

 Difflib

 v0.1.0

 Table of contents

 	Difflib

 	LICENSE

 	

 	Modules

 	Difflib.SequenceMatcher

Difflib

A set of helpers for computing deltas between objects.
Difflib is a partial port of python 3's difflib.
The port is meant to closely resemble the code, docs, and tests from the python implementation for easy reference between the two.

 Status of the classes and functions to be ported from python

Completed:
	Class SequenceMatcher: A flexible class for comparing pairs of sequences of any type.	implemented as the module Difflib.SequenceMatcher

	Function get_close_matches(word, possibilities, n=3, cutoff=0.6): Use SequenceMatcher to return list of the best "good enough" matches.	implemented in the Difflib.SequenceMatcher module

Not Started:
	Function context_diff(a, b): For two lists of strings, return a delta in context diff format.
	Function ndiff(a, b): Return a delta: the difference between a and b (lists of strings).
	Function restore(delta, which): Return one of the two sequences that generated an ndiff delta.
	Function unified_diff(a, b): For two lists of strings, return a delta in unified diff format.
	Class Differ: For producing human-readable deltas from sequences of lines of text.
	Class HtmlDiff: For producing HTML side by side comparison with change highlights.

 Installation

The package can be installed by adding difflib to your list of dependencies in mix.exs:
def deps do
 [
 {:difflib, "~> 0.1.0"}
]
end

 Basic Usage

iex> SequenceMatcher.get_close_matches("appel", ["ape", "apple", "peach", "puppy"])
["apple", "ape"]

iex> a = "qabxcd"
iex> b = "abycdf"
iex> SequenceMatcher.get_opcodes(a, b)
[
 {:delete, 0, 1, 0, 0},
 {:equal, 1, 3, 0, 2},
 {:replace, 3, 4, 2, 3},
 {:equal, 4, 6, 3, 5},
 {:insert, 6, 6, 5, 6}
]

iex> a = "abcd"
iex> b = "bcde"
iex> SequenceMatcher.ratio(a, b)
0.75

 Documentation

Complete documentation can be found at https://hexdocs.pm/difflib

 Source

Code can be found at https://github.com/gschro/difflib

LICENSE

MIT License

Copyright (c) 2024 Garrett Schroath

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Difflib.SequenceMatcher

SequenceMatcher is a flexible module for comparing pairs of sequences of
any type, so long as the sequence elements are hashable.

 The algorithm

The basic algorithm predates, and is a little fancier than, an algorithm
published in the late 1980's by Ratcliff and Obershelp under the
hyperbolic name "gestalt pattern matching". The basic idea is to find
the longest contiguous matching subsequence that contains no "junk"
elements (R-O doesn't address junk).
The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit
sequences, but does tend to yield matches that "look right" to people.
SequenceMatcher tries to compute a "human-friendly diff" between two
sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the
longest contiguous & junk-free matching subsequence. That's what
catches peoples' eyes.
The Windows(tm) windiff has another interesting
notion, pairing up elements that appear uniquely in each sequence.
That, and the method here, appear to yield more intuitive difference
reports than does diff.
This method appears to be the least vulnerable
to synching up on blocks of "junk lines", though (like blank lines in
ordinary text files, or maybe "<P>" lines in HTML files). That may be
because this is the only method of the 3 that has a concept of
"junk" <wink>.

 Examples

Example, comparing two strings, and considering blanks to be "junk"
iex> is_junk = fn c -> c == " " end
iex> a = "private Thread currentThread;"
iex> b = "private volatile Thread currentThread;"
iex> SequenceMatcher.ratio(a, b, is_junk: is_junk)
0.8656716417910447
ratio/3 returns a float between 0 and 1, measuring the "similarity" of the
sequences. As a rule of thumb, a ratio/3 value over 0.6 means the
sequences are close matches.
If you're only interested in where the sequences match,
get_matching_blocks/3 is handy:
iex> for {a, b, size} <- SequenceMatcher.get_matching_blocks(a, b, is_junk: is_junk) do
iex> IO.puts("a[#{a}] and b[#{b}] match for #{size} elements")
iex> end
a[0] and b[0] match for 8 elements
a[8] and b[17] match for 21 elements
a[29] and b[38] match for 0 elements
Note that the last tuple returned by get_matching_blocks/3 is always a
dummy, {length(a), length(b), 0}, and this is the only case in which the last
tuple element (number of elements matched) is 0.
If you want to know how to change the first sequence into the second,
use get_opcodes/3
iex> for {op, a1, a2, b1, b2} <- SequenceMatcher.get_opcodes(a, b, is_junk: is_junk) do
iex> IO.puts("#{op} a[#{a1}:#{a2}] b[#{b1}:#{b2}]")
iex> end
equal a[0:8] b[0:8]
insert a[8:8] b[8:17]
equal a[8:29] b[17:38]
See also function get_close_matches/3 in this module, which shows how
simple code building on SequenceMatcher can be used to do useful work.
Timing: Basic R-O is cubic time worst case and quadratic time expected
case. SequenceMatcher is quadratic time for the worst case and has
expected-case behavior dependent in a complicated way on how many
elements the sequences have in common; best case time is linear.

 Summary

 Functions

 chain_b(b, opts \\ [])

 Analyzes an input for junk elements.

 find_longest_match(a, b, opts \\ [])

 Find longest matching block in a[alo...ahi] and b[blo...bhi].

 get_close_matches(word, possibilities, opts \\ [])

 Use SequenceMatcher to return list of the best "good enough" matches.

 get_grouped_opcodes(a, b, opts \\ [])

 Isolate change clusters by eliminating ranges with no changes.

 get_matching_blocks(a, b, opts \\ [])

 Return list of triples describing matching subsequences.

 get_opcodes(a, b, opts \\ [])

 Return list of 5-tuples describing how to turn a into b.

 quick_ratio(a, b, opts \\ [])

 Return an upper bound on ratio/3 relatively quickly.

 ratio(a, b, opts \\ [])

 Return a measure of the sequences' similarity (float between 0 and 1).

 real_quick_ratio(a, b)

 Return an upper bound on ratio/3 very quickly.

 Functions

 Link to this function

 chain_b(b, opts \\ [])

 View Source

Analyzes an input for junk elements.

 Background

Because is_junk is a user-defined function, and we test
for junk a LOT, it's important to minimize the number of calls.
Before the tricks described here, chain_b/2 was by far the most
time-consuming routine in the whole module! If anyone sees
Jim Roskind, thank him again for profile.py -- I never would
have guessed that.
The first trick is to build b2j ignoring the possibility
of junk. I.e., we don't call is_junk at all yet. Throwing
out the junk later is much cheaper than building b2j "right"
from the start.

 Parameters

	a - The first of two sequences to be compared. The elements of a must be hashable.
	b - The second of two sequences to be compared. The elements of b must be hashable.
	opts - Keyword list of options.	is_junk - Optional parameter is_junk is a one-argument
function that takes a sequence element and returns true if the
element is junk. The default is nil. For example, pass
fn x -> x == " "
if you're comparing lines as sequences of characters, and don't
want to synch up on blanks or hard tabs.
	auto_junk - Optional parameter autojunk should be set to false to disable the
"automatic junk heuristic" that treats popular elements as junk. The default is true.

 Example

iex> is_junk = fn x -> x == " " end
iex> b = "abcd abcd"
iex> SequenceMatcher.chain_b(b, is_junk: is_junk)
%{
 b2j: %{
 "a" => [0, 5],
 "b" => [1, 6],
 "c" => [2, 7],
 "d" => [3, 8]
 },
 isbjunk: #Function<1.118419402/1>,
 isbpopular: #Function<1.118419402/1>,
 bjunk: %{" " => true},
 bpopular: %{}
}

 Link to this function

 find_longest_match(a, b, opts \\ [])

 View Source

Find longest matching block in a[alo...ahi] and b[blo...bhi].

 Description

If is_junk is not defined:
Return {i,j,k} such that a[i...i+k] is equal to b[j...j+k], where
alo <= i <= i+k <= ahi
blo <= j <= j+k <= bhi
and for all {i',j',k'} meeting those conditions,
k >= k'
i <= i'
and if i == i', j <= j'
In other words, of all maximal matching blocks, return one that
starts earliest in a, and of all those maximal matching blocks that
start earliest in a, return the one that starts earliest in b.

 Parameters

	a - The first of two sequences to be compared. The elements of a must be hashable.
	b - The second of two sequences to be compared. The elements of b must be hashable.
	opts - Keyword list of options.	alo - Optional parameter alo is the lower bound of the range in a to consider. The default is 0.
	ahi - Optional parameter ahi is the upper bound of the range in a to consider. The default is length of a.
	blo - Optional parameter blo is the lower bound of the range in b to consider. The default is 0.
	bhi - Optional parameter bhi is the upper bound of the range in b to consider. The default is length of b.
	is_junk - Optional parameter is_junk is a one-argument
function that takes a sequence element and returns true if the
element is junk. The default is nil. For example, pass
fn x -> x == " "
if you're comparing lines as sequences of characters, and don't
want to synch up on blanks or hard tabs.
	auto_junk - Optional parameter autojunk should be set to false to disable the
"automatic junk heuristic" that treats popular elements as junk. The default is true.

 Examples

iex> is_junk = fn x -> x == " " end
iex> a = " abcd"
iex> b = "abcd abcd"
iex> SequenceMatcher.find_longest_match(a, b, alo: 0, ahi: 5, blo: 0, bhi: 9, is_junk: is_junk)
{1, 0, 4}

iex> a = "ab"
iex> b = "c"
iex> SequenceMatcher.find_longest_match(a, b, alo: 0, ahi: 2, blo: 0, bhi: 1)
{0, 0, 0}

 CAUTION

CAUTION: stripping common prefix or suffix would be incorrect.
E.g.,
ab
acab
Longest matching block is "ab", but if common prefix is
stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
strip, so ends up claiming that ab is changed to acab by
inserting "ca" in the middle. That's minimal but unintuitive:
"it's obvious" that someone inserted "ac" at the front.
Windiff ends up at the same place as diff, but by pairing up
the unique 'b's and then matching the first two 'a's.

 Link to this function

 get_close_matches(word, possibilities, opts \\ [])

 View Source

Use SequenceMatcher to return list of the best "good enough" matches.

 Description

The best (no more than n) matches among the possibilities are returned
in a list, sorted by similarity score, most similar first.

 Parameters

	word - The sequence for which close matches are desired. Typically a string.
	possibilities - A list of sequences against which to match word. Typically a list of strings.
	opts - Keyword list of options.	n - Optional parameter n is the maximum number of close matches to return. The default is 3 and n must be > 0.
	cutoff - Optional parameter cutoff is a float between 0 and 1. Possibilities that don't score at least that similar to word are ignored. The default is 0.6.
	is_junk - Optional parameter is_junk is a one-argument
function that takes a sequence element and returns true if the
element is junk. The default is nil. For example, pass fn x -> x == " " if you're comparing lines as sequences of characters, and don't want to synch up on blanks or hard tabs.	auto_junk - Optional parameter autojunk should be set to false to disable the
"automatic junk heuristic" that treats popular elements as junk. The default is true.

 Example

iex> SequenceMatcher.get_close_matches("appel", ["ape", "apple", "peach", "puppy"])
["apple", "ape"]

 Link to this function

 get_grouped_opcodes(a, b, opts \\ [])

 View Source

Isolate change clusters by eliminating ranges with no changes.

 Description

Return a list groups with up to n lines of context.
Each group is in the same format as returned by get_opcodes/3.

 Parameters

	a - The first of two sequences to be compared. The elements of a must be hashable.
	b - The second of two sequences to be compared. The elements of b must be hashable.
	opts - Keyword list of options.	n - Optional parameter n is the number of lines of context to include in each group. The default is 3.
	is_junk - Optional parameter is_junk is a one-argument
function that takes a sequence element and returns true if the
element is junk. The default is nil. For example, pass
fn x -> x == " "
if you're comparing lines as sequences of characters, and don't
want to synch up on blanks or hard tabs.
	auto_junk - Optional parameter autojunk should be set to false to disable the
"automatic junk heuristic" that treats popular elements as junk. The default is true.

 Example

iex> a = Enum.map(1..39, &Integer.to_string/1)
iex> b = Enum.slice(a, 0..-1)
iex> b = Enum.slice(b, 0..7) ++ ["i"] ++ Enum.slice(b, 8..-1)
iex> b = Enum.slice(b, 0..19) ++ ["20x"] ++ Enum.slice(b, 21..-1)
iex> b = Enum.slice(b, 0..22) ++ Enum.slice(b, 28..-1)
iex> b = Enum.slice(b, 0..29) ++ ["35y"] ++ Enum.slice(b, 31..-1)
iex> SequenceMatcher.get_grouped_opcodes(a, b)
[
 [
 {:equal, 5, 8, 5, 8},
 {:insert, 8, 8, 8, 9},
 {:equal, 8, 11, 9, 12}],
 [
 {:equal, 16, 19, 17, 20},
 {:replace, 19, 20, 20, 21},
 {:equal, 20, 22, 21, 23},
 {:delete, 22, 27, 23, 23},
 {:equal, 27, 30, 23, 26}
],
 [
 {:equal, 31, 34, 27, 30},
 {:replace, 34, 35, 30, 31},
 {:equal, 35, 38, 31, 34}
]
]

 Link to this function

 get_matching_blocks(a, b, opts \\ [])

 View Source

Return list of triples describing matching subsequences.

 Description

Each triple is of the form {i, j, n}, and means that
a[i...i+n] == b[j...j+n]. The triples are monotonically increasing in
i and in j. it's also guaranteed that if
{i, j, n} and {i', j', n'} are adjacent triples in the list, and
the second is not the last triple in the list, then i+n != i' or
j+n != j'. IOW, adjacent triples never describe adjacent equal
blocks.
The last triple is a dummy, {a.length, b.length, 0}, and is the only
triple with n==0.

 Parameters

	a - The first of two sequences to be compared. The elements of a must be hashable.
	b - The second of two sequences to be compared. The elements of b must be hashable.
	opts - Keyword list of options.	is_junk - Optional parameter is_junk is a one-argument
function that takes a sequence element and returns true if the
element is junk. The default is nil. For example, pass
fn x -> x == " "
if you're comparing lines as sequences of characters, and don't
want to synch up on blanks or hard tabs.
	auto_junk - Optional parameter autojunk should be set to false to disable the
"automatic junk heuristic" that treats popular elements as junk. The default is true.

 Example

iex> a = "abxcd"
iex> b = "abcd"
iex> SequenceMatcher.get_matching_blocks(a, b)
[{0, 0, 2}, {3, 2, 2}, {5, 4, 0}]

 Link to this function

 get_opcodes(a, b, opts \\ [])

 View Source

Return list of 5-tuples describing how to turn a into b.

 Description

Each tuple is of the form {tag, i1, i2, j1, j2}. The first tuple
has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
tuple preceding it, and likewise for j1 == the previous j2.
The tags are atoms, with these meanings:
	:replace - a[i1...i2] should be replaced by b[j1...j2]
	:delete - a[i1...i2] should be deleted. Note that j1==j2 in this case.
	:insert - b[j1...j2] should be inserted at a[i1...i1]. Note that i1==i2 in this case.
	:equal - a[i1...i2] == b[j1...j2]

 Parameters

	a - The first of two sequences to be compared. The elements of a must be hashable.
	b - The second of two sequences to be compared. The elements of b must be hashable.
	opts - Keyword list of options.	is_junk - Optional parameter is_junk is a one-argument
function that takes a sequence element and returns true if the
element is junk. The default is nil. For example, pass
fn x -> x == " "
if you're comparing lines as sequences of characters, and don't
want to synch up on blanks or hard tabs.
	auto_junk - Optional parameter autojunk should be set to false to disable the
"automatic junk heuristic" that treats popular elements as junk. The default is true.

 Example

iex> a = "qabxcd"
iex> b = "abycdf"
iex> SequenceMatcher.get_opcodes(a, b)
[
 {:delete, 0, 1, 0, 0},
 {:equal, 1, 3, 0, 2},
 {:replace, 3, 4, 2, 3},
 {:equal, 4, 6, 3, 5},
 {:insert, 6, 6, 5, 6}
]

 Link to this function

 quick_ratio(a, b, opts \\ [])

 View Source

Return an upper bound on ratio/3 relatively quickly.

 Description

This isn't defined beyond that it is an upper bound on ratio/3, and is faster to compute.

 Parameters

	a - The first of two sequences to be compared. The elements of a must be hashable.
	b - The second of two sequences to be compared. The elements of b must be hashable.
	opts - Keyword list of options.	fullbcount - Optional parameter fullbcount is a map of the counts of each element in b.
It will be constructed if it does not exist. The default is nil.

 Example

iex> a = "abcd"
iex> b = "bcde"
iex> SequenceMatcher.quick_ratio(a, b)
0.75

 Link to this function

 ratio(a, b, opts \\ [])

 View Source

Return a measure of the sequences' similarity (float between 0 and 1).

 Description

Where T is the total number of elements in both sequences, and
M is the number of matches, this is 2.0*M / T.
Note that this is 1 if the sequences are identical, and 0 if
they have nothing in common.
ratio/3 is expensive to compute if you haven't already computed
get_matching_blocks/3 or get_opcodes/3, in which case you may
want to try quick_ratio/3 or real_quick_ratio/3 first to get an
upper bound.

 Parameters

	a - The first of two sequences to be compared. The elements of a must be hashable.
	b - The second of two sequences to be compared. The elements of b must be hashable.
	opts - Keyword list of options.	is_junk - Optional parameter is_junk is a one-argument
function that takes a sequence element and returns true if the
element is junk. The default is nil. For example, pass
fn x -> x == " "
if you're comparing lines as sequences of characters, and don't
want to synch up on blanks or hard tabs.
	auto_junk - Optional parameter autojunk should be set to false to disable the
"automatic junk heuristic" that treats popular elements as junk. The default is true.

 Example

iex> a = "abcd"
iex> b = "bcde"
iex> SequenceMatcher.ratio(a, b)
0.75

 Link to this function

 real_quick_ratio(a, b)

 View Source

Return an upper bound on ratio/3 very quickly.

 Description

This isn't defined beyond that it is an upper bound on ratio/3, and
is faster to compute than either ratio/3 or quick_ratio/3.

 Parameters

	a - The first of two sequences to be compared. The elements of a must be hashable.
	b - The second of two sequences to be compared. The elements of b must be hashable.

 Example

iex> a = "abcd"
iex> b = "bcde"
iex> SequenceMatcher.real_quick_ratio(a, b)
1.0

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

