

 crux

 v0.1.1

 Table of contents

 	
 Modules

 	Crux

 	Crux.Expression

 	Crux.Expression.RewriteRule

 	Crux.Formula

 	Crux.Implementation

 	Rewrite Rules

 	Crux.Expression.RewriteRule.AbsorptionLaw

 	Crux.Expression.RewriteRule.AnnihilatorLaw

 	Crux.Expression.RewriteRule.AssociativityLaw

 	Crux.Expression.RewriteRule.CommutativityLaw

 	Crux.Expression.RewriteRule.ComplementLaw

 	Crux.Expression.RewriteRule.ConsensusTheorem

 	Crux.Expression.RewriteRule.DeMorgansLaw

 	Crux.Expression.RewriteRule.DistributiveLaw

 	Crux.Expression.RewriteRule.DistributivityBasedSimplificationLaw

 	Crux.Expression.RewriteRule.IdempotentLaw

 	Crux.Expression.RewriteRule.IdentityLaw

 	Crux.Expression.RewriteRule.NegationLaw

 	Crux.Expression.RewriteRule.TautologyLaw

 	Crux.Expression.RewriteRule.UnitResolution

Crux

[image: Elixir CI]
[image: OpenSSF Scorecard]
[image: License: MIT]
[image: Hex version badge]
[image: Hexdocs badge]
[image: REUSE status]
[image: Crux DeepWiki]
Crux is a powerful Elixir library for boolean satisfiability (SAT) solving,
boolean expression manipulation, and constraint satisfaction. It provides an
intuitive DSL for creating boolean expressions and a comprehensive toolkit for
working with satisfiability problems.
Features
	Boolean Expression DSL - Intuitive macro for creating complex boolean
expressions
	SAT Solving - Solve satisfiability problems with multiple backend solvers
	Expression Manipulation - Simplify, evaluate, and transform boolean
expressions
	CNF Conversion - Convert expressions to Conjunctive Normal Form for SAT
solving
	Decision Trees - Build binary decision trees for exploring satisfying
assignments
	Constraint Helpers - Built-in functions for common constraint patterns
	Multiple Backends - Support for PicoSAT (fast NIF) and SimpleSAT (pure
Elixir)

Installation
Add crux to your list of dependencies in mix.exs:
def deps do
 [
 {:crux, "~> 0.1.1"},
 # Choose one SAT solver backend:
 {:picosat_elixir, "~> 0.2"}, # Recommended: Fast NIF-based solver
 # OR
 {:simple_sat, "~> 0.1"} # Pure Elixir alternative
]
end
Quick Start
Creating Boolean Expressions
Use the b/1 macro to create boolean expressions with an intuitive syntax:
import Crux.Expression

Basic boolean operations
expr = b(:user_logged_in and (:is_admin or :is_moderator))

Advanced boolean operators
expr = b(xor(:payment_cash, :payment_card)) # exactly one payment method
expr = b(implies(:is_student, :gets_discount)) # if student then discount
Solving Satisfiability Problems
Convert expressions to formulas and solve them:
alias Crux.{Expression, Formula}

Create and solve a formula
expression = Expression.b(:a and (:b or :c))
formula = Formula.from_expression(expression)

case Crux.solve(formula) do
 {:ok, solution} ->
 IO.inspect(solution) # %{a: true, b: true, c: false}
 {:error, :unsatisfiable} ->
 IO.puts("No solution exists")
end
Expression Manipulation
import Crux.Expression

Simplify expressions
complex_expr = b((:a and true) or (false and :b))
simple_expr = Expression.simplify(complex_expr) # :a

Evaluate with variable assignments
result = Expression.run(b(:a and :b), fn
 :a -> true
 :b -> false
end) # false

Convert to Conjunctive Normal Form
cnf_expr = Expression.to_cnf(b(:a or (:b and :c)))
Core Concepts
Expressions
Boolean expressions are the foundation of Crux. They support:
	Variables (atoms like :user, :admin)
	Constants (true, false)
	Basic operators (and, or, not)
	Advanced operators (xor, nand, nor, implies, implied_by, xnor)

Formulas
Formulas are expressions converted to Conjunctive Normal Form (CNF) for SAT solving:
formula = Formula.from_expression(Expression.b(:a and :b))
%Formula{
cnf: [[1], [2]],
bindings: %{1 => :a, 2 => :b},
reverse_bindings: %{a: 1, b: 2}
}
SAT Solving
Crux can determine if boolean formulas are satisfiable and find satisfying assignments:
Check satisfiability
Crux.satisfiable?(formula) # true/false

Find all satisfying scenarios
Crux.satisfying_scenarios(formula) # [%{a: true, b: true}]

Build decision trees
tree = Crux.decision_tree(formula) # {:a, false, {:b, false, true}}
API Overview
Core Modules
	Crux - Main SAT solving functions (solve/1, satisfiable?/1, decision_tree/2)
	Crux.Expression - Boolean expression creation and manipulation
	Crux.Formula - CNF formula representation and conversion

Expression Functions
Creation
Expression.b(:a and :b)

Manipulation
Expression.simplify/1 # Simplify expressions
Expression.to_cnf/1 # Convert to CNF
Expression.balance/1 # Normalize operand order

Evaluation
Expression.run/2 # Evaluate with variable bindings
Expression.expand/2 # Expand with custom callbacks

Traversal
Expression.prewalk/2 # Pre-order traversal
Expression.postwalk/2 # Post-order traversal

Constraint helpers
Expression.at_most_one/1 # At most one variable true
Expression.exactly_one/1 # Exactly one variable true
Expression.all_or_none/1 # All variables same value
SAT Solver Backends
Crux supports multiple SAT solver backends:
PicoSAT (Recommended)
{:picosat_elixir, "~> 0.2"}
	Fast NIF-based solver
	Production-ready and battle-tested
	Best performance for large problems

SimpleSAT
{:simple_sat, "~> 0.1"}
	Pure Elixir implementation
	No NIF dependencies
	Suitable for smaller problems or when avoiding NIFs

Advanced Features
Decision Trees
Build binary decision trees to explore all satisfying assignments:
formula = Formula.from_expression(Expression.b(:a and :b))
tree = Crux.decision_tree(formula, sorter: &<=/2)
{:a, false, {:b, false, true}}
Constraint Patterns
Crux provides helpers for common constraint satisfaction patterns:
import Crux.Expression

User can have at most one role
roles = [:admin, :moderator, :user]
at_most_one_role = at_most_one(roles)

Payment methods - exactly one must be selected
payment_methods = [:cash, :card, :paypal]
payment_constraint = exactly_one(payment_methods)

Feature flags - all related features synchronized
related_features = [:dark_mode_ui, :dark_mode_api]
sync_constraint = all_or_none(related_features)
Domain Knowledge Integration
Provide custom conflict and implication rules for domain-specific validation:
opts = [
 conflicts?: fn
 :admin, :guest -> true # admin and guest roles conflict
 _, _ -> false
 end,
 implies?: fn
 :admin, :can_delete -> true # admin implies delete permission
 _, _ -> false
 end
]

scenarios = Crux.satisfying_scenarios(formula, opts)
Use Cases
Authorization Policies
Model complex authorization rules:
import Crux.Expression

User access policy
policy = b(
 (:is_owner or :is_admin) and
 not :is_suspended and
 (:has_subscription or :is_trial_user)
)

Check if a specific user satisfies the policy
user_context = %{
 is_owner: false,
 is_admin: true,
 is_suspended: false,
 has_subscription: true,
 is_trial_user: false
}

result = Expression.run(policy, fn var -> Map.get(user_context, var, false) end)

case result do
 true -> :access_granted
 false -> :access_denied
end
Resource Scheduling
Model resource allocation constraints:
Meeting room scheduling
rooms = [:room_a, :room_b, :room_c]
time_slots = [:slot_1, :slot_2, :slot_3]

constraints = for room <- rooms do
 # Each room can be booked at most once per time slot
 at_most_one(for slot <- time_slots, do: :"#{room}_#{slot}")
end

 Summary

 Types

 opts(variable)

 Options for decision tree and scenario generation functions.

 tree(variable)

 A binary decision tree for exploring satisfying assignments.

 Functions

 decision_tree(formula, opts \\ [])

 Builds a binary decision tree exploring all satisfying assignments.

 satisfiable?(formula)

 Returns true if the formula is satisfiable (has at least one solution), false otherwise.

 satisfying_scenarios(formula, opts \\ [])

 Finds all satisfying assignments for a formula.

 solve(formula)

 Solves a SAT formula and returns a satisfying assignment.

 validate_assignments(assignments, opts \\ [])

 Validates a collection of variable assignments using domain knowledge.

 Types

 opts(variable)

 @type opts(variable) :: [
 sorter: (variable, variable -> boolean()),
 conflicts?: (variable, variable -> boolean()),
 implies?: (variable, variable -> boolean())
]

Options for decision tree and scenario generation functions.
	:sorter - A comparison function for variable ordering
	:conflicts? - A function that returns true if two variables conflict
	:implies? - A function that returns true if the first variable implies the second

 tree(variable)

 @type tree(variable) ::
 {variable, tree(variable) | boolean(), tree(variable) | boolean()} | boolean()

A binary decision tree for exploring satisfying assignments.
Each node is either:
	{variable, left_tree, right_tree} where left_tree is the result when variable=false
and right_tree is the result when variable=true
	true if the formula is satisfiable
	false if the formula is unsatisfiable

 Functions

 decision_tree(formula, opts \\ [])

 @spec decision_tree(Crux.Formula.t(variable), opts(variable)) :: tree(variable)
when variable: term()

Builds a binary decision tree exploring all satisfying assignments.
The tree represents all possible ways to assign boolean values to variables
such that the formula is satisfied. Variables are processed in the order
determined by the sorter function.
Parameters
	formula - The SAT formula to explore
	opts - Keyword list of options

Options
	:sorter - A comparison function (variable, variable -> boolean()) for variable ordering.
Defaults to &<=/2.
	:conflicts? - A function (variable, variable -> boolean()) that returns true if the two
variables conflict with each other. Used to detect when variables are mutually exclusive.
Defaults to fn _, _ -> false end.
	:implies? - A function (variable, variable -> boolean()) that returns true if the first
variable implies the value of the second variable. Defaults to fn _, _ -> false end.

Examples
iex> formula = Formula.from_expression(Expression.b(:a and :b))
...> Crux.decision_tree(formula)
{:a, false, {:b, false, true}}

iex> formula = Formula.from_expression(Expression.b(:a and :b))
...> Crux.decision_tree(formula, sorter: &>=/2)
{:b, false, {:a, false, true}}

 satisfiable?(formula)

 @spec satisfiable?(Crux.Formula.t()) :: boolean()

Returns true if the formula is satisfiable (has at least one solution), false otherwise.
Examples
iex> formula = Formula.from_expression(Expression.b(:a or :b))
...> Crux.satisfiable?(formula)
true

iex> formula = Formula.from_expression(Expression.b(:a and not :a))
...> Crux.satisfiable?(formula)
false

 satisfying_scenarios(formula, opts \\ [])

 @spec satisfying_scenarios(Crux.Formula.t(variable), opts(variable)) :: [
 %{required(variable) => boolean()}
]
when variable: term()

Finds all satisfying assignments for a formula.
Takes a formula and returns a list of maps, where each map represents
a complete variable assignment that satisfies the formula.
Parameters
	formula - The SAT formula to explore
	opts - Keyword list of options

Options
	:conflicts? - A function (variable, variable -> boolean()) that returns true if the two
variables conflict with each other. Used to filter out impossible scenarios.
Defaults to fn _, _ -> false end.
	:implies? - A function (variable, variable -> boolean()) that returns true if the first
variable implies the value of the second variable. Used to minimize scenarios.
Defaults to fn _, _ -> false end.

Examples
iex> formula = Formula.from_expression(Expression.b(:a and :b))
...> Crux.satisfying_scenarios(formula)
[%{a: true, b: true}]

iex> formula = Formula.from_expression(Expression.b(:a or :b))
...> Crux.satisfying_scenarios(formula) |> Enum.sort()
[%{a: true}, %{b: true}]

 solve(formula)

 @spec solve(Crux.Formula.t(variable)) ::
 {:ok, %{required(variable) => boolean()}} | {:error, :unsatisfiable}
when variable: term()

Solves a SAT formula and returns a satisfying assignment.
Returns {:ok, solution} with a map of variable assignments, or
{:error, :unsatisfiable} if no solution exists.
Examples
iex> formula = Formula.from_expression(Expression.b(:a and :b))
...> Crux.solve(formula)
{:ok, %{a: true, b: true}}

iex> formula = Formula.from_expression(Expression.b(:a and not :a))
...> Crux.solve(formula)
{:error, :unsatisfiable}

 validate_assignments(assignments, opts \\ [])

 @spec validate_assignments(Enumerable.t({variable, boolean()}), opts(variable)) ::
 {:ok, [{variable, boolean()}]} | {:error, :unsatisfiable}
when variable: term()

Validates a collection of variable assignments using domain knowledge.
Takes an enumerable of {variable, boolean()} pairs and validates them using
the provided conflict and implication callbacks. Variables are processed in
sorted order.
Returns {:ok, filtered_assignments} if all assignments are valid, or
{:error, :unsatisfiable} if any conflicts are detected.
Parameters
	assignments - An enumerable of {variable, boolean()} pairs
	opts - Options containing :sorter, :conflicts?, and :implies? callbacks

Examples
iex> assignments = [a: true, c: true]
...>
...> opts = [
...> implies?: fn
...> :a, :c -> true
...> _, _ -> false
...> end
...>]
...>
...> Crux.validate_assignments(assignments, opts)
{:ok, [a: true]}

Crux.Expression

Boolean expression representation and manipulation for SAT solving.
Provides a DSL for creating boolean expressions with the b/1 macro, plus functions
for traversal, evaluation, simplification, and CNF conversion.

 Summary

 Types

 cnf(variable)

 Conjunctive Normal Form (CNF) expression.

 cnf_clause(variable)

 A clause in CNF - a disjunction (OR) of literals.

 cnf_conjunction(variable)

 A conjunction (AND) of clauses in CNF.

 cnf_literal(variable)

 A literal in CNF.

 t()

 See t/1.

 t(variable)

 Represents an expression.

 walker(variable, acc)

 A walker function that can be either stateless or stateful.

 walker_stateful(variable, acc)

 A stateful walker function that operates on expressions with an accumulator.

 walker_stateless(variable)

 A stateless walker function that operates on expressions.

 Functions

 all_or_none(variables)

 Returns an expression that ensures all variables have the same truth value.

 at_most_one(variables)

 Returns an expression that ensures at most one of the given variables can be true.

 b(ast)

 Creates tuples of a boolean statement.

 balance(expression)

 Balances a boolean expression by normalizing operand order.

 exactly_one(variables)

 Returns an expression that ensures exactly one of the given variables is true.

 expand(expression, callback)

 Expands a boolean expression using a callback function without accumulator.

 expand(expression, acc, callback)

 Expands a boolean expression using a callback function with accumulator.

 generate_expression(inner_generator)

 Generates random boolean expressions for property-based testing.

 in_cnf?(expr)

 Checks if an expression is in Conjunctive Normal Form (CNF).

 is_literal(expr)

 is_operation(expr)

 is_variable(expr)

 postwalk(expression, fun)

 Performs a depth-first, post-order traversal of the expression.

 postwalk(expression, acc, fun)

 Performs a depth-first, post-order traversal of the expression using an accumulator.

 prewalk(expression, fun)

 Performs a depth-first, pre-order traversal of the expression.

 prewalk(expression, acc, fun)

 Performs a depth-first, pre-order traversal of the expression using an accumulator.

 run(expression, eval_fn)

 Evaluates a boolean expression using a variable evaluation callback.

 simplify(expression)

 Simplifies a boolean expression using all available simplification laws.

 to_algebra(expression, algebra_opts \\ [], variable_ast_callback \\ &Macro.escape/1)

 Converts an expression to an Inspect.Algebra document.

 to_ast(expression, variable_ast_callback \\ &Macro.escape/1)

 Converts an expression to an AST.

 to_cnf(expression)

 Converts an expression to conjunctive normal form (CNF).

 to_string(expression, variable_ast_callback \\ &Macro.escape/1)

 Converts an expression to a string.

 Types

 cnf(variable)

 @type cnf(variable) :: cnf_conjunction(variable)

Conjunctive Normal Form (CNF) expression.
CNF is a conjunction (AND) of clauses, where each clause is a
disjunction (OR) of literals. A literal is either a variable,
a negated variable, or a boolean constant.
Examples:
	a (single literal)
	a OR b (single clause)
	(a OR b) AND c (two clauses)
	(a OR NOT b) AND (c OR d) (two clauses with negation)

 cnf_clause(variable)

 @type cnf_clause(variable) ::
 {:or, cnf_clause(variable), cnf_clause(variable)} | cnf_literal(variable)

A clause in CNF - a disjunction (OR) of literals.
Can be either a single literal or multiple literals joined by OR.

 cnf_conjunction(variable)

 @type cnf_conjunction(variable) ::
 {:and, cnf_conjunction(variable), cnf_conjunction(variable)}
 | cnf_clause(variable)

A conjunction (AND) of clauses in CNF.
Can be either a single clause or multiple clauses joined by AND.

 cnf_literal(variable)

 @type cnf_literal(variable) :: variable | {:not, variable} | boolean()

A literal in CNF.
Can be:
	A variable
	A negated variable
	A boolean constant

 t()

 @type t() :: t(term())

See t/1.

 t(variable)

 @type t(variable) ::
 {:and, t(variable), t(variable)}
 | {:or, t(variable), t(variable)}
 | {:not, t(variable)}
 | true
 | false
 | variable

Represents an expression.

 walker(variable, acc)

 @type walker(variable, acc) ::
 walker_stateless(variable) | walker_stateful(variable, acc)

A walker function that can be either stateless or stateful.

 walker_stateful(variable, acc)

 @type walker_stateful(variable, acc) :: (t(variable), acc -> {t(variable), acc})

A stateful walker function that operates on expressions with an accumulator.
Takes an expression and an accumulator, returns a transformed expression
and updated accumulator.

 walker_stateless(variable)

 @type walker_stateless(variable) :: (t(variable) -> t(variable))

A stateless walker function that operates on expressions.
Takes an expression and returns a transformed expression.

 Functions

 all_or_none(variables)

 @spec all_or_none([variable]) :: t(variable) when variable: term()

Returns an expression that ensures all variables have the same truth value.
This function creates constraints where either all variables are true together,
or all are false together (also known as "mutually inclusive" or "biconditional"
constraints). It's useful for modeling linked states like database transactions,
feature flags, or cache coherency where states must be synchronized.
Examples
iex> # Database transaction - both happen or neither
...> all_or_none([:begin_transaction, :commit_transaction])
{:not,
 {:and, {:not, {:and, :begin_transaction, :commit_transaction}},
 {:or, :begin_transaction, :commit_transaction}}}

iex> # Feature flags - UI and API dark mode go together
...> all_or_none([:dark_mode_ui, :dark_mode_api])
{:not,
 {:and, {:not, {:and, :dark_mode_api, :dark_mode_ui}}, {:or, :dark_mode_api, :dark_mode_ui}}}

iex> # Empty list always satisfied
...> all_or_none([])
true

iex> # Single variable always satisfied
...> all_or_none([:single])
true
Truth Table for [:a, :b, :c]
	:a	:b	:c	Valid?
	F	F	F	✓
	T	T	T	✓
	T	F	F	✗
	F	T	F	✗
	F	F	T	✗
	T	T	F	✗
	T	F	T	✗
	F	T	T	✗

 at_most_one(variables)

 @spec at_most_one([variable]) :: t(variable) when variable: term()

Returns an expression that ensures at most one of the given variables can be true.
This function creates constraints where any two variables cannot both be true
simultaneously (also known as "mutually exclusive" constraints). It's useful for
modeling scenarios like user roles, payment methods, or file states where only
one option should be active at a time.
Examples
iex> # User roles - person can have at most one role
...> at_most_one([:admin, :user, :guest])
{:and, {:not, {:and, :guest, :user}},
 {:and, {:not, {:and, :admin, :guest}}, {:not, {:and, :admin, :user}}}}

iex> # Payment methods - choose at most one option
...> at_most_one([:credit_card, :paypal])
{:not, {:and, :credit_card, :paypal}}

iex> # Empty list always satisfied
...> at_most_one([])
true

iex> # Single variable always satisfied
...> at_most_one([:single])
true
Truth Table for [:a, :b, :c]
	:a	:b	:c	Valid?
	F	F	F	✓
	T	F	F	✓
	F	T	F	✓
	F	F	T	✓
	T	T	F	✗
	T	F	T	✗
	F	T	T	✗
	T	T	T	✗

 b(ast)

 (macro)

Creates tuples of a boolean statement.
Supports basic boolean operations (and, or, not) as well as higher-order
boolean operators for common logical patterns.
Examples
iex> # Complex expression using basic operators
...> b((:a and not :b) or (not :c and :d))
{:or, {:and, :a, {:not, :b}}, {:and, {:not, :c}, :d}}

iex> # NAND (Not AND) - "not both"
...> b(nand(:a, :b))
{:not, {:and, :a, :b}}

iex> # NOR (Not OR) - "neither"
...> b(nor(:a, :b))
{:not, {:or, :a, :b}}

iex> # XOR (Exclusive OR) - "exactly one"
...> b(xor(:a, :b))
{:and, {:or, :a, :b}, {:not, {:and, :a, :b}}}

iex> # XNOR (Not Exclusive OR) - "both or neither"
...> b(xnor(:a, :b))
{:not, {:and, {:or, :a, :b}, {:not, {:and, :a, :b}}}}

iex> # IMPLIES - "if A then B"
...> b(implies(:a, :b))
{:not, {:and, :a, {:not, :b}}}

iex> # IMPLIED_BY - "A if B"
...> b(implied_by(:a, :b))
{:not, {:and, :b, {:not, :a}}}

 balance(expression)

 @spec balance(expression :: t(variable)) :: t(variable) when variable: term()

Balances a boolean expression by normalizing operand order.
This function sorts operands in AND and OR expressions to create a canonical
form that makes expressions easier to compare and reason about.

 exactly_one(variables)

 @spec exactly_one([variable]) :: t(variable) when variable: term()

Returns an expression that ensures exactly one of the given variables is true.
This function combines at_most_one/1 with additional constraints ensuring that
at least one variable must be true (also known as "mutually exclusive and
collectively exhaustive" constraints). It's useful for modeling radio button
scenarios like order status, user preferences, or permission levels where exactly
one option must be selected.
Examples
iex> # User preference - must pick exactly one theme
...> exactly_one([:light_theme, :dark_theme])
{:and, {:not, {:and, :dark_theme, :light_theme}}, {:or, :dark_theme, :light_theme}}

iex> # Empty list can never satisfy exactly one
...> exactly_one([])
false

iex> # Single variable must be true
...> exactly_one([:single])
:single
Truth Table for [:a, :b, :c]
	:a	:b	:c	Valid?
	F	F	F	✗
	T	F	F	✓
	F	T	F	✓
	F	F	T	✓
	T	T	F	✗
	T	F	T	✗
	F	T	T	✗
	T	T	T	✗

 expand(expression, callback)

 @spec expand(expression :: t(variable), callback :: (t(variable) -> t(variable))) ::
 t(variable)
when variable: term()

Expands a boolean expression using a callback function without accumulator.
Convenience function for when no accumulator state is needed.
Examples
iex> expand(b(:a and true), fn
...> var when is_variable(var) -> var
...> other -> other
...> end)
:a

 expand(expression, acc, callback)

 @spec expand(
 expression :: t(variable),
 acc,
 callback :: (t(variable), acc -> {t(variable), acc})
) :: {t(variable), acc}
when variable: term(), acc: term()

Expands a boolean expression using a callback function with accumulator.
Similar to run/2 but exposes the accumulator and uses a callback for expansion
rather than just variable evaluation. This allows for more complex transformations
that need to maintain state across the traversal.
Examples
iex> expand(b(:a and :b), [], fn
...> var, acc when is_variable(var) -> {var, [var | acc]}
...> other, acc -> {other, acc}
...> end)
{b(:a and :b), [:b, :a]}

iex> expand(b(true or :a), [], fn
...> var, acc when is_variable(var) -> {var, [var | acc]}
...> other, acc -> {other, acc}
...> end)
{true, []}
Note: :a is not visited due to short-circuiting

 generate_expression(inner_generator)

 @spec generate_expression(StreamData.t(variable)) :: StreamData.t(t(variable))
when variable: term()

Generates random boolean expressions for property-based testing.
Uses StreamData.tree to create recursive boolean expressions with the provided
leaf generator for terminal values. Automatically includes booleans alongside
the provided inner generator.

 in_cnf?(expr)

 @spec in_cnf?(expression :: t(variable)) :: boolean() when variable: term()

Checks if an expression is in Conjunctive Normal Form (CNF).
CNF is a conjunction (AND) of clauses, where each clause is a
disjunction (OR) of literals. A literal is either a variable,
a negated variable, or a boolean constant.
Examples
iex> in_cnf?(b(:a and :b))
true

iex> in_cnf?(b(:a or :b))
true

iex> in_cnf?(b((:a or :b) and :c))
true

iex> in_cnf?(b(:a or (:b and :c)))
false

iex> in_cnf?(b(not (:a and :b)))
false

iex> in_cnf?(b(not :a))
true

 is_literal(expr)

 (macro)

 is_operation(expr)

 (macro)

 is_variable(expr)

 (macro)

 postwalk(expression, fun)

 @spec postwalk(expression :: t(variable), fun :: walker_stateless(variable)) ::
 t(variable)
when variable: term()

Performs a depth-first, post-order traversal of the expression.
Examples
iex> postwalk(b(:a and :b), fn
...> {:and, left, right} -> {:or, left, right}
...> other -> other
...> end)
{:or, :a, :b}

iex> postwalk(b(:a and (:b or :c)), fn
...> {:and, left, right} -> {:or, left, right}
...> {:or, left, right} -> {:and, left, right}
...> other -> other
...> end)
{:or, :a, {:and, :b, :c}}

 postwalk(expression, acc, fun)

 @spec postwalk(
 expression :: t(variable),
 acc,
 fun :: walker_stateful(variable, acc)
) :: {t(variable), acc}
when variable: term(), acc: term()

Performs a depth-first, post-order traversal of the expression using an accumulator.
Examples
iex> {_result, acc} =
...> postwalk(b(:a and :b), [], fn
...> {:and, _, _} = expr, acc -> {expr, [:and | acc]}
...> other, acc -> {other, acc}
...> end)
...>
...> acc
[:and]

iex> {_result, count} =
...> postwalk(b(:a and (:b or :c)), 0, fn
...> {:and, _, _} = expr, acc -> {expr, acc + 1}
...> {:or, _, _} = expr, acc -> {expr, acc + 1}
...> other, acc -> {other, acc}
...> end)
...>
...> count
2

 prewalk(expression, fun)

 @spec prewalk(expression :: t(variable), fun :: walker_stateless(variable)) ::
 t(variable)
when variable: term()

Performs a depth-first, pre-order traversal of the expression.
Examples
iex> prewalk(b(:a and :b), fn
...> {:and, left, right} -> {:or, left, right}
...> other -> other
...> end)
{:or, :a, :b}

iex> prewalk(b(:a and (:b or :c)), fn
...> {:and, left, right} -> {:or, left, right}
...> {:or, left, right} -> {:and, left, right}
...> other -> other
...> end)
{:or, :a, {:and, :b, :c}}

 prewalk(expression, acc, fun)

 @spec prewalk(
 expression :: t(variable),
 acc,
 fun :: walker_stateful(variable, acc)
) :: {t(variable), acc}
when variable: term(), acc: term()

Performs a depth-first, pre-order traversal of the expression using an accumulator.
Examples
iex> {_result, acc} =
...> prewalk(b(:a and :b), [], fn
...> {:and, _, _} = expr, acc -> {expr, [:and | acc]}
...> other, acc -> {other, acc}
...> end)
...>
...> acc
[:and]

iex> {_result, count} =
...> prewalk(b(:a and (:b or :c)), 0, fn
...> {:and, _, _} = expr, acc -> {expr, acc + 1}
...> {:or, _, _} = expr, acc -> {expr, acc + 1}
...> other, acc -> {other, acc}
...> end)
...>
...> count
2

 run(expression, eval_fn)

 @spec run(expression :: t(variable), eval_fn :: (variable -> result)) :: t(result)
when variable: term(), result: term()

Evaluates a boolean expression using a variable evaluation callback.
Examples
iex> run(b(:a and :b), fn
...> :a -> true
...> :b -> false
...> end)
false

iex> run(b(:a or :b), fn
...> :a -> true
...> :b -> false
...> end)
true

iex> run(b(not :a), fn :a -> true end)
false

iex> run(b(:a and (true or :a)), & &1)
:a

 simplify(expression)

 @spec simplify(expression :: t(variable)) :: t(variable) when variable: term()

Simplifies a boolean expression using all available simplification laws.
Applies all boolean laws except De Morgan's and Distributive laws, which are
reserved for CNF conversion. This provides general-purpose simplification
that preserves logical equivalence while reducing expression complexity.
Examples
iex> simplify(b(not not :a and (:a and :a)))
:a

iex> simplify(b(true and (:x or false)))
:x

iex> simplify(b(:a or (not :a or :b)))
true

 to_algebra(expression, algebra_opts \\ [], variable_ast_callback \\ &Macro.escape/1)

 @spec to_algebra(
 expression :: t(variable),
 algebra_opts :: keyword(),
 variable_ast_callback :: (variable -> Macro.t())
) :: Inspect.Algebra.t()
when variable: term()

Converts an expression to an Inspect.Algebra document.
See Code.quoted_to_algebra/2 for formatting options.
Examples
iex> b(:a and not :b)
...> |> to_algebra()
...> |> Inspect.Algebra.format(80)
...> |> IO.iodata_to_binary()
":a and not :b"

You can customize how variables are represented:
iex> b(:a and not :b)
...> |> to_algebra([], fn var -> quote do: unquote(var)() end)
...> |> Inspect.Algebra.format(80)
...> |> IO.iodata_to_binary()
"a() and not b()"

 to_ast(expression, variable_ast_callback \\ &Macro.escape/1)

 @spec to_ast(
 expression :: t(variable),
 variable_ast_callback :: (variable -> Macro.t())
) :: Macro.t()
when variable: term()

Converts an expression to an AST.
You can pass a callback to convert variables to AST nodes.
By default, it uses Macro.escape/1.
Examples
iex> {:and, _meta, [:a, :b]} = to_ast(b(:a and :b))

You can customize how variables are represented:
iex> {:and, _, [{:a, _, []}, {:b, _, []}]} =
...> to_ast(b(:a and :b), fn var -> quote do: unquote(var)() end)

 to_cnf(expression)

 @spec to_cnf(expression :: t(variable)) :: cnf(variable) when variable: term()

Converts an expression to conjunctive normal form (CNF).
Applies the following transformations:
	Negation Law
	De Morgan's laws (which may create new double negations)
	Negation Law again
	Distributive law

 to_string(expression, variable_ast_callback \\ &Macro.escape/1)

 @spec to_string(
 expression :: t(variable),
 variable_ast_callback :: (variable -> Macro.t())
) ::
 String.t()
when variable: term()

Converts an expression to a string.
For more control over formatting, use to_algebra/3 and Inspect.Algebra.format/2.
Examples
iex> Elixir.Crux.Expression.to_string(b(:a and not :b))
":a and not :b"

You can customize how variables are represented:
iex> Elixir.Crux.Expression.to_string(b(:a and not :b), fn var -> quote do: unquote(var)() end)
"a() and not b()"

Crux.Expression.RewriteRule behaviour

Behaviour for defining expression rewrite rules.
A rewrite rule defines how to transform boolean expressions during traversal.
Rules can be composed together or applied individually depending on their
exclusivity requirements.

 Summary

 Types

 acc_id(variable, acc)

 acc_map(variable, acc)

 rule_options()

 rule_spec(variable, acc)

 t()

 Callbacks

 exclusive?()

 Returns whether this rule is exclusive.

 needs_reapplication?()

 Returns whether this rule may need reapplication.

 type()

 Returns the traversal type for this rule.

 walk(t)

 Transforms an expression without an accumulator.

 walk_stateful(t, acc)

 Transforms an expression with an accumulator.

 Functions

 apply(expression, rules)

 Applies a list of rewrite rules to an expression.

 Types

 acc_id(variable, acc)

 @type acc_id(variable, acc) :: t() | Crux.Expression.walker(variable, acc)

 acc_map(variable, acc)

 @type acc_map(variable, acc) :: %{required(acc_id(variable, acc)) => acc}

 rule_options()

 @type rule_options() :: [
 exclusive?: boolean(),
 needs_reapplication?: boolean(),
 type: :prewalk | :postwalk
]

 rule_spec(variable, acc)

 @type rule_spec(variable, acc) ::
 t()
 | Crux.Expression.walker_stateless(variable)
 | {Crux.Expression.walker_stateful(variable, acc), acc}
 | {Crux.Expression.walker_stateful(variable, acc), acc, rule_options()}

 t()

 @type t() :: module()

 Callbacks

 exclusive?()

 @callback exclusive?() :: boolean()

Returns whether this rule is exclusive.
An exclusive rule cannot be composed with other rules and must be applied
in isolation. Non-exclusive rules can be composed together for efficiency.

 needs_reapplication?()

 @callback needs_reapplication?() :: boolean()

Returns whether this rule may need reapplication.
Rules that return true may be applied multiple times until a fixpoint
is reached (no further changes occur). Rules that return false are
applied only once.

 type()

 @callback type() :: :prewalk | :postwalk

Returns the traversal type for this rule.
Must return either :prewalk or :postwalk to indicate when during
tree traversal this rule should be applied.

 walk(t)

 (optional)

 @callback walk(Crux.Expression.t(variable)) :: Crux.Expression.t(variable)
when variable: term()

Transforms an expression without an accumulator.
This is the core transformation logic for the rule.

 walk_stateful(t, acc)

 @callback walk_stateful(Crux.Expression.t(variable), acc) ::
 {Crux.Expression.t(variable), acc}
when variable: term(), acc: term()

Transforms an expression with an accumulator.
This callback is optional - if not implemented, the default implementation
will call walk/1 and return {result, acc}.

 Functions

 apply(expression, rules)

 @spec apply(Crux.Expression.t(variable), [rule_spec(variable, acc)]) ::
 {Crux.Expression.t(variable), acc_map(variable, acc)}
when variable: term(), acc: term()

Applies a list of rewrite rules to an expression.
Rules are processed in chunks based on their exclusivity and type while
preserving the order they appear in the list. Adjacent rules with the same
exclusivity and type are grouped together for efficiency.
Rule Processing
	Rules are chunked by adjacency of exclusivity and type
	Exclusive rules always get their own chunk
	Each chunk is applied sequentially to the result of the previous chunk
	If any rule in a chunk has needs_reapplication?() == true, the chunk
is reapplied until no changes occur (fixpoint)

Examples
iex> import Crux.Expression, only: [b: 1]
...> expr = b(not not :a)
...>
...> {result, _acc_map} =
...> RewriteRule.apply(expr, [
...> Crux.Expression.RewriteRule.NegationLaw
...>])
...>
...> result
:a

Crux.Formula

A module for representing and manipulating satisfiability formulas in
Conjunctive Normal Form (CNF).

 Summary

 Types

 affirmed_literal()

 An affirmed_literal() is a positive integer representing a variable that is
asserted to be true.

 bindings()

 See bindings/1.

 bindings(variable)

 A binding() maps a positive integer (the variable) to its original value.

 clause()

 A clause is a disjunction of literal()s.

 cnf()

 A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses,
where each clause() is a disjunction of literal()s.

 literal()

 A literal() is either an affirmed_literal() (a positive integer) or
a negated_literal() (a negative integer).

 negated_literal()

 A negated_literal() is a negative integer representing a variable that is
asserted to be false.

 reverse_bindings(variable)

 A reverse binding maps a variable to its positive integer representation.
This provides O(log n) lookup for variable-to-integer mappings.

 t()

 See t/1.

 t(variable)

 A satisfiability formula in Conjunctive Normal Form (CNF) along with
bindings that map the integers used in the CNF back to their original values.

 Functions

 from_expression(expression)

 Converts a boolean expression to a SAT formula in Conjunctive Normal Form (CNF).

 to_expression(formula)

 Converts a SAT formula back to a boolean expression.

 to_picosat(formula)

 Formats a CNF formula to PicoSAT DIMACS format.

 Types

 affirmed_literal()

 @type affirmed_literal() :: pos_integer()

An affirmed_literal() is a positive integer representing a variable that is
asserted to be true.

 bindings()

 @type bindings() :: bindings(term())

See bindings/1.

 bindings(variable)

 @type bindings(variable) :: %{required(pos_integer()) => variable}

A binding() maps a positive integer (the variable) to its original value.

 clause()

 @type clause() :: [literal(), ...]

A clause is a disjunction of literal()s.
A clause is satisfied if at least one of its literal()s is satisfied.

 cnf()

 @type cnf() :: [clause()]

A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses,
where each clause() is a disjunction of literal()s.
All clause()s of a CNF formula must be satisfied for the formula to be satisfied.

 literal()

 @type literal() :: affirmed_literal() | negated_literal()

A literal() is either an affirmed_literal() (a positive integer) or
a negated_literal() (a negative integer).

 negated_literal()

 @type negated_literal() :: neg_integer()

A negated_literal() is a negative integer representing a variable that is
asserted to be false.

 reverse_bindings(variable)

 @type reverse_bindings(variable) :: %{required(variable) => pos_integer()}

A reverse binding maps a variable to its positive integer representation.
This provides O(log n) lookup for variable-to-integer mappings.

 t()

 @type t() :: t(term())

See t/1.

 t(variable)

 @type t(variable) :: %Crux.Formula{
 bindings: bindings(variable),
 cnf: cnf(),
 reverse_bindings: reverse_bindings(variable)
}

A satisfiability formula in Conjunctive Normal Form (CNF) along with
bindings that map the integers used in the CNF back to their original values.

 Functions

 from_expression(expression)

 @spec from_expression(Crux.Expression.t(variable)) :: t(variable)
when variable: term()

Converts a boolean expression to a SAT formula in Conjunctive Normal Form (CNF).
Examples
iex> import Crux.Expression
...> expression = b(:a and :b)
...> Formula.from_expression(expression)
%Formula{
 cnf: [[1], [2]],
 bindings: %{1 => :a, 2 => :b},
 reverse_bindings: %{a: 1, b: 2}
}

iex> expression = b(:x or not :y)
...> Formula.from_expression(expression)
%Formula{
 cnf: [[1, -2]],
 bindings: %{1 => :x, 2 => :y},
 reverse_bindings: %{x: 1, y: 2}
}

 to_expression(formula)

 @spec to_expression(formula :: t(variable)) :: Crux.Expression.cnf(variable)
when variable: term()

Converts a SAT formula back to a boolean expression.
Examples
iex> formula = %Formula{
...> cnf: [[1], [2]],
...> bindings: %{1 => :a, 2 => :b},
...> reverse_bindings: %{a: 1, b: 2}
...> }
...>
...> Formula.to_expression(formula)
b(:a and :b)

iex> formula = %Formula{
...> cnf: [[1, -2]],
...> bindings: %{1 => :x, 2 => :y},
...> reverse_bindings: %{x: 1, y: 2}
...> }
...>
...> Formula.to_expression(formula)
b(:x or not :y)

 to_picosat(formula)

 @spec to_picosat(t()) :: String.t()

Formats a CNF formula to PicoSAT DIMACS format.
Takes a formula struct and returns a string in the DIMACS CNF format
that can be consumed by SAT solvers like PicoSAT.
Examples
iex> alias Crux.{Expression, Formula}
...> formula = Formula.from_expression(Expression.b(:a and :b))
...> Formula.to_picosat(formula)
"p cnf 2 2\n1 0\n2 0"

Crux.Implementation

This module provides an interface to a SAT solver.
It tries to use the Picosat module if available, falling back to SimpleSat if not.
If neither is available, it raises an error when attempting to solve an expression.
You can also specify a custom SAT solver by setting the SAT_SOLVER environment variable
to the name of a module that implements the solve/1 function.
Alternatively, you can enable SAT testing by setting the :sat_testing configuration
for the :crux application. This will allow you to specify a custom SAT solver via
the SAT_SOLVER environment variable.

 Summary

 Functions

 check!()

 Checks if a SAT solver implementation is available.
Raises an error with instructions if not.

 Functions

 check!()

Checks if a SAT solver implementation is available.
Raises an error with instructions if not.

Crux.Expression.RewriteRule.AbsorptionLaw

Rewrite rule that applies absorption laws to simplify expressions.
See: https://en.wikipedia.org/wiki/Absorption_law
Applies the transformations:
	A AND (A OR B) = A
	(A OR B) AND A = A
	A OR (A AND B) = A
	(A AND B) OR A = A

The absorption laws state that a term can absorb another term when
one is a logical subset of the other.

Crux.Expression.RewriteRule.AnnihilatorLaw

Rewrite rule that applies boolean annihilator laws.
See: https://en.wikipedia.org/wiki/Boolean_algebra#Monotone_laws
Applies the transformations:
	A AND false = false (false annihilates AND)
	false AND A = false (false annihilates AND)
	A OR true = true (true annihilates OR)
	true OR A = true (true annihilates OR)

The annihilator laws state that certain values (false for AND, true for OR)
completely dominate the result regardless of other operands.

Crux.Expression.RewriteRule.AssociativityLaw

Rewrite rule that applies associativity optimizations to simplify expressions.
See: https://en.wikipedia.org/wiki/Associative_property
Applies the transformations:
	A OR (A OR B) = A OR B
	A OR B OR A = A OR B
	A AND (A AND B) = A AND B
	A AND B AND A = A AND B

The associativity optimizations leverage the associative property of boolean
operations to eliminate redundant terms when the same expression appears
multiple times in an associative context.

Crux.Expression.RewriteRule.CommutativityLaw

Rewrite rule that applies commutativity laws to normalize expression order.
See: https://en.wikipedia.org/wiki/Commutative_property
Applies the transformations:
	A AND B = B AND A
	A OR B = B OR A

This normalization helps other rewrite rules match patterns more effectively
by ensuring a consistent lexicographic order of operands.

Crux.Expression.RewriteRule.ComplementLaw

Rewrite rule that applies complement laws to simplify expressions.
See: https://en.wikipedia.org/wiki/Boolean_algebra#Complement
Applies the transformations:
	A OR NOT A = true (law of excluded middle)
	NOT A OR A = true (law of excluded middle)
	A AND NOT A = false (law of contradiction)
	NOT A AND A = false (law of contradiction)
	(A AND B) OR (A AND NOT B) = A (complement distribution)
	(A OR B) AND (A OR NOT B) = A (complement distribution)

The complement laws handle expressions involving logical complements,
detecting contradictions, tautologies, and simplifying distributive
patterns with complements.

Crux.Expression.RewriteRule.ConsensusTheorem

Rewrite rule that applies the consensus theorem to eliminate redundant clauses.
See: https://en.wikipedia.org/wiki/Consensus_theorem
Applies the transformations:
	(A OR B) AND (NOT A OR C) AND (B OR C) = (A OR B) AND (NOT A OR C)
	(A AND B) OR (NOT A AND C) OR (B AND C) = (A AND B) OR (NOT A AND C)

The consensus theorem states that in certain patterns, one clause can be
derived from two others and is therefore redundant.

Crux.Expression.RewriteRule.DeMorgansLaw

Rewrite rule that applies De Morgan's laws to expressions.
See: https://en.wikipedia.org/wiki/De_Morgan%27s_laws
Applies the transformations:
	NOT (A AND B) = (NOT A) OR (NOT B)
	NOT (A OR B) = (NOT A) AND (NOT B)

Crux.Expression.RewriteRule.DistributiveLaw

Rewrite rule that applies the distributive law to convert expressions to CNF.
See: https://en.wikipedia.org/wiki/Distributive_property
Applies the transformations:
	A OR (B AND C) = (A OR B) AND (A OR C)
	(A AND B) OR C = (A OR C) AND (B OR C)

This transformation pushes OR operations inside AND operations, which is
necessary for achieving Conjunctive Normal Form (CNF).

Crux.Expression.RewriteRule.DistributivityBasedSimplificationLaw

Rewrite rule that applies distributivity-based simplifications to expressions.
See: https://en.wikipedia.org/wiki/Distributive_property
Applies the transformations:
	A AND (NOT A OR B) = A AND B
	A OR (NOT A AND B) = A OR B
	NOT A AND (A OR B) = NOT A AND B
	NOT A OR (A AND B) = NOT A OR B

These patterns use distributivity properties to eliminate redundant terms
involving complements, simplifying expressions by removing parts that
don't affect the overall result.

Crux.Expression.RewriteRule.IdempotentLaw

Rewrite rule that applies idempotent laws to simplify expressions.
See: https://en.wikipedia.org/wiki/Idempotence
Applies the transformations:
	A AND A = A
	A OR A = A

The idempotent laws state that applying the same operation twice
has the same effect as applying it once.

Crux.Expression.RewriteRule.IdentityLaw

Rewrite rule that applies boolean identity laws to simplify expressions.
See: https://en.wikipedia.org/wiki/Boolean_algebra#Monotone_laws
Applies the transformations:
	A AND true = A, true AND A = A
	A OR false = A, false OR A = A

Crux.Expression.RewriteRule.NegationLaw

Rewrite rule that applies negation laws to simplify expressions.
See: https://en.wikipedia.org/wiki/Negation
Applies the transformations:
	NOT true = false
	NOT false = true
	NOT (NOT A) = A (double negation elimination)

The negation laws handle boolean constant negation and double negation
elimination, providing a complete set of negation simplifications.

Crux.Expression.RewriteRule.TautologyLaw

Rewrite rule that detects common tautology patterns.
Applies the transformations:
	A OR (NOT A OR B) = true (tautology with additional terms)
	(NOT A OR B) OR A = true (tautology with additional terms)
	(A OR B) OR NOT A = true (tautology with additional terms)
	NOT A OR (A OR B) = true (tautology with additional terms)

These patterns represent tautologies where a complement pair appears
in disjunction with additional terms, making the entire expression true.

Crux.Expression.RewriteRule.UnitResolution

Rewrite rule that applies unit resolution to propagate unit clauses.
See: https://en.wikipedia.org/wiki/Unit_propagation
Applies the transformations:
	A AND (NOT A OR B) = A AND B (unit A eliminates NOT A from clause)
	(NOT A OR B) AND A = B AND A (unit A eliminates NOT A from clause)
	(NOT A) AND (A OR B) = (NOT A) AND B (unit NOT A eliminates A from clause)
	(A OR B) AND (NOT A) = B AND (NOT A) (unit NOT A eliminates A from clause)

Unit resolution propagates the effect of unit clauses (single literals)
by eliminating contradictory literals from other clauses.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

