

 dataloader

 v2.0.1

 Table of contents

 	Changelog

 	Dataloader

 	Telemetry

 	Modules

 	Dataloader

 	Dataloader.Ecto

 	Dataloader.KV

 	Dataloader.Source

 	Dataloader.GetError

Changelog

v2.0.1 2024-09-04
	Bug Fix: Revert undesirable lateral (#171)
	Improvement: Relax otel process propagator vsn (#167

v2.0.0 2023-07-24
	Breaking Feature: Automatically handle sync vs async for the ecto dataloader source (#146). Other dataloader source implementations need to add an async? function to comply with the protocol. NOTE: This only impacts you if you have a custom dataloader source. If you use the built in Ecto or KV sources then there is nothing you need to do.
	Improvement: KV source no longer double wraps results in {:ok, {:ok, value}} tuples when you return an OK tuple while using the tuple policy (#145)

v1
For v1 changes see https://github.com/absinthe-graphql/dataloader/blob/v1/CHANGELOG.md

Dataloader

[image: Build Status]
[image: Version]
[image: Hex Docs]
[image: Download]
[image: License]
[image: Last Updated]
Dataloader provides an easy way efficiently load data in batches. It's inspired
by https://github.com/facebook/dataloader, although it makes some small API changes to better suit Elixir use cases.
Installation
The package can be installed by adding :dataloader to your list of dependencies in mix.exs:
def deps do
 [
 {:dataloader, "~> 2.0.0"}
]
end
Note: Dataloader requires Elixir 1.10 or higher.
Upgrading
See CHANGELOG for upgrade steps between versions.
Documentation
	Dataloader hexdocs.
	For the tutorial, guides, and general information about Absinthe-related
projects, see http://absinthe-graphql.org.

Usage
Central to Dataloader is the idea of a source. A single Dataloader struct can
have many different sources, which represent different ways to load data.
Here's an example of a data loader using an Ecto source, and then loading some
organization data.
source = Dataloader.Ecto.new(MyApp.Repo)

setup the loader
loader = Dataloader.new |> Dataloader.add_source(:db, source)

load some things
loader =
 loader
 |> Dataloader.load(:db, Organization, 1)
 |> Dataloader.load_many(:db, Organization, [4, 9])

actually retrieve them
loader = Dataloader.run(loader)

Now we can get whatever values out we want
organizations = Dataloader.get_many(loader, :db, Organization, [1,4])
This will do a single SQL query to get all organizations by ids 1, 4, and 9. You
can load multiple batches from multiple sources, and then when run/1 is called
batch will be loaded concurrently.
Here we named the source :db within our dataloader. More commonly though if
you're using Phoenix you'll want to name it after one of your contexts, and have
a different source used for each context. This provides an easy way to enforce
data access rules within each context. See the Dataloader.Ecto moduledocs for
more details
Sources
Dataloader ships with two different built in sources. The first is the Ecto source for easily pulling out data with ecto. The other is a simple KV key value source. See each module for its respective documentation.
Anything that implements the Dataloader.Source protocol can act as a source.
Community
The project is under constant improvement by a growing list of
contributors, and your feedback is important. Please join us in Slack
(#absinthe-graphql under the Elixir Slack account) or the Elixir Forum
(tagged absinthe).
Please remember that all interactions in our official spaces follow
our Code of Conduct.
Related Projects
See the GitHub organization.
Contributing
Please follow contribution guide.
License
See LICENSE.md.

Telemetry

Dataloader uses telemetry to instrument its activity.
Call :telemetry.attach/4 or :telemetry.attach_many/4 to attach your
handler function to any of the following event names:
	[:dataloader, :source, :run, :start] when the dataloader processing starts
	[:dataloader, :source, :run, :stop] when the dataloader processing finishes
	[:dataloader, :source, :batch, :run, :start] when the dataloader starts processing a single batch
	[:dataloader, :source, :batch, :run, :stop] when the dataloader finishes processing a single batch

Telemetry handlers are called with measurements and metadata. For details on
what is passed, checkout Dataloader.
Interactive Telemetry
As an example, you could attach a handler in an iex -S mix shell. Paste in:
:telemetry.attach_many(
 :demo,
 [
 [:dataloader, :source, :run, :stop]
],
 fn event_name, measurements, metadata, _config ->
 %{
 event_name: event_name,
 measurements: measurements,
 metadata: metadata
 }
 |> IO.inspect()
 end,
 []
)
After a query is executed, you'll see something like:
%{
 event_name: [:dataloader, :source, :run, :stop],
 measurements: %{duration: 112151},
 metadata: %{
 dataloader: %Dataloader{
 options: [get_policy: :raise_on_error],
 sources: ...
 },
 id: -576460752303420441
 }
}
Opentelemetry
When using Opentelemetry, one usually wants to correlate spans that are created
in spawned tasks with the main trace. For example, you might have a trace started
in a Phoenix endpoint, and then have spans around database access.
One can correlate manually by attaching the OTel context the task function:
ctx = OpenTelemetry.Ctx.get_current()

Task.async(fn ->
 OpenTelemetry.Ctx.attach(ctx)

 # do stuff that might create spans
end)
When using Dataloader, the tasks are spawned by the loader itself, so you can't
attach the context manually.
Instead, you can add the :opentelemetry_process_propagator package to your
dependencies, which has suitable wrappers that will attach the context
automatically. If the package is installed, Dataloader will use it in place
of the default Task.async/1 and Task.async_stream/3.

Dataloader

Dataloader
Dataloader provides an easy way efficiently load data in batches. It's
inspired by https://github.com/facebook/dataloader, although it makes some
small API changes to better suit Elixir use cases.
Central to Dataloader is the idea of a source. A single Dataloader struct can
have many different sources, which represent different ways to load data.
Here's an example of a data loader using an ecto source, and then loading some
organization data.
source = Dataloader.Ecto.new(MyApp.Repo)

setup the loader
loader = Dataloader.new |> Dataloader.add_source(:db, source)

load some things
loader =
 loader
 |> Dataloader.load(:db, Organization, 1)
 |> Dataloader.load_many(:db, Organization, [4, 9])

actually retrieve them
loader = Dataloader.run(loader)

Now we can get whatever values out we want
organizations = Dataloader.get_many(loader, :db, Organization, [1,4])
This will do a single SQL query to get all organizations by ids 1,4, and 9.
You can load multiple batches from multiple sources, and then when run/1 is
called batch will be loaded concurrently.
Here we named the source :db within our dataloader. More commonly though if
you're using Phoenix you'll want to name it after one of your contexts, and
have a different source used for each context. This provides an easy way to
enforce data access rules within each context. See the Dataloader.Ecto
moduledocs for more details
Options
There are two configuration options:
	timeout - The maximum timeout to wait for running a source, defaults to
1s more than the maximum timeout of all added sources. Set with care,
timeouts should really only be set on sources.
	get_policy - This configures how the dataloader will behave when fetching
data which may have errored when we tried to load it.

These can be set as part of the new/1 call. So, for example, to
configure a dataloader that returns nil on error with a 5s timeout:
loader =
 Dataloader.new(
 get_policy: :return_nil_on_error,
 timeout: :timer.seconds(5)
)
get_policy
There are three implemented behaviours for this:
	raise_on_error (default)- If successful, calling get/4 or get_many/4
will return the value. If there was an exception when trying to load any of
the data, it will raise that exception
	return_nil_on_error - Behaves similar to raise_on_error but will just
return nil instead of raising. It will still log errors
	tuples - This will return {:ok, value}/{:error, reason} tuples
depending on a successful or failed load, allowing for more fine-grained
error handling if required

 Anchor for this section

 Summary

 Types

 option()

 source_name()

 t()

 Functions

 add_source(loader, name, source)

 async(fun)

 See OpentelemetryProcessPropagator.Task.async/1.

 async_safely(mod, fun, args \\ [], opts \\ [])

 This is a helper method to run a set of async tasks in a separate supervision
tree which

 async_stream(items, fun, opts)

 See OpentelemetryProcessPropagator.Task.async_stream/3.

 default_timeout()

 get(loader, source, batch_key, item_key)

 get_many(loader, source, batch_key, item_keys)

 load(loader, source_name, batch_key, val)

 load_many(loader, source_name, batch_key, vals)

 new(opts \\ [])

 Create a new Dataloader instance.

 pending_batches?(loader)

 pmap(items, fun, opts \\ [])

 deprecated

 This used to be used by both the Dataloader module for running multiple
source queries concurrently, and the KV and Ecto sources to actually run
separate batch fetches (e.g. for Posts and Users at the same time).

 put(loader, source_name, batch_key, item_key, result)

 run(dataloader)

 run_tasks(items, fun, opts \\ [])

 This helper function will call fun on all items asynchronously, returning
a map of :ok/:error tuples, keyed off the items. For example

 Anchor for this section

Types

 Link to this type

 option()

 View Source

 @type option() :: {:timeout, pos_integer()} | {:get_policy, atom()}

 Link to this type

 source_name()

 View Source

 @type source_name() :: any()

 Link to this type

 t()

 View Source

 @type t() :: %Dataloader{
 options: [option()],
 sources: %{required(source_name()) => Dataloader.Source.t()}
}

 Anchor for this section

Functions

 Link to this function

 add_source(loader, name, source)

 View Source

 @spec add_source(t(), source_name(), Dataloader.Source.t()) :: t()

 Link to this function

 async(fun)

 View Source

 @spec async((() -> any())) :: Task.t()

See OpentelemetryProcessPropagator.Task.async/1.

 Link to this function

 async_safely(mod, fun, args \\ [], opts \\ [])

 View Source

This is a helper method to run a set of async tasks in a separate supervision
tree which:
	Is run by a supervisor linked to the main process. This ensures any async
tasks will get killed if the main process is killed.
	Spawns a separate task which traps exits for running the provided
function. This ensures we will always have some output, but are not
setting :trap_exit on the main process.

NOTE: The provided fun must accept a Task.Supervisor as its first
argument, as this function will prepend the relevant supervisor to args
See run_task/3 for an example of a fun implementation, this will return
whatever that returns.

 Link to this function

 async_stream(items, fun, opts)

 View Source

 @spec async_stream(Enumerable.t(), (term() -> term()), keyword()) :: Enumerable.t()

See OpentelemetryProcessPropagator.Task.async_stream/3.

 Link to this function

 default_timeout()

 View Source

 Link to this function

 get(loader, source, batch_key, item_key)

 View Source

 @spec get(t(), source_name(), any(), any()) :: any()

 Link to this function

 get_many(loader, source, batch_key, item_keys)

 View Source

 @spec get_many(t(), source_name(), any(), any()) :: [any()] | {:ok, [any()]}

 Link to this function

 load(loader, source_name, batch_key, val)

 View Source

 @spec load(t(), source_name(), any(), any()) :: t()

 Link to this function

 load_many(loader, source_name, batch_key, vals)

 View Source

 @spec load_many(t(), source_name(), any(), [any()]) :: t()

 Link to this function

 new(opts \\ [])

 View Source

 @spec new([option()]) :: t()

Create a new Dataloader instance.
See moduledoc for available options

 Link to this function

 pending_batches?(loader)

 View Source

 @spec pending_batches?(t()) :: boolean()

 Link to this function

 pmap(items, fun, opts \\ [])

 View Source

 This function is deprecated. Use async_safely/3 instead.

 @spec pmap(list(), (... -> any()), keyword()) :: map()

This used to be used by both the Dataloader module for running multiple
source queries concurrently, and the KV and Ecto sources to actually run
separate batch fetches (e.g. for Posts and Users at the same time).
The problem was that the behaviour between the sources and the parent
Dataloader was actually slightly different. The Dataloader-specific
behaviour has been pulled out into run_tasks/4
Please use async_safely/3 instead of this for fetching data from sources

 Link to this function

 put(loader, source_name, batch_key, item_key, result)

 View Source

 Link to this function

 run(dataloader)

 View Source

 @spec run(t()) :: t()

 Link to this function

 run_tasks(items, fun, opts \\ [])

 View Source

 @spec run_tasks(list(), (... -> any()), keyword()) :: map()

This helper function will call fun on all items asynchronously, returning
a map of :ok/:error tuples, keyed off the items. For example:
iex> Dataloader.run_tasks([1,2,3], fn x -> x * x end, [])
%{
 1 => {:ok, 1},
 2 => {:ok, 4},
 3 => {:ok, 9}
}
Similarly, for errors:
iex> Dataloader.run_tasks([1,2,3], fn _x -> Process.sleep(5) end, [timeout: 1])
%{
 1 => {:error, :timeout},
 2 => {:error, :timeout},
 3 => {:error, :timeout}
}
By default, tasks are run asynchronously. To run them synchronously, provide async?: false.

Dataloader.Ecto

Ecto source for Dataloader
This defines a schema and an implementation of the Dataloader.Source protocol
for handling Ecto related batching.
A simple Ecto source only needs to know about your application's Repo.
Basic Usage
Querying by primary key (analogous to Ecto.Repo.get/3):
source = Dataloader.Ecto.new(MyApp.Repo)

loader =
 Dataloader.new
 |> Dataloader.add_source(Accounts, source)
 |> Dataloader.load(Accounts, User, 1)
 |> Dataloader.load_many(Accounts, Organization, [4, 9])
 |> Dataloader.run

organizations = Dataloader.get_many(loader, Accounts, Organization, [4,9])
Querying for associations. Here we look up the :users association on all
the organizations, and the :organization for a single user.
loader =
 loader
 |> Dataloader.load(Accounts, :organization, user)
 |> Dataloader.load_many(Accounts, :users, organizations)
 |> Dataloader.run
Querying by a column other than the primary key:
loader =
 loader
 |> Dataloader.load(Accounts, {:one, User}, name: "admin")
 |> Dataloader.run
Here we pass a keyword list of length one. It is only possible to
query by one column here; for more complex queries, see "filtering" below.
Notice here that we need to also specify the cardinality in the batch_key
(:many or :one), which will decide whether to return a list or a single
value (or nil). This is because the column may not be a key and there may be
multiple matching records. Note also that even if we are returning :many values
here from multiple matching records, this is still a call to Dataloader.load/4
rather than Dataloader.load_many/4 because there is only one val specified.
Filtering / Ordering
Dataloader.Ecto.new/2 can receive a 2 arity function that can be used to apply
broad ordering and filtering rules, as well as handle parameters
source = Dataloader.Ecto.new(MyApp.Repo, query: &Accounts.query/2)

loader =
 Dataloader.new
 |> Dataloader.add_source(Accounts, source)
When we call Dataloader.load/4 we can pass in a tuple as the batch key with a keyword list
of parameters in addition to the queryable or assoc_field
with a queryable
loader
|> Dataloader.load(Accounts, {User, order: :name}, 1)

or an association
loader
|> Dataloader.load_many(Accounts, {:users, order: :name}, organizations)

this is still supported
loader
|> Dataloader.load(Accounts, User, 1)

as is this
loader
|> Dataloader.load(:accounts, :user, organization)
In all cases the Accounts.query function would be:
def query(User, params) do
 field = params[:order] || :id
 from u in User, order_by: [asc: field(u, ^field)]
end
def query(queryable, _) do
 queryable
end
If we query something that ends up using the User schema, whether directly
or via association, the query/2 function will match on the first clause and
we can handle the params. If no params are supplied, the params arg defaults
to source.default_params which itself defaults to %{}.
default_params is an extremely useful place to store values like the current user:
source = Dataloader.Ecto.new(MyApp.Repo, [
 query: &Accounts.query/2,
 default_params: %{current_user: current_user},
])

loader =
 Dataloader.new
 |> Dataloader.add_source(Accounts, source)
 |> Dataloader.load_many(Accounts, Organization, ids)
 |> Dataloader.run

the query function
def query(Organization, %{current_user: user}) do
 from o in Organization,
 join: m in assoc(o, :memberships),
 where: m.user_id == ^user.id
end
def query(queryable, _) do
 queryable
end
In our query function we are pattern matching on the current user to make sure
that we are only able to lookup data in organizations that the user actually
has a membership in. Additional options you specify IE {Organization, %{order: :asc}}
are merged into the default.
Custom batch queries
There are cases where you want to run the batch function yourself. To do this
we can add a custom run_batch/5 callback to our source.
The run_batch/5 function is executed with the query returned from the query/2
function.
For example, we want to get the post count for a set of users.
First we add a custom run_batch/5 function.
def run_batch(_, query, :post_count, users, repo_opts) do
 user_ids = Enum.map(users, & &1.id)
 default_count = 0

 result =
 query
 |> where([p], p.user_id in ^user_ids)
 |> group_by([p], p.user_id)
 |> select([p], {p.user_id, count("*")})
 |> Repo.all(repo_opts)
 |> Map.new()

 for %{id: id} <- users do
 [Map.get(result, id, default_count)]
 end
end

Fallback to original run_batch
def run_batch(queryable, query, col, inputs, repo_opts) do
 Dataloader.Ecto.run_batch(Repo, queryable, query, col, inputs, repo_opts)
end
This function is supplied with a list of users, does a query and will return
the post count for each of user. If the user id is not found in the resultset,
because the user has no posts, we return a post count of 0.
Now we need to call run_batch/5 from dataloader. First we add a few posts
to the database.
After that, the custom run_batch/5 function is provided to the Dataloader
source. Now, we can load the post count for several users. When the dataloader
runs it will call the custom run_batch/5 and we can retrieve the posts counts
for each individual user.
[user1, user2] = [%User{id: 1}, %User{id: 2}]

rows = [
 %{user_id: user1.id, title: "foo", published: true},
 %{user_id: user1.id, title: "baz", published: false}
]

_ = Repo.insert_all(Post, rows)

source =
 Dataloader.Ecto.new(
 Repo,
 query: &query/2,
 run_batch: &run_batch/5
)

loader =
 Dataloader.new()
 |> Dataloader.add_source(Posts, source)

loader =
 loader
 |> Dataloader.load(Posts, {:one, Post}, post_count: user1)
 |> Dataloader.load(Posts, {:one, Post}, post_count: user2)
 |> Dataloader.run()

Returns 2
Dataloader.get(loader, Posts, {:one, Post}, post_count: user1)
Returns 0
Dataloader.get(loader, Posts, {:one, Post}, post_count: user2)

Additional params for the query/2 function can be passed to the load functions
with a 3-tuple.
For example, to limit the above example to only return published we can add a query
function to filter the published posts:
def query(Post, %{published: published}) do
 from p in Post,
 where: p.published == ^published
end

def query(queryable, _) do
 queryable
end
And we can return the published posts with a 3-tuple on the loader:
loader =
loader
|> Dataloader.load(Posts, {:one, Post}, post_count: user1)
|> Dataloader.load(Posts, {:one, Post, %{published: true}}, post_count: user1)
|> Dataloader.run()

Returns 2
Dataloader.get(loader, Posts, {:one, Post}, post_count: user1)
Returns 1
Dataloader.get(loader, Posts, {:one, Post, %{published: true}}, post_count: user1)

 Anchor for this section

 Summary

 Types

 batch_fun()

 opt()

 query_fun()

 repo_opts()

 t()

 Functions

 new(repo, opts \\ [])

 Create an Ecto Dataloader source.

 run_batch(repo, queryable, query, col, inputs, repo_opts)

 Default implementation for loading a batch. Handles looking up records by
column

 Anchor for this section

Types

 Link to this type

 batch_fun()

 View Source

 @type batch_fun() ::
 (Ecto.Queryable.t(), Ecto.Query.t(), any(), [any()], repo_opts() -> [any()])

 Link to this type

 opt()

 View Source

 @type opt() ::
 {:query, query_fun()}
 | {:default_params, map()}
 | {:repo_opts, repo_opts()}
 | {:timeout, pos_integer()}
 | {:run_batch, batch_fun()}

 Link to this type

 query_fun()

 View Source

 @type query_fun() :: (Ecto.Queryable.t(), any() -> Ecto.Queryable.t())

 Link to this type

 repo_opts()

 View Source

 @type repo_opts() :: Keyword.t()

 Link to this type

 t()

 View Source

 @type t() :: %Dataloader.Ecto{
 batches: map(),
 default_params: map(),
 options: Keyword.t(),
 query: query_fun(),
 repo: Ecto.Repo.t(),
 repo_opts: repo_opts(),
 results: map(),
 run_batch: batch_fun()
}

 Anchor for this section

Functions

 Link to this function

 new(repo, opts \\ [])

 View Source

 @spec new(Ecto.Repo.t(), [opt()]) :: t()

Create an Ecto Dataloader source.
This module handles retrieving data from Ecto for dataloader. It requires a
valid Ecto Repo. It also accepts a repo_opts: option which is handy for
applying options to any calls to Repo functions that this module makes.
For example, you can use this module in a multi-tenant context by using
the prefix option:
Dataloader.Ecto.new(MyApp.Repo, repo_opts: [prefix: "tenant"])

 Link to this function

 run_batch(repo, queryable, query, col, inputs, repo_opts)

 View Source

 @spec run_batch(
 repo :: Ecto.Repo.t(),
 queryable :: Ecto.Queryable.t(),
 query :: Ecto.Query.t(),
 col :: any(),
 inputs :: [any()],
 repo_opts :: repo_opts()
) :: [any()]

Default implementation for loading a batch. Handles looking up records by
column

Dataloader.KV

Simple KV based Dataloader source.
This module is a simple key value based data loader source. You
must supply a function that accepts a batch key and list of ids,
and returns a map of values keyed by id.
Values may optionally be returned as :ok / :error tuples to indicate success of the operation.
Example
def datasource do
 Dataloader.KV.new(&query/2, max_concurrency: 1)
end

def query(:comments, posts) do
 Map.new(posts, fn %{id: post_id} = post ->
 {post, Comments.find_by(post_id: post_id)}
 end)
end

 Anchor for this section

 Summary

 Functions

 new(load_function, opts \\ [])

 Create a KV Dataloader source.

 Anchor for this section

Functions

 Link to this function

 new(load_function, opts \\ [])

 View Source

Create a KV Dataloader source.
Dataloader runs tasks concurrently using Task.async_stream/3. The
concurrency of a KV Dataloader source and the time tasks are allowed to run
can be controlled via options (see the "Options" section below).

 options

 Options

	:max_concurrency - sets the maximum number of tasks to run at the same
time. Defaults to twice the number of schedulers online (see
System.schedulers_online/0).
	:timeout - the maximum amount of time (in milliseconds) a task is
allowed to execute for. Defaults to 30000.
	:async? - set to false to disable the asynchronous behavior mentioned above.

Dataloader.Source protocol

 Anchor for this section

 Summary

 Types

 batch_key()

 item_key()

 t()

 Functions

 async?(source)

 Returns whether or not the source should be running synchronously or asynchronously with respect to the process making Dataloader function calls.

 fetch(source, batch_key, item_key)

 Fetch the result found under the given batch and item keys.

 load(source, batch_key, item_key)

 Enqueue an item to be loaded under a given batch

 pending_batches?(source)

 Determine if there are any batches that have not yet been run.

 put(source, batch_key, item_key, item)

 Put a value into the results.

 run(source)

 Run any batches queued up for this source.

 timeout(source)

 Returns the timeout (in ms) for the source.

 Anchor for this section

Types

 Link to this type

 batch_key()

 View Source

 @type batch_key() :: term()

 Link to this type

 item_key()

 View Source

 @type item_key() :: term()

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 async?(source)

 View Source

 @spec async?(t()) :: boolean()

Returns whether or not the source should be running synchronously or asynchronously with respect to the process making Dataloader function calls.

 Link to this function

 fetch(source, batch_key, item_key)

 View Source

 @spec fetch(t(), batch_key(), item_key()) :: {:ok, term()} | {:error, term()}

Fetch the result found under the given batch and item keys.

 Link to this function

 load(source, batch_key, item_key)

 View Source

 @spec load(t(), batch_key(), item_key()) :: t()

Enqueue an item to be loaded under a given batch

 Link to this function

 pending_batches?(source)

 View Source

 @spec pending_batches?(t()) :: boolean()

Determine if there are any batches that have not yet been run.

 Link to this function

 put(source, batch_key, item_key, item)

 View Source

 @spec put(t(), batch_key(), item_key(), term()) :: t()

Put a value into the results.
Useful for warming caches. The source is permitted to reject the value.

 Link to this function

 run(source)

 View Source

 @spec run(t()) :: t()

Run any batches queued up for this source.

 Link to this function

 timeout(source)

 View Source

 @spec timeout(t()) :: number()

Returns the timeout (in ms) for the source.
This is important for ensuring the dataloader obeys the timeouts when running
multiple sources concurrently

Dataloader.GetError exception

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

