(text)

Parses events from LLM output text.
Expects events in XML-style format:
<event type="hypothesis_formed">
 <decision>What you chose</decision>
 <alternatives>Alt1, Alt2</alternatives>
 <reasoning>Why</reasoning>
 <confidence>0.9</confidence>
 <code_section>function_name</code_section>
 <spec_reference>Section 3.2</spec_reference>
</event>
Returns {:ok, events} if successful, {:error, reason} otherwise.

 parse_to_chain(text, chain_name, opts \\ [])

Parses events and creates a chain with the given name.
Returns {:ok, chain} if successful, {:error, reason} otherwise.

 split_events_and_code(text)

Splits LLM output into events section and code section.
Returns {events_text, code_text}.

 validate_events(text)

Validates that a text contains properly formatted event tags.
Returns {:ok, count} with the number of valid events found,
or {:error, issues} with a list of issues.

CrucibleTrace.Query

Advanced querying capabilities for trace chains.
Supports full-text search, regex matching, and boolean queries.

 Summary

 Functions

 aggregate_by(chain, field, aggregation_fn)

 Aggregates events by a field.

 query(chain, query_map)

 Advanced query with boolean logic.

 search_events(chain, content, opts \\ [])

 Searches events by content across decision and reasoning fields.

 search_regex(chain, pattern, opts \\ [])

 Searches with regex pattern.

 Functions

 aggregate_by(chain, field, aggregation_fn)

 @spec aggregate_by(CrucibleTrace.Chain.t(), atom(), ([CrucibleTrace.Event.t()] ->
 any())) :: map()

Aggregates events by a field.
Examples
Count events by type
Query.aggregate_by(chain, :type, &length/1)

Average confidence by stage
Query.aggregate_by(chain, :stage_id, fn events ->
 Enum.reduce(events, 0, &(&1.confidence + &2)) / length(events)
end)

 query(chain, query_map)

 @spec query(CrucibleTrace.Chain.t(), map()) :: [CrucibleTrace.Event.t()]

Advanced query with boolean logic.
Query Format
%{
 or: [
 %{content: ~r/pattern/i, confidence: {:gte, 0.8}},
 %{type: :ambiguity_flagged}
],
 and: [
 %{stage_id: "training"}
]
}
Supported conditions
	:type - Event type atom
	:content - String or Regex for decision/reasoning
	:confidence - Tuple like {:gte, 0.8}, {:lt, 0.5}, {:eq, 1.0}
	:stage_id - Stage ID string
	:experiment_id - Experiment ID string

 search_events(chain, content, opts \\ [])

 @spec search_events(CrucibleTrace.Chain.t(), String.t(), keyword()) :: [
 CrucibleTrace.Event.t()
]

Searches events by content across decision and reasoning fields.
Options
	:type - Filter by event type(s) (atom or list of atoms)
	:min_confidence - Minimum confidence threshold
	:max_confidence - Maximum confidence threshold
	:since - Only events after this datetime
	:until - Only events before this datetime
	:stage_id - Filter by stage ID
	:experiment_id - Filter by experiment ID

 search_regex(chain, pattern, opts \\ [])

 @spec search_regex(CrucibleTrace.Chain.t(), Regex.t(), keyword()) :: [
 CrucibleTrace.Event.t()
]

Searches with regex pattern.
Options
Same as search_events/3.

CrucibleTrace.Stage

Pipeline stage wrapper that automatically traces execution.
Implements a pattern for wrapping crucible_framework stages
with automatic trace event generation.

 Summary

 Functions

 trace_stage(chain, stage_id, stage_fn, opts \\ [])

 Wraps a stage function with tracing.

 Functions

 trace_stage(chain, stage_id, stage_fn, opts \\ [])

 @spec trace_stage(CrucibleTrace.Chain.t(), String.t(), (-> any()), keyword()) ::
 {CrucibleTrace.Chain.t(), any()}

Wraps a stage function with tracing.
Creates events for:
	Stage start
	Stage completion (with duration)
	Stage errors

Options
	:experiment_id - Associated experiment ID
	:parent_id - Parent event ID
	:metadata - Additional metadata to include

Returns
{updated_chain, result} where result is the return value of the stage function.
Examples
{chain, result} = Stage.trace_stage(chain, "preprocessing", fn ->
 preprocess_data(data)
end)

CrucibleTrace.Storage

Persists and retrieves causal trace chains to/from disk.
Stores chains as JSON files in a configurable directory structure.
Supports indexing, querying, and archival of trace data.

 Summary

 Functions

 archive(days_old, opts \\ [])

 Archives old chains to a compressed format.

 delete(chain_id, opts \\ [])

 Deletes a chain from disk.

 export(chain, format, opts \\ [])

 Exports a chain to a different format.

 list(opts \\ [])

 Lists all chains in the storage directory.

 load(chain_id, opts \\ [])

 Loads a chain from disk by ID.

 save(chain, opts \\ [])

 Saves a chain to disk.

 search(query, opts \\ [])

 Searches for chains matching a query.

 Functions

 archive(days_old, opts \\ [])

Archives old chains to a compressed format.
Moves chains older than the specified days to an archive directory.

 delete(chain_id, opts \\ [])

Deletes a chain from disk.
Returns :ok if successful, {:error, reason} otherwise.

 export(chain, format, opts \\ [])

Exports a chain to a different format.
Supported export formats:
	:json - JSON format
	:markdown - Human-readable markdown
	:csv - CSV format for events
	:mermaid_flowchart - Mermaid flowchart diagram
	:mermaid_sequence - Mermaid sequence diagram
	:mermaid_timeline - Mermaid timeline
	:mermaid_graph - Mermaid graph

 list(opts \\ [])

Lists all chains in the storage directory.
Returns {:ok, chain_list} where each item contains basic chain metadata.

 load(chain_id, opts \\ [])

Loads a chain from disk by ID.
Returns {:ok, chain} if found, {:error, reason} otherwise.

 save(chain, opts \\ [])

Saves a chain to disk.
Returns {:ok, file_path} if successful, {:error, reason} otherwise.
Options
	:storage_dir - Directory to store chains (default: "causal_traces")
	:format - Storage format, currently only :json (default: :json)

 search(query, opts \\ [])

Searches for chains matching a query.
Options
	:name_contains - Filter by name substring
	:created_after - Filter by creation date
	:created_before - Filter by creation date
	:min_events - Minimum number of events
	:max_events - Maximum number of events

CrucibleTrace.Telemetry

Telemetry integration for CrucibleTrace.
Emits telemetry events for trace operations and can subscribe
to pipeline telemetry to automatically create trace events.

 Summary

 Functions

 attach_handlers(opts \\ [])

 Attaches telemetry handlers for automatic trace collection.

 detach_handlers()

 Detaches telemetry handlers.

 emit_chain_event(event_name, chain, metadata \\ %{})

 Emits a telemetry event for chain operations.

 emit_event_created(event)

 Emits a telemetry event for a trace event creation.

 handle_pipeline_event(event_name, measurements, metadata, config)

 Handles incoming pipeline telemetry events.

 Functions

 attach_handlers(opts \\ [])

 @spec attach_handlers(keyword()) :: :ok

Attaches telemetry handlers for automatic trace collection.
Options
	:prefix - Event prefix to listen for (default: [:crucible])

 detach_handlers()

 @spec detach_handlers() :: :ok

Detaches telemetry handlers.

 emit_chain_event(event_name, chain, metadata \\ %{})

 @spec emit_chain_event(atom(), CrucibleTrace.Chain.t(), map()) :: :ok

Emits a telemetry event for chain operations.
Events:
	[:crucible_trace, :chain, :created]
	[:crucible_trace, :chain, :saved]
	[:crucible_trace, :chain, :loaded]

 emit_event_created(event)

 @spec emit_event_created(CrucibleTrace.Event.t()) :: :ok

Emits a telemetry event for a trace event creation.
Telemetry event: [:crucible_trace, :event, :created]

 handle_pipeline_event(event_name, measurements, metadata, config)

 @spec handle_pipeline_event([atom()], map(), map(), map()) ::
 CrucibleTrace.Event.t() | nil

Handles incoming pipeline telemetry events.
Converts crucible_framework pipeline events to trace events.

CrucibleTrace.Training

Helper functions for tracing ML training workflows.
Provides convenience functions for common training events like
epoch completion, loss recording, and checkpoint management.

 Summary

 Functions

 batch_processed(batch, metrics, opts \\ [])

 Creates a batch_processed event.

 checkpoint_loaded(path, opts \\ [])

 Creates a checkpoint_loaded event.

 checkpoint_saved(path, opts \\ [])

 Creates a checkpoint_saved event.

 deployment_started(model_path, opts \\ [])

 Creates a deployment_started event.

 early_stopped(reasoning, opts \\ [])

 Creates an early_stopped event.

 epoch_completed(epoch, metrics, opts \\ [])

 Creates an epoch_completed event with metrics.

 from_training_metrics(metrics_list, opts \\ [])

 Creates events for a complete training run from metrics history.

 inference_completed(result, opts \\ [])

 Creates an inference_completed event.

 loss_computed(loss_value, opts \\ [])

 Creates a loss_computed event.

 model_loaded(model_path, opts \\ [])

 Creates a model_loaded event.

 policy_updated(reasoning, opts \\ [])

 Creates a policy_updated event.

 reward_received(reward, opts \\ [])

 Creates a reward_received event for RL workflows.

 trace_training(chain, training_fn, opts \\ [])

 Wraps a training function to automatically emit trace events.

 training_completed(decision, reasoning, opts \\ [])

 Creates a training_completed event.

 training_started(decision, reasoning, opts \\ [])

 Creates a training_started event.

 Functions

 batch_processed(batch, metrics, opts \\ [])

 @spec batch_processed(non_neg_integer(), map(), keyword()) :: CrucibleTrace.Event.t()

Creates a batch_processed event.
Options
	:epoch - Current epoch number
	:experiment_id - Associated experiment ID

 checkpoint_loaded(path, opts \\ [])

 @spec checkpoint_loaded(
 String.t(),
 keyword()
) :: CrucibleTrace.Event.t()

Creates a checkpoint_loaded event.
Options
	:resume_epoch - Epoch to resume from
	:experiment_id - Associated experiment ID

 checkpoint_saved(path, opts \\ [])

 @spec checkpoint_saved(
 String.t(),
 keyword()
) :: CrucibleTrace.Event.t()

Creates a checkpoint_saved event.
Options
	:metrics - Metrics at checkpoint time
	:epoch - Epoch number
	:experiment_id - Associated experiment ID

 deployment_started(model_path, opts \\ [])

 @spec deployment_started(
 String.t(),
 keyword()
) :: CrucibleTrace.Event.t()

Creates a deployment_started event.
Options
	:environment - Deployment environment (:production, :staging, etc.)
	:version - Model version
	:experiment_id - Associated experiment ID

 early_stopped(reasoning, opts \\ [])

 @spec early_stopped(
 String.t(),
 keyword()
) :: CrucibleTrace.Event.t()

Creates an early_stopped event.
Options
	:best_epoch - Best epoch before stopping
	:patience - Patience value used
	:experiment_id - Associated experiment ID

 epoch_completed(epoch, metrics, opts \\ [])

 @spec epoch_completed(non_neg_integer(), map(), keyword()) :: CrucibleTrace.Event.t()

Creates an epoch_completed event with metrics.
Options
	:experiment_id - Associated experiment ID
	:stage_id - Associated stage ID
	:parent_id - Parent event ID

 from_training_metrics(metrics_list, opts \\ [])

 @spec from_training_metrics(
 [map()],
 keyword()
) :: [CrucibleTrace.Event.t()]

Creates events for a complete training run from metrics history.
Options
	:experiment_id - Associated experiment ID
	:stage_id - Associated stage ID

 inference_completed(result, opts \\ [])

 @spec inference_completed(
 map(),
 keyword()
) :: CrucibleTrace.Event.t()

Creates an inference_completed event.
Options
	:latency_ms - Inference latency in milliseconds
	:batch_size - Batch size
	:experiment_id - Associated experiment ID

 loss_computed(loss_value, opts \\ [])

 @spec loss_computed(
 float(),
 keyword()
) :: CrucibleTrace.Event.t()

Creates a loss_computed event.
Options
	:loss_type - Type of loss (e.g., :cross_entropy, :mse)
	:experiment_id - Associated experiment ID

 model_loaded(model_path, opts \\ [])

 @spec model_loaded(
 String.t(),
 keyword()
) :: CrucibleTrace.Event.t()

Creates a model_loaded event.
Options
	:load_time_ms - Time to load model in milliseconds
	:experiment_id - Associated experiment ID

 policy_updated(reasoning, opts \\ [])

 @spec policy_updated(
 String.t(),
 keyword()
) :: CrucibleTrace.Event.t()

Creates a policy_updated event.
Options
	:learning_rate - Current learning rate
	:gradient_norm - Gradient norm
	:experiment_id - Associated experiment ID

 reward_received(reward, opts \\ [])

 @spec reward_received(
 float(),
 keyword()
) :: CrucibleTrace.Event.t()

Creates a reward_received event for RL workflows.
Options
	:step - Training step
	:episode - Episode number
	:experiment_id - Associated experiment ID

 trace_training(chain, training_fn, opts \\ [])

 @spec trace_training(CrucibleTrace.Chain.t(), (-> any()), keyword()) ::
 {CrucibleTrace.Chain.t(), any()}

Wraps a training function to automatically emit trace events.
Returns {updated_chain, result} where result is the return value
of the training function.

 training_completed(decision, reasoning, opts \\ [])

 @spec training_completed(String.t(), String.t(), keyword()) :: CrucibleTrace.Event.t()

Creates a training_completed event.
Options
	:final_loss - Final training loss
	:final_accuracy - Final accuracy
	:total_epochs - Total epochs trained
	:experiment_id - Associated experiment ID

 training_started(decision, reasoning, opts \\ [])

 @spec training_started(String.t(), String.t(), keyword()) :: CrucibleTrace.Event.t()

Creates a training_started event.
Options
	:model_name - Name of the model being trained
	:dataset - Dataset name
	:config - Training configuration map
	:experiment_id - Associated experiment ID
	:stage_id - Associated stage ID
	:parent_id - Parent event ID

CrucibleTrace.Viewer

Generates interactive HTML visualizations of causal trace chains.
Creates rich, browsable views of reasoning chains with syntax highlighting,
filtering, and interactive exploration features.

 Summary

 Functions

 generate_html(chain, opts \\ [])

 Generates an HTML page for visualizing a chain.

 open_in_browser(chain, opts \\ [])

 Opens the HTML visualization in the default browser.

 save_html(chain, file_path, opts \\ [])

 Saves the HTML visualization to a file.

 Functions

 generate_html(chain, opts \\ [])

Generates an HTML page for visualizing a chain.
Returns the HTML content as a string.
Options
	:title - Page title (default: chain name)
	:style - CSS theme, :light or :dark (default: :light)
	:include_statistics - Show statistics panel (default: true)
	:include_timeline - Show timeline visualization (default: true)

 open_in_browser(chain, opts \\ [])

Opens the HTML visualization in the default browser.
Saves to a temporary file and opens it.

 save_html(chain, file_path, opts \\ [])

Saves the HTML visualization to a file.
Returns {:ok, file_path} if successful, {:error, reason} otherwise.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

