

 divo

 v2.0.0

 Table of contents

 	README

 	Docker Compose

 	Additional Configuration

 	Modules

 	Divo

 	Divo.Case

 	Divo.Compose

 	Divo.File

 	Divo.Helper

 	Divo.Stack

 	Divo.Validate

 	Mix Tasks

 	mix docker.kill

 	mix docker.start

 	mix docker.stop

 	mix test.integration

README

[image: Hex.pm Version]
Getting Started
Easily run Elixir integration tests with docker-compose.
Provide Divo with docker-compose configuration, add use Divo to your integration tests, and run with mix test.integration.
Installation
The package can be installed by adding divo to your list of dependencies in mix.exs:
def deps() do
 [
 {:divo, "~> 2.0.0", only: [:dev, :integration]}
]
end
The docs can be found at https://hexdocs.pm/divo.
New versions are published with actions upon github release.
Configuration
Docker
Define services in your mix configuration file to define the dockerized service(s) you want to run as a dependency of your Elixir app.
Define divo config in one of the following three ways:
Method 1 - Compose file
In your config, include the path to the yaml or json-formatted compose file
#config/config.exs
config :myapp,
 divo: "test/support/docker-compose.yaml,
 divo_wait: [dwell: 700, max_tries: 50]
#test/support/docker-compose.yaml
version: '3'
services:
 redis:
 image: redis
 ports:
 - "6379:6379"
 healthcheck:
 test: ["CMD", "redis-cli", "PING"]
 interval: 5s
 timeout: 10s
 retries: 3
Method 2 - Pre-existing module
In your mix file, include the additional dependency
#mix.exs
def deps() do
 [
 {:divo, "~> 2.0.0", only: [:dev, :integration]},
 {:divo_redis, "~> 1.0.0", only: [:dev, :integration]}
]
And in your config, include the imported dependency module(s) as a list of tuples along with any environment variables the stack takes as a keyword list
#config/config.exs
config :myapp,
 divo: [
 {DivoRedis, [initial_key: "myapp:secret"]}
],
 divo_wait: [dwell: 700, max_tries: 50]
Known Modules:
	Kafka
	Redis
	Machinebox

Method 3 - Elixir map
#config/config.exs
config :myapp,
 divo: %{
 version: "3",
 services: %{
 redis: %{
 image: "redis:latest",
 ports: [
 "6379:6379"
],
 healthcheck: %{
 test: ["CMD", "redis-cli", "PING"],
 interval: "5s",
 timeout: "10s",
 retries: 3
 }
 }
 }
 },
 divo_wait: [dwell: 700, max_tries: 50]
Split Unit and Integration Tests
You will need to move any existing unit tests into a sub directory. We recommend the following structure:
myapp
 └── test
 ├── integration
 │ ├── myapp_test.exs
 │ └── test_helper.exs
 └── unit
 ├── module_a_test.exs
 ├── module_b_test.exs
 └── test_helper.exs
NOTE: test_helper.exs must be included in the root of both integration and unit tests.
Test Paths
Add this to your mix.exs to ensure that your unit and integration tests run in isolation from each other.
#mix.exs

def project do
 [
 # ...
 test_paths: test_paths(Mix.env())
]
end

...

defp test_paths(:integration), do: ["test/integration"]
defp test_paths(_), do: ["test/unit"]
Use Divo in an Integration Test
In each integration module add:
use Divo
Divo will then take care of running docker-compose up before running your tests
and then run docker-compose down after they've completed.
NOTE: Divo will start and stop docker-compose for every integration test module, unless the "DIVO_DOWN" environment variable is set to "DISABLED".
Example Integration Test Module using redix:
defmodule MyAppTest do
 use ExUnit.Case
 use Divo

 test "persisting and reading from redis" do
 {:ok, conn} = Redix.start_link(host: "localhost", port: 6379)
 Redix.command(conn, ["SET", "mykey", "foo"])
 {:ok, result} = Redix.command(conn, ["GET", "mykey"])
 assert result === "foo"
 end
end
Use Divo for the entire test suite
In your integration or test suite's test_helper.exs file add Divo.Suite.start() before ExUnit.start()
Example:
Divo.Suite.start()
...
ExUnit.start()
This will make Divo stand up dockers that last the entire run of the test suite (or just a few modules or tests if you specified them in your mix test.integration command). It will wire itself up to tear down the dockers if in cases where the tests fail to compile.
Ideally, you will want to NOT have use Divo in your tests. However, if you leave use Divo in for all of the tests, and still add the start to your test_helper.exs the tests will still run as expected, with an additional docker start and stop wrapped around the whole run.
The Divo.Suite.start function takes all of the options that use Divo does plus a few extras for controlling where the final docker cleanup occurs:
	auto_cleanup? - whether or not to cleanup dockers on program exit. Defaults to true

Whether or not you choose to let it cleanup after itself, Divo.Suite.start will return a zero-arity cleanup hook that you can call when you want to explicitly cleanup the dockers.
Divo.Suite.start()
|> on_exit()
Running Integration Tests
Integration tests are executed by running:
mix test.integration
License
Released under Apache 2 license.

Docker Compose

Docker Compose instructions are passed to the docker-compose binary on your Docker engine host as either a yaml- or json-formatted document with maps defining the container services, networks, and volumes needed to run the services as an interconnected stack of components (as well as a compose file version). The keys in the underlying map structure generally have a one-to-one relationship to the various arguments available to the docker run command.
For more details, see the full docker compose documentation

Additional Configuration

Divo Wait
Sometimes services take a moment to start up and Elixir apps tend to start (and attempt to run their tests)
too quickly for their dependencies to be ready. For those situations, add the key :divo_wait to the app config that defines a wait period in milliseconds and a maximum number of tries to check for the containerized services to be healthy before aborting. In order for the wait to hold execution for the containers to register as healthy with the Docker engine, a healthcheck must be built into the Dockerfile for the image or defined in the compose file.
config :myapp,
 divo: "test/support/docker-compose.yaml",
 divo_wait: [dwell: 700, max_tries: 50]

Divo

[image: Hex.pm Version]
Getting Started
Easily run Elixir integration tests with docker-compose.
Provide Divo with docker-compose configuration, add use Divo to your integration tests, and run with mix test.integration.
Installation
The package can be installed by adding divo to your list of dependencies in mix.exs:
def deps() do
 [
 {:divo, "~> 2.0.0", only: [:dev, :integration]}
]
end
The docs can be found at https://hexdocs.pm/divo.
New versions are published with actions upon github release.
Configuration
Docker
Define services in your mix configuration file to define the dockerized service(s) you want to run as a dependency of your Elixir app.
Define divo config in one of the following three ways:
Method 1 - Compose file
In your config, include the path to the yaml or json-formatted compose file
#config/config.exs
config :myapp,
 divo: "test/support/docker-compose.yaml,
 divo_wait: [dwell: 700, max_tries: 50]
#test/support/docker-compose.yaml
version: '3'
services:
 redis:
 image: redis
 ports:
 - "6379:6379"
 healthcheck:
 test: ["CMD", "redis-cli", "PING"]
 interval: 5s
 timeout: 10s
 retries: 3
Method 2 - Pre-existing module
In your mix file, include the additional dependency
#mix.exs
def deps() do
 [
 {:divo, "~> 2.0.0", only: [:dev, :integration]},
 {:divo_redis, "~> 1.0.0", only: [:dev, :integration]}
]
And in your config, include the imported dependency module(s) as a list of tuples along with any environment variables the stack takes as a keyword list
#config/config.exs
config :myapp,
 divo: [
 {DivoRedis, [initial_key: "myapp:secret"]}
],
 divo_wait: [dwell: 700, max_tries: 50]
Known Modules:
	Kafka
	Redis
	Machinebox

Method 3 - Elixir map
#config/config.exs
config :myapp,
 divo: %{
 version: "3",
 services: %{
 redis: %{
 image: "redis:latest",
 ports: [
 "6379:6379"
],
 healthcheck: %{
 test: ["CMD", "redis-cli", "PING"],
 interval: "5s",
 timeout: "10s",
 retries: 3
 }
 }
 }
 },
 divo_wait: [dwell: 700, max_tries: 50]
Split Unit and Integration Tests
You will need to move any existing unit tests into a sub directory. We recommend the following structure:
myapp
 └── test
 ├── integration
 │ ├── myapp_test.exs
 │ └── test_helper.exs
 └── unit
 ├── module_a_test.exs
 ├── module_b_test.exs
 └── test_helper.exs
NOTE: test_helper.exs must be included in the root of both integration and unit tests.
Test Paths
Add this to your mix.exs to ensure that your unit and integration tests run in isolation from each other.
#mix.exs

def project do
 [
 # ...
 test_paths: test_paths(Mix.env())
]
end

...

defp test_paths(:integration), do: ["test/integration"]
defp test_paths(_), do: ["test/unit"]
Use Divo in an Integration Test
In each integration module add:
use Divo
Divo will then take care of running docker-compose up before running your tests
and then run docker-compose down after they've completed.
NOTE: Divo will start and stop docker-compose for every integration test module, unless the "DIVO_DOWN" environment variable is set to "DISABLED".
Example Integration Test Module using redix:
defmodule MyAppTest do
 use ExUnit.Case
 use Divo

 test "persisting and reading from redis" do
 {:ok, conn} = Redix.start_link(host: "localhost", port: 6379)
 Redix.command(conn, ["SET", "mykey", "foo"])
 {:ok, result} = Redix.command(conn, ["GET", "mykey"])
 assert result === "foo"
 end
end
Use Divo for the entire test suite
In your integration or test suite's test_helper.exs file add Divo.Suite.start() before ExUnit.start()
Example:
Divo.Suite.start()
...
ExUnit.start()
This will make Divo stand up dockers that last the entire run of the test suite (or just a few modules or tests if you specified them in your mix test.integration command). It will wire itself up to tear down the dockers if in cases where the tests fail to compile.
Ideally, you will want to NOT have use Divo in your tests. However, if you leave use Divo in for all of the tests, and still add the start to your test_helper.exs the tests will still run as expected, with an additional docker start and stop wrapped around the whole run.
The Divo.Suite.start function takes all of the options that use Divo does plus a few extras for controlling where the final docker cleanup occurs:
	auto_cleanup? - whether or not to cleanup dockers on program exit. Defaults to true

Whether or not you choose to let it cleanup after itself, Divo.Suite.start will return a zero-arity cleanup hook that you can call when you want to explicitly cleanup the dockers.
Divo.Suite.start()
|> on_exit()
Running Integration Tests
Integration tests are executed by running:
mix test.integration
License
Released under Apache 2 license.

 Anchor for this section

 Summary

 Functions

 __using__(opts \\ [])

 Implements a macro for including directly in integration
test files. Add use Divo to an integration test file to
automatically add the Start and Kill commands for your
dependent service definitions to a setup_all block of
your tests.

 cleanup(opts \\ [])

 kill()

 See Divo.Compose.kill/0.

 run(opts)

 See Divo.Compose.run/1.

 start(opts \\ [])

 stop()

 See Divo.Compose.stop/0.

 Anchor for this section

Functions

 Link to this macro

 __using__(opts \\ [])

 View Source

 (macro)

Implements a macro for including directly in integration
test files. Add use Divo to an integration test file to
automatically add the Start and Kill commands for your
dependent service definitions to a setup_all block of
your tests.

 Link to this function

 cleanup(opts \\ [])

 View Source

 Link to this function

 kill()

 View Source

See Divo.Compose.kill/0.

 Link to this function

 run(opts)

 View Source

See Divo.Compose.run/1.

 Link to this function

 start(opts \\ [])

 View Source

 Link to this function

 stop()

 View Source

See Divo.Compose.stop/0.

Divo.Case

Can be used in place of Divo to also include ExUnit.Case.
Opts will still be passed to Divo as normal, and the async
opt will be passed only to ExUnit.Case.

Divo.Compose

Implements the basic docker-compose commands for running from
your mix tasks. Run, stop, and kill container services.
These operations only apply to services managed by Divo, i.e. defined in
your Mix.env file under the :myapp, :divo key.

 Anchor for this section

 Summary

 Functions

 kill()

 Builds and/or validates the compose file and executes the docker-compose down
call to stop the containerized services and removes all resources created by
the compose file such as containers, networks, and volumes.

 run(opts \\ [])

 Builds and/or validates the compose file and executes the docker-compose up
call to start the entirety of the defined stack or a subset of the services
defined in the stack based on supplying an optional list of service keys.

 stop()

 Builds and/or validates the compose file and executes the docker-compose stop
call to stop the containerized services without removing the resources created
by the compose file.

 Anchor for this section

Functions

 Link to this function

 kill()

 View Source

 @spec kill() :: :ok | {:error, any()}

Builds and/or validates the compose file and executes the docker-compose down
call to stop the containerized services and removes all resources created by
the compose file such as containers, networks, and volumes.

 Link to this function

 run(opts \\ [])

 View Source

 @spec run(keyword()) :: [any()]

Builds and/or validates the compose file and executes the docker-compose up
call to start the entirety of the defined stack or a subset of the services
defined in the stack based on supplying an optional list of service keys.

 Link to this function

 stop()

 View Source

 @spec stop() :: :ok | {:error, any()}

Builds and/or validates the compose file and executes the docker-compose stop
call to stop the containerized services without removing the resources created
by the compose file.

Divo.File

Constructs the ad hoc docker-compose file used by
Divo to run docker dependency services based on
config in the app environment (Mix.env()) file.

 Anchor for this section

 Summary

 Functions

 ensure_file(app_config)

 Passes through the file name when the compose file is
pre-existing and supplied via file system path. Builds
and writes a dynamic compose file to a temp directory before
returning the path to that temp file if file does not exist.

 file_name()

 Returns the name of the compose file to run, either as a
pass-through from an existing compose file or the path of
the file dynamically created by Divo.

 Anchor for this section

Functions

 Link to this function

 ensure_file(app_config)

 View Source

 @spec ensure_file(String.t() | [tuple()] | map()) :: String.t()

Passes through the file name when the compose file is
pre-existing and supplied via file system path. Builds
and writes a dynamic compose file to a temp directory before
returning the path to that temp file if file does not exist.

 Link to this function

 file_name()

 View Source

 @spec file_name() :: String.t()

Returns the name of the compose file to run, either as a
pass-through from an existing compose file or the path of
the file dynamically created by Divo.

Divo.Helper

Extract common key-fetching functionality used by all of the
mix tasks to construct the proper arguments to the docker
commands.

 Anchor for this section

 Summary

 Functions

 fetch_config()

 Returns the configuration for divo from the environment config
exs file that defines the container services to run or the path
to the config given an existing compose file.

 fetch_name()

 Returns the name of the calling app from the mix config.

 Anchor for this section

Functions

 Link to this function

 fetch_config()

 View Source

 @spec fetch_config() :: map() | String.t() | [tuple()]

Returns the configuration for divo from the environment config
exs file that defines the container services to run or the path
to the config given an existing compose file.

 Link to this function

 fetch_name()

 View Source

 @spec fetch_name() :: atom()

Returns the name of the calling app from the mix config.

Divo.Stack behaviour

Implements a behaviour for importing
predefined compose stacks from external
library complementary to divo for quickly
standing up well-defined services with
little variation in configuration.

 Anchor for this section

 Summary

 Callbacks

 gen_stack(keyword)

 Defines the behaviour that must be implemented to
supply configs from external modules to divo. The
configuration values are expected as a keyword list
of attributes specific to each module adopting the
behaviour.

 Functions

 concat_compose(config)

 Iterates over modules supplied in the app :divo
config, calling the gen_stack function on each
module's implementation of the behavior, collecting
the resulting maps into a single map and passing
the accumulated result out for writing out the file.

 Anchor for this section

Callbacks

 Link to this callback

 gen_stack(keyword)

 View Source

 @callback gen_stack(keyword()) :: {atom(), map()}

Defines the behaviour that must be implemented to
supply configs from external modules to divo. The
configuration values are expected as a keyword list
of attributes specific to each module adopting the
behaviour.

 Anchor for this section

Functions

 Link to this function

 concat_compose(config)

 View Source

 @spec concat_compose([tuple()]) :: map()

Iterates over modules supplied in the app :divo
config, calling the gen_stack function on each
module's implementation of the behavior, collecting
the resulting maps into a single map and passing
the accumulated result out for writing out the file.

Divo.Validate

Implements a validation of the compose file structure,
either constructed by divo or supplied by as an
existing compose file.

 Anchor for this section

 Summary

 Functions

 validate(file)

 Wraps the function of docker-compose to validate the structure of
the compose file for correct format/syntax and required keys are supplied.

 Anchor for this section

Functions

 Link to this function

 validate(file)

 View Source

 @spec validate(binary()) :: :ok | {:error, any()}

Wraps the function of docker-compose to validate the structure of
the compose file for correct format/syntax and required keys are supplied.

mix docker.kill

Executes docker-compose down with your :divo configuration.

mix docker.start

Executes docker-compose up with your :divo configuration.

mix docker.stop

Executes docker-compose stop with your :divo configuration.

mix test.integration

Runs integration tests.
This task will only work if your project has been
configured according to the configuration steps provided in Divo.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

