

 db_connection

 v2.8.0

 Table of contents

 	Changelog

 	
 Modules

 	DBConnection

 	DBConnection.ConnectionPool

 	DBConnection.LogEntry

 	DBConnection.Ownership

 	DBConnection.PrepareStream

 	DBConnection.Query

 	DBConnection.Stream

 	DBConnection.TelemetryListener

 	Exceptions

 	DBConnection.ConnectionError

 	DBConnection.EncodeError

 	DBConnection.OwnershipError

 	DBConnection.TransactionError

 Changelog

v2.8.0 (2025-06-24)
	Enhancement	Allow unallow_existing as an opt to ownership_allow/4
	Improve ETS performance by enabling descentralized counters
	Increase default queue interval to 2000s

v2.7.0 (2024-07-02)
	Enhancements
	Add API for retrieving pool metrics
	Include a built-in listener that emits telemetry events

	Bug fixes
	Discard EXIT messages from trapped exits

v2.6.0 (2023-10-15)
	Enhancements	Call disconnect on terminate
	Allow handle_begin callbacks to return query for logging purposes
	Add :connection_listeners_tag
	Add DBConnection.available_connection_options/0
	Add DBConnection.available_start_options/0

v2.5.0 (2023-04-10)
	Internal changes	No longer depend on connection

v2.4.3 (2022-11-22)
	Bug fixes	Fix bug where disconnect_all/2 interval would be disabled above 4294ms
	Add :idle_limit to limit the amount of disconnections on a ping

v2.4.2 (2022-03-03)
	Enhancements	Add DBConnection.connection_module/1

v2.4.1 (2021-10-14)
	Enhancements	Add DBConnection.disconnect_all/2

v2.4.0 (2021-04-02)
	Enhancements	Add telemetry events for connection errors
	Use :rand default algorithm
	Allow decentralized lookups on DBConnection.Ownership

v2.3.1 (2020-11-25)
	Enhancements	Add :connection_listeners to DBConnection.start_link/2
	Allow connection ~> 1.0

v2.3.0 (2020-10-14)
This release requires Elixir v1.7+.
	Bug fixes	Fix deprecation warnings related to the use of System.stacktrace()

v2.2.2 (2020-04-22)
	Bug fixes	Make sure all idle connections in the pool are pinged on each idle interval

v2.2.1 (2020-02-04)
	Enhancements	Remove warnings

v2.2.0 (2019-12-11)
	Enhancements	Add :idle_time to DBConnection.LogEntry
	Ping all stale connections on idle interval
	Add crash_reason to relevant Logger error reports
	Ping all stale connections on idle interval. One possible downside of this approach is that we may shut down all connections at once and if there is a request around this time, the response time will be higher. However, this is likely better than the current approach, where we ping only the first one, which means we can have a pool of stale connections. The current behaviour is the same as in v1.0

v2.1.1 (2019-07-17)
	Enhancements
	Reduce severity in client exits to info
	Improve error message on redirect checkout

	Bug fixes
	Make sure ownership timeout is respected on automatic checkouts

v2.1.0 (2019-06-07)
	Enhancements	Require Elixir v1.6+
	Include client stacktrace on check out timeouts

DBConnection behaviour

A behaviour module for implementing efficient database connection
client processes, pools and transactions.
DBConnection handles callbacks differently to most behaviours. Some
callbacks will be called in the calling process, with the state
copied to and from the calling process. This is useful when the data
for a request is large and means that a calling process can interact
with a socket directly.
A side effect of this is that query handling can be written in a
simple blocking fashion, while the connection process itself will
remain responsive to OTP messages and can enqueue and cancel queued
requests.
If a request or series of requests takes too long to handle in the
client process a timeout will trigger and the socket can be cleanly
disconnected by the connection process.
If a calling process waits too long to start its request it will
timeout and its request will be cancelled. This prevents requests
building up when the database can not keep up.
If no requests are received for an idle interval, the pool will
ping all stale connections which can then ping the database to keep
the connection alive.
Should the connection be lost, attempts will be made to reconnect with
(configurable) exponential random backoff to reconnect. All state is
lost when a connection disconnects but the process is reused.
The DBConnection.Query protocol provide utility functions so that
queries can be encoded and decoded without blocking the connection or pool.
Connection pools
DBConnection connections support using different pools via the :pool option
passed to start_link/2. The default pool is DBConnection.ConnectionPool.
Another supported pool that is commonly used for tests is DBConnection.Ownership.
For now, using custom pools is not supported since the API for pools is not
public.
Errors
Most functions in this module raise a DBConnection.ConnectionError exception
when failing to check out a connection from the pool.

 Summary

 Types

 conn()

 connection_option()

 An option you can pass to DBConnection functions.

 cursor()

 option()

 An option you can pass to DBConnection functions (deprecated).

 params()

 query()

 result()

 start_option()

 status()

 t()

 Run or transaction connection reference.

 Callbacks

 checkout(state)

 Checkouts the state from the connection process. Return {:ok, state}
to allow the checkout or {:disconnect, exception, state} to disconnect.

 connect(opts)

 Connect to the database. Return {:ok, state} on success or
{:error, exception} on failure.

 disconnect(err, state)

 Disconnect from the database. Return :ok.

 handle_begin(opts, state)

 Handle the beginning of a transaction.

 handle_close(query, opts, state)

 Close a query prepared by handle_prepare/3 with the database. Return
{:ok, result, state} on success and to continue,
{:error, exception, state} to return an error and continue, or
{:disconnect, exception, state} to return an error and disconnect.

 handle_commit(opts, state)

 Handle committing a transaction. Return {:ok, result, state} on successfully
committing transaction, {status, state} to notify caller that the
transaction can not commit due to the transaction status status,
or {:disconnect, exception, state} to error and disconnect.

 handle_deallocate(query, cursor, opts, state)

 Deallocate a cursor declared by handle_declare/4 with the database. Return
{:ok, result, state} on success and to continue,
{:error, exception, state} to return an error and continue, or
{:disconnect, exception, state} to return an error and disconnect.

 handle_declare(query, params, opts, state)

 Declare a cursor using a query prepared by handle_prepare/3. Return
{:ok, query, cursor, state} to return altered query query and cursor
cursor for a stream and continue, {:error, exception, state} to return an
error and continue or {:disconnect, exception, state} to return an error
and disconnect.

 handle_execute(query, params, opts, state)

 Execute a query prepared by handle_prepare/3. Return
{:ok, query, result, state} to return altered query query and result
result and continue, {:error, exception, state} to return an error and
continue or {:disconnect, exception, state} to return an error and
disconnect.

 handle_fetch(query, cursor, opts, state)

 Fetch the next result from a cursor declared by handle_declare/4. Return
{:cont, result, state} to return the result result and continue using
cursor, {:halt, result, state} to return the result result and close the
cursor, {:error, exception, state} to return an error and close the
cursor, {:disconnect, exception, state} to return an error and disconnect.

 handle_prepare(query, opts, state)

 Prepare a query with the database. Return {:ok, query, state} where
query is a query to pass to execute/4 or close/3,
{:error, exception, state} to return an error and continue or
{:disconnect, exception, state} to return an error and disconnect.

 handle_rollback(opts, state)

 Handle rolling back a transaction. Return {:ok, result, state} on successfully
rolling back transaction, {status, state} to notify caller that the
transaction can not rollback due to the transaction status status or
{:disconnect, exception, state} to error and disconnect.

 handle_status(opts, state)

 Handle getting the transaction status. Return {:idle, state} if outside a
transaction, {:transaction, state} if inside a transaction,
{:error, state} if inside an aborted transaction, or
{:disconnect, exception, state} to error and disconnect.

 ping(state)

 Called when the connection has been idle for a period of time. Return
{:ok, state} to continue or {:disconnect, exception, state} to
disconnect.

 Functions

 __using__(_)

 Use DBConnection to set the behaviour.

 available_connection_options()

 Returns the names of all possible options that you can pass to most functions
in this module.

 available_start_options()

 Returns the names of all possible options that you can pass to start_link/2.

 child_spec(conn_mod, opts)

 Creates a supervisor child specification for a pool of connections.

 close(conn, query, opts \\ [])

 Close a prepared query on a database connection and return {:ok, result} on
success or {:error, exception} on error.

 close!(conn, query, opts \\ [])

 Close a prepared query on a database connection and return the result. Raises
an exception on error.

 connection_module(conn)

 Returns the connection module used by the given connection pool.

 disconnect_all(conn, interval, opts \\ [])

 Forces all connections in the pool to disconnect within the given interval
in milliseconds.

 execute(conn, query, params, opts \\ [])

 Execute a prepared query with a database connection and return
{:ok, query, result} on success or {:error, exception} if there was an error.

 execute!(conn, query, params, opts \\ [])

 Execute a prepared query with a database connection and return the
result. Raises an exception on error.

 get_connection_metrics(conn, opts \\ [])

 Returns connection metrics as a list in the shape of

 prepare(conn, query, opts \\ [])

 Prepare a query with a database connection for later execution.

 prepare!(conn, query, opts \\ [])

 Prepare a query with a database connection and return the prepared
query. An exception is raised on error.

 prepare_execute(conn, query, params, opts \\ [])

 Prepare a query and execute it with a database connection and return both the
prepared query and the result, {:ok, query, result} on success or
{:error, exception} if there was an error.

 prepare_execute!(conn, query, params, opts \\ [])

 Prepare a query and execute it with a database connection and return both the
prepared query and result. An exception is raised on error.

 prepare_stream(conn, query, params, opts \\ [])

 Create a stream that will prepare a query, execute it and stream results
using a cursor.

 reduce(stream, acc, fun)

 Reduces a previously built stream or prepared stream.

 rollback(conn, reason)

 Rollback a database transaction and release lock on connection.

 run(conn, fun, opts \\ [])

 Acquire a lock on a connection and run a series of requests on it.

 start_link(conn_mod, opts)

 Starts and links to a database connection process.

 status(conn, opts \\ [])

 Return the transaction status of a connection.

 stream(conn, query, params, opts \\ [])

 Create a stream that will execute a prepared query and stream results using a
cursor.

 transaction(conn, fun, opts \\ [])

 Acquire a lock on a connection and run a series of requests inside a
transaction. The result of the transaction fun is return inside an :ok
tuple: {:ok, result}.

 Types

 conn()

 @type conn() :: GenServer.server() | t()

 connection_option()

 (since 2.6.0)

 @type connection_option() ::
 {:log,
 (DBConnection.LogEntry.t() -> any()) | {module(), atom(), [any()]} | nil}
 | {:queue, boolean()}
 | {:timeout, timeout()}
 | {:deadline, integer() | nil}

An option you can pass to DBConnection functions.

 cursor()

 @type cursor() :: any()

 option()

 @type option() :: connection_option()

An option you can pass to DBConnection functions (deprecated).
Deprecated
This option is deprecated since v2.6.0. Use connection_option/0 instead.

 params()

 @type params() :: any()

 query()

 @type query() :: DBConnection.Query.t()

 result()

 @type result() :: any()

 start_option()

 @type start_option() ::
 {:after_connect, (t() -> any()) | {module(), atom(), [any()]} | nil}
 | {:after_connect_timeout, timeout()}
 | {:connection_listeners, [Process.dest()] | nil | {[Process.dest()], any()}}
 | {:backoff_max, non_neg_integer()}
 | {:backoff_min, non_neg_integer()}
 | {:backoff_type, :stop | :exp | :rand | :rand_exp}
 | {:configure, (keyword() -> keyword()) | {module(), atom(), [any()]} | nil}
 | {:idle_interval, non_neg_integer()}
 | {:idle_limit, non_neg_integer()}
 | {:max_restarts, non_neg_integer()}
 | {:max_seconds, pos_integer()}
 | {:name, GenServer.name()}
 | {:pool, module()}
 | {:pool_size, pos_integer()}
 | {:queue_interval, non_neg_integer()}
 | {:queue_target, non_neg_integer()}
 | {:show_sensitive_data_on_connection_error, boolean()}

 status()

 @type status() :: :idle | :transaction | :error

 t()

 @type t() :: %DBConnection{conn_mode: term(), conn_ref: reference(), pool_ref: any()}

Run or transaction connection reference.

 Callbacks

 checkout(state)

 @callback checkout(state :: any()) ::
 {:ok, new_state :: any()} | {:disconnect, Exception.t(), new_state :: any()}

Checkouts the state from the connection process. Return {:ok, state}
to allow the checkout or {:disconnect, exception, state} to disconnect.
This callback is called immediately after the connection is established
and the state is never effectively checked in again. That's because
DBConnection keeps the connection state in an ETS table that is moved
between the different clients checking out connections. There is no
checkin callback. The state is only handed back to the connection
process during pings and (re)connects.
This callback is called in the connection process.

 connect(opts)

 @callback connect(opts :: Keyword.t()) :: {:ok, state :: any()} | {:error, Exception.t()}

Connect to the database. Return {:ok, state} on success or
{:error, exception} on failure.
If an error is returned it will be logged and another
connection attempt will be made after a backoff interval.
This callback is called in the connection process.

 disconnect(err, state)

 @callback disconnect(err :: Exception.t(), state :: any()) :: :ok

Disconnect from the database. Return :ok.
This callback is called from the connection process. The first argument is
either the exception from a :disconnect 3-tuple returned by a previous
callback or an exception generated by the connection process.
If the state is controlled by a client and it exits or times out while
processing a request, the last known state will be sent and the exception
will be a DBConnection.ConnectionError.
When the connection is stopped, this callback will be invoked from terminate.
The last known state will be sent and the exception will be a DBConnection.ConnectionError
containing the reason for the exit. To have the same happen on unexpected
shutdowns, you may trap exits from the connect callback.

 handle_begin(opts, state)

 @callback handle_begin(opts :: Keyword.t(), state :: any()) ::
 {:ok, result(), new_state :: any()}
 | {:ok, query(), result(), new_state :: any()}
 | {status(), new_state :: any()}
 | {:disconnect, Exception.t(), new_state :: any()}

Handle the beginning of a transaction.
Return {:ok, result, state}/{:ok, query, result, state} to continue,
{status, state} to notify caller that the transaction can not begin due
to the transaction status status, or {:disconnect, exception, state}
to error and disconnect. If {:ok, query, result, state} is returned,
the query will be used to log the begin command. Otherwise, it will be
logged as begin.
A callback implementation should only return status if it
can determine the database's transaction status without side effect.
This callback is called in the client process.

 handle_close(query, opts, state)

 @callback handle_close(query(), opts :: Keyword.t(), state :: any()) ::
 {:ok, result(), new_state :: any()}
 | {:error | :disconnect, Exception.t(), new_state :: any()}

Close a query prepared by handle_prepare/3 with the database. Return
{:ok, result, state} on success and to continue,
{:error, exception, state} to return an error and continue, or
{:disconnect, exception, state} to return an error and disconnect.
This callback is called in the client process.

 handle_commit(opts, state)

 @callback handle_commit(opts :: Keyword.t(), state :: any()) ::
 {:ok, result(), new_state :: any()}
 | {status(), new_state :: any()}
 | {:disconnect, Exception.t(), new_state :: any()}

Handle committing a transaction. Return {:ok, result, state} on successfully
committing transaction, {status, state} to notify caller that the
transaction can not commit due to the transaction status status,
or {:disconnect, exception, state} to error and disconnect.
A callback implementation should only return status if it
can determine the database's transaction status without side effect.
This callback is called in the client process.

 handle_deallocate(query, cursor, opts, state)

 @callback handle_deallocate(query(), cursor(), opts :: Keyword.t(), state :: any()) ::
 {:ok, result(), new_state :: any()}
 | {:error | :disconnect, Exception.t(), new_state :: any()}

Deallocate a cursor declared by handle_declare/4 with the database. Return
{:ok, result, state} on success and to continue,
{:error, exception, state} to return an error and continue, or
{:disconnect, exception, state} to return an error and disconnect.
This callback is called in the client process.

 handle_declare(query, params, opts, state)

 @callback handle_declare(query(), params(), opts :: Keyword.t(), state :: any()) ::
 {:ok, query(), cursor(), new_state :: any()}
 | {:error | :disconnect, Exception.t(), new_state :: any()}

Declare a cursor using a query prepared by handle_prepare/3. Return
{:ok, query, cursor, state} to return altered query query and cursor
cursor for a stream and continue, {:error, exception, state} to return an
error and continue or {:disconnect, exception, state} to return an error
and disconnect.
This callback is called in the client process.

 handle_execute(query, params, opts, state)

 @callback handle_execute(query(), params(), opts :: Keyword.t(), state :: any()) ::
 {:ok, query(), result(), new_state :: any()}
 | {:error | :disconnect, Exception.t(), new_state :: any()}

Execute a query prepared by handle_prepare/3. Return
{:ok, query, result, state} to return altered query query and result
result and continue, {:error, exception, state} to return an error and
continue or {:disconnect, exception, state} to return an error and
disconnect.
This callback is called in the client process.

 handle_fetch(query, cursor, opts, state)

 @callback handle_fetch(query(), cursor(), opts :: Keyword.t(), state :: any()) ::
 {:cont | :halt, result(), new_state :: any()}
 | {:error | :disconnect, Exception.t(), new_state :: any()}

Fetch the next result from a cursor declared by handle_declare/4. Return
{:cont, result, state} to return the result result and continue using
cursor, {:halt, result, state} to return the result result and close the
cursor, {:error, exception, state} to return an error and close the
cursor, {:disconnect, exception, state} to return an error and disconnect.
This callback is called in the client process.

 handle_prepare(query, opts, state)

 @callback handle_prepare(query(), opts :: Keyword.t(), state :: any()) ::
 {:ok, query(), new_state :: any()}
 | {:error | :disconnect, Exception.t(), new_state :: any()}

Prepare a query with the database. Return {:ok, query, state} where
query is a query to pass to execute/4 or close/3,
{:error, exception, state} to return an error and continue or
{:disconnect, exception, state} to return an error and disconnect.
This callback is intended for cases where the state of a connection is
needed to prepare a query and/or the query can be saved in the
database to call later.
This callback is called in the client process.

 handle_rollback(opts, state)

 @callback handle_rollback(opts :: Keyword.t(), state :: any()) ::
 {:ok, result(), new_state :: any()}
 | {status(), new_state :: any()}
 | {:disconnect, Exception.t(), new_state :: any()}

Handle rolling back a transaction. Return {:ok, result, state} on successfully
rolling back transaction, {status, state} to notify caller that the
transaction can not rollback due to the transaction status status or
{:disconnect, exception, state} to error and disconnect.
A callback implementation should only return status if it
can determine the database' transaction status without side effect.
This callback is called in the client and connection process.

 handle_status(opts, state)

 @callback handle_status(opts :: Keyword.t(), state :: any()) ::
 {status(), new_state :: any()}
 | {:disconnect, Exception.t(), new_state :: any()}

Handle getting the transaction status. Return {:idle, state} if outside a
transaction, {:transaction, state} if inside a transaction,
{:error, state} if inside an aborted transaction, or
{:disconnect, exception, state} to error and disconnect.
If the callback returns a :disconnect tuples then status/2 will return
:error.

 ping(state)

 @callback ping(state :: any()) ::
 {:ok, new_state :: any()} | {:disconnect, Exception.t(), new_state :: any()}

Called when the connection has been idle for a period of time. Return
{:ok, state} to continue or {:disconnect, exception, state} to
disconnect.
This callback is called if no callbacks have been called after the
idle timeout and a client process is not using the state. The idle
timeout can be configured by the :idle_interval and :idle_limit
options. This function can be called whether the connection is checked
in or checked out.
This callback is called in the connection process.

 Functions

 __using__(_)

 (macro)

Use DBConnection to set the behaviour.

 available_connection_options()

 (since 2.6.0)

 @spec available_connection_options() :: [atom(), ...]

Returns the names of all possible options that you can pass to most functions
in this module.
This is mostly useful for library authors that base their library on top of
DBConnection, since they can use the return value of this function to perform
validation on options only passing down these options to DBConnection.
See also connection_option/0.

 available_start_options()

 (since 2.6.0)

 @spec available_start_options() :: [atom(), ...]

Returns the names of all possible options that you can pass to start_link/2.
This is mostly useful for library authors that base their library on top of
DBConnection, since they can use the return value of this function to perform
validation on options only passing down these options to DBConnection.
See also start_option/0.

 child_spec(conn_mod, opts)

 @spec child_spec(module(), [start_option()] | Keyword.t()) :: :supervisor.child_spec()

Creates a supervisor child specification for a pool of connections.
See start_link/2 for options.

 close(conn, query, opts \\ [])

 @spec close(conn(), query(), [connection_option()] | Keyword.t()) ::
 {:ok, result()} | {:error, Exception.t()}

Close a prepared query on a database connection and return {:ok, result} on
success or {:error, exception} on error.
This function should be used to free resources held by the connection
process and/or the database server.
Options
	:queue - Whether to block waiting in an internal queue for the
connection's state (boolean, default: true). See "Queue config" in
start_link/2 docs
	:timeout - The maximum time that the caller is allowed to perform
this operation (default: 15_000)
	:deadline - If set, overrides :timeout option and specifies absolute
monotonic time in milliseconds by which caller must perform operation.
See System module documentation for more information on monotonic time
(default: nil)
	:log - A function to log information about a call, either
a 1-arity fun, {module, function, args} with DBConnection.LogEntry.t/0
prepended to args or nil. See DBConnection.LogEntry (default: nil)

The pool and connection module may support other options. All options
are passed to handle_close/3.
See prepare/3.

 close!(conn, query, opts \\ [])

 @spec close!(conn(), query(), [connection_option()] | Keyword.t()) :: result()

Close a prepared query on a database connection and return the result. Raises
an exception on error.
See close/3.

 connection_module(conn)

 @spec connection_module(conn()) :: {:ok, module()} | :error

Returns the connection module used by the given connection pool.
When given a process that is not a connection pool, returns an :error.

 disconnect_all(conn, interval, opts \\ [])

 @spec disconnect_all(conn(), non_neg_integer(), [connection_option()] | Keyword.t()) ::
 :ok

Forces all connections in the pool to disconnect within the given interval
in milliseconds.
Once this function is called, the pool will disconnect all of its connections
as they are checked in or as they are pinged. Checked in connections will be
randomly disconnected within the given time interval. Pinged connections are
immediately disconnected - as they are idle (according to :idle_interval).
If the connection has a backoff configured (which is the case by default),
disconnecting means an attempt at a new connection will be done immediately
after, without starting a new process for each connection. However, if backoff
has been disabled, the connection process will terminate. In such cases,
disconnecting all connections may cause the pool supervisor to restart
depending on the max_restarts/max_seconds configuration of the pool,
so you will want to set those carefully.

 execute(conn, query, params, opts \\ [])

 @spec execute(conn(), query(), params(), [connection_option()] | Keyword.t()) ::
 {:ok, query(), result()} | {:error, Exception.t()}

Execute a prepared query with a database connection and return
{:ok, query, result} on success or {:error, exception} if there was an error.
If the query is not prepared on the connection an attempt may be made to
prepare it and then execute again.
Options
	:queue - Whether to block waiting in an internal queue for the
connection's state (boolean, default: true). See "Queue config" in
start_link/2 docs
	:timeout - The maximum time that the caller is allowed to perform
this operation (default: 15_000)
	:deadline - If set, overrides :timeout option and specifies absolute
monotonic time in milliseconds by which caller must perform operation.
See System module documentation for more information on monotonic time
(default: nil)
	:log - A function to log information about a call, either
a 1-arity fun, {module, function, args} with DBConnection.LogEntry.t/0
prepended to args or nil. See DBConnection.LogEntry (default: nil)

The pool and connection module may support other options. All options
are passed to handle_execute/4.
See prepare/3.

 execute!(conn, query, params, opts \\ [])

 @spec execute!(conn(), query(), params(), [connection_option()] | Keyword.t()) ::
 result()

Execute a prepared query with a database connection and return the
result. Raises an exception on error.
See execute/4

 get_connection_metrics(conn, opts \\ [])

 @spec get_connection_metrics(conn(), Keyword.t()) :: [
 DBConnection.Pool.connection_metrics()
]

Returns connection metrics as a list in the shape of:
[%{
 source: {:pool | :proxy, pid()},
 ready_conn_count: non_neg_integer(),
 checkout_queue_length: non_neg_integer()
}]

 prepare(conn, query, opts \\ [])

 @spec prepare(conn(), query(), [connection_option()] | Keyword.t()) ::
 {:ok, query()} | {:error, Exception.t()}

Prepare a query with a database connection for later execution.
It returns {:ok, query} on success or {:error, exception} if there was
an error.
The returned query can then be passed to execute/4 and/or close/3
Options
	:queue - Whether to block waiting in an internal queue for the
connection's state (boolean, default: true). See "Queue config" in
start_link/2 docs
	:timeout - The maximum time that the caller is allowed to perform
this operation (default: 15_000)
	:deadline - If set, overrides :timeout option and specifies absolute
monotonic time in milliseconds by which caller must perform operation.
See System module documentation for more information on monotonic time
(default: nil)
	:log - A function to log information about a call, either
a 1-arity fun, {module, function, args} with DBConnection.LogEntry.t/0
prepended to args or nil. See DBConnection.LogEntry (default: nil)

The pool and connection module may support other options. All options
are passed to handle_prepare/3.
Example
DBConnection.transaction(pool, fn conn ->
 query = %Query{statement: "SELECT * FROM table"}
 query = DBConnection.prepare!(conn, query)
 try do
 DBConnection.execute!(conn, query, [])
 after
 DBConnection.close(conn, query)
 end
end)

 prepare!(conn, query, opts \\ [])

 @spec prepare!(conn(), query(), [connection_option()] | Keyword.t()) :: query()

Prepare a query with a database connection and return the prepared
query. An exception is raised on error.
See prepare/3.

 prepare_execute(conn, query, params, opts \\ [])

 @spec prepare_execute(conn(), query(), params(), [connection_option()] | Keyword.t()) ::
 {:ok, query(), result()} | {:error, Exception.t()}

Prepare a query and execute it with a database connection and return both the
prepared query and the result, {:ok, query, result} on success or
{:error, exception} if there was an error.
The returned query can be passed to execute/4 and close/3.
Options
	:queue - Whether to block waiting in an internal queue for the
connection's state (boolean, default: true). See "Queue config" in
start_link/2 docs
	:timeout - The maximum time that the caller is allowed to perform
this operation (default: 15_000)
	:deadline - If set, overrides :timeout option and specifies absolute
monotonic time in milliseconds by which caller must perform operation.
See System module documentation for more information on monotonic time
(default: nil)
	:log - A function to log information about a call, either
a 1-arity fun, {module, function, args} with DBConnection.LogEntry.t/0
prepended to args or nil. See DBConnection.LogEntry (default: nil)

Example
query = %Query{statement: "SELECT id FROM table WHERE id=$1"}
{:ok, query, result} = DBConnection.prepare_execute(conn, query, [1])
{:ok, result2} = DBConnection.execute(conn, query, [2])
:ok = DBConnection.close(conn, query)

 prepare_execute!(conn, query, params, opts \\ [])

Prepare a query and execute it with a database connection and return both the
prepared query and result. An exception is raised on error.
See prepare_execute/4.

 prepare_stream(conn, query, params, opts \\ [])

 @spec prepare_stream(t(), query(), params(), [connection_option()] | Keyword.t()) ::
 DBConnection.PrepareStream.t()

Create a stream that will prepare a query, execute it and stream results
using a cursor.
Options
	:queue - Whether to block waiting in an internal queue for the
connection's state (boolean, default: true). See "Queue config" in
start_link/2 docs
	:timeout - The maximum time that the caller is allowed to perform
this operation (default: 15_000)
	:deadline - If set, overrides :timeout option and specifies absolute
monotonic time in milliseconds by which caller must perform operation.
See System module documentation for more information on monotonic time
(default: nil)
	:log - A function to log information about a call, either
a 1-arity fun, {module, function, args} with DBConnection.LogEntry.t/0
prepended to args or nil. See DBConnection.LogEntry (default: nil)

The pool and connection module may support other options. All options
are passed to handle_prepare/3, handle_close/3, handle_declare/4,
and handle_deallocate/4.
Example
{:ok, results} = DBConnection.transaction(conn, fn conn ->
 query = %Query{statement: "SELECT id FROM table"}
 stream = DBConnection.prepare_stream(conn, query, [])
 Enum.to_list(stream)
end)

 reduce(stream, acc, fun)

Reduces a previously built stream or prepared stream.

 rollback(conn, reason)

 @spec rollback(t(), reason :: any()) :: no_return()

Rollback a database transaction and release lock on connection.
When inside of a transaction/3 call does a non-local return, using a
throw/1 to cause the transaction to enter a failed state and the
transaction/3 call returns {:error, reason}. If transaction/3 calls are
nested the connection is marked as failed until the outermost transaction call
does the database rollback.
Example
{:error, :oops} = DBConnection.transaction(pool, fun(conn) ->
 DBConnection.rollback(conn, :oops)
end)

 run(conn, fun, opts \\ [])

 @spec run(conn(), (t() -> result), [connection_option()] | Keyword.t()) :: result
when result: var

Acquire a lock on a connection and run a series of requests on it.
The return value of this function is the return value of fun.
To use the locked connection call the request with the connection
reference passed as the single argument to the fun. If the
connection disconnects all future calls using that connection
reference will fail.
run/3 and transaction/3 can be nested multiple times but a
transaction/3 call inside another transaction/3 will be treated
the same as run/3.
Checkout failures
If we cannot check out a connection from the pool, this function raises a
DBConnection.ConnectionError exception.
If you want to handle these cases, you should rescue
DBConnection.ConnectionError exceptions when using run/3.
Options
	:queue - Whether to block waiting in an internal queue for the
connection's state (boolean, default: true). See "Queue config" in
start_link/2 docs
	:timeout - The maximum time that the caller is allowed to perform
this operation (default: 15_000)
	:deadline - If set, overrides :timeout option and specifies absolute
monotonic time in milliseconds by which caller must perform operation.
See System module documentation for more information on monotonic time
(default: nil)

The pool may support other options.
Example
{:ok, res} = DBConnection.run(conn, fn conn ->
 DBConnection.execute!(conn, query, [])
end)

 start_link(conn_mod, opts)

 @spec start_link(module(), [start_option()] | Keyword.t()) :: GenServer.on_start()

Starts and links to a database connection process.
By default the DBConnection starts a pool with a single connection.
The size of the pool can be increased with :pool_size. A separate
pool can be given with the :pool option.
Options
	:backoff_min - The minimum backoff interval (default: 1_000)
	:backoff_max - The maximum backoff interval (default: 30_000)
	:backoff_type - The backoff strategy, :stop for no backoff and
to stop, :exp for exponential, :rand for random and :rand_exp for
random exponential (default: :rand_exp)
	:configure - A function to run before every connect attempt to
dynamically configure the options, either a 1-arity fun,
{module, function, args} or nil. This function is called
in the connection process. For more details, see
Connection Configuration Callback
	:after_connect - A function to run on connect using run/3, either
a 1-arity fun, {module, function, args} with DBConnection.t/0 prepended
to args or nil (default: nil)
	:after_connect_timeout - The maximum time allowed to perform
function specified by :after_connect option (default: 15_000)
	:connection_listeners - A list of process destinations to send
notification messages whenever a connection is connected or disconnected.
See "Connection listeners" below
	:name - A name to register the started process (see the :name option
in GenServer.start_link/3)
	:pool - Chooses the pool to be started (default: DBConnection.ConnectionPool). See
"Connection pools".
	:pool_size - Chooses the size of the pool. Must be greater or equal to 1. (default: 1)
	:idle_interval - Controls the frequency we check for idle connections
in the pool. We then notify each idle connection to ping the database.
In practice, the ping happens within idle_interval <= ping < 2 * idle_interval.
Defaults to 1000ms.
	:idle_limit - The number of connections to ping on each :idle_interval.
Defaults to the pool size (all connections).
	:queue_target and :queue_interval - See "Queue config" below
	:max_restarts and :max_seconds - Configures the :max_restarts and
:max_seconds for the connection pool supervisor (see the Supervisor docs).
Typically speaking the connection process doesn't terminate, except due to
faults in DBConnection. However, if backoff has been disabled, then they
also terminate whenever a connection is disconnected (for instance, due to
client or server errors)
	:show_sensitive_data_on_connection_error - By default, DBConnection
hides all information during connection errors to avoid leaking credentials
or other sensitive information. You can set this option if you wish to
see complete errors and stacktraces during connection errors

Example
{:ok, conn} = DBConnection.start_link(mod, [idle_interval: 5_000])
Queue config
Handling requests is done through a queue. When DBConnection is
started, there are two relevant options to control the queue:
	:queue_target in milliseconds, defaults to 50ms
	:queue_interval in milliseconds, defaults to 2000ms

Our goal is to wait at most :queue_target for a connection.
If all connections checked out during a :queue_interval takes
more than :queue_target, then we double the :queue_target.
If checking out connections take longer than the new target,
then we start dropping messages.
For example, by default our target is 50ms. If all connections
checkouts take longer than 50ms for a whole second, we double
the target to 100ms and we start dropping messages if the
time to checkout goes above the new limit.
This allows us to better plan for overloads as we can refuse
requests before they are sent to the database, which would
otherwise increase the burden on the database, making the
overload worse.
Connection listeners
The :connection_listeners option allows one or more processes to be notified
whenever a connection is connected or disconnected. A listener may be a remote
or local PID, a locally registered name, or a tuple in the form of
{registered_name, node} for a registered name at another node.
Each listener process may receive the following messages where pid
identifies the connection process:
	{:connected, pid}
	{:disconnected, pid}

If the value of :connection_listeners is a tuple like {listeners, term}, then
the messages are these instead:
	{:connected, pid, term}
	{:disconnected, pid, term}

Note the disconnected messages are not guaranteed to be delivered if the
pid for connection crashes. So it is recommended to monitor the connected
pid if you want to track all disconnections.
Here is an example of a :connection_listener implementation:
defmodule DBConnectionListener do
 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, [], opts)
 end

 def get_notifications(pid) do
 GenServer.call(pid, :read_state)
 end

 @impl true
 def init(stack) when is_list(stack) do
 {:ok, stack}
 end

 @impl true
 def handle_call(:read_state, _from, state) do
 {:reply, state, state}
 end

 @impl true
 def handle_info({:connected, _pid} = msg, state) do
 {:noreply, [msg | state]}
 end

 @impl true
 def handle_info({_other_states, _pid} = msg, state) do
 {:noreply, [msg | state]}
 end
end
You can then start it, pass the PID in the connection_listeners
option on DBConnection.start_link/2 and, when needed, can query the notifications:
{:ok, pid} = DBConnectionListener.start_link([])
{:ok, _conn} = DBConnection.start_link(SomeModule, [connection_listeners: [pid]])
notifications = DBConnectionListener.get_notifications(pid)
Tagging messages
If you pass {listeners, tag} as an option, you can specify an arbitrary tag term that will
be sent alongside all :connected/:disconnected messages. This is useful if you
want to track information about the pool a connection belongs to or any other information.
This feature is available since v2.6.0. Before this version :connection_listeners only
accepted a list of listener processes.
Connection Configuration Callback
The :configure function will be called before each individual connection to the
database is made. It receives all of the options provided to start_link/2 as well
as an additional generated value named :pool_index. The returned value will be
passed as the options into the appropriate :connect callback. This provides a way
for the user to dynamically configure the connection options.
:pool_index is an integer in 1..pool_size that represents the current connection's
place in the enumeration of all of the pool's connections. It can be used, for example,
to configure a unique database per connection when asynchronous tests cannot be performed
on a single database.
The allowed callbacks are:
	A 1-arity function that receives the options from start_link/2 as well as
:pool_index
	{module, function, args} where the options from start_link/2 as well as
:pool_index are prepended to args before the function is called
	nil if you do not want to modify the existing options

Telemetry
A [:db_connection, :connection_error] event is published whenever a
connection checkout receives a %DBConnection.ConnectionError{}.
This event is emitted from the process that attempts to checkout the
connection.
Measurements:
	:count - A fixed-value measurement which always measures 1.

Metadata
	:error - The DBConnection.ConnectionError struct which triggered the event.

	:opts - All options given to the pool operation

You may also consume [:db_connection, :connected] and [:db_connection, :disconnected]
events by spawning a DBConnection.TelemetryListener process that subscribes to the pool
and emits them in a robust manner.

 status(conn, opts \\ [])

 @spec status(conn(), opts :: Keyword.t()) :: status()

Return the transaction status of a connection.
The callback implementation should return the transaction status according to
the database, and not make assumptions based on client-side state.
This function will raise a DBConnection.ConnectionError when called inside a
deprecated transaction/3.
Options
See module documentation. The pool and connection module may support other
options. All options are passed to handle_status/2.
Example
outside of the transaction, the status is `:idle`
DBConnection.status(conn) #=> :idle

DBConnection.transaction(conn, fn conn ->
 DBConnection.status(conn) #=> :transaction

 # run a query that will cause the transaction to rollback, e.g.
 # uniqueness constraint violation
 DBConnection.execute(conn, bad_query, [])

 DBConnection.status(conn) #=> :error
end)

DBConnection.status(conn) #=> :idle

 stream(conn, query, params, opts \\ [])

 @spec stream(t(), query(), params(), [connection_option()] | Keyword.t()) ::
 DBConnection.Stream.t()

Create a stream that will execute a prepared query and stream results using a
cursor.
Options
	:queue - Whether to block waiting in an internal queue for the
connection's state (boolean, default: true). See "Queue config" in
start_link/2 docs
	:timeout - The maximum time that the caller is allowed to perform
this operation (default: 15_000)
	:deadline - If set, overrides :timeout option and specifies absolute
monotonic time in milliseconds by which caller must perform operation.
See System module documentation for more information on monotonic time
(default: nil)
	:log - A function to log information about a call, either
a 1-arity fun, {module, function, args} with DBConnection.LogEntry.t/0
prepended to args or nil. See DBConnection.LogEntry (default: nil)

The pool and connection module may support other options. All options
are passed to handle_declare/4 and handle_deallocate/4.
Example
DBConnection.transaction(pool, fn conn ->
 query = %Query{statement: "SELECT id FROM table"}
 query = DBConnection.prepare!(conn, query)
 try do
 stream = DBConnection.stream(conn, query, [])
 Enum.to_list(stream)
 after
 # Make sure query is closed!
 DBConnection.close(conn, query)
 end
end)

 transaction(conn, fun, opts \\ [])

 @spec transaction(conn(), (t() -> result), [connection_option()] | Keyword.t()) ::
 {:ok, result} | {:error, reason :: any()}
when result: var

Acquire a lock on a connection and run a series of requests inside a
transaction. The result of the transaction fun is return inside an :ok
tuple: {:ok, result}.
To use the locked connection call the request with the connection
reference passed as the single argument to the fun. If the
connection disconnects all future calls using that connection
reference will fail.
run/3 and transaction/3 can be nested multiple times. If a transaction is
rolled back or a nested transaction fun raises the transaction is marked as
failed. All calls except run/3, transaction/3, rollback/2, close/3 and
close!/3 will raise an exception inside a failed transaction until the outer
transaction call returns. All transaction/3 calls will return
{:error, :rollback} if the transaction failed or connection closed and
rollback/2 is not called for that transaction/3.
Options
	:queue - Whether to block waiting in an internal queue for the
connection's state (boolean, default: true). See "Queue config" in
start_link/2 docs
	:timeout - The maximum time that the caller is allowed to perform
this operation (default: 15_000)
	:deadline - If set, overrides :timeout option and specifies absolute
monotonic time in milliseconds by which caller must perform operation.
See System module documentation for more information on monotonic time
(default: nil)
	:log - A function to log information about begin, commit and rollback
calls made as part of the transaction, either a 1-arity fun,
{module, function, args} with DBConnection.LogEntry.t/0 prepended to
args or nil. See DBConnection.LogEntry (default: nil)

The pool and connection module may support other options. All options
are passed to handle_begin/2, handle_commit/2 and
handle_rollback/2.
Example
{:ok, res} = DBConnection.transaction(conn, fn conn ->
 DBConnection.execute!(conn, query, [])
end)

DBConnection.ConnectionPool

The default connection pool.
The queueing algorithm is based on CoDel.
You're not supposed to call any functions on this pool directly, but only pass this
as the value of the :pool option in functions such as DBConnection.start_link/2.
disconnect_all/3, which by default will result in connections being
reestablished, can be called periodically to recycle checked-in connections
after a maximum lifetime is reached. Ecto SQL users may find it at
https://hexdocs.pm/ecto_sql/Ecto.Adapters.SQL.html#disconnect_all/3

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

DBConnection.LogEntry

Struct containing log entry information.
See t/0 for information on the fields.

 Summary

 Types

 t()

 Log entry information.

 Types

 t()

 @type t() :: %DBConnection.LogEntry{
 call: atom(),
 connection_time: non_neg_integer() | nil,
 decode_time: non_neg_integer() | nil,
 idle_time: non_neg_integer() | nil,
 params: any(),
 pool_time: non_neg_integer() | nil,
 query: any(),
 result: {:ok, any()} | {:ok, any(), any()} | {:error, Exception.t()}
}

Log entry information.
	:call - The DBConnection function called
	:query - The query used by the function
	:params - The params passed to the function (if any)
	:result - The result of the call
	:pool_time - The length of time awaiting a connection from the pool (if
the connection was not already checked out)
	:connection_time - The length of time using the connection (if a
connection was used)
	:decode_time - The length of time decoding the result (if decoded the
result using DBConnection.Query.decode/3)
	:idle_time - The amount of time the connection was idle before use

All times are in the native time units of the VM, see
System.monotonic_time/0.

DBConnection.Ownership

A DBConnection pool that requires explicit checkout and checkin
as a mechanism to coordinate between processes.
Options
	:ownership_mode - When mode is :manual, all connections must
be explicitly checked out before by using ownership_checkout/2.
Otherwise, mode is :auto and connections are checked out
implicitly. {:shared, owner} mode is also supported so
processes are allowed on demand. On all cases, checkins are
explicit via ownership_checkin/2. Defaults to :auto.
	:ownership_timeout - The maximum time (in milliseconds) that a process
is allowed to own a connection or :infinity, default 120_000.
This timeout exists mostly for sanity checking purposes and can be increased
at will, since DBConnection automatically checks in connections whenever
there is a mode change.
	:ownership_log - The Logger.level to log ownership changes, or nil
not to log, default nil.

There are also two experimental options, :post_checkout and :pre_checkin
which allows a developer to configure what happens when a connection is
checked out and checked in. Those options are meant to be used during tests,
and have the following behaviour:
	:post_checkout - it must be an anonymous function that receives the
connection module, the connection state and it must return either
{:ok, connection_module, connection_state} or
{:disconnect, err, connection_module, connection_state}. This allows
the developer to change the connection module on post checkout. However,
in case of disconnects, the return connection_module must be the same
as the connection_module given. Defaults to simply returning the given
connection module and state.

	:pre_checkin - it must be an anonymous function that receives the
checkin reason (:checkin, {:disconnect, err} or {:stop, err}),
the connection module and the connection state returned by post_checkout.
It must return either {:ok, connection_module, connection_state} or
{:disconnect, err, connection_module, connection_state} where the connection
module is the module given to :post_checkout Defaults to simply returning
the given connection module and state.

Callers lookup
When checking out, the ownership pool first looks if there is a connection
assigned to the current process and then checks if there is a connection
assigned to any of the processes listed under the $callers process
dictionary entry. The $callers entry is set by default for tasks from
Elixir v1.8.
You can also pass the :caller option on checkout with a pid and that
pid will be looked up first, instead of self(), and then we fall back
to $callers.

 Summary

 Functions

 ownership_allow(manager, owner, allow, opts)

 Allows the process given by allow to use the connection checked out
by owner_or_allowed.

 ownership_checkin(manager, opts)

 Checks a connection back in.

 ownership_checkout(manager, opts)

 Explicitly checks a connection out from the ownership manager.

 ownership_mode(manager, mode, opts)

 Changes the ownership mode.

 Functions

 ownership_allow(manager, owner, allow, opts)

 @spec ownership_allow(
 GenServer.server(),
 owner_or_allowed :: pid(),
 allow :: pid(),
 Keyword.t()
) ::
 :ok | {:already, :owner | :allowed} | :not_found

Allows the process given by allow to use the connection checked out
by owner_or_allowed.
It may return :ok if the connection is checked out.
{:already, :owner | :allowed} if the allow process already
has a connection. owner_or_allowed may either be the owner or any
other allowed process. Returns :not_found if the given process
does not have any connection checked out.
Setting the unallow_existing option to true will remove the process given by allow from
any existing allowance it may have (this is necessary because a given process can only be
allowed on a single connection at a time).

 ownership_checkin(manager, opts)

 @spec ownership_checkin(GenServer.server(), Keyword.t()) ::
 :ok | :not_owner | :not_found

Checks a connection back in.
A connection can only be checked back in by its owner.

 ownership_checkout(manager, opts)

 @spec ownership_checkout(GenServer.server(), Keyword.t()) ::
 :ok | {:already, :owner | :allowed}

Explicitly checks a connection out from the ownership manager.
It may return :ok if the connection is checked out.
{:already, :owner | :allowed} if the caller process already
has a connection, or raise if there was an error.

 ownership_mode(manager, mode, opts)

 @spec ownership_mode(
 GenServer.server(),
 :auto | :manual | {:shared, pid()},
 Keyword.t()
) ::
 :ok | :already_shared | :not_owner | :not_found

Changes the ownership mode.
mode may be :auto, :manual or {:shared, owner}.
The operation will always succeed when setting the mode to
:auto or :manual. It may fail with reason :not_owner
or :not_found when setting {:shared, pid} and the
given pid does not own any connection. May return
:already_shared if another process set the ownership
mode to {:shared, _} and is still alive.

DBConnection.PrepareStream

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %DBConnection.PrepareStream{
 conn: DBConnection.conn(),
 opts: Keyword.t(),
 params: any(),
 query: any()
}

DBConnection.Query protocol

The DBConnection.Query protocol is responsible for preparing and
encoding queries.
All DBConnection.Query functions are executed in the caller process which
means it's safe to, for example, raise exceptions or do blocking calls as
they won't affect the connection process.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 decode(query, result, opts)

 Decode a result using a query.

 describe(query, opts)

 Describe a query.

 encode(query, params, opts)

 Encode parameters using a query.

 parse(query, opts)

 Parse a query.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 decode(query, result, opts)

 @spec decode(any(), any(), Keyword.t()) :: any()

Decode a result using a query.
This function is called to decode a result after it is returned by a
connection callback module.
See DBConnection.execute/3.

 describe(query, opts)

 @spec describe(any(), Keyword.t()) :: any()

Describe a query.
This function is called to describe a query after it is prepared using a
connection callback module.
See DBConnection.prepare/3.

 encode(query, params, opts)

 @spec encode(any(), any(), Keyword.t()) :: any()

Encode parameters using a query.
This function is called to encode a query before it is executed using a
connection callback module.
If this function raises DBConnection.EncodeError, then the query is
prepared once again.
See DBConnection.execute/3.

 parse(query, opts)

 @spec parse(any(), Keyword.t()) :: any()

Parse a query.
This function is called to parse a query term before it is prepared using a
connection callback module.
See DBConnection.prepare/3.

DBConnection.Stream

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %DBConnection.Stream{
 conn: DBConnection.conn(),
 opts: Keyword.t(),
 params: any(),
 query: any()
}

DBConnection.TelemetryListener

A connection listener that emits telemetry events for connection and disconnection
It monitors connection processes and ensures that disconnection events are
always emitted.
Usage
Start the listener, and pass it under the :connection_listeners option when
starting DBConnection:
{:ok, pid} = DBConnection.TelemetryListener.start_link()
{:ok, _conn} = DBConnection.start_link(SomeModule, connection_listeners: [pid])

Using a tag, which will be sent in telemetry metadata
{:ok, _conn} = DBConnection.start_link(SomeModule, connection_listeners: {[pid], :my_tag})

Or, with a Supervisor:
Supervisor.start_link([
 {DBConnection.TelemetryListener, name: MyListener},
 DBConnection.child_spec(SomeModule, connection_listeners: {[MyListener], :my_tag})
])
When using with Ecto, you can pass the connection_listeners option to Ecto, and we
recommend passing the repository as the tag. In your supervision tree:
Supervisor.start_link([
 {DBConnection.TelemetryListener, name: MyApp.DBListener},
 {MyApp.Repo, connection_listeners: {[MyApp.DBListener], MyApp.Repo})
])
Telemetry events
Connected
[:db_connection, :connected] - Executed after a connection is established.
Measurements
	:count - Always 1

Metadata
	:pid - The connection pid
	:tag - The connection pool tag

Disconnected
[:db_connection, :disconnected] - Executed after a disconnect.
Measurements
	:count - Always 1

Metadata
	:pid - The connection pid
	:tag - The connection pool tag

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts \\ [])

 Starts a telemetry listener

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts \\ [])

 @spec start_link(GenServer.options()) :: {:ok, pid()}

Starts a telemetry listener

DBConnection.ConnectionError exception

A generic connection error exception.
The raised exception might include the reason which would be useful
to programmatically determine what was causing the error.

 Summary

 Types

 t()

 Types

 t()

 (since 2.7.0)

 @type t() :: %DBConnection.ConnectionError{
 __exception__: true,
 message: String.t(),
 reason: :error | :queue_timeout,
 severity: Logger.level()
}

DBConnection.EncodeError exception

DBConnection.OwnershipError exception

An exception for when errors with ownership occur.

DBConnection.TransactionError exception

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

