

 dns_erlang

 v5.0.2

 Table of contents

 	dns_erlang

 	Supported RFCs

 	Changelog

 	LICENSE

 	
 Modules

 	dns

 	dns_domain

 	dns_json

 	dns_names

 	dns_zone

 	dnssec

 dns_erlang

An Erlang DNS message library that supports most common record types, TSIG authenticated messages, EDNS0 and DNSSEC.
[image: Build Status]
[image: Module Version]
[image: Hex Docs]
[image: Hex Downloads]
[image: Coverage Status]
Usage
This library exposes types via include/dns.hrl, which in turn includes include/dns_terms.hrl and include/dns_records.hrl, as well as functions useful for constructing and deconstructing DNS packets with src/dns.erl
This is a library, not a DNS server. It is meant to be used by Erlang-based DNS servers for low level packet handling and RR processing.
If you'd like to see a full example of dns_erlang in use, please have a look at erldns.
Details
The following section explains what is contained in the library in greater detail.
For more details, see Hex Docs.
dns_terms.hrl
This file defines various terms, defined as Erlang macros, that are used in DNS packets. It includes a term for each DNS type, including one term for the numeric value and one term for the binary version. For example:
-define(DNS_TYPE_A_NUMBER, 1).
-define(DNS_TYPE_A_BSTR, ~"A").
-define(DNS_TYPE_NS, ?DNS_TYPE_NS_NUMBER).
It also contains rcodes, opcodes, errcodes, etc.
dns_records.hrl
This file defines the record definitions for various Erlang record types that are useful for representing DNS constructs. For example, the dns_message record represents all of the elements that you would find in a single DNS message.
-record(dns_message, {id = dns:random_id() :: dns:message_id(),
		 qr = false :: 0..1 | boolean(),
		 oc = ?DNS_OPCODE_QUERY :: dns:opcode(),
		 aa = false :: 0..1 | boolean(),
		 tc = false :: 0..1 | boolean(),
		 rd = false :: 0..1 | boolean(),
		 ra = false :: 0..1 | boolean(),
		 ad = false :: 0..1 | boolean(),
		 cd = false :: 0..1 | boolean(),
		 rc = ?DNS_RCODE_NOERROR :: dns:rcode(),
		 qc = 0 :: 0..65535,
		 anc = 0 :: 0..65535,
		 auc = 0 :: 0..65535,
		 adc = 0 :: 0..65535,
		 questions = [] :: dns:questions(),
		 answers = [] :: dns:answers(),
		 authority = [] :: dns:authority(),
		 additional = [] :: dns:additional()}).
Each of the record fields in dns_message corresponds to the elements defined in section 4 of RFC 1035. For example, id corresponds to the message header field ID, which is defined as:
A 16 bit identifier assigned by the program that generates any kind of query. This identifier is copied the corresponding reply and can be used by the requester to match up replies to outstanding queries.

Other records defined include dns_query, which represents a single question in the #dns_message.questions field, dns_rr which corresponds to a single resource record (RR), which appears in the answers, authority, additional section of the dns_message, and so on.
Note that all support RR types must include a dns_rrdata_ record definition, used to store the parts of the RDATA for that RR type.
Supported RFCs
dns_erlang implements and supports a wide range of DNS-related RFCs, including core DNS protocol specifications, DNSSEC extensions, EDNS, and more. For a comprehensive list of all supported RFCs and their implementation details, see Supported RFCs.

 Supported RFCs

This library implements encoding and decoding of DNS packets according to the following RFCs.
Note that this library focuses on packet encoding/decoding only and does not implement DNS server
functionality such as socket handling or query resolution.
	RFC 1034: Domain Names - Concepts and Facilites
	RFC 1035: Domain Names - Implementation and Specification
	RFC 1183: New DNS RR Definitions
	RFC 1876: A Means for Expressing Location Information in the Domain Name System
	RFC 2230: Key Exchange Delegation Record for the DNS
	RFC 2308: Negative Caching of DNS Queries (DNS NCACHE)
	RFC 2535: Domain Name System Security Extensions
	RFC 2782: A DNS RR for specifying the location of services (DNS SRV)
	RFC 2845: Secret Key Transaction Authentication for DNS (TSIG)
	RFC 3403: Dynamic Delegation Discovery System (DDDS) Part Three: The Domain Name System (DNS) Database
	RFC 3596: DNS Extensions to Support IP Version 6
	RFC 3597: Handling of Unknown DNS Resource Record (RR) Types
	RFC 4025: A Method for Storing IPsec Keying Material in DNS
	RFC 4034: Resource Records for the DNS Security Extensions
	RFC 4255: Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints
	RFC 4398: Storing Certificates in the Domain Name System (DNS)
	RFC 4408: Sender Policy Framework (SPF) for Authorizing Use of Domains in E-Mail, Version 1
	RFC 4431: The DNSSEC Lookaside Validation (DLV) DNS Resource Record
	RFC 4701: A DNS Resource Record (RR) for Encoding Dynamic Host Configuration Protocol (DHCP) Information (DHCID RR)
	RFC 5001: DNS Name Server Identifier (NSID) Option
	RFC 5155: DNS Security (DNSSEC) Hashed Authenticated Denial of Existence
	RFC 6605: Elliptic Curve Digital Signature Algorithm (DSA) for DNSSEC
	RFC 6672: DNAME Redirection in the DNS
	RFC 6698: The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA
	RFC 6844: DNS Certification Authority Authorization (CAA) Resource Record
	RFC 6891: Extension Mechanisms for DNS (EDNS(0))
	RFC 7043: Resource Records for EUI-48 and EUI-64 Addresses in the DNS
	RFC 7344: Automating DNSSEC Delegation Trust Maintenance
	RFC 7477: Child-to-Parent Synchronization in DNS
	RFC 7553: The Uniform Resource Identifier (URI) DNS Resource Record
	RFC 7871: Client Subnet in DNS Queries
	RFC 7873: Domain Name System (DNS) Cookies
	RFC 7929: DNS-Based Authentication of Named Entities (DANE) Bindings for OpenPGP
	RFC 8080: Ed25519 and Ed448 for DNSSEC
	RFC 8162: Using Secure DNS to Associate Certificates with Domain Names for S/MIME
	RFC 8764: DNS Long-Lived Queries (LLQ)
	RFC 8914: Extended DNS Errors
	RFC 8976: Message Digest for DNS Zones
	RFC 9077: NSEC and NSEC3 TTL Values
	RFC 9460: Service Binding and Parameter Specification via the DNS (DNS SVCB and HTTPS Resource Records)
	RFC 9606: DNS Resolver Information
	RFC 9619: In the DNS, QDCOUNT Is (Usually) One
	RFC 9859: Generalized DNS Notifications

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
main
v5.0.2
	Use nulls instead of none in SVCB params JSON payloads #107

v5.0.1
	Fixed an issue with the hex package not including all needed files

v5.0.0
Added
	Add new dns_json module for bidirectional Record <-> JSON/Map transcoding
	Add DNS zone file encoding functionality — convert DNS resource records to RFC 1035 zone file format
	dns_domain:to_lower/1 and dns_domain:to_upper/1 for case conversion
	dns_domain:are_equal/2 and dns_domain:are_equal_labels/2 for case-insensitive comparison
	dns_domain:escape_label/1 and dns_domain:unescape_label/1 for label escaping
	Improved performance with chunked binary pattern matching
	Better RFC1035 and RFC9267 compliance with accurate wire format size tracking

Changed
	Require OTP 27 or later (minimum_otp_vsn set to "27")
	dns:encode_message/2 changed how truncation is returned to a clearer type
	Migrate domain name operations to new dns_domain module

All domain name processing functions have been moved to a new optimized
dns_domain module. The old implementations in dns and related helper
modules have been removed and replaced with calls to the new module.
Migration guide
All domain name functions have been moved to dns_domain. Update your code as follows:
% Old → New
dns:dname_to_lower(Name) -> dns_domain:to_lower(Name)
dns:dname_to_upper(Name) -> dns_domain:to_upper(Name)
dns:dname_to_labels(Name) -> dns_domain:split(Name)
dns:labels_to_dname(Labels) -> dns_domain:join(Labels)
dns:dname_to_lower_labels(Name) -> dns_domain:split(dns_domain:to_lower(Name))
dns:compare_dname(NameA, NameB) -> dns_domain:are_equal(NameA, NameB)
dns:compare_labels(LabelsA, LabelsB) -> dns_domain:are_equal_labels(LabelsA, LabelsB)
dns:escape_label(Label) -> dns_domain:escape_label(Label)
dns_encode:encode_dname(Name) -> dns_domain:to_wire(Name)
dns_encode:encode_dname(CM, Pos, N) -> dns_domain:to_wire(CM, Pos, N)
Note: The wrapper functions in dns module (dname_to_labels/1, labels_to_dname/1,
dname_to_lower_labels/1, dname_to_upper/1, dname_to_lower/1, compare_dname/2,
compare_labels/2, escape_label/1) have been removed. Use dns_domain functions directly now.
Error Handling Changes:
	decoding invalid wire packets previously used throw/1 for errors (decode_loop, bad_pointer),
it uses error/1 now
	Update error handling: try dns:decode_message(...) catch error:Reason -> ... end

Removed
	Removed old dns_record and dns_record_info modules

4.9.1
	Fix a bug that would incorrectly calculate pointers, introduced in 4.9.0

4.9.0
	Add extended support for SVCB and HTTPS Resource Records — RFC9460
	Add support for OPENPGPKEY (Type 61) — RFC 7929
	Add support for SMIMEA (Type 53) — RFC 8162
	Add support for URI (Type 256) — RFC 7553
	Add support for WALLET (Type 262) — IANA Registration
	Add support for EUI48 (Type 108) and EUI64 (Type 109) — RFC 7043
	Add support for CSYNC (Type 62) — RFC 7477
	Add support for DSYNC (Type 66) — RFC 9859
	Add dns:decode_query/1 function for strict query validation to prevent DoS attacks
	Performance improvements in message encoding (~5-15% faster for encode/1, ~0-20% faster for encode/2)

4.8.1
	Fix bad size for reserved OptRR record during encoding

4.8.0
	Fix Base64 lexing of zone files
	Add support for RFC8976: Message Digest for DNS Zones

4.7.0
	Extend support for RFC8914: Extended DNS Errors.

4.6.0
	Add support for DNS zone file parsing

4.5.0
	Add support for RFC8080: Ed22519/Ed448 for DNSSEC.
	Add support for RFC8914: Extended DNS Errors.

4.4.0
	Add support for RFC6605: ECDSA for DNSSEC.
	Add support for RFC9077: NSEC/NSEC3 TTLs.

4.3.0
	Add support for TLSA records.

4.2.0
	Add shortcuts for normalizing and converting domains into labels.
	Add a helper for comparing label lists.
	Add helpers to convert from and to codes into their string representation.

4.1.0
	Add support for RFC7873 EDNS cookies encoding and decoding

4.0.1
	Fix additional count when truncating a message

4.0.0
	Use erlang:system_time/1 for timestamps.
	Use maps instead of proplists for options to be passed to
 encoding, decoding, TSIG, and DNSSEC functions.
	Encoding logic builds responses that contain the full question section,
 and optionally drop the answers if the response is to be truncated.
	Use consistent record names.
	Split names functions into a standalone dns_names module.
	Extends and reorganise documentation.

3.1.3
	Fix: now using the reserved space for the OPT RR records during the encoding of the message (#74)

3.1.2
	Add NXNAME type to terms types.

3.1.1
	Fix EDNS0 compliance for truncated records and unsupported versions

3.1.0
	Fix EDNS0 compliance for truncated records and unsupported versions

3.0.5
	Fix max_size in encode_message opts

3.0.4
	Upgrade dependencies
	Apply linter specs

3.0.3
	Performance improvements in string manipulations

3.0.2
	Fix type definitions

3.0.1
	Ensure ASN1 compilation before building package

3.0.0
	Added xref, dialyzer, and ex_doc
	Add strict typing and RFC references to all records
	Add support for TXT splitting of strings over the maximum permitted size

2.0.0
Changed
	Bumps to OTP/27
	Replaced "jsx" with "json"

Added
	Erlfmt
	CONTRIBUTING.md
	CHANGELOG.md
	Release process to hex.pm

1.1.0
N/A

 LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

dns

The dns module is the primary entry point for the functionality in this library.
The module exports various types used in type specs, such as message/0, which indicates
a #dns_message{} record, query/0 which represents a single #dns_query{} record,
questions/0, which represents a list of queries, etc.
It also exports functions for encoding and decoding messages,
TSIG supporting functions, and various utility functions for comparing domain names, converting
domain names into different cases, converting to and from label lists, etc.

 Summary

 Functions: parsing

 decode_message(MsgBin)

 Decode a binary DNS message.

 decode_query(MsgBin)

 Decode a binary DNS query message with strict header validation.

 encode_message(Msg)

 Encode a message/0 record.

 encode_message(Msg, Opts)

 Encode a dns_message record - will truncate the message as needed.

 Functions: TSIG

 add_tsig(Msg, Alg, Name, Secret, ErrCode)

 Equivalent to add_tsig(Msg, Alg, Name, Secret, ErrCode, #{name => Name, alg => Alg}).

 add_tsig(Msg, Alg, Name, Secret, ErrCode, Options)

 Generates and then appends a TSIG RR to a message.

 verify_tsig(MsgBin, Name, Secret)

 Equivalent to verify_tsig(MsgBin, Name, Secret, #{}).

 verify_tsig(MsgBin, Name, Secret, Options)

 Verifies a TSIG message signature.

 Functions: utilities

 random_id()

 Returns a random integer suitable for use as DNS message identifier.

 unix_time()

 Return current unix time in seconds.

 unix_time/1

 Return the unix time in seconds from a timestamp or universal time.

 Types: integer codes

 class()

 DNS Message class. See RFC 1035: §4.1.2.

 decode_error()

 Decoding errors.

 eoptcode()

 ercode()

 llqerrcode()

 llqopcode()

 message_id()

 DNS Message ID. See RFC 1035: §4.1.1.

 opcode()

 DNS opcode. See RFC 1035: §4.1.1.

 rcode()

 DNS Return code. See RFC 1035: §4.1.1.

 ttl()

 DNS Message class. See RFC 1035: §4.1.3.

 type()

 DNS Message class. See RFC 1035: §4.1.2.

 uint2()

 Unsigned 2-bits integer

 uint4()

 Unsigned 4-bits integer

 uint8()

 Unsigned 8-bits integer

 uint16()

 Unsigned 16-bits integer

 uint32()

 Unsigned 32-bits integer

 uint48()

 Unsigned 48-bits integer

 uint64()

 Unsigned 64-bits integer

 unix_time()

 Unix timestamp in seconds.

 Types: options

 encode_message_opts()

 encode_tsig_opts()

 svcb_svc_params()

 tsig_opts()

 Types: records

 additional()

 answers()

 authority()

 message()

 Main DNS message structure.

 opt_cookie()

 opt_ecs()

 opt_ede()

 opt_llq()

 opt_nsid()

 opt_owner()

 opt_ul()

 opt_unknown()

 optrr()

 optrr_elem()

 query()

 questions()

 records()

 rr()

 rrdata()

 rrdata_rrsig()

 Types: strings

 dname()

 Domain name, expressed as a sequence of label/0, as defined in RFC 1035: §3.1.

 label()

 DNS labels. See RFC 1035: §2.3.1.

 labels()

 A list of dns:label/0

 message_bin()

 DNS wire message format.

 Types: TSIG

 alg()

 tsig_alg()

 tsig_error()

 tsig_mac()

 Functions: parsing

 decode_message(MsgBin)

 -spec decode_message(message_bin()) -> {decode_error(), message() | undefined, binary()} | message().

Decode a binary DNS message.

 decode_query(MsgBin)

 -spec decode_query(message_bin()) -> {decode_error(), message() | undefined, binary()} | message().

Decode a binary DNS query message with strict header validation.
Performs header guard checks before decoding the message body to prevent DoS attacks.
For standard queries (opcode 0), validates that:
	ANCount = 0 (queries should not have answers)
	NSCount = 0 (queries should not have authority records)
	QDCount = 1 (standard queries must have exactly one question)

For NOTIFY (opcode 4) and UPDATE (opcode 5), allows decoding to proceed.
For other opcodes, falls back to standard decoding.

 encode_message(Msg)

 -spec encode_message(message()) -> message_bin().

Encode a message/0 record.

 encode_message(Msg, Opts)

 -spec encode_message(message(), encode_message_opts()) ->
 message_bin() |
 {message_bin(), tsig_mac()} |
 {truncated, message_bin(), message()} |
 {truncated, message_bin(), tsig_mac(), message()}.

Encode a dns_message record - will truncate the message as needed.

 Functions: TSIG

 add_tsig(Msg, Alg, Name, Secret, ErrCode)

 -spec add_tsig(message(), tsig_alg(), dname(), binary(), tsig_error()) -> message().

Equivalent to add_tsig(Msg, Alg, Name, Secret, ErrCode, #{name => Name, alg => Alg}).

 add_tsig(Msg, Alg, Name, Secret, ErrCode, Options)

 -spec add_tsig(message(), tsig_alg(), dname(), binary(), tsig_error(), encode_tsig_opts()) -> message().

Generates and then appends a TSIG RR to a message.
Supports MD5, SHA1, SHA224, SHA256, SHA384 and SHA512 algorithms.

 verify_tsig(MsgBin, Name, Secret)

 -spec verify_tsig(message_bin(), dname(), binary()) -> {ok, tsig_mac()} | {error, tsig_error()}.

Equivalent to verify_tsig(MsgBin, Name, Secret, #{}).

 verify_tsig(MsgBin, Name, Secret, Options)

 -spec verify_tsig(message_bin(), dname(), binary(), tsig_opts()) ->
 {ok, tsig_mac()} | {error, tsig_error()}.

Verifies a TSIG message signature.

 Functions: utilities

 random_id()

 -spec random_id() -> message_id().

Returns a random integer suitable for use as DNS message identifier.

 unix_time()

 -spec unix_time() -> unix_time().

Return current unix time in seconds.

 unix_time/1

 -spec unix_time(erlang:timestamp() | calendar:datetime1970()) -> unix_time().

Return the unix time in seconds from a timestamp or universal time.

 Types: integer codes

 class()

 -type class() :: uint16().

DNS Message class. See RFC 1035: §4.1.2.

 decode_error()

 -type decode_error() :: formerr | truncated | notimp | trailing_garbage.

Decoding errors.
Can be one of the following:
	formerr: the message was malformed.
	truncated: the message was partially decoded, as data was found missing from the message.
	trailing_garbage: the message was successfully decoded,
 but there was trailing garbage at the end of the message.
	notimp: the opcode is not implemented (e.g., IQUERY, STATUS, DSO).
 The message struct contains minimal fields needed to construct a NOTIMP response.

 eoptcode()

 -type eoptcode() :: uint16().

 ercode()

 -type ercode() :: 0 | 16.

 llqerrcode()

 -type llqerrcode() :: 0..6.

 llqopcode()

 -type llqopcode() :: 1..3.

 message_id()

 -type message_id() :: uint16().

DNS Message ID. See RFC 1035: §4.1.1.

 opcode()

 -type opcode() :: uint4().

DNS opcode. See RFC 1035: §4.1.1.

 rcode()

 -type rcode() :: uint4().

DNS Return code. See RFC 1035: §4.1.1.

 ttl()

 -type ttl() :: 0..1 bsl 31 - 1.

DNS Message class. See RFC 1035: §4.1.3.

 type()

 -type type() :: uint16().

DNS Message class. See RFC 1035: §4.1.2.

 uint2()

 -type uint2() :: 0..1.

Unsigned 2-bits integer

 uint4()

 -type uint4() :: 0..15.

Unsigned 4-bits integer

 uint8()

 -type uint8() :: 0..1 bsl 8 - 1.

Unsigned 8-bits integer

 uint16()

 -type uint16() :: 0..1 bsl 16 - 1.

Unsigned 16-bits integer

 uint32()

 -type uint32() :: 0..1 bsl 32 - 1.

Unsigned 32-bits integer

 uint48()

 -type uint48() :: 0..1 bsl 48 - 1.

Unsigned 48-bits integer

 uint64()

 -type uint64() :: 0..1 bsl 64 - 1.

Unsigned 64-bits integer

 unix_time()

 -type unix_time() :: 0..4294967295.

Unix timestamp in seconds.

 Types: options

 encode_message_opts()

 -type encode_message_opts() ::
 #{max_size => 512..65535, tc_mode => default | axfr | llq_event, tsig => encode_tsig_opts()}.

 encode_tsig_opts()

 -type encode_tsig_opts() ::
 #{name := dname(),
 alg := tsig_alg(),
 msgid => message_id(),
 secret => binary(),
 errcode => tsig_error(),
 other => binary(),
 time => unix_time(),
 fudge => non_neg_integer(),
 mac => tsig_mac(),
 tail => boolean()}.

 svcb_svc_params()

 -type svcb_svc_params() ::
 #{0 => [dns:uint16()],
 1 => [binary()],
 2 => none,
 3 => inet:port_number(),
 5 => binary(),
 4 => [inet:ip4_address()],
 6 => [inet:ip6_address()],
 uint16() => none | binary()}.

 tsig_opts()

 -type tsig_opts() ::
 #{time => unix_time(),
 fudge => non_neg_integer(),
 mac => tsig_mac(),
 tail => boolean(),
 atom() => _}.

 Types: records

 additional()

 -type additional() :: [optrr() | rr()].

 answers()

 -type answers() :: [rr()].

 authority()

 -type authority() :: [rr()].

 message()

 -type message() ::
 #dns_message{id :: dns:message_id(),
 qr :: boolean(),
 oc :: dns:opcode(),
 aa :: boolean(),
 tc :: boolean(),
 rd :: boolean(),
 ra :: boolean(),
 ad :: boolean(),
 cd :: boolean(),
 rc :: dns:rcode(),
 qc :: dns:uint16(),
 anc :: dns:uint16(),
 auc :: dns:uint16(),
 adc :: dns:uint16(),
 questions :: dns:questions(),
 answers :: dns:answers(),
 authority :: dns:authority(),
 additional :: dns:additional()}.

Main DNS message structure.

 opt_cookie()

 -type opt_cookie() :: #dns_opt_cookie{client ::

 dns_domain - dns_erlang v5.0.2

dns_domain

Domain name processing module providing operations for converting between
text representation, label lists, and DNS wire format.
This module provides strictly reversible domain name operations for use in DNS
message encoding and decoding.

 Summary

 Types

 compmap()

 Compression map: maps label sequences to positions.

 decode_error()

 Decode error types.

 dname()

 Text representation of domain name: "www.example.com".

 encode_error()

 Encode error types.

 label()

 Single label: "www".

 labels()

 List of labels.

 wire()

 Wire format binary.

 Functions

 are_equal/2

 Compare two domain names case-insensitively.

 are_equal_labels(LabelsA, LabelsB)

 Compare two label lists case-insensitively.

 escape_label(Label)

 Escape special characters in a label.

 from_wire(Bin)

 Convert wire format to domain name.

 from_wire(MsgBin, DataBin)

 Convert wire format to domain name with compression support.

 join(Labels)

 Equivalent to join(Labels, subdomain).

 join/2

 Join labels into domain name.

 split(Name)

 Split domain name into labels.

 to_lower(Data)

 Returns provided name with case-insensitive characters in lowercase.

 to_upper(Data)

 Returns provided name with case-insensitive characters in uppercase.

 to_wire(Name)

 Convert domain name to wire format.

 to_wire(CompMap, Pos, Name)

 Convert domain name to wire format with compression.

 unescape_label(Label)

 Unescape a label by removing escape sequences.

 Types

 compmap()

 -type compmap() :: #{labels() => non_neg_integer()}.

Compression map: maps label sequences to positions.

 decode_error()

 -type decode_error() ::
 {error, truncated} |
 {error, invalid_label_length, non_neg_integer()} |
 {error, bad_pointer, non_neg_integer()}.

Decode error types.

 dname()

 -type dname() :: binary().

Text representation of domain name: "www.example.com".

 encode_error()

 -type encode_error() :: {error, label_too_long, label()} | {error, name_too_long, dname()}.

Encode error types.

 label()

 -type label() :: binary().

Single label: "www".

 labels()

 -type labels() :: [label()].

List of labels.

 wire()

 -type wire() :: binary().

Wire format binary.

 Functions

 are_equal/2

 -spec are_equal(dname(), dname()) -> boolean().

Compare two domain names case-insensitively.
Returns true if the names are equal, false otherwise.

 are_equal_labels(LabelsA, LabelsB)

 -spec are_equal_labels(labels(), labels()) -> boolean().

Compare two label lists case-insensitively.
Returns true if the label lists are equal, false otherwise.

 escape_label(Label)

 -spec escape_label(label()) -> label().

Escape special characters in a label.
Escapes dots (.) and backslashes (\) in a label by prefixing them with
backslashes. Returns the original label unchanged if no escaping is needed.
Use this when you need to include literal dots or backslashes in a label
that will be joined with other labels.
Examples:
1> dns_domain:escape_label(~"test").
~"test"
2> dns_domain:escape_label(~"test.label").
~"test\\.label"
3> dns_domain:escape_label(~"test\\label").
~"test\\\\label"
4> dns_domain:escape_label(~"test\\.label").
~"test\\\\.label"

 from_wire(Bin)

 -spec from_wire(wire()) -> {dname(), wire()}.

Convert wire format to domain name.
Decodes a DNS wire format binary into a domain name string. Handles escaped
characters in labels automatically.
Returns {Dname, Rest} where Dname is the decoded domain name and Rest
is any remaining binary data after the name.
Raises truncated if the wire format is incomplete or malformed.
Raises {invalid_label_length, Len} if a label length byte exceeds 63.
Raises {name_too_long, Size} if the decoded name exceeds 255 bytes.
Raises {too_many_labels, Count} if the name contains more than 127 labels.
Examples:
1> Wire = <<3,119,119,119,7,101,120,97,109,112,108,101,3,99,111,109,0>>.
2> {Dname, Rest} = dns_domain:from_wire(Wire).
{~"www.example.com", <<>>}
3> Wire2 = <<7,101,120,97,109,112,108,101,3,99,111,109,0,1,2,3>>.
4> {Dname2, Rest2} = dns_domain:from_wire(Wire2).
{~"example.com", <<1,2,3>>}
5> Wire3 = <<0>>.
6> {Dname3, Rest3} = dns_domain:from_wire(Wire3).
{<<>>, <<>>}

 from_wire(MsgBin, DataBin)

 -spec from_wire(MsgBin :: wire(), DataBin :: wire()) -> {dname(), wire()}.

Convert wire format to domain name with compression support.
Decodes a DNS wire format binary that may contain compression pointers.
Compression pointers allow names to reference earlier parts of the message
to reduce size.
MsgBin is the complete message binary needed to resolve compression pointers.
DataBin is the binary data starting at the name to decode.
Returns {Dname, Rest} where Dname is the decoded domain name and Rest
is any remaining binary data after the name.
Raises the same errors as from_wire/1, plus {bad_pointer, Pos} if a
compression pointer is invalid or points outside the message.
Examples:
1> MsgBin = <<7,101,120,97,109,112,108,101,3,99,111,109,0,3,119,119,119,192,0>>.
%% First name at position 0: "example.com"
%% Second name at position 13: "www.example.com" (uses compression pointer)
2> {Dname1, Rest1} = dns_domain:from_wire(MsgBin, MsgBin).
{~"example.com", <<3,119,119,119,192,0>>}
3> {Dname2, Rest2} = dns_domain:from_wire(MsgBin, Rest1).
{~"www.example.com", <<>>}
%% Resolved compression pointer to decode "www.example.com"

 join(Labels)

 -spec join(Labels :: labels()) -> dname().

Equivalent to join(Labels, subdomain).

 join/2

 -spec join(Labels :: labels(), subdomain | fqdn) -> dname().

Join labels into domain name.
Converts a list of labels into a domain name string. Automatically escapes
dots and backslashes in labels as needed.
Returns an empty binary for an empty list.
Note that it does not automatically append a trailing dot at the end of the domain.
Examples:
1> dns_domain:join([~"www", ~"example", ~"com"], subdomain).
~"www.example.com"
2> dns_domain:join([~"test.label", ~"com"], subdomain).
~"test\\.label.com"
3> dns_domain:join([~"test\\label", ~"com"], subdomain).
~"test\\\\label.com"
4> dns_domain:join([], subdomain).
<<>>
5> dns_domain:join([], fqdn).
~"."
5> dns_domain:join([~"example"], fqdn).
~"example."

 split(Name)

 -spec split(dname()) -> labels().

Split domain name into labels.
Converts a domain name string into a list of labels. Handles escaped dots
and backslashes, removing escape sequences from the resulting labels.
Returns an empty list for empty names or root (single dot).
Raises {invalid_dname, empty_label} if the name contains contiguous dots.
Examples:
1> dns_domain:split(~"www.example.com").
[~"www", ~"example", ~"com"]
2> dns_domain:split(~"example.com.").
[~"example", ~"com"]
3> dns_domain:split(~"test\.label.com").
[~"test.label", ~"com"]
4> dns_domain:split(<<>>).
[]
5> dns_domain:split(~"example..com").
** exception error: {invalid_dname, empty_label}

 to_lower(Data)

 -spec to_lower(dname()) -> dname().

Returns provided name with case-insensitive characters in lowercase.

 to_upper(Data)

 -spec to_upper(dname()) -> dname().

Returns provided name with case-insensitive characters in uppercase.

 to_wire(Name)

 -spec to_wire(dname()) -> wire().

Convert domain name to wire format.
Converts a domain name string to DNS wire format binary. The wire format
consists of length-prefixed labels followed by a null byte terminator.
Raises {label_too_long, Label} if any label exceeds 63 bytes.
Raises name_too_long if the total encoded name exceeds 255 bytes.
Raises {invalid_dname, empty_label} if the name contains empty labels
(contiguous dots).
Returns <<0>> for empty names or root.
Examples:
1> dns_domain:to_wire(~"www.example.com").
<<3,119,119,119,7,101,120,97,109,112,108,101,3,99,111,109,0>>
2> dns_domain:to_wire(~"example.com").
<<7,101,120,97,109,112,108,101,3,99,111,109,0>>
3> dns_domain:to_wire(<<>>).
<<0>>
4> dns_domain:to_wire(~"example..com").
** exception error: {invalid_dname, empty_label}

 to_wire(CompMap, Pos, Name)

 -spec to_wire(compmap(), non_neg_integer(), dname()) -> {wire(), compmap()}.

Convert domain name to wire format with compression.
Converts a domain name to wire format, using DNS name compression to reduce
message size. Maintains a compression map tracking previously encoded names
and emits compression pointers when a name (or suffix) has been seen before.
CompMap is the compression map mapping label sequences to their positions.
Pos is the current position in the message where encoding starts.
Returns {Wire, NewCompMap} where Wire is the encoded name and NewCompMap
is the updated compression map.
Use this when encoding DNS messages where multiple names may share suffixes
(e.g., example.com and www.example.com).
Examples:
1> CompMap = #{}, Pos = 0.
2> {Wire1, CompMap1} = dns_domain:to_wire(CompMap, Pos, ~"example.com").
{<<7,101,120,97,109,112,108,101,3,99,111,109,0>>, #{...}}
3> Pos2 = byte_size(Wire1).
4> {Wire2, _} = dns_domain:to_wire(CompMap1, Pos2, ~"www.example.com").
{<<3,119,119,119,192,0>>, #{...}}
%% Wire2 uses compression pointer (192,0) pointing to position 0
5> {Wire3, _} = dns_domain:to_wire(CompMap1, Pos2, ~"example.com").
{<<192,0>>, #{...}}
%% Wire3 is just a compression pointer since the name was seen before

 unescape_label(Label)

 -spec unescape_label(label()) -> label().

Unescape a label by removing escape sequences.
Reverses the escaping performed by escape_label/1. Converts \\. back to .
and \\\\ back to \\. Returns the original label unchanged if no unescaping
is needed.
Use this when parsing labels that may contain escaped characters.
Examples:
1> dns_domain:unescape_label(~"test").
~"test"
2> dns_domain:unescape_label(~"test\\.label").
~"test.label"
3> dns_domain:unescape_label(~"test\\\\label").
~"test\\label"
4> dns_domain:unescape_label(~"test\\\\.label").
~"test\\.label"

 dns_json - dns_erlang v5.0.2

dns_json

This document describes the JSON encoding format for all DNS record types.
Format Structure
Resource Records (RR)
Resource records (dns_rr) are encoded as follows:
{
 "name": "example.com",
 "type": "A",
 "class": "in",
 "ttl": 3600,
 "data": {
 "ip": "192.168.1.1"
 }
}
The format includes:
	name: Domain name (binary)
	type: DNS type name as uppercase string (e.g., "A", "AAAA", "MX")
	ttl: Time to live (integer)
	data: Map containing the record-specific fields
	class: Optional, only included if not IN (default)

Other Records
Non-RR records (message, query, OPT records) use a two-level nested map format:
	Outer key: Record type identifier (descriptive name)
	Inner map: Record fields with binary keys

Field Encoding Rules
	IP addresses: String format ("192.168.1.1", "2001:db8::1")
	Base64: Certificates, keys, signatures, MACs
	Base16 (hex): Digests, hashes, fingerprints, addresses
	Base32: NSEC3 hash
	Domain names: Binary (dname format)
	Lists: Arrays of converted values

Record Types
MESSAGE (dns_message) RFC1035
JSON Key: message
Fields:
	id (dns:message_id/0): Direct value
	qr (boolean/0): Direct value
	oc (dns:opcode/0): Direct value
	aa (boolean/0): Direct value
	tc (boolean/0): Direct value
	rd (boolean/0): Direct value
	ra (boolean/0): Direct value
	ad (boolean/0): Direct value
	cd (boolean/0): Direct value
	rc (dns:rcode/0): Direct value
	qc (dns:uint16/0): Direct value
	anc (dns:uint16/0): Direct value
	auc (dns:uint16/0): Direct value
	adc (dns:uint16/0): Direct value
	questions (dns:questions/0): Direct value
	answers (dns:answers/0): Direct value
	authority (dns:authority/0): Direct value
	additional (dns:additional/0): Direct value
Example:

{
 "message": {
 "id": 0,
 "qr": false,
 "oc": false,
 "aa": false,
 "tc": false,
 "rd": false,
 "ra": false,
 "ad": false,
 "cd": false,
 "rc": "value",
 "qc": 0,
 "anc": 0,
 "auc": 0,
 "adc": 0,
 "questions": [],
 "answers": [],
 "authority": [],
 "additional": []
 }
}
QUERY (dns_query) RFC1035
JSON Key: query
Fields:
	name (dns:dname/0): Binary data (dname format)
	class (dns:class/0): Direct value
	type (dns:type/0): Direct value
Example:

{
 "query": {
 "name": "example.com",
 "class": 0,
 "type": 0
 }
}
A (dns_rrdata_a) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	ip (inet:ip4_address/0): IP address as string
Example:

{
 "ip": "192.168.1.1"
}
Note: This format is used within the data field of dns_rr records.
AAAA (dns_rrdata_aaaa) RFC3596
Format: RRDATA fields (used within dns_rr.data)
Fields:
	ip (inet:ip6_address/0): IP address as string
Example:

{
 "ip": "192.168.1.1"
}
Note: This format is used within the data field of dns_rr records.
AFSDB (dns_rrdata_afsdb) RFC1183
Format: RRDATA fields (used within dns_rr.data)
Fields:
	subtype (dns:uint16/0): Direct value
	hostname (dns:dname/0): Binary data (dname format)
Example:

{
 "subtype": 0,
 "hostname": "example.com"
}
Note: This format is used within the data field of dns_rr records.
CAA (dns_rrdata_caa) RFC6844
Format: RRDATA fields (used within dns_rr.data)
Fields:
	flags (dns:uint8/0): Direct value
	tag (binary/0): Binary data (dname format)
	value (binary/0): Binary data (dname format)
Example:

{
 "flags": 0,
 "tag": "base64-encoded-data",
 "value": "base64-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
CDNSKEY (dns_rrdata_cdnskey) RFC7344
Format: RRDATA fields (used within dns_rr.data)
Fields:
	flags (dns:uint16/0): Direct value
	protocol (dns:uint8/0): Direct value
	alg (dns:uint8/0): Direct value
	public_key (iodata/0): Base64-encoded public key
	keytag (integer/0): Direct value
Example:

{
 "flags": 0,
 "protocol": 0,
 "alg": 0,
 "public_key": "base64-encoded-data",
 "keytag": 0
}
Note: This format is used within the data field of dns_rr records.
CDS (dns_rrdata_cds) RFC7344
Format: RRDATA fields (used within dns_rr.data)
Fields:
	keytag (dns:uint16/0): Direct value
	alg (dns:uint8/0): Direct value
	digest_type (dns:uint8/0): Direct value
	digest (binary/0): Base16 (hex)-encoded digest
Example:

{
 "keytag": 0,
 "alg": 0,
 "digest_type": 0,
 "digest": "base16-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
CERT (dns_rrdata_cert) RFC4398
Format: RRDATA fields (used within dns_rr.data)
Fields:
	type (dns:uint16/0): Direct value
	keytag (dns:uint16/0): Direct value
	alg (dns:uint8/0): Direct value
	cert (binary/0): Base64-encoded certificate
Example:

{
 "type": 0,
 "keytag": 0,
 "alg": 0,
 "cert": "base64-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
CNAME (dns_rrdata_cname) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	dname (dns:dname/0): Binary data (dname format)
Example:

{
 "dname": "example.com"
}
Note: This format is used within the data field of dns_rr records.
CSYNC (dns_rrdata_csync) RFC7477
Format: RRDATA fields (used within dns_rr.data)
Fields:
	soa_serial (dns:uint32/0): Direct value
	flags (dns:uint16/0): Direct value
	types ([non_neg_integer/0]): Direct value
Example:

{
 "soa_serial": "value",
 "flags": 0,
 "types": []
}
Note: This format is used within the data field of dns_rr records.
DHCID (dns_rrdata_dhcid) RFC4701
Format: RRDATA fields (used within dns_rr.data)
Fields:
	data (binary/0): Base64-encoded data
Example:

{
 "data": "base64-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
DLV (dns_rrdata_dlv) RFC4431
Format: RRDATA fields (used within dns_rr.data)
Fields:
	keytag (dns:uint16/0): Direct value
	alg (dns:uint8/0): Direct value
	digest_type (dns:uint8/0): Direct value
	digest (binary/0): Base16 (hex)-encoded digest
Example:

{
 "keytag": 0,
 "alg": 0,
 "digest_type": 0,
 "digest": "base16-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
DNAME (dns_rrdata_dname) RFC6672
Format: RRDATA fields (used within dns_rr.data)
Fields:
	dname (dns:dname/0): Binary data (dname format)
Example:

{
 "dname": "example.com"
}
Note: This format is used within the data field of dns_rr records.
DNSKEY (dns_rrdata_dnskey) RFC4034
Format: RRDATA fields (used within dns_rr.data)
Fields:
	flags (dns:uint16/0): Direct value
	protocol (dns:uint8/0): Direct value
	alg (dns:uint8/0): Direct value
	public_key (iodata/0): Base64-encoded public key
	keytag (integer/0): Direct value
Example:

{
 "flags": 0,
 "protocol": 0,
 "alg": 0,
 "public_key": "base64-encoded-data",
 "keytag": 0
}
Note: This format is used within the data field of dns_rr records.
DS (dns_rrdata_ds) RFC4034
Format: RRDATA fields (used within dns_rr.data)
Fields:
	keytag (dns:uint16/0): Direct value
	alg (dns:uint8/0): Direct value
	digest_type (dns:uint8/0): Direct value
	digest (binary/0): Base16 (hex)-encoded digest
Example:

{
 "keytag": 0,
 "alg": 0,
 "digest_type": 0,
 "digest": "base16-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
DSYNC (dns_rrdata_dsync) RFC9859
Format: RRDATA fields (used within dns_rr.data)
Fields:
	rrtype (dns:uint16/0): Direct value
	scheme (dns:uint8/0): Direct value
	port (dns:uint16/0): Direct value
	target (dns:dname/0): Binary data (dname format)
Example:

{
 "rrtype": "value",
 "scheme": 0,
 "port": 0,
 "target": "target.example.com"
}
Note: This format is used within the data field of dns_rr records.
EUI48 (dns_rrdata_eui48) RFC7043
Format: RRDATA fields (used within dns_rr.data)
Fields:
	address (<<_:48>>): Base16 (hex)-encoded address
Example:

{
 "address": "base16-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
EUI64 (dns_rrdata_eui64) RFC7043
Format: RRDATA fields (used within dns_rr.data)
Fields:
	address (<<_:64>>): Base16 (hex)-encoded address
Example:

{
 "address": "base16-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
HINFO (dns_rrdata_hinfo) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	cpu (binary/0): Binary data (dname format)
	os (binary/0): Binary data (dname format)
Example:

{
 "cpu": "value",
 "os": "value"
}
Note: This format is used within the data field of dns_rr records.
HTTPS (dns_rrdata_https)
Format: RRDATA fields (used within dns_rr.data)
Fields:
	svc_priority (dns:uint16/0): Direct value
	target_name (dns:dname/0): Binary data (dname format)
	svc_params (dns:svcb_svc_params/0): Map of SVCB service parameters (see SVCB Service Parameters below)
Example:

{
 "svc_priority": 0,
 "target_name": "value",
 "svc_params": {"alpn": ["h2", "h3"], "port": 443}
}
Note: This format is used within the data field of dns_rr records.
IPSECKEY (dns_rrdata_ipseckey) RFC4025
Format: RRDATA fields (used within dns_rr.data)
Fields:
	precedence (dns:uint8/0): Direct value
	alg (dns:uint8/0): Direct value
	gateway (dns:dname/0 | inet:ip_address/0): Binary data (dname format)

	public_key (binary/0): Base64-encoded public key
Example:

{
 "precedence": 0,
 "alg": 0,
 "gateway": "value",
 "public_key": "base64-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
KEY (dns_rrdata_key) RFC2535
Format: RRDATA fields (used within dns_rr.data)
Fields:
	type (dns:uint2/0): Direct value
	xt (0..1): Direct value
	name_type (dns:uint2/0): Direct value
	sig (dns:uint4/0): Direct value
	protocol (dns:uint8/0): Direct value
	alg (dns:uint8/0): Direct value
	public_key (binary/0): Base64-encoded public key
Example:

{
 "type": 0,
 "xt": 0,
 "name_type": 0,
 "sig": "value",
 "protocol": 0,
 "alg": 0,
 "public_key": "base64-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
KX (dns_rrdata_kx) RFC2230
Format: RRDATA fields (used within dns_rr.data)
Fields:
	preference (dns:uint16/0): Direct value
	exchange (dns:dname/0): Binary data (dname format)
Example:

{
 "preference": 0,
 "exchange": "mail.example.com"
}
Note: This format is used within the data field of dns_rr records.
LOC (dns_rrdata_loc) RFC1876
Format: RRDATA fields (used within dns_rr.data)
Fields:
	size (integer/0): Direct value
	horiz (integer/0): Direct value
	vert (integer/0): Direct value
	lat (dns:uint32/0): Direct value
	lon (dns:uint32/0): Direct value
	alt (dns:uint32/0): Direct value
Example:

{
 "size": "value",
 "horiz": "value",
 "vert": "value",
 "lat": "value",
 "lon": "value",
 "alt": "value"
}
Note: This format is used within the data field of dns_rr records.
MB (dns_rrdata_mb) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	madname (dns:dname/0): Binary data (dname format)
Example:

{
 "madname": "value"
}
Note: This format is used within the data field of dns_rr records.
MG (dns_rrdata_mg) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	madname (dns:dname/0): Binary data (dname format)
Example:

{
 "madname": "value"
}
Note: This format is used within the data field of dns_rr records.
MINFO (dns_rrdata_minfo) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	rmailbx (dns:dname/0): Binary data (dname format)
	emailbx (dns:dname/0): Binary data (dname format)
Example:

{
 "rmailbx": "value",
 "emailbx": "value"
}
Note: This format is used within the data field of dns_rr records.
MR (dns_rrdata_mr) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	newname (dns:dname/0): Binary data (dname format)
Example:

{
 "newname": "value"
}
Note: This format is used within the data field of dns_rr records.
MX (dns_rrdata_mx) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	preference (dns:uint16/0): Direct value
	exchange (dns:dname/0): Binary data (dname format)
Example:

{
 "preference": 0,
 "exchange": "mail.example.com"
}
Note: This format is used within the data field of dns_rr records.
NAPTR (dns_rrdata_naptr) RFC3403
Format: RRDATA fields (used within dns_rr.data)
Fields:
	order (dns:uint16/0): Direct value
	preference (dns:uint16/0): Direct value
	flags (binary/0): Binary data (dname format)
	services (binary/0): Binary data (dname format)
	regexp (binary/0): Binary data (dname format)
	replacement (dns:dname/0): Binary data (dname format)
Example:

{
 "order": "value",
 "preference": 0,
 "flags": 0,
 "services": "value",
 "regexp": "value",
 "replacement": "value"
}
Note: This format is used within the data field of dns_rr records.
NS (dns_rrdata_ns) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	dname (dns:dname/0): Binary data (dname format)
Example:

{
 "dname": "example.com"
}
Note: This format is used within the data field of dns_rr records.
NSEC (dns_rrdata_nsec) RFC4034
Format: RRDATA fields (used within dns_rr.data)
Fields:
	next_dname (dns:dname/0): Binary data (dname format)
	types ([non_neg_integer/0]): Direct value
Example:

{
 "next_dname": "value",
 "types": []
}
Note: This format is used within the data field of dns_rr records.
NSEC3 (dns_rrdata_nsec3) RFC5155
Format: RRDATA fields (used within dns_rr.data)
Fields:
	hash_alg (dns:uint8/0): Direct value
	opt_out (boolean/0): Direct value
	iterations (dns:uint16/0): Direct value
	salt (binary/0): Base16 (hex)-encoded salt (or "-" for empty)
	hash (binary/0): Base32-encoded binary (NSEC3 hash)
	types ([non_neg_integer/0]): Direct value
Example:

{
 "hash_alg": 0,
 "opt_out": false,
 "iterations": 0,
 "salt": "base16-encoded-data",
 "hash": "base32-encoded-data",
 "types": []
}
Note: This format is used within the data field of dns_rr records.
NSEC3PARAM (dns_rrdata_nsec3param) RFC5155
Format: RRDATA fields (used within dns_rr.data)
Fields:
	hash_alg (dns:uint8/0): Direct value
	flags (dns:uint8/0): Direct value
	iterations (dns:uint16/0): Direct value
	salt (binary/0): Base16 (hex)-encoded salt (or "-" for empty)
Example:

{
 "hash_alg": 0,
 "flags": 0,
 "iterations": 0,
 "salt": "base16-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
NXT (dns_rrdata_nxt) RFC2535
Format: RRDATA fields (used within dns_rr.data)
Fields:
	dname (dns:dname/0): Binary data (dname format)
	types ([non_neg_integer/0]): Direct value
Example:

{
 "dname": "example.com",
 "types": []
}
Note: This format is used within the data field of dns_rr records.
OPENPGPKEY (dns_rrdata_openpgpkey) RFC7929
Format: RRDATA fields (used within dns_rr.data)
Fields:
	data (binary/0): Base64-encoded data
Example:

{
 "data": "base64-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
PTR (dns_rrdata_ptr) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	dname (dns:dname/0): Binary data (dname format)
Example:

{
 "dname": "example.com"
}
Note: This format is used within the data field of dns_rr records.
RESINFO (dns_rrdata_resinfo) RFC9606
Format: RRDATA fields (used within dns_rr.data)
Fields:
	data ([binary/0]): Binary data (dname format)
Example:

{
 "data": []
}
Note: This format is used within the data field of dns_rr records.
RP (dns_rrdata_rp) RFC1183
Format: RRDATA fields (used within dns_rr.data)
Fields:
	mbox (dns:dname/0): Binary data (dname format)
	txt (dns:dname/0): Binary data (dname format)
Example:

{
 "mbox": "value",
 "txt": []
}
Note: This format is used within the data field of dns_rr records.
RRSIG (dns_rrdata_rrsig) RFC4034
Format: RRDATA fields (used within dns_rr.data)
Fields:
	type_covered (dns:uint16/0): Direct value
	alg (3 | 5 | 6 | 7 | 8 | 10 | 13 | 14 | 15 | 16): Direct value

	labels (dns:uint8/0): Direct value
	original_ttl (dns:uint32/0): Direct value
	expiration (dns:uint32/0): Direct value
	inception (dns:uint32/0): Direct value
	keytag (dns:uint16/0): Direct value
	signers_name (dns:dname/0): Binary data (dname format)
	signature (binary/0): Base64-encoded signature
Example:

{
 "type_covered": "value",
 "alg": 0,
 "labels": "value",
 "original_ttl": "value",
 "expiration": "value",
 "inception": "value",
 "keytag": 0,
 "signers_name": "value",
 "signature": "base64-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
RT (dns_rrdata_rt) RFC1183
Format: RRDATA fields (used within dns_rr.data)
Fields:
	preference (dns:uint16/0): Direct value
	host (dns:dname/0): Binary data (dname format)
Example:

{
 "preference": 0,
 "host": "value"
}
Note: This format is used within the data field of dns_rr records.
SMIMEA (dns_rrdata_smimea) RFC8162
Format: RRDATA fields (used within dns_rr.data)
Fields:
	usage (dns:uint8/0): Direct value
	selector (dns:uint8/0): Direct value
	matching_type (dns:uint8/0): Direct value
	certificate (binary/0): Base16 (hex)-encoded binary
Example:

{
 "usage": "value",
 "selector": "value",
 "matching_type": "value",
 "certificate": "base16-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
SOA (dns_rrdata_soa) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	mname (dns:dname/0): Binary data (dname format)
	rname (dns:dname/0): Binary data (dname format)
	serial (dns:uint32/0): Direct value
	refresh (dns:uint32/0): Direct value
	retry (dns:uint32/0): Direct value
	expire (dns:uint32/0): Direct value
	minimum (dns:uint32/0): Direct value
Example:

{
 "mname": "ns1.example.com",
 "rname": "admin.example.com",
 "serial": 0,
 "refresh": 0,
 "retry": 0,
 "expire": 0,
 "minimum": 0
}
Note: This format is used within the data field of dns_rr records.
SPF (dns_rrdata_spf) RFC4408
Format: RRDATA fields (used within dns_rr.data)
Fields:
	spf ([binary/0]): Binary data (dname format)
Example:

{
 "spf": "value"
}
Note: This format is used within the data field of dns_rr records.
SRV (dns_rrdata_srv) RFC2782
Format: RRDATA fields (used within dns_rr.data)
Fields:
	priority (dns:uint16/0): Direct value
	weight (dns:uint16/0): Direct value
	port (dns:uint16/0): Direct value
	target (dns:dname/0): Binary data (dname format)
Example:

{
 "priority": 0,
 "weight": 0,
 "port": 0,
 "target": "target.example.com"
}
Note: This format is used within the data field of dns_rr records.
SSHFP (dns_rrdata_sshfp) RFC4255
Format: RRDATA fields (used within dns_rr.data)
Fields:
	alg (dns:uint8/0): Direct value
	fp_type (dns:uint8/0): Direct value
	fp (binary/0): Base16 (hex)-encoded fingerprint
Example:

{
 "alg": 0,
 "fptype": "value",
 "fp": "base16-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
SVCB (dns_rrdata_svcb) RFC9460
Format: RRDATA fields (used within dns_rr.data)
Fields:
	svc_priority (dns:uint16/0): Direct value
	target_name (dns:dname/0): Binary data (dname format)
	svc_params (dns:svcb_svc_params/0): Map of SVCB service parameters (see SVCB Service Parameters below)
Example:

{
 "svc_priority": 0,
 "target_name": "value",
 "svc_params": {"alpn": ["h2", "h3"], "port": 443}
}
Note: This format is used within the data field of dns_rr records.
TLSA (dns_rrdata_tlsa) RFC6698
Format: RRDATA fields (used within dns_rr.data)
Fields:
	usage (dns:uint8/0): Direct value
	selector (dns:uint8/0): Direct value
	matching_type (dns:uint8/0): Direct value
	certificate (binary/0): Base16 (hex)-encoded binary
Example:

{
 "usage": "value",
 "selector": "value",
 "matching_type": "value",
 "certificate": "base16-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
TSIG (dns_rrdata_tsig) RFC2845
Format: RRDATA fields (used within dns_rr.data)
Fields:
	alg (dns:tsig_alg/0): Direct value
	time (dns:uint48/0): Direct value
	fudge (dns:uint16/0): Direct value
	mac (binary/0): Base64-encoded MAC
	msgid (dns:uint16/0): Direct value
	err (dns:uint16/0): Direct value
	other (binary/0): Base16 (hex)-encoded data
Example:

{
 "alg": 0,
 "time": "value",
 "fudge": "value",
 "mac": "base64-encoded-data",
 "msgid": "value",
 "err": "value",
 "other": "base16-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
TXT (dns_rrdata_txt) RFC1035
Format: RRDATA fields (used within dns_rr.data)
Fields:
	txt ([binary/0]): Binary data (dname format)
Example:

{
 "txts": []
}
Note: This format is used within the data field of dns_rr records.
URI (dns_rrdata_uri) RFC7553
Format: RRDATA fields (used within dns_rr.data)
Fields:
	priority (dns:uint16/0): Direct value
	weight (dns:uint16/0): Direct value
	target (binary/0): Binary data (dname format)
Example:

{
 "priority": 0,
 "weight": 0,
 "target": "target.example.com"
}
Note: This format is used within the data field of dns_rr records.
WALLET (dns_rrdata_wallet)
Format: RRDATA fields (used within dns_rr.data)
Fields:
	data (binary/0): Base64-encoded data
Example:

{
 "data": "base64-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
ZONEMD (dns_rrdata_zonemd) RFC8976
Format: RRDATA fields (used within dns_rr.data)
Fields:
	serial (dns:uint32/0): Direct value
	scheme (dns:uint8/0): Direct value
	algorithm (dns:uint8/0): Direct value
	hash (binary/0): Base16 (hex)-encoded hash
Example:

{
 "serial": 0,
 "scheme": 0,
 "algorithm": 0,
 "hash": "base16-encoded-data"
}
Note: This format is used within the data field of dns_rr records.
OPTCOOKIE (dns_opt_cookie) RFC7873
JSON Key: unknown
Fields:
	client (<<_:64>>): Direct value
	server (<<_:64, _:_*8>>): Direct value
Example:

{
 "unknown": {
 "client": "value",
 "server": "value"
 }
}
OPTECS (dns_opt_ecs) RFC7871
JSON Key: unknown
Fields:
	family (dns:uint16/0): Base16 (hex)-encoded binary
	source_prefix_length (dns:uint8/0): Base16 (hex)-encoded binary
	scope_prefix_length (dns:uint8/0): Base16 (hex)-encoded binary
	address (binary/0): Base16 (hex)-encoded address
Example:

{
 "unknown": {
 "family": "base16-encoded-data",
 "source_prefix_length": "base16-encoded-data",
 "scope_prefix_length": "base16-encoded-data",
 "address": "base16-encoded-data"
 }
}
OPTEDE (dns_opt_ede) RFC8914
JSON Key: unknown
Fields:
	info_code (dns:uint16/0): Direct value
	extra_text (binary/0): Binary data (dname format)
Example:

{
 "unknown": {
 "info_code": "value",
 "extra_text": "value"
 }
}
OPTLLQ (dns_opt_llq) RFC8764
JSON Key: unknown
Fields:
	opcode (dns:uint16/0): Direct value
	errorcode (dns:uint16/0): Direct value
	id (dns:uint64/0): Direct value
	leaselife (dns:uint32/0): Direct value
Example:

{
 "unknown": {
 "opcode": "value",
 "errorcode": "value",
 "id": 0,
 "leaselife": "value"
 }
}
OPTNSID (dns_opt_nsid) RFC5001
JSON Key: unknown
Fields:
	data (binary/0): Base16 (hex)-encoded data
Example:

{
 "unknown": {
 "data": "base16-encoded-data"
 }
}
OPTOWNER (dns_opt_owner)
JSON Key: unknown
Fields:
	seq (dns:uint8/0): Base16 (hex)-encoded binary
	primary_mac (<<_:48>>): Base16 (hex)-encoded binary
	wakeup_mac (<<>> | <<_:48>>): Base16 (hex)-encoded binary

	password (<<>> | <<_:48>>): Base16 (hex)-encoded binary
Example:

{
 "unknown": {
 "seq": "base16-encoded-data",
 "primary_mac": "base16-encoded-data",
 "wakeup_mac": "base16-encoded-data",
 "password": "base16-encoded-data"
 }
}
OPTUL (dns_opt_ul)
JSON Key: unknown
Fields:
	lease (dns:uint32/0): Direct value
Example:

{
 "unknown": {
 "lease": "value"
 }
}
OPTUNKNOWN (dns_opt_unknown)
JSON Key: OPT_UNKNOWN
Fields:
	id (integer/0): Direct value
	bin (binary/0): Base16 (hex)-encoded binary
Example:

{
 "OPT_UNKNOWN": {
 "id": 0,
 "bin": "base16-encoded-data"
 }
}
OPTRR (dns_optrr) RFC6891
JSON Key: OPT
Fields:
	udp_payload_size (dns:uint16/0): Direct value
	ext_rcode (dns:uint8/0): Direct value
	version (dns:uint8/0): Direct value
	dnssec (boolean/0): Direct value
	data ([dns:optrr_elem/0]): Direct value
Example:

{
 "OPT": {
 "udp_payload_size": "value",
 "ext_rcode": "value",
 "version": "value",
 "dnssec": "value",
 "data": []
 }
}
RR (dns_rr) RFC1035
Fields:
	name (dns:dname/0): Domain name (binary, dname format)
	type (dns:type/0): DNS type name as uppercase binary string (e.g., "A", "AAAA", "MX")
	class (dns:class/0): DNS class name as uppercase binary string (e.g., "IN", "CH", "HS") - optional, defaults to "IN" if omitted
	ttl (dns:ttl/0): Time to live (integer)
	data (dns:rrdata/0): Map containing the RRDATA-specific fields (see individual RRDATA record types below)
Example:

{
 "name": "example.com",
 "type": "A",
 "class": "IN",
 "ttl": 3600,
 "data": {
 "ip": "192.168.1.1"
 }
}
Note: The data field contains the RRDATA-specific fields. The class field is optional and defaults to "IN" if omitted. See individual RRDATA record types below for complete field documentation.
SVCB Service Parameters
The svc_params field in SVCB and HTTPS records is a map containing service binding parameters
as defined in RFC 9460.
Parameters:
	mandatory ([string()]): List of parameter names that must be present (e.g., ["alpn", "port"])
	alpn ([binary()]): List of ALPN protocol identifiers as decoded binaries (e.g., ["h2", "h3"])
	no-default-alpn ("none" | none): Indicates that no default ALPN should be used

	port (integer()): Port number (0-65535)
	ipv4hint ([string()]): List of IPv4 addresses as strings (e.g., ["192.168.1.1", "192.168.1.2"])
	ipv6hint ([string()]): List of IPv6 addresses as strings (e.g., ["2001:db8::1"])
	ech (binary()): Encrypted ClientHello (ECH) configuration as decoded binary
	keyNNNNN (binary() | integer() | "none"): Unknown parameters where NNNNN is the parameter key number (0-65535)

Example:
{
 "svc_priority": 1,
 "target_name": "target.example.com",
 "svc_params": {
 "mandatory": ["alpn", "port"],
 "alpn": ["h2", "h3"],
 "port": 443,
 "ipv4hint": ["192.168.1.1", "192.168.1.2"],
 "ipv6hint": ["2001:db8::1"],
 "ech": "ech-config-data"
 }
}
Note: All parameter values are in their decoded/native format (not base64-encoded).
Binary values like ALPN identifiers and ECH config are provided as raw binaries, not base64 strings.

 Summary

 Functions

 from_map/1

 Converts a map representation back to a DNS record.

 to_map/1

 Converts a DNS record to a map representation suitable for JSON encoding.

 Functions

 from_map/1

 (since v5.0.0)

 -spec from_map(map()) -> tuple().

Converts a map representation back to a DNS record.

 to_map/1

 (since v5.0.0)

 -spec to_map(tuple()) -> map().

Converts a DNS record to a map representation suitable for JSON encoding.

 dns_names - dns_erlang v5.0.2

dns_names

Helpers to convert between DNS codes and their names.

 Summary

 Functions

 alg_name(Int)

 Returns the name of a DNS algorithm as a binary string.

 class_name(Int)

 Returns the name of the class as a binary string.

 ede_code_text(Int)

 Returns the name of an EDE code as a binary string.

 ede_text_code(Bin)

 Returns the EDE code from a binary string.

 eoptcode_name(Int)

 Returns the name of an extended option as a binary string.

 ercode_name(Int)

 Returns the name of an extended rcode as a binary string.

 llqerrcode_name(Int)

 Returns the name of an LLQ error code as a binary string.

 llqopcode_name(Int)

 Returns the name of an LLQ opcode as a binary string.

 name_alg(Bin)

 Returns the DNS algorithm from a binary string.

 name_class(Bin)

 Returns the class type from a binary string.

 name_eoptcode(Bin)

 Returns the extended option from a binary string.

 name_ercode(Bin)

 Returns the extended rcode from a binary string.

 name_llqerrcode(Bin)

 Returns the LLQ error code from a binary string.

 name_llqopcode(Bin)

 Returns LLQ opcode from a binary string.

 name_opcode(Bin)

 Returns the opcode from a binary string.

 name_rcode(Bin)

 Returns the name of an rcode as a binary string.

 name_svcb_param(Bin)

 Returns the SVCB parameter from a binary string.

 name_tsigerr(Bin)

 Returns the TSIG error from a binary string.

 name_type(Bin)

 Converts from the string representation into the standard dns:type/0 representation.

 opcode_name(Int)

 Returns the name of an opcode as a binary string.

 rcode_name(Int)

 Returns the name of an rcode as a binary string.

 svcb_param_name(Int)

 Returns the name of an SVCB parameter as a binary string.

 tsigerr_name(Int)

 Returns the name of a TSIG error as a binary string.

 type_name(Int)

 Returns the name of the type as a binary string.

 Functions

 alg_name(Int)

 -spec alg_name(dns:alg()) -> unicode:latin1_binary() | undefined.

Returns the name of a DNS algorithm as a binary string.

 class_name(Int)

 -spec class_name(dns:class()) -> unicode:latin1_binary() | undefined.

Returns the name of the class as a binary string.

 ede_code_text(Int)

 -spec ede_code_text(dns:uint16()) -> unicode:latin1_binary() | undefined.

Returns the name of an EDE code as a binary string.

 ede_text_code(Bin)

 -spec ede_text_code(unicode:latin1_binary()) -> dns:uint16() | undefined.

Returns the EDE code from a binary string.

 eoptcode_name(Int)

 -spec eoptcode_name(dns:eoptcode()) -> unicode:latin1_binary() | undefined.

Returns the name of an extended option as a binary string.

 ercode_name(Int)

 -spec ercode_name(dns:ercode()) -> unicode:latin1_binary() | undefined.

Returns the name of an extended rcode as a binary string.

 llqerrcode_name(Int)

 -spec llqerrcode_name(dns:llqerrcode()) -> unicode:latin1_binary() | undefined.

Returns the name of an LLQ error code as a binary string.

 llqopcode_name(Int)

 -spec llqopcode_name(dns:llqopcode()) -> unicode:latin1_binary() | undefined.

Returns the name of an LLQ opcode as a binary string.

 name_alg(Bin)

 -spec name_alg(unicode:latin1_binary()) -> dns:alg() | undefined.

Returns the DNS algorithm from a binary string.

 name_class(Bin)

 -spec name_class(unicode:latin1_binary()) -> dns:class() | undefined.

Returns the class type from a binary string.

 name_eoptcode(Bin)

 -spec name_eoptcode(unicode:latin1_binary()) -> dns:eoptcode() | undefined.

Returns the extended option from a binary string.

 name_ercode(Bin)

 -spec name_ercode(unicode:latin1_binary()) -> dns:ercode() | undefined.

Returns the extended rcode from a binary string.

 name_llqerrcode(Bin)

 -spec name_llqerrcode(unicode:latin1_binary()) -> dns:llqerrcode() | undefined.

Returns the LLQ error code from a binary string.

 name_llqopcode(Bin)

 -spec name_llqopcode(unicode:latin1_binary()) -> dns:llqopcode() | undefined.

Returns LLQ opcode from a binary string.

 name_opcode(Bin)

 -spec name_opcode(unicode:latin1_binary()) -> dns:opcode() | undefined.

Returns the opcode from a binary string.

 name_rcode(Bin)

 -spec name_rcode(unicode:latin1_binary()) -> dns:rcode() | undefined.

Returns the name of an rcode as a binary string.

 name_svcb_param(Bin)

 -spec name_svcb_param(unicode:latin1_binary()) -> dns:uint16() | undefined.

Returns the SVCB parameter from a binary string.

 name_tsigerr(Bin)

 -spec name_tsigerr(unicode:latin1_binary()) -> dns:tsig_error() | undefined.

Returns the TSIG error from a binary string.

 name_type(Bin)

 -spec name_type(unicode:latin1_binary()) -> dns:type() | undefined.

Converts from the string representation into the standard dns:type/0 representation.

 opcode_name(Int)

 -spec opcode_name(dns:opcode()) -> unicode:latin1_binary() | undefined.

Returns the name of an opcode as a binary string.

 rcode_name(Int)

 -spec rcode_name(dns:rcode()) -> unicode:latin1_binary() | undefined.

Returns the name of an rcode as a binary string.

 svcb_param_name(Int)

 -spec svcb_param_name(dns:uint16()) -> unicode:latin1_binary() | undefined.

Returns the name of an SVCB parameter as a binary string.

 tsigerr_name(Int)

 -spec tsigerr_name(dns:tsig_error()) -> unicode:latin1_binary() | undefined.

Returns the name of a TSIG error as a binary string.

 type_name(Int)

 -spec type_name(dns:type()) -> unicode:latin1_binary() | undefined.

Returns the name of the type as a binary string.

 dns_zone - dns_erlang v5.0.2

dns_zone

DNS Zone File Parser and Encoder
This module provides functionality to parse and encode DNS zone files according to
RFC 1035 and related
specifications.
Specification Compliance
RFC-Defined Features (Standard):
	RFC 1035 §5:
Master file format, resource record syntax
	RFC 1034 §3.6.1:
Resource record conceptual model
	RFC 2308 §4:
$TTL directive and time unit syntax

Supported RFC Features:
	All DNS record types supported by this library
	Zone file directives: $ORIGIN, $TTL, $INCLUDE
(RFC 1035)
	Multi-line records using parentheses
(RFC 1035 §5.1)
	Comments (semicolon to end-of-line,
RFC 1035 §5.1)
	Relative and absolute domain names
(RFC 1035 §5.1)
	Time values with units: w, d, h, m, s
(RFC 2308 §4)
	All DNS classes: IN, CH, HS, CS
(RFC 1035)
	@ symbol for current origin
(RFC 1035 §5.1)
	Blank owner names inheriting from previous RR
(RFC 1035 §5.1)

BIND Extensions (Non-Standard):
	$GENERATE: BIND-specific directive for generating multiple similar RRs	Status: Parsed but NOT implemented (template expansion TODO)
	Warning: Not portable to all DNS software
	See: https://bind9.readthedocs.io/en/latest/chapter3.html

The parser uses Erlang's parsetools (leex and yecc) for lexical analysis and parsing.
Examples
Parsing
% Parse a zone file from disk
{ok, Records} = dns_zone:parse_file("example.com.zone").

% Parse zone data from a string
ZoneData = <<"
example.com. 3600 IN SOA ns1.example.com. admin.example.com. (
 2024010101 ; serial
 3600 ; refresh
 1800 ; retry
 604800 ; expire
 86400) ; minimum
example.com. 3600 IN NS ns1.example.com.
www 3600 IN A 192.0.2.1
">>,
{ok, Records} = dns_zone:parse_string(ZoneData).
Encoding
% Encode a single record
RR = #dns_rr{
 name = ~"www.example.com.",
 type = ?DNS_TYPE_A,
 class = ?DNS_CLASS_IN,
 ttl = 3600,
 data = #dns_rrdata_a{ip = {192, 0, 2, 1}}
},
Line = dns_zone:encode_rr(RR, #{origin => ~"example.com.", relative_names => true}).
% Returns: "www 3600 IN A 192.0.2.1"

% Encode a complete zone
Records = [...],
ZoneData = dns_zone:encode_string(Records, #{origin => ~"example.com", default_ttl => 3600}).

% Write zone to file
ok = dns_zone:encode_file(Records, ~"example.com.", "output.zone").

 Summary

 Types

 encode_options()

 Options for encoding zone files.

 error_detail()

 Detailed error information with context and suggestions.

 error_location()

 Error location information.

 error_type()

 Error type classification.

 parse_options()

 Options for parsing zone files.

 Functions

 encode_file(Records, Filename)

 Equivalent to encode_file(Records, Filename, #{}).

 encode_file(Records, Filename, Options)

 Encode a list of DNS resource records and write to a zone file with options.

 encode_rdata(Type, RData)

 Equivalent to encode_rdata(Type, RData, #{}).

 encode_rdata(Type, RData, Options)

 Encode RDATA (record data) to zone file format with options.

 encode_rr(RR)

 Encode a single DNS resource record to zone file format.

 encode_rr(RR, Options)

 Encode a single DNS resource record to zone file format with options.

 encode_string(Records)

 Equivalent to encode_string(Records, #{}).

 encode_string(Records, Options)

 Encode a list of DNS resource records to zone file format with options.

 format_error(Error)

 Format a parse error into a human-readable string.

 parse_file(Filename)

 Parse a zone file from disk.

 parse_file(Filename, Options)

 Parse a zone file from disk with options.

 parse_string(Data)

 Parse zone file content from a string or binary.

 parse_string(Data, Options)

 Parse zone file content from a string or binary with options.

 Types

 encode_options()

 -type encode_options() ::
 #{origin => dns:dname(),
 relative_names => boolean(),
 ttl_format => seconds | units,
 default_ttl => dns:ttl() | undefined,
 omit_class => boolean(),
 separator => binary()}.

Options for encoding zone files.
	origin => Domain - Origin domain for relative name calculation (default: <<>>)
	relative_names => boolean() - Use @ and relative names (default: true)
	ttl_format => seconds | units - TTL format: 3600 or 1h (default: seconds)

	default_ttl => TTL - Include $TTL directive if set (default: undefined)
	omit_class => boolean() - Omit IN class (default: false)
	separator => binary() - Separator between fields (default: ~" ")

 error_detail()

 -type error_detail() ::
 #{type := error_type(),
 message := unicode:unicode_binary(),
 location => error_location(),
 context => binary(),
 suggestion => unicode:unicode_binary(),
 details => term()}.

Detailed error information with context and suggestions.
	type - Classification of the error
	location - Where the error occurred (line, column, file)
	message - Human-readable error description
	context - The line of text where error occurred (if available)
	suggestion - Helpful suggestion for fixing the error (if available)
	details - Original technical error details

 error_location()

 -type error_location() ::
 #{line => pos_integer(),
 column => pos_integer() | undefined,
 file => file:filename_all() | undefined}.

Error location information.
	line - Line number where error occurred (1-indexed)
	column - Column number if available (1-indexed)
	file - Filename if parsing from file

 error_type()

 -type error_type() :: file | lexer | parser | semantic.

Error type classification.
	file - File I/O error (e.g., file not found)
	lexer - Lexical analysis error (invalid tokens)
	parser - Syntax parsing error (grammar violation)
	semantic - Semantic validation error (invalid data)

 parse_options()

 -type parse_options() ::
 #{origin => dns:dname(),
 default_ttl => dns:ttl(),
 default_class => dns:class(),
 base_dir => file:name_all(),
 filename => file:name_all(),
 chunk_size => non_neg_integer()}.

Options for parsing zone files.
	origin - Initial $ORIGIN for relative domain names (default: <<>>)
	default_ttl - Default TTL for records without explicit TTL (default: 0)
	default_class - Default DNS class (default: ?DNS_CLASS_IN)
	base_dir - Base directory for $INCLUDE directives (default: "")
	filename - Source filename for error reporting (internal, set by parse_file)

 Functions

 encode_file(Records, Filename)

 -spec encode_file([dns:rr()], file:filename()) -> ok | {error, term()}.

Equivalent to encode_file(Records, Filename, #{}).

 encode_file(Records, Filename, Options)

 -spec encode_file([dns:rr()], file:filename(), encode_options()) -> ok | {error, term()}.

Encode a list of DNS resource records and write to a zone file with options.

 encode_rdata(Type, RData)

 -spec encode_rdata(dns:type(), dns:rrdata()) -> iodata().

Equivalent to encode_rdata(Type, RData, #{}).

 encode_rdata(Type, RData, Options)

 -spec encode_rdata(dns:type(), dns:rrdata(), encode_options()) -> iodata().

Encode RDATA (record data) to zone file format with options.
Options (all optional):
	origin => Domain - Origin domain for relative name calculation (default: <<>>)
	relative_names => boolean() - Use @ and relative names (default: true)
	separator => binary() - Separator between fields (default: ~" ")

Examples
% Encode an MX record RDATA with custom separator
RData = #dns_rrdata_mx{preference = 10, exchange = ~"mail.example.com."},
RDataStr = dns_zone:encode_rdata(?DNS_TYPE_MX, RData, #{separator => ~"\t"}).
% Returns: "10\tmail.example.com."

% Encode an NS record RDATA with relative names
RData = #dns_rrdata_ns{dname = ~"ns1.example.com."},
RDataStr = dns_zone:encode_rdata(?DNS_TYPE_NS, RData, #{
 origin => ~"example.com.",
 relative_names => true
}).
% Returns: "ns1" (if ns1 is under example.com.)

 encode_rr(RR)

 -spec encode_rr(dns:rr()) -> iodata().

Encode a single DNS resource record to zone file format.
Returns a string representing the record in zone file format.
Examples
RR = #dns_rr{
 name = ~"www.example.com.",
 type = ?DNS_TYPE_A,
 class = ?DNS_CLASS_IN,
 ttl = 3600,
 data = #dns_rrdata_a{ip = {192, 0, 2, 1}}
},
Line = dns_zone:encode_rr(RR).
% Returns: "www.example.com. 3600 IN A 192.0.2.1"

 encode_rr(RR, Options)

 -spec encode_rr(dns:rr(), encode_options()) -> iodata().

Encode a single DNS resource record to zone file format with options.
Options (all optional):
	origin => Domain - Origin domain for relative name calculation
	relative_names => boolean() - Use @ and relative names (default: true)
	ttl_format => seconds | units - TTL format: 3600 or 1h (default: seconds)

	omit_class => boolean() - Omit IN class (default: false)

Examples
RR = #dns_rr{
 name = ~"www.example.com.",
 type = ?DNS_TYPE_A,
 class = ?DNS_CLASS_IN,
 ttl = 3600,
 data = #dns_rrdata_a{ip = {192, 0, 2, 1}}
},
Line = dns_zone:encode_rr(RR, #{origin => ~"example.com.", relative_names => true}).
% Returns: "www 3600 IN A 192.0.2.1"

 encode_string(Records)

 -spec encode_string([dns:rr()]) -> iodata().

Equivalent to encode_string(Records, #{}).

 encode_string(Records, Options)

 -spec encode_string([dns:rr()], encode_options()) -> iodata().

Encode a list of DNS resource records to zone file format with options.
Examples
Records = [...],
ZoneData = dns_zone:encode_string(Records, #{
 origin => ~"example.com",
 default_ttl => 3600,
 relative_names => true
}).

 format_error(Error)

 -spec format_error(error_detail()) -> iolist().

Format a parse error into a human-readable string.
Takes an error from parse_file/1,2 or parse_string/1,2 and returns
a formatted string suitable for display to users.
Examples
case dns_zone:parse_file("bad.zone") of
 {ok, Records} -> ok;
 {error, Error} ->
 io:format("~s", [dns_zone:format_error(Error)])
end.

 parse_file(Filename)

 -spec parse_file(file:filename()) -> {ok, [dns:rr()]} | {error, error_detail()}.

Parse a zone file from disk.
Returns {ok, Records} where Records is a list of #dns_rr{} records,
or {error, Reason} if parsing fails.
Examples
{ok, Records} = dns_zone:parse_file("/path/to/zone.db").

 parse_file(Filename, Options)

 -spec parse_file(file:filename(), parse_options()) -> {ok, [dns:rr()]} | {error, error_detail()}.

Parse a zone file from disk with options.
Options (all optional):
	origin => Domain - Set the initial $ORIGIN
	default_ttl => TTL - Set the default TTL
	default_class => Class - Set the default class (defaults to IN)
	base_dir => Dir - Set base directory for $INCLUDE directives

Examples
{ok, Records} = dns_zone:parse_file("zone.db", #{origin => ~"example.com."}).

{ok, Records} = dns_zone:parse_file("zone.db", #{
 origin => ~"example.com.",
 default_ttl => 3600
}).

 parse_string(Data)

 -spec parse_string(binary() | string()) -> {ok, [dns:rr()]} | {error, error_detail()}.

Parse zone file content from a string or binary.
Examples
ZoneData = ~"example.com. IN A 192.0.2.1",
{ok, Records} = dns_zone:parse_string(ZoneData).

 parse_string(Data, Options)

 -spec parse_string(binary() | string(), parse_options()) -> {ok, [dns:rr()]} | {error, error_detail()}.

Parse zone file content from a string or binary with options.

 dnssec - dns_erlang v5.0.2

dnssec

The dnssec module exports functions used for generating NSEC responses,
signing and verifying RRSIGs, and adding keytags to DNSKEY records.
For example, the sign_rr/6 function can be given a collection of resource records,
the signer name, keytag, signing algorithm, private key, and a collection of options
and it will return a list of RRSIG records. Currently only DSA and RSA algorithms are
supported for signing RRSETs.

 Summary

 Types

 gen_nsec3_opts()

 gen_nsec_opts()

 key()

 keytag()

 nsec3_hashalg()

 nsec3_hashalg_fun()

 nsec3_iterations()

 nsec3_salt()

 sigalg()

 sign_rr_opts()

 verify_rrsig_opts()

 Functions

 add_keytag_to_cdnskey/1

 add_keytag_to_dnskey/1

 Generates and appends a DNS Key records key tag.

 canonical_rrdata_form/1

 Converts a resource record data record to DNSSEC canonical form.

 gen_nsec3(RRs)

 Equivalent to gen_nsec3(RRs, #{}).

 gen_nsec3(RRs, Opts)

 Generate NSEC3 records from a list of dns:rr/0.

 gen_nsec(RR)

 Generate NSEC records from a list of dns:rr/0.

 gen_nsec(ZoneName, RR, TTL)

 Equivalent to gen_nsec(ZoneName, RR, TTL, #{}).

 gen_nsec(ZoneNameM, RR, TTL, Opts)

 Generate NSEC records.

 ih/4

 NSEC3 iterative hash function.

 sign_rr(RR, SignerName, KeyTag, Alg, Key)

 Equivalent to sign_rr(RR, SignerName, KeyTag, Alg, Key, []).

 sign_rr(RR, SignerName, KeyTag, Alg, Key, Opts)

 Signs a list of dns:rr/0.

 sign_rrset(RRSet, SignerName, KeyTag, Alg, Key)

 Equivalent to sign_rrset(RRSet, SignerName, KeyTag, Alg, Key, []).

 sign_rrset/6

 Signs a list of dns:rr/0 of the same class and type.

 verify_rrsig/4

 Provides primitive verification of an RR set.

 Types

 gen_nsec3_opts()

 -type gen_nsec3_opts() :: gen_nsec_opts().

 gen_nsec_opts()

 -type gen_nsec_opts() :: #{base_types => [dns:type()]}.

 key()

 -type key() :: [binary()] | binary().

 keytag()

 -type keytag() :: integer().

 nsec3_hashalg()

 -type nsec3_hashalg() :: 1.

 nsec3_hashalg_fun()

 -type nsec3_hashalg_fun() :: fun((iodata()) -> binary()).

 nsec3_iterations()

 -type nsec3_iterations() :: non_neg_integer().

 nsec3_salt()

 -type nsec3_salt() :: binary().

 sigalg()

 -type sigalg() :: 3 | 6 | 5 | 7 | 8 | 10 | 13 | 14 | 15 | 16.

 sign_rr_opts()

 -type sign_rr_opts() :: #{inception => dns:unix_time(), expiration => dns:unix_time()}.

 verify_rrsig_opts()

 -type verify_rrsig_opts() :: #{now => dns:unix_time()}.

 Functions

 add_keytag_to_cdnskey/1

 -spec add_keytag_to_cdnskey(dns:rr()) -> dns:rr().

 add_keytag_to_dnskey/1

 -spec add_keytag_to_dnskey(dns:rr()) -> dns:rr().

Generates and appends a DNS Key records key tag.

 canonical_rrdata_form/1

 -spec canonical_rrdata_form(dns:rrdata()) -> dns:rrdata().

Converts a resource record data record to DNSSEC canonical form.

 gen_nsec3(RRs)

 -spec gen_nsec3([dns:rr()]) -> [dns:rr()].

Equivalent to gen_nsec3(RRs, #{}).

 gen_nsec3(RRs, Opts)

 -spec gen_nsec3([dns:rr()], gen_nsec3_opts()) -> [dns:rr()].

Generate NSEC3 records from a list of dns:rr/0.
The list must contain a SOA dns:rr/0 to source the zone name and
TTL from as well as as an NSEC3Param dns:rr/0 to source the
hash algorithm, iterations and salt from.

 gen_nsec(RR)

 -spec gen_nsec([dns:rr()]) -> [dns:rr()].

Generate NSEC records from a list of dns:rr/0.
The list must contain a SOA dns:rr/0 which is used to determine zone name and TTL.

 gen_nsec(ZoneName, RR, TTL)

 -spec gen_nsec(dns:dname(), [dns:rr()], dns:ttl()) -> [dns:rr()].

Equivalent to gen_nsec(ZoneName, RR, TTL, #{}).

 gen_nsec(ZoneNameM, RR, TTL, Opts)

 -spec gen_nsec(dns:dname(), [dns:rr()], dns:ttl(), gen_nsec_opts()) -> [dns:rr()].

Generate NSEC records.

 ih/4

 -spec ih(nsec3_hashalg() | nsec3_hashalg_fun(), nsec3_salt(), binary(), nsec3_iterations()) -> binary().

NSEC3 iterative hash function.

 sign_rr(RR, SignerName, KeyTag, Alg, Key)

 -spec sign_rr([dns:rr()], dns:dname(), keytag(), sigalg(), key()) -> [dns:rr()].

Equivalent to sign_rr(RR, SignerName, KeyTag, Alg, Key, []).

 sign_rr(RR, SignerName, KeyTag, Alg, Key, Opts)

 -spec sign_rr([dns:rr()], dns:dname(), keytag(), sigalg(), key(), sign_rr_opts()) -> [dns:rr()].

Signs a list of dns:rr/0.

 sign_rrset(RRSet, SignerName, KeyTag, Alg, Key)

 -spec sign_rrset([dns:rr(), ...], dns:dname(), keytag(), sigalg(), key()) -> dns:rr().

Equivalent to sign_rrset(RRSet, SignerName, KeyTag, Alg, Key, []).

 sign_rrset/6

 -spec sign_rrset([dns:rr(), ...], dns:dname(), keytag(), sigalg(), key(), sign_rr_opts()) -> dns:rr().

Signs a list of dns:rr/0 of the same class and type.

 verify_rrsig/4

 -spec verify_rrsig(dns:rr(), [dns:rr()], [dns:rr()], verify_rrsig_opts()) -> boolean().

Provides primitive verification of an RR set.

OEBPS/dist/epub-4WIP524F.js
