

 decibel

 v0.2.3

 Table of contents

 	Changelog

 	Modules

 	Decibel

 	Decibel.DecryptionError

Changelog

0.2.3 - June 6, 2023
	Fix unused alias warning.

0.2.2 - June 6, 2023
	Add get_remote_key/1 to the public API.

0.2.1 - June 6, 2023 (Reverted)
	Add get_public_key/2 to the public API.

0.2.0 - May 19, 2023
	Breaking change - renamed set_n/3 and get_n/2 to set_nonce/3
and get_nonce/2 respectively
	AEAD failure now raises a Decibel.DecryptionError rather than
a RuntimeError. If this is raised during a handshake, this struct
will also contain any remote public keys processed during the
handshake, up to the point of failure
	Added fallback tests
	Improved documentation around Noise Pipes and connectionless
transports

0.1.1 - April 25, 2023
	Initial revision

Decibel

Decibel is an implementation of The Noise Protocol Framework.
Noise is a framework for building crypto protocols. Noise protocols support
mutual and optional authentication, identity hiding, forward secrecy, zero
round-trip encryption, and other advanced features.

For more information about Noise, its rationale, supported protocols etc,
please refer to The Noise Specification.
The rest of this document assumes the reader is familiar with the above
specification.
Overview
Decibel encrypts and decrypts messages according to the Noise Protocol,
and the client's selection of handshake and cryptographic primitives. It does
not act as a transport, nor does it say anything about how Noise messages
should be transmitted between participants.
Each party - either the initiator (the party that starts the handshake) or
responder (the other party) - advances the handshake until it completes, at
which point a secure, symmetric channel is established that either party may
use to encrypt and decrypt outbound and inbound messages respectively.
Decibel supports all the handshake patterns outlined in r34 of the specification
including the fundamental patterns, deferred patterns and one-way patterns. It
also supports pre-shared keys as outlined in the specification, and fallback
handshakes for Noise Pipes
support.
Example
Consider the following handshake defined in the Noise Protocol:
NN:
 -> e
 <- e, ee
The parties agree on this handshake and its cryptographic parameters and
express this in a protocol name, e.g. Noise_NN_25519_AESGCM_SHA256. The
initiator's code may look something like this:
Create the protocol instance
ini = Decibel.new("Noise_NN_25519_AESGCM_SHA256", :ini)
Perform the first stage of the handshake
msg1 = Decibel.handshake_encrypt(ini)
Somehow send this message to the responder and get the response
magically_send_msg(rsp_proc, msg1)
msg2 = magically_recv_msg(rsp_proc)
Process the response through the second stage
Decibel.handshake_decrypt(ini, msg2)
At this point, the 'NN' handshake has completed for the initiator
and regular messages may be sent and received
msg3 = Decibel.encrypt(ini, "Hello, world")
magically_send_msg(rsp_proc, msg3)
The responder's code may look something like this:
Create the protocol instance
rsp = Decibel.new("Noise_NN_25519_AESGCM_SHA256", :rsp)
Receive the first-stage message from the initiator
msg1 = magically_recv_msg(ini_proc)
Process the message through the protocol
Decibel.handshake_decrypt(rsp, msg1)
Send the second stage to the initiator
msg2 = Decibel.handshake_encrypt(rsp)
magically_send_msg(ini_proc, msg2)
At this point, the 'NN' handshake has completed for the responder
and regular messages may be sent and received
msg3 = magically_recv_msg(ini_proc)
"Hello, world" = Decibel.decrypt(rsp, msg3)
Lifecycle
Creation
Each party begins by creating a new handshake, via new/4, specifying the
protocol name,
the role the party plays in the handshake (:ini for initiator, :rsp for
responder), and optionally any pre-message keys.
In the IK handshake, the responder's public (static) key is known to the
initiator prior to the handshake.
keys = %{rs: <<...>>}
ini = Decibel.new("Noise_IK_448_ChaChaPoly_BLAKE2b", :ini, keys)
The result of new/4 is a reference used for the rest of the session.
Handshake
During the handshake phase, the protocol is advanced by each party in turn. For
initiators, this typically starts with calling handshake_encrypt/2 and sending
the result to the responder. In turn, the responder calls handshake_decrypt/2
before typically encrypting its own handshake message and sending that to the
initiator.
This sequence continues until the handshake is complete. If the selected protocol
is known at compile time, the parties can just assume its completion in the
absence of an error (as in the example above). Alternatively,
each party can call is_handshake_complete?/1 after each handshake
encryption/decryption.
Once the handshake is complete, a secure channel is established with the
properties of
the selected protocol.
Additionally, once the handshake is complete, a unique 'session-hash' is available
via get_handshake_hash/1 - see the channel-binding
section of the specification for more details.
Session
Once the handshake is complete, the parties use encrypt/3 and decrypt/3 to
exchange 'application' messages between each other. Both functions provide for optional
'associated authenticated data' to be specified, that provides message-integrity
assurance for the application data.
Once the session is complete, each party should call close/1 to free the
resources associated with the it.
Noise Pipes
Noise Pipes are compound protocols
combining:
	A full handshake (e.g. XX)
	A zero-RTT handshake (e.g. IK)
	A fallback handshake (e.g. XXfallback)

The specification provides more detail on Noise Pipes, as does the
Wiki.
Decibel provides support for all these individual protocols and the necessary
information to transition between a failed IK handshake and the fallback.
Decryption Errors
If an AEAD decryption failure occurs, a Decibel.DecryptionError is raised.
Additionally if this error occurs during a handshake, the error's :remote_keys
property will contain any remote public keys processed during the handshake, up
to the point of failure.
Example
The following example shows a responder handling the decryption failure, and then
transitioning to the fallback protocol, using the remote ephemeral key, via
Noise_XXfallback_25519_ChaChaPoly_Blake2b.
Process IK handshake message sent by the initiator
try do
 _ = Decibel.handshake_decrypt(rsp, ciphertext)
 # Happy path continues here...
rescue
 e in Decibel.DecryptionError ->
 # Grab the remote ephemeral key sent by the initiator during the failed
 # handshake
 re = e.remote_keys[:re]
 # Now construct the new responder for the fallback protocol
 rsp = Decibel.new("Noise_XXfallback_25519_ChaChaPoly_Blake2b", :rsp, %{re: re}, swap: :rsp)
 # Start the new handshake (not shown) ...
end
Note that although the code reconstructs the responder, as the handshake is a fallback
protocol, the code is effectively the initiator, and will send the first message on
this new handshake.
	The retrievel of the remote ephemeral (re) key from the error
	The prepopulation of that key in the responder's new handshake (other keys omitted
for brevity)
	The use of the [swap: :rsp] option - this is required to ensure the split cipher
channels are correctly paired after the handshake.

Connectionless Transports
Once the handshake completes, Noise provides support for the encryption and decryption
of messages over connectionless i.e. potentially unordered, potentially lossy
transports, and Decibel honours this support.
This example shows how to send data over such a transport:
First, grab the nonce for the outbound channel
n = Decibel.get_nonce(ref, :out)
Encrypt the data
ciphertext = Decibel.encrypt(ref, plaintext, aad)
Send both the nonce and the ciphertext
send(peer, {n, ciphertext})
The receiving side is as follows:
Receive the message
{n, ciphertext} = get_msg_from(peer)
Set the nonce for the inbound channel using the received n
:ok = Decibel.set_nonce(ref, :in, n)
Decrypt the ciphertext
plaintext = Decibel.decrypt(ref, ciphertext, aad)

 Anchor for this section

 Summary

 Types

 role()

 The role the party plays in the protocol.

 Functions

 close(ref)

 Release the resources associated with the session.

 decrypt(ref, ciphertext, ad \\ [])

 Decrypts a message over an established session, using an optionally
provided AAD for message integrity.

 encrypt(ref, plaintext, ad \\ [])

 Encrypts a message over an established session, using an optionally
provided AAD for message integrity.

 get_handshake_hash(ref)

 Returns a 32-byte handshake hash, unique to the established session.

 get_nonce(ref, dir)

 Get the current nonce value of the specified cipher.

 get_remote_key(ref)

 Get the remote (static) key if available.

 handshake_decrypt(ref, ciphertext)

 Decrypt an inbound handshake message, returning any optionally provided application
data.

 handshake_encrypt(ref, plaintext \\ [])

 Encrypt an outbound handshake message, optionally folding in application data.

 is_handshake_complete?(ref)

 Returns true if the handshake is complete, false otherwise.

 new(protocol_name, role, keys \\ %{}, opts \\ [])

 Start a new handshake.

 rekey(ref, dir)

 Rekey the inbound or outbound channel of the session.

 set_nonce(ref, dir, n)

 Set the current value of nonce for the specified cipher.

 Anchor for this section

Types

 Link to this type

 role()

 View Source

 @type role() :: :ini | :rsp

The role the party plays in the protocol.

 Anchor for this section

Functions

 Link to this function

 close(ref)

 View Source

 @spec close(reference()) :: :ok

Release the resources associated with the session.
These resources are automatically released when the process terminates, but
this call may be used to eagerly clean them up.

 Link to this function

 decrypt(ref, ciphertext, ad \\ [])

 View Source

 @spec decrypt(reference(), iodata(), iodata()) :: iodata()

Decrypts a message over an established session, using an optionally
provided AAD for message integrity.
Returns the decrypted message, or raises a RuntimeException if the
message cannot be decrypted.

 Link to this function

 encrypt(ref, plaintext, ad \\ [])

 View Source

 @spec encrypt(reference(), iodata(), iodata()) :: iodata()

Encrypts a message over an established session, using an optionally
provided AAD for message integrity.
Returns the encrypted message.

 Link to this function

 get_handshake_hash(ref)

 View Source

 @spec get_handshake_hash(reference()) :: binary() | nil

Returns a 32-byte handshake hash, unique to the established session.
Returns nil if the handshake is not yet completed.

 Link to this function

 get_nonce(ref, dir)

 View Source

 @spec get_nonce(reference(), :in | :out) :: non_neg_integer()

Get the current nonce value of the specified cipher.

 Link to this function

 get_remote_key(ref)

 View Source

 @spec get_remote_key(reference()) :: nil | binary()

Get the remote (static) key if available.

 Link to this function

 handshake_decrypt(ref, ciphertext)

 View Source

 @spec handshake_decrypt(reference(), iodata()) :: iodata()

Decrypt an inbound handshake message, returning any optionally provided application
data.
The function will raise a Decibel.DecryptionError if the handshake data does not
decrypt correctly.

 Link to this function

 handshake_encrypt(ref, plaintext \\ [])

 View Source

 @spec handshake_encrypt(reference(), iodata()) :: iodata()

Encrypt an outbound handshake message, optionally folding in application data.
The reader is encouraged to understand the ramifications of providing application
data during the handshake. As the handshake is not yet completed, the properties
of any secure channel have not yet been established. Such data may even be sent in
the clear. Consult the Payload Security Properties
in the specification for more information.

 Link to this function

 is_handshake_complete?(ref)

 View Source

 @spec is_handshake_complete?(reference()) :: boolean()

Returns true if the handshake is complete, false otherwise.

 Link to this function

 new(protocol_name, role, keys \\ %{}, opts \\ [])

 View Source

 @spec new(String.t(), role(), map(), keyword()) :: reference()

Start a new handshake.
The caller should provide a protocol name
and the role the caller will play in the protocol. The caller should provide any keys
required by the protocol prior to advancing the handshake. This are typically either
static keys or pre-shared keys (PSKs), but ephemeral keys may also be provided. The
list of provided keys should be identified as follows:
	:s: the party's public-private static key pair as a tuple.
	:rs: the peer's public static key as a binary.
	:psks: a list of pre-shared symmetric keys
(as binaries), one for each psk modifier.
	:prologue: any prologue data

This function will raise an exception if any required keys are missing.
Returns a reference representing the handshake.

 Link to this function

 rekey(ref, dir)

 View Source

 @spec rekey(reference(), :in | :out) :: :ok

Rekey the inbound or outbound channel of the session.

 Link to this function

 set_nonce(ref, dir, n)

 View Source

 @spec set_nonce(reference(), :in | :out, non_neg_integer()) :: :ok

Set the current value of nonce for the specified cipher.

Decibel.DecryptionError exception

Represents a decryption failure.
If the failure occurs during the handshake phase, the :remote_keys
field will contain any remote public keys used in the handshake.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

