

 DetsPlus

 v2.1.5

 Table of contents

 	

 	Modules

 	DetsPlus

 	KrakenDB

DetsPlus

DetsPlus persistent tuple/struct/map storage.
DetsPlus has a similiar API as dets but without
the 2GB file storage limit. Writes are buffered in an
internal ETS table and synced every auto_save period
to the persistent storage.
While sync() or auto_save are in progress the database
is still readable and writeable.
There is no commitlog so not synced writes are lost.
Lookups are possible by key and non-matches are accelerated
using a bloom filter. The persistent file concept follows
DJ Bernsteins CDB database format, but uses an Elixir
encoded header https://cr.yp.to/cdb.html. When syncing
a new CDB database file is created and replaces
the old CDB atomically file using File.rename! so
database corruptions are not possible from incomplete updates.
Limits are:
	Total file size: 18_446 Petabyte
	Maximum entry size: 4 Gigabyte
	Maximum entry count: :infinity

Example:
{:ok, dets} = DetsPlus.open_file(:example)
DetsPlus.insert(dets, {1, 1, 1})
[{1, 1, 1}] = DetsPlus.lookup(dets, 1)
:ok = DetsPlus.close(dets)

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 close(pid)

 Syncs pending writes to the persistent file and closes the table.

 count(pid)

 Returns the number of object in the table. This is an estimate and the same as info(dets, :size).

 delete(pid, key)

 Deletes all objects with key Key from table Name.

 delete_all_objects(pid)

 Deletes all objects from a table in almost constant time.

 delete_object(pid, object)

 Deletes all instances of a specified object from a table.

 info(pid)

 Returns information about table Name as a list of objects

 info(dets, item)

 Returns the information associated with item for the table. The following items are allowed

 insert(pid, objects)

 Inserts one or more objects into the table. If there already exists an object with a key matching the key of some of the given objects, the old object will be replaced.

 insert_new(pid, object)

 Inserts one or more objects into the table. If there already exists an object with a key matching the key of some of the given objects, the old object will be replaced.

 lookup(pid, key)

 Returns a list of all objects with key Key stored in the table.

 member(dets, key)

 Same as member?/2

 member?(dets, key)

 Works like lookup/2, but does not return the objects. Returns true if one or more table elements has the key key, otherwise false.

 open_file(name, args \\ [])

 Opens an existing table or creates a new table. If no
 file argument is provided the table name will be used.
 Dets registers a Process under the provided name which can
 be used for calling alternatively to the pid.

 reduce(pid, acc, fun)

 Reducer function following the Enum protocol.

 start_sync(pid)

 Starts a sync of all changes to the disk. Same as sync/1 but doesn't block

 sync(pid)

 Ensures that all updates made to table are written to disk. While the sync is running the
table can still be used for reads and writes, but writes issued after the sync/1 call
will not be part of the persistent file. These new changes will only be included in the
next sync call.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %DetsPlus{
 ets: term(),
 hashfun: term(),
 keyfun: term(),
 keyhashfun: term(),
 pid: pid()
}

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 close(pid)

 View Source

 @spec close(t() | pid() | atom()) :: :ok

Syncs pending writes to the persistent file and closes the table.

 Link to this function

 count(pid)

 View Source

 @spec count(t() | pid() | atom()) :: integer()

Returns the number of object in the table. This is an estimate and the same as info(dets, :size).

 Link to this function

 delete(pid, key)

 View Source

 @spec delete(t() | pid() | atom(), any()) :: :ok | {:error, atom()}

Deletes all objects with key Key from table Name.

 Link to this function

 delete_all_objects(pid)

 View Source

 @spec delete_all_objects(t() | pid() | atom()) :: :ok | {:error, atom()}

Deletes all objects from a table in almost constant time.

 Link to this function

 delete_object(pid, object)

 View Source

 @spec delete_object(t() | pid() | atom(), tuple() | map()) :: :ok | {:error, atom()}

Deletes all instances of a specified object from a table.

 Link to this function

 info(pid)

 View Source

 @spec info(t() | pid() | atom()) :: [] | nil

Returns information about table Name as a list of objects:
	{file_size, integer() >= 0}} - The file size, in bytes.
	{filename, file:name()} - The name of the file where objects are stored.
	{keypos, keypos()} - The key position.
	{size, integer() >= 0} - The number of objects estimated in the table.
	{type, type()} - The table type.

 Link to this function

 info(dets, item)

 View Source

 @spec info(
 t(),
 :file_size
 | :header_size
 | :filename
 | :keypos
 | :size
 | :type
 | :creation_stats
 | :bloom_bytes
 | :hashtable_bytes
) :: any()

Returns the information associated with item for the table. The following items are allowed:
	{file_size, integer() >= 0}} - The file size, in bytes.
	{header_size, integer() >= 0}} - The size of erlang term encoded header.
	{bloom_bytes, integer() >= 0}} - The size of the in-memory and on-disk bloom filter, in bytes.
	{hashtable_bytes, integer() >= 0}} - The size of the on-disk lookup hashtable, in bytes.
	{filename, file:name()} - The name of the file where objects are stored.
	{keypos, keypos()} - The key position.
	{size, integer() >= 0} - The number of objects estimated in the table.
	{type, type()} - The table type.

 Link to this function

 insert(pid, objects)

 View Source

 @spec insert(t() | pid() | atom(), tuple() | map() | [tuple() | map()]) ::
 :ok | {:error, atom()}

 Inserts one or more objects into the table. If there already exists an object with a key matching the key of some of the given objects, the old object will be replaced.

 Link to this function

 insert_new(pid, object)

 View Source

 @spec insert_new(t() | pid() | atom(), tuple() | map() | [tuple() | map()]) ::
 true | false

Inserts one or more objects into the table. If there already exists an object with a key matching the key of some of the given objects, the old object will be replaced.

 Link to this function

 lookup(pid, key)

 View Source

 @spec lookup(t() | pid() | atom(), any()) :: [tuple() | map()] | {:error, atom()}

Returns a list of all objects with key Key stored in the table.
Example:
2> State.open_file(:abc)
{ok,:abc}
3> State.insert(:abc, {1,2,3})
ok
4> State.insert(:abc, {1,3,4})
ok
5> State.lookup(:abc, 1).
[{1,3,4}]
If the table type is set, the function returns either the empty list or a list with one object, as there cannot be more than one object with a given key. If the table type is bag or duplicate_bag, the function returns a list of arbitrary length.
Notice that the order of objects returned is unspecified. In particular, the order in which objects were inserted is not reflected.

 Link to this function

 member(dets, key)

 View Source

 @spec member(t() | pid() | atom(), any()) :: false | true | {:error, atom()}

Same as member?/2

 Link to this function

 member?(dets, key)

 View Source

 @spec member?(t() | pid() | atom(), any()) :: false | true | {:error, atom()}

Works like lookup/2, but does not return the objects. Returns true if one or more table elements has the key key, otherwise false.

 Link to this function

 open_file(name, args \\ [])

 View Source

 Opens an existing table or creates a new table. If no
 file argument is provided the table name will be used.
 Dets registers a Process under the provided name which can
 be used for calling alternatively to the pid.
 Arguments:
	file - An optional path + filename for the database file.
	auto_save - The autosave interval. If the interval is an integer Time, the table is flushed to disk whenever it is not accessed for Time milliseconds. If the interval is the atom infinity, autosave is disabled. Defaults to 180_000 (3 minutes).
	auto_save_memory - The autosave threshold in memory. When the internal ETS table reaches a size bigger than this the table is flushed to disk. Defaults to 1_000_000_000 (1 GB)
	page_cache_memory - The amount of memory to use for file system caching. Defaults to 1_000_000_000 (1 GB)
	keypos - The position of the element of each object to be used as key. Defaults to 1. The ability to explicitly state the key position is most convenient when we want to store Erlang records in which the first position of the record is the name of the record type.

 Link to this function

 reduce(pid, acc, fun)

 View Source

 @spec reduce(t() | pid() | atom(), any(), (... -> any())) :: any()

Reducer function following the Enum protocol.

 Link to this function

 start_sync(pid)

 View Source

 @spec start_sync(t() | pid() | atom()) :: :ok

Starts a sync of all changes to the disk. Same as sync/1 but doesn't block

 Link to this function

 sync(pid)

 View Source

 @spec sync(t() | pid() | atom()) :: :ok

Ensures that all updates made to table are written to disk. While the sync is running the
table can still be used for reads and writes, but writes issued after the sync/1 call
will not be part of the persistent file. These new changes will only be included in the
next sync call.

KrakenDB

Alpha version of a sharded DetsPlus

 Summary

 Types

 t()

 Functions

 close(kdb)

 Syncs pending writes to the persistent file and closes the table.

 count(kdb)

 Returns the number of object in the table. This is an estimate.

 delete(kdb, key)

 Deletes all objects with key Key from table Name.

 delete_all_objects(kdb)

 Deletes all objects from a table in almost constant time.

 delete_object(kdb, object)

 Deletes all instances of a specified object from a table.

 info(kraken_db)

 Returns information about table Name as a list of objects

 info(dets, item)

 Returns the information associated with item for the table. The following items are allowed

 insert(kdb, objects)

 Inserts one or more objects into the table. If there already exists an object with a key matching the key of some of the given objects, the old object will be replaced.

 insert_new(kdb, object)

 Inserts one object into the table if it doesn't already exists.

 lookup(kdb, key)

 Returns a list of all objects with key Key stored in the table.

 member?(kdb, key)

 Works like lookup/2, but does not return the objects. Returns true if one or more table elements has the key key, otherwise false.

 open_directory(name, args \\ [])

 reduce(kdb, acc, fun)

 Reducer function following the Enum protocol.

 start_sync(kdb)

 Starts a sync of all changes to the disk. Same as sync/1 but doesn't block

 sync(kdb)

 Ensures that all updates made to table are written to disk. While the sync is running the
table can still be used for reads and writes, but writes issued after the sync/1 call
will not be part of the persistent file. These new changes will only be included in the
next sync call.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %KrakenDB{
 dets: term(),
 hashfun: term(),
 keyfun: term(),
 keyhashfun: term(),
 keypos: term()
}

 Functions

 Link to this function

 close(kdb)

 View Source

Syncs pending writes to the persistent file and closes the table.

 Link to this function

 count(kdb)

 View Source

Returns the number of object in the table. This is an estimate.

 Link to this function

 delete(kdb, key)

 View Source

Deletes all objects with key Key from table Name.

 Link to this function

 delete_all_objects(kdb)

 View Source

Deletes all objects from a table in almost constant time.

 Link to this function

 delete_object(kdb, object)

 View Source

Deletes all instances of a specified object from a table.

 Link to this function

 info(kraken_db)

 View Source

Returns information about table Name as a list of objects:
	{file_size, integer() >= 0}} - The file size sum, in bytes.
	{directory, file:name()} - The name of the directory where objects are stored.
	{keypos, keypos()} - The key position.
	{size, integer() >= 0} - The number of objects estimated in the table.
	{type, type()} - The table type.

 Link to this function

 info(dets, item)

 View Source

 @spec info(
 t(),
 :file_size
 | :header_size
 | :directory
 | :keypos
 | :size
 | :type
 | :creation_stats
 | :bloom_bytes
 | :hashtable_bytes
) :: any()

Returns the information associated with item for the table. The following items are allowed:
	{file_size, integer() >= 0}} - The file size, in bytes.
	{header_size, integer() >= 0}} - The size of erlang term encoded header.
	{bloom_bytes, integer() >= 0}} - The size of the in-memory and on-disk bloom filter, in bytes.
	{hashtable_bytes, integer() >= 0}} - The size of the on-disk lookup hashtable, in bytes.
	{filename, file:name()} - The name of the file where objects are stored.
	{keypos, keypos()} - The key position.
	{size, integer() >= 0} - The number of objects estimated in the table.
	{type, type()} - The table type.

 Link to this function

 insert(kdb, objects)

 View Source

 Inserts one or more objects into the table. If there already exists an object with a key matching the key of some of the given objects, the old object will be replaced.

 Link to this function

 insert_new(kdb, object)

 View Source

Inserts one object into the table if it doesn't already exists.

 Link to this function

 lookup(kdb, key)

 View Source

Returns a list of all objects with key Key stored in the table.
Example:
2> KrakenDB.open_directory(:abc)
{ok,:abc}
3> KrakenDB.insert(:abc, {1,2,3})
ok
4> KrakenDB.insert(:abc, {1,3,4})
ok
5> KrakenDB.lookup(:abc, 1).
[{1,3,4}]
If the table type is set, the function returns either the empty list or a list with one object, as there cannot be more than one object with a given key. If the table type is bag or duplicate_bag, the function returns a list of arbitrary length.
Notice that the order of objects returned is unspecified. In particular, the order in which objects were inserted is not reflected.

 Link to this function

 member?(kdb, key)

 View Source

Works like lookup/2, but does not return the objects. Returns true if one or more table elements has the key key, otherwise false.

 Link to this function

 open_directory(name, args \\ [])

 View Source

 Link to this function

 reduce(kdb, acc, fun)

 View Source

Reducer function following the Enum protocol.

 Link to this function

 start_sync(kdb)

 View Source

Starts a sync of all changes to the disk. Same as sync/1 but doesn't block

 Link to this function

 sync(kdb)

 View Source

Ensures that all updates made to table are written to disk. While the sync is running the
table can still be used for reads and writes, but writes issued after the sync/1 call
will not be part of the persistent file. These new changes will only be included in the
next sync call.

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

