

 DocuSign

 v3.1.0

 Table of contents

 	README

 	Guides

 	DocuSign Embedded Signing with Elixir

 	Untitled notebook

 	Migration Guides

 	Migration Guide

 	Changelog

 	Changelog

 	
 Modules

 	DocuSign

 	DocuSign.Debug

 	DocuSign.Deserializer

 	DocuSign.FileDownloader

 	DocuSign.RequestBuilder

 	DocuSign.SDKVersion

 	DocuSign.SSLOptions

 	DocuSign.Telemetry

 	API

 	DocuSign.Api.AccountBrands

 	DocuSign.Api.AccountConsumerDisclosures

 	DocuSign.Api.AccountCustomFields

 	DocuSign.Api.AccountPasswordRules

 	DocuSign.Api.AccountPermissionProfiles

 	DocuSign.Api.AccountSealProviders

 	DocuSign.Api.AccountSignatureProviders

 	DocuSign.Api.AccountSignatures

 	DocuSign.Api.AccountTabSettings

 	DocuSign.Api.AccountWatermarks

 	DocuSign.Api.Accounts

 	DocuSign.Api.Authorizations

 	DocuSign.Api.BCCEmailArchive

 	DocuSign.Api.BillingPlans

 	DocuSign.Api.BulkSend

 	DocuSign.Api.ChunkedUploads

 	DocuSign.Api.CloudStorage

 	DocuSign.Api.CloudStorageProviders

 	DocuSign.Api.Comments

 	DocuSign.Api.ConnectConfigurations

 	DocuSign.Api.ConnectEvents

 	DocuSign.Api.Contacts

 	DocuSign.Api.CustomTabs

 	DocuSign.Api.DocumentGeneration

 	DocuSign.Api.DocumentResponsiveHtmlPreview

 	DocuSign.Api.ENoteConfigurations

 	DocuSign.Api.EnvelopeAttachments

 	DocuSign.Api.EnvelopeConsumerDisclosures

 	DocuSign.Api.EnvelopeCustomFields

 	DocuSign.Api.EnvelopeDocumentFields

 	DocuSign.Api.EnvelopeDocumentHtmlDefinitions

 	DocuSign.Api.EnvelopeDocumentTabs

 	DocuSign.Api.EnvelopeDocumentVisibility

 	DocuSign.Api.EnvelopeDocuments

 	DocuSign.Api.EnvelopeEmailSettings

 	DocuSign.Api.EnvelopeFormData

 	DocuSign.Api.EnvelopeHtmlDefinitions

 	DocuSign.Api.EnvelopeLocks

 	DocuSign.Api.EnvelopePublish

 	DocuSign.Api.EnvelopeRecipientTabs

 	DocuSign.Api.EnvelopeRecipients

 	DocuSign.Api.EnvelopeTemplates

 	DocuSign.Api.EnvelopeTransferRules

 	DocuSign.Api.EnvelopeViews

 	DocuSign.Api.EnvelopeWorkflowDefinition

 	DocuSign.Api.Envelopes

 	DocuSign.Api.FavoriteTemplates

 	DocuSign.Api.Folders

 	DocuSign.Api.GroupBrands

 	DocuSign.Api.GroupUsers

 	DocuSign.Api.Groups

 	DocuSign.Api.IdentityVerifications

 	DocuSign.Api.Invoices

 	DocuSign.Api.Notary

 	DocuSign.Api.NotaryJournals

 	DocuSign.Api.NotaryJurisdiction

 	DocuSign.Api.PaymentGatewayAccounts

 	DocuSign.Api.Payments

 	DocuSign.Api.PowerFormData

 	DocuSign.Api.PowerForms

 	DocuSign.Api.RequestLogs

 	DocuSign.Api.Resources

 	DocuSign.Api.ResponsiveHtmlPreview

 	DocuSign.Api.Services

 	DocuSign.Api.SigningGroupUsers

 	DocuSign.Api.SigningGroups

 	DocuSign.Api.TabsBlob

 	DocuSign.Api.TemplateCustomFields

 	DocuSign.Api.TemplateDocumentFields

 	DocuSign.Api.TemplateDocumentHtmlDefinitions

 	DocuSign.Api.TemplateDocumentResponsiveHtmlPreview

 	DocuSign.Api.TemplateDocumentTabs

 	DocuSign.Api.TemplateDocumentVisibility

 	DocuSign.Api.TemplateDocuments

 	DocuSign.Api.TemplateHtmlDefinitions

 	DocuSign.Api.TemplateLocks

 	DocuSign.Api.TemplateRecipientTabs

 	DocuSign.Api.TemplateRecipients

 	DocuSign.Api.TemplateResponsiveHtmlPreview

 	DocuSign.Api.TemplateViews

 	DocuSign.Api.Templates

 	DocuSign.Api.UserCustomSettings

 	DocuSign.Api.UserProfiles

 	DocuSign.Api.UserSignatures

 	DocuSign.Api.Users

 	DocuSign.Api.WorkspaceItems

 	DocuSign.Api.Workspaces

 	Models

 	DocuSign.Model.AccessCodeFormat

 	DocuSign.Model.AccountAddress

 	DocuSign.Model.AccountBillingPlan

 	DocuSign.Model.AccountBillingPlanResponse

 	DocuSign.Model.AccountBrands

 	DocuSign.Model.AccountConsumerDisclosures

 	DocuSign.Model.AccountCustomFields

 	DocuSign.Model.AccountIdentityInputOption

 	DocuSign.Model.AccountIdentityVerificationResponse

 	DocuSign.Model.AccountIdentityVerificationStep

 	DocuSign.Model.AccountIdentityVerificationWorkflow

 	DocuSign.Model.AccountInformation

 	DocuSign.Model.AccountMinimumPasswordLength

 	DocuSign.Model.AccountNotification

 	DocuSign.Model.AccountPasswordExpirePasswordDays

 	DocuSign.Model.AccountPasswordLockoutDurationMinutes

 	DocuSign.Model.AccountPasswordLockoutDurationType

 	DocuSign.Model.AccountPasswordMinimumPasswordAgeDays

 	DocuSign.Model.AccountPasswordQuestionsRequired

 	DocuSign.Model.AccountPasswordRules

 	DocuSign.Model.AccountPasswordStrengthType

 	DocuSign.Model.AccountPasswordStrengthTypeOption

 	DocuSign.Model.AccountPermissionProfiles

 	DocuSign.Model.AccountRoleSettings

 	DocuSign.Model.AccountSealProviders

 	DocuSign.Model.AccountSeals

 	DocuSign.Model.AccountSettingsInformation

 	DocuSign.Model.AccountSharedAccess

 	DocuSign.Model.AccountSignature

 	DocuSign.Model.AccountSignatureDefinition

 	DocuSign.Model.AccountSignatureProvider

 	DocuSign.Model.AccountSignatureProviderOption

 	DocuSign.Model.AccountSignatureProviders

 	DocuSign.Model.AccountSignatures

 	DocuSign.Model.AccountSignaturesInformation

 	DocuSign.Model.AccountTabSettings

 	DocuSign.Model.AccountUiSettings

 	DocuSign.Model.AccountWatermarks

 	DocuSign.Model.Accounts

 	DocuSign.Model.AddOn

 	DocuSign.Model.AddressInformation

 	DocuSign.Model.AddressInformationInput

 	DocuSign.Model.AdminMessage

 	DocuSign.Model.Agent

 	DocuSign.Model.ApiRequestLog

 	DocuSign.Model.ApiRequestLogsResult

 	DocuSign.Model.AppStoreProduct

 	DocuSign.Model.AppStoreReceipt

 	DocuSign.Model.Approve

 	DocuSign.Model.AskAnAdmin

 	DocuSign.Model.Attachment

 	DocuSign.Model.AuthenticationMethod

 	DocuSign.Model.AuthenticationStatus

 	DocuSign.Model.AuthorizationUser

 	DocuSign.Model.Authorizations

 	DocuSign.Model.BccEmailAddress

 	DocuSign.Model.BccEmailArchive

 	DocuSign.Model.BccEmailArchiveHistory

 	DocuSign.Model.BccEmailArchiveHistoryList

 	DocuSign.Model.BccEmailArchiveList

 	DocuSign.Model.BillingCharge

 	DocuSign.Model.BillingChargeResponse

 	DocuSign.Model.BillingDiscount

 	DocuSign.Model.BillingEntityInformationResponse

 	DocuSign.Model.BillingInvoice

 	DocuSign.Model.BillingInvoiceItem

 	DocuSign.Model.BillingInvoicesResponse

 	DocuSign.Model.BillingInvoicesSummary

 	DocuSign.Model.BillingPayment

 	DocuSign.Model.BillingPaymentItem

 	DocuSign.Model.BillingPaymentRequest

 	DocuSign.Model.BillingPaymentResponse

 	DocuSign.Model.BillingPaymentsResponse

 	DocuSign.Model.BillingPlan

 	DocuSign.Model.BillingPlanInformation

 	DocuSign.Model.BillingPlanPreview

 	DocuSign.Model.BillingPlanResponse

 	DocuSign.Model.BillingPlanUpdateResponse

 	DocuSign.Model.BillingPlans

 	DocuSign.Model.BillingPlansResponse

 	DocuSign.Model.BillingPrice

 	DocuSign.Model.Brand

 	DocuSign.Model.BrandEmailContent

 	DocuSign.Model.BrandLink

 	DocuSign.Model.BrandLogos

 	DocuSign.Model.BrandRequest

 	DocuSign.Model.BrandResourceUrls

 	DocuSign.Model.BrandResources

 	DocuSign.Model.BrandResourcesList

 	DocuSign.Model.BrandsRequest

 	DocuSign.Model.BrandsResponse

 	DocuSign.Model.BulkEnvelope

 	DocuSign.Model.BulkEnvelopeStatus

 	DocuSign.Model.BulkProcessRequest

 	DocuSign.Model.BulkProcessResponse

 	DocuSign.Model.BulkProcessResult

 	DocuSign.Model.BulkProcessingListSummaries

 	DocuSign.Model.BulkProcessingListSummary

 	DocuSign.Model.BulkProcessingLists

 	DocuSign.Model.BulkSend

 	DocuSign.Model.BulkSendBatchActionRequest

 	DocuSign.Model.BulkSendBatchError

 	DocuSign.Model.BulkSendBatchRequest

 	DocuSign.Model.BulkSendBatchStatus

 	DocuSign.Model.BulkSendBatchSummaries

 	DocuSign.Model.BulkSendBatchSummary

 	DocuSign.Model.BulkSendEnvelopesInfo

 	DocuSign.Model.BulkSendErrorStatus

 	DocuSign.Model.BulkSendRequest

 	DocuSign.Model.BulkSendResponse

 	DocuSign.Model.BulkSendTestResponse

 	DocuSign.Model.BulkSendingCopy

 	DocuSign.Model.BulkSendingCopyCustomField

 	DocuSign.Model.BulkSendingCopyDocGenFormFieldRowValue

 	DocuSign.Model.BulkSendingCopyRecipient

 	DocuSign.Model.BulkSendingCopyTab

 	DocuSign.Model.BulkSendingList

 	DocuSign.Model.BulkSendingListSummaries

 	DocuSign.Model.BulkSendingListSummary

 	DocuSign.Model.BulksendingCopyDocGenFormField

 	DocuSign.Model.CaptiveRecipient

 	DocuSign.Model.CaptiveRecipientInformation

 	DocuSign.Model.CarbonCopy

 	DocuSign.Model.CertifiedDelivery

 	DocuSign.Model.Checkbox

 	DocuSign.Model.ChunkedUploadPart

 	DocuSign.Model.ChunkedUploadRequest

 	DocuSign.Model.ChunkedUploadResponse

 	DocuSign.Model.ChunkedUploads

 	DocuSign.Model.CloudStorage

 	DocuSign.Model.CloudStorageProvider

 	DocuSign.Model.CloudStorageProviders

 	DocuSign.Model.Comment

 	DocuSign.Model.CommentHistoryResult

 	DocuSign.Model.CommentPublish

 	DocuSign.Model.CommentThread

 	DocuSign.Model.Comments

 	DocuSign.Model.CommentsPublish

 	DocuSign.Model.CommissionCounty

 	DocuSign.Model.CommissionExpiration

 	DocuSign.Model.CommissionNumber

 	DocuSign.Model.CommissionState

 	DocuSign.Model.Company

 	DocuSign.Model.CompositeTemplate

 	DocuSign.Model.ConditionalRecipientRule

 	DocuSign.Model.ConditionalRecipientRuleCondition

 	DocuSign.Model.ConditionalRecipientRuleFilter

 	DocuSign.Model.ConnectConfigResults

 	DocuSign.Model.ConnectConfigurations

 	DocuSign.Model.ConnectCustomConfiguration

 	DocuSign.Model.ConnectDebugLog

 	DocuSign.Model.ConnectEventData

 	DocuSign.Model.ConnectEvents

 	DocuSign.Model.ConnectFailureFilter

 	DocuSign.Model.ConnectFailureResult

 	DocuSign.Model.ConnectFailureResults

 	DocuSign.Model.ConnectHistoricalEnvelopeRepublish

 	DocuSign.Model.ConnectLog

 	DocuSign.Model.ConnectLogs

 	DocuSign.Model.ConnectOAuthConfig

 	DocuSign.Model.ConnectSalesforceField

 	DocuSign.Model.ConnectSalesforceObject

 	DocuSign.Model.ConnectSecret

 	DocuSign.Model.ConnectUserInfo

 	DocuSign.Model.ConnectUserObject

 	DocuSign.Model.ConnectedData

 	DocuSign.Model.ConnectedObjectDetails

 	DocuSign.Model.ConnectionInstance

 	DocuSign.Model.ConsentDetails

 	DocuSign.Model.ConsoleViewRequest

 	DocuSign.Model.ConsumerDisclosure

 	DocuSign.Model.Contact

 	DocuSign.Model.ContactGetResponse

 	DocuSign.Model.ContactModRequest

 	DocuSign.Model.ContactPhoneNumber

 	DocuSign.Model.ContactUpdateResponse

 	DocuSign.Model.Contacts

 	DocuSign.Model.CorrectViewRequest

 	DocuSign.Model.Country

 	DocuSign.Model.CreditCardInformation

 	DocuSign.Model.CreditCardTypes

 	DocuSign.Model.CurrencyFeatureSetPrice

 	DocuSign.Model.CurrencyPlanPrice

 	DocuSign.Model.CustomField

 	DocuSign.Model.CustomFields

 	DocuSign.Model.CustomFieldsEnvelope

 	DocuSign.Model.CustomSettingsInformation

 	DocuSign.Model.CustomTabs

 	DocuSign.Model.Date

 	DocuSign.Model.DateSigned

 	DocuSign.Model.DateStampProperties

 	DocuSign.Model.Decline

 	DocuSign.Model.DelayedRouting

 	DocuSign.Model.DelegationInfo

 	DocuSign.Model.DiagnosticsSettingsInformation

 	DocuSign.Model.DirectDebitProcessorInformation

 	DocuSign.Model.DobInformationInput

 	DocuSign.Model.DocGenFormField

 	DocuSign.Model.DocGenFormFieldOption

 	DocuSign.Model.DocGenFormFieldRequest

 	DocuSign.Model.DocGenFormFieldResponse

 	DocuSign.Model.DocGenFormFieldRowValue

 	DocuSign.Model.DocGenFormFieldValidation

 	DocuSign.Model.DocGenFormFields

 	DocuSign.Model.DocGenSyntaxError

 	DocuSign.Model.Document

 	DocuSign.Model.DocumentFieldsInformation

 	DocuSign.Model.DocumentGeneration

 	DocuSign.Model.DocumentHtmlCollapsibleDisplaySettings

 	DocuSign.Model.DocumentHtmlDefinition

 	DocuSign.Model.DocumentHtmlDefinitionOriginal

 	DocuSign.Model.DocumentHtmlDefinitionOriginals

 	DocuSign.Model.DocumentHtmlDefinitions

 	DocuSign.Model.DocumentHtmlDisplayAnchor

 	DocuSign.Model.DocumentHtmlDisplaySettings

 	DocuSign.Model.DocumentResponsiveHtml

 	DocuSign.Model.DocumentResponsiveHtmlPreview

 	DocuSign.Model.DocumentTemplate

 	DocuSign.Model.DocumentTemplateList

 	DocuSign.Model.DocumentVisibility

 	DocuSign.Model.DocumentVisibilityList

 	DocuSign.Model.DowngradRequestBillingInfoResponse

 	DocuSign.Model.DowngradeBillingPlanInformation

 	DocuSign.Model.DowngradePlanUpdateResponse

 	DocuSign.Model.DowngradeRequestInformation

 	DocuSign.Model.Draw

 	DocuSign.Model.ENoteConfiguration

 	DocuSign.Model.ENoteConfigurations

 	DocuSign.Model.Editor

 	DocuSign.Model.Email

 	DocuSign.Model.EmailAddress

 	DocuSign.Model.EmailSettings

 	DocuSign.Model.Envelope

 	DocuSign.Model.EnvelopeAttachment

 	DocuSign.Model.EnvelopeAttachments

 	DocuSign.Model.EnvelopeAttachmentsRequest

 	DocuSign.Model.EnvelopeAttachmentsResult

 	DocuSign.Model.EnvelopeAuditEvent

 	DocuSign.Model.EnvelopeAuditEventResponse

 	DocuSign.Model.EnvelopeConsumerDisclosures

 	DocuSign.Model.EnvelopeCustomFields

 	DocuSign.Model.EnvelopeCustomMetadata

 	DocuSign.Model.EnvelopeDefinition

 	DocuSign.Model.EnvelopeDelayRule

 	DocuSign.Model.EnvelopeDocument

 	DocuSign.Model.EnvelopeDocumentFields

 	DocuSign.Model.EnvelopeDocumentHtmlDefinitions

 	DocuSign.Model.EnvelopeDocumentTabs

 	DocuSign.Model.EnvelopeDocumentVisibility

 	DocuSign.Model.EnvelopeDocuments

 	DocuSign.Model.EnvelopeDocumentsResult

 	DocuSign.Model.EnvelopeEmailSettings

 	DocuSign.Model.EnvelopeEvent

 	DocuSign.Model.EnvelopeFormData

 	DocuSign.Model.EnvelopeHtmlDefinitions

 	DocuSign.Model.EnvelopeId

 	DocuSign.Model.EnvelopeIdsRequest

 	DocuSign.Model.EnvelopeLocks

 	DocuSign.Model.EnvelopeMetadata

 	DocuSign.Model.EnvelopeNotificationRequest

 	DocuSign.Model.EnvelopePublish

 	DocuSign.Model.EnvelopePublishTransaction

 	DocuSign.Model.EnvelopePublishTransactionErrorRollup

 	DocuSign.Model.EnvelopePurgeConfiguration

 	DocuSign.Model.EnvelopeRecipientTabs

 	DocuSign.Model.EnvelopeRecipients

 	DocuSign.Model.EnvelopeSummary

 	DocuSign.Model.EnvelopeTemplate

 	DocuSign.Model.EnvelopeTemplateResults

 	DocuSign.Model.EnvelopeTemplates

 	DocuSign.Model.EnvelopeTransactionStatus

 	DocuSign.Model.EnvelopeTransferRule

 	DocuSign.Model.EnvelopeTransferRuleInformation

 	DocuSign.Model.EnvelopeTransferRuleRequest

 	DocuSign.Model.EnvelopeTransferRules

 	DocuSign.Model.EnvelopeUpdateSummary

 	DocuSign.Model.EnvelopeViewDocumentSettings

 	DocuSign.Model.EnvelopeViewEnvelopeCustomFieldSettings

 	DocuSign.Model.EnvelopeViewRecipientSettings

 	DocuSign.Model.EnvelopeViewRequest

 	DocuSign.Model.EnvelopeViewSettings

 	DocuSign.Model.EnvelopeViewTaggerSettings

 	DocuSign.Model.EnvelopeViewTemplateSettings

 	DocuSign.Model.EnvelopeViews

 	DocuSign.Model.EnvelopeWorkflowDefinition

 	DocuSign.Model.Envelopes

 	DocuSign.Model.EnvelopesInformation

 	DocuSign.Model.ErrorDetails

 	DocuSign.Model.EventNotification

 	DocuSign.Model.EventResult

 	DocuSign.Model.Expirations

 	DocuSign.Model.ExtensionData

 	DocuSign.Model.ExternalDocServiceErrorDetails

 	DocuSign.Model.ExternalDocumentSources

 	DocuSign.Model.ExternalFile

 	DocuSign.Model.ExternalFolder

 	DocuSign.Model.ExternalPrimaryAccountRecipientAuthRequirements

 	DocuSign.Model.FavoriteTemplates

 	DocuSign.Model.FavoriteTemplatesContentItem

 	DocuSign.Model.FavoriteTemplatesInfo

 	DocuSign.Model.FeatureAvailableMetadata

 	DocuSign.Model.FeatureSet

 	DocuSign.Model.FileType

 	DocuSign.Model.FileTypeList

 	DocuSign.Model.Filter

 	DocuSign.Model.FirstName

 	DocuSign.Model.Folder

 	DocuSign.Model.FolderItemResponse

 	DocuSign.Model.FolderItemV2

 	DocuSign.Model.FolderItemsResponse

 	DocuSign.Model.FolderSharedItem

 	DocuSign.Model.Folders

 	DocuSign.Model.FoldersRequest

 	DocuSign.Model.FoldersResponse

 	DocuSign.Model.ForgottenPasswordInformation

 	DocuSign.Model.FormDataItem

 	DocuSign.Model.FormulaTab

 	DocuSign.Model.FullName

 	DocuSign.Model.GraphicsContext

 	DocuSign.Model.Group

 	DocuSign.Model.GroupBrands

 	DocuSign.Model.GroupInformation

 	DocuSign.Model.GroupUsers

 	DocuSign.Model.Groups

 	DocuSign.Model.IdCheckConfiguration

 	DocuSign.Model.IdCheckInformationInput

 	DocuSign.Model.IdCheckSecurityStep

 	DocuSign.Model.IdEvidenceResourceToken

 	DocuSign.Model.IdEvidenceViewLink

 	DocuSign.Model.IdentityVerifications

 	DocuSign.Model.InPersonSigner

 	DocuSign.Model.InitialHere

 	DocuSign.Model.InlineTemplate

 	DocuSign.Model.IntegratedConnectUserInfoList

 	DocuSign.Model.IntegratedUserInfoList

 	DocuSign.Model.Intermediary

 	DocuSign.Model.Invoices

 	DocuSign.Model.Jurisdiction

 	DocuSign.Model.JurisdictionSummary

 	DocuSign.Model.LastName

 	DocuSign.Model.LinkedExternalPrimaryAccount

 	DocuSign.Model.List

 	DocuSign.Model.ListCustomField

 	DocuSign.Model.ListItem

 	DocuSign.Model.LocalePolicy

 	DocuSign.Model.LocalePolicyTab

 	DocuSign.Model.LockInformation

 	DocuSign.Model.LockRequest

 	DocuSign.Model.LoginAccount

 	DocuSign.Model.LoginInformation

 	DocuSign.Model.MatchBox

 	DocuSign.Model.MemberGroupSharedItem

 	DocuSign.Model.MemberSharedItems

 	DocuSign.Model.MergeField

 	DocuSign.Model.MobileNotifierConfiguration

 	DocuSign.Model.MobileNotifierConfigurationInformation

 	DocuSign.Model.Money

 	DocuSign.Model.NameValue

 	DocuSign.Model.NewAccountDefinition

 	DocuSign.Model.NewAccountSummary

 	DocuSign.Model.NewUser

 	DocuSign.Model.NewUsersDefinition

 	DocuSign.Model.NewUsersSummary

 	DocuSign.Model.Notarize

 	DocuSign.Model.Notary

 	DocuSign.Model.NotaryContactDetails

 	DocuSign.Model.NotaryHost

 	DocuSign.Model.NotaryJournal

 	DocuSign.Model.NotaryJournalCredibleWitness

 	DocuSign.Model.NotaryJournalList

 	DocuSign.Model.NotaryJournalMetaData

 	DocuSign.Model.NotaryJournals

 	DocuSign.Model.NotaryJurisdiction

 	DocuSign.Model.NotaryJurisdictionList

 	DocuSign.Model.NotaryRecipient

 	DocuSign.Model.NotaryResult

 	DocuSign.Model.NotarySeal

 	DocuSign.Model.Note

 	DocuSign.Model.Notification

 	DocuSign.Model.NotificationDefaultSettings

 	DocuSign.Model.NotificationDefaults

 	DocuSign.Model.Number

 	DocuSign.Model.Numerical

 	DocuSign.Model.OauthAccess

 	DocuSign.Model.OfflineAttributes

 	DocuSign.Model.Page

 	DocuSign.Model.PageImages

 	DocuSign.Model.PageRequest

 	DocuSign.Model.PaletteItemSettings

 	DocuSign.Model.PaletteSettings

 	DocuSign.Model.Participant

 	DocuSign.Model.PathExtendedElement

 	DocuSign.Model.PayPalLegacySettings

 	DocuSign.Model.PaymentDetails

 	DocuSign.Model.PaymentGatewayAccount

 	DocuSign.Model.PaymentGatewayAccountSetting

 	DocuSign.Model.PaymentGatewayAccounts

 	DocuSign.Model.PaymentGatewayAccountsInfo

 	DocuSign.Model.PaymentLineItem

 	DocuSign.Model.PaymentMethodWithOptions

 	DocuSign.Model.PaymentProcessorInformation

 	DocuSign.Model.PaymentSignerValues

 	DocuSign.Model.Payments

 	DocuSign.Model.PermissionProfile

 	DocuSign.Model.PermissionProfileInformation

 	DocuSign.Model.PhoneNumber

 	DocuSign.Model.PlanInformation

 	DocuSign.Model.PolyLine

 	DocuSign.Model.PolyLineOverlay

 	DocuSign.Model.PowerForm

 	DocuSign.Model.PowerFormData

 	DocuSign.Model.PowerFormFormDataEnvelope

 	DocuSign.Model.PowerFormFormDataRecipient

 	DocuSign.Model.PowerFormRecipient

 	DocuSign.Model.PowerFormSendersResponse

 	DocuSign.Model.PowerForms

 	DocuSign.Model.PowerFormsFormDataResponse

 	DocuSign.Model.PowerFormsRequest

 	DocuSign.Model.PowerFormsResponse

 	DocuSign.Model.PrefillFormData

 	DocuSign.Model.PrefillTabs

 	DocuSign.Model.PropertyMetadata

 	DocuSign.Model.Province

 	DocuSign.Model.ProvisioningInformation

 	DocuSign.Model.PurchasedEnvelopesInformation

 	DocuSign.Model.Radio

 	DocuSign.Model.RadioGroup

 	DocuSign.Model.RecipientAdditionalNotification

 	DocuSign.Model.RecipientAttachment

 	DocuSign.Model.RecipientDomain

 	DocuSign.Model.RecipientEmailNotification

 	DocuSign.Model.RecipientEvent

 	DocuSign.Model.RecipientFormData

 	DocuSign.Model.RecipientGroup

 	DocuSign.Model.RecipientIdentityInputOption

 	DocuSign.Model.RecipientIdentityPhoneNumber

 	DocuSign.Model.RecipientIdentityVerification

 	DocuSign.Model.RecipientNamesResponse

 	DocuSign.Model.RecipientOption

 	DocuSign.Model.RecipientPhoneAuthentication

 	DocuSign.Model.RecipientPhoneNumber

 	DocuSign.Model.RecipientPreviewRequest

 	DocuSign.Model.RecipientProofFile

 	DocuSign.Model.RecipientRouting

 	DocuSign.Model.RecipientRules

 	DocuSign.Model.RecipientSignatureInformation

 	DocuSign.Model.RecipientSignatureProvider

 	DocuSign.Model.RecipientSignatureProviderOptions

 	DocuSign.Model.RecipientSmsAuthentication

 	DocuSign.Model.RecipientTokenClientUrls

 	DocuSign.Model.RecipientUpdateResponse

 	DocuSign.Model.RecipientViewRequest

 	DocuSign.Model.Recipients

 	DocuSign.Model.RecipientsUpdateSummary

 	DocuSign.Model.ReferralInformation

 	DocuSign.Model.Reminders

 	DocuSign.Model.RequestLogs

 	DocuSign.Model.ResourceInformation

 	DocuSign.Model.Resources

 	DocuSign.Model.ResponsiveHtml

 	DocuSign.Model.ResponsiveHtmlPreview

 	DocuSign.Model.ScheduledSending

 	DocuSign.Model.SealIdentifier

 	DocuSign.Model.SealSign

 	DocuSign.Model.SeatDiscount

 	DocuSign.Model.SenderCompany

 	DocuSign.Model.SenderEmailNotifications

 	DocuSign.Model.SenderName

 	DocuSign.Model.ServerTemplate

 	DocuSign.Model.ServiceInformation

 	DocuSign.Model.ServiceVersion

 	DocuSign.Model.Services

 	DocuSign.Model.SettingsMetadata

 	DocuSign.Model.SharedItem

 	DocuSign.Model.SignHere

 	DocuSign.Model.SignatureGroup

 	DocuSign.Model.SignatureGroupDef

 	DocuSign.Model.SignatureProviderRequiredOption

 	DocuSign.Model.SignatureType

 	DocuSign.Model.SignatureUser

 	DocuSign.Model.SignatureUserDef

 	DocuSign.Model.Signer

 	DocuSign.Model.SignerAttachment

 	DocuSign.Model.SignerEmailNotifications

 	DocuSign.Model.SigningGroup

 	DocuSign.Model.SigningGroupInformation

 	DocuSign.Model.SigningGroupUser

 	DocuSign.Model.SigningGroupUsers

 	DocuSign.Model.SigningGroups

 	DocuSign.Model.SmartContractInformation

 	DocuSign.Model.SmartSection

 	DocuSign.Model.SmartSectionAnchorPosition

 	DocuSign.Model.SmartSectionCollapsibleDisplaySettings

 	DocuSign.Model.SmartSectionDisplaySettings

 	DocuSign.Model.SocialAccountInformation

 	DocuSign.Model.SocialAuthentication

 	DocuSign.Model.Ssn

 	DocuSign.Model.Ssn4InformationInput

 	DocuSign.Model.Ssn9InformationInput

 	DocuSign.Model.Stamp

 	DocuSign.Model.SupportedLanguages

 	DocuSign.Model.TabAccountSettings

 	DocuSign.Model.TabGroup

 	DocuSign.Model.TabMetadata

 	DocuSign.Model.TabMetadataList

 	DocuSign.Model.Tabs

 	DocuSign.Model.TabsBlob

 	DocuSign.Model.TemplateAutoMatch

 	DocuSign.Model.TemplateAutoMatchList

 	DocuSign.Model.TemplateCustomFields

 	DocuSign.Model.TemplateDocumentFields

 	DocuSign.Model.TemplateDocumentHtmlDefinitions

 	DocuSign.Model.TemplateDocumentResponsiveHtmlPreview

 	DocuSign.Model.TemplateDocumentTabs

 	DocuSign.Model.TemplateDocumentVisibility

 	DocuSign.Model.TemplateDocumentVisibilityList

 	DocuSign.Model.TemplateDocuments

 	DocuSign.Model.TemplateDocumentsResult

 	DocuSign.Model.TemplateHtmlDefinitions

 	DocuSign.Model.TemplateInformation

 	DocuSign.Model.TemplateLocks

 	DocuSign.Model.TemplateMatch

 	DocuSign.Model.TemplateNotificationRequest

 	DocuSign.Model.TemplateRecipientTabs

 	DocuSign.Model.TemplateRecipients

 	DocuSign.Model.TemplateResponsiveHtmlPreview

 	DocuSign.Model.TemplateRole

 	DocuSign.Model.TemplateSharedItem

 	DocuSign.Model.TemplateSummary

 	DocuSign.Model.TemplateTabs

 	DocuSign.Model.TemplateUpdateSummary

 	DocuSign.Model.TemplateViewRecipientSettings

 	DocuSign.Model.TemplateViewRequest

 	DocuSign.Model.TemplateViewSettings

 	DocuSign.Model.TemplateViews

 	DocuSign.Model.Templates

 	DocuSign.Model.Text

 	DocuSign.Model.TextCustomField

 	DocuSign.Model.Title

 	DocuSign.Model.UsageHistory

 	DocuSign.Model.UserAccountManagementGranularInformation

 	DocuSign.Model.UserAuthorization

 	DocuSign.Model.UserAuthorizationCreateRequest

 	DocuSign.Model.UserAuthorizationCreateRequestWithId

 	DocuSign.Model.UserAuthorizationIdWithStatus

 	DocuSign.Model.UserAuthorizationUpdateRequest

 	DocuSign.Model.UserAuthorizationWithStatus

 	DocuSign.Model.UserAuthorizations

 	DocuSign.Model.UserAuthorizationsDeleteRequest

 	DocuSign.Model.UserAuthorizationsDeleteResponse

 	DocuSign.Model.UserAuthorizationsRequest

 	DocuSign.Model.UserAuthorizationsResponse

 	DocuSign.Model.UserCustomSettings

 	DocuSign.Model.UserInfo

 	DocuSign.Model.UserInfoList

 	DocuSign.Model.UserInformation

 	DocuSign.Model.UserInformationList

 	DocuSign.Model.UserPasswordInformation

 	DocuSign.Model.UserPasswordRules

 	DocuSign.Model.UserProfile

 	DocuSign.Model.UserProfiles

 	DocuSign.Model.UserSettingsInformation

 	DocuSign.Model.UserSharedItem

 	DocuSign.Model.UserSignature

 	DocuSign.Model.UserSignatureDefinition

 	DocuSign.Model.UserSignatures

 	DocuSign.Model.UserSignaturesInformation

 	DocuSign.Model.UserSocialIdResult

 	DocuSign.Model.Users

 	DocuSign.Model.UsersResponse

 	DocuSign.Model.View

 	DocuSign.Model.ViewUrl

 	DocuSign.Model.Watermark

 	DocuSign.Model.Witness

 	DocuSign.Model.Workflow

 	DocuSign.Model.WorkflowStep

 	DocuSign.Model.Workspace

 	DocuSign.Model.WorkspaceFolderContents

 	DocuSign.Model.WorkspaceItem

 	DocuSign.Model.WorkspaceItemList

 	DocuSign.Model.WorkspaceItems

 	DocuSign.Model.WorkspaceList

 	DocuSign.Model.WorkspaceSettings

 	DocuSign.Model.WorkspaceUser

 	DocuSign.Model.WorkspaceUserAuthorization

 	DocuSign.Model.Workspaces

 	DocuSign.Model.Zip

 	Core

 	DocuSign.ClientRegistry

 	DocuSign.Connection

 	DocuSign.ConnectionPool

 	DocuSign.OAuth

 	DocuSign.OAuth.AuthorizationCodeStrategy

 	DocuSign.OAuth.Fake

 	DocuSign.OAuth.Impl

 	DocuSign.User

 	DocuSign.Util.Environment

 	WebHook

 	DocuSign.Webhook.Crypto

 	DocuSign.Webhook.Handler

 	DocuSign.WebhookPlug

 	Exceptions

 	DocuSign.ApiError

 	DocuSign.AuthenticationError

 	DocuSign.Error

 	DocuSign.NetworkError

 	DocuSign.RateLimitError

 	DocuSign.ValidationError

 README

[image: Hex.pm]
[image: Hexdocs.pm]
[image: Github.com]
DocuSign API Client
Unofficial DocuSign Elixir Library used to interact with the eSignature REST API. Send, sign, and approve documents using this client.
Quick Start with LiveBook
The easiest way to get started is through our interactive LiveBook examples:
Embedded Signing (JWT Impersonation)
Complete working demonstration of DocuSign embedded signing with JWT authentication:
[image: Run in Livebook]
OAuth2 Authorization Code Flow
Interactive walkthrough of the OAuth2 Authorization Code Flow for user-facing applications:
[image: Run in Livebook]
SSL Configuration Example
Learn how to configure SSL/TLS options for secure connections:
	Configure custom CA certificates
	Set up client certificate authentication
	Understand security best practices
	Test your SSL configuration

[image: Run in Livebook]
Just click the badges above to run the notebooks in LiveBook - no environment setup required!
Installation
The package can be installed by adding docusign to your list of dependencies in mix.exs:
def deps do
 [
 {:docusign, "~> 3.0.0"}
]
end
The docs can be found at https://hexdocs.pm/docusign.
Usage
DocuSign Elixir supports two authentication methods:
	OAuth2 Authorization Code Flow - For user-facing applications where users grant permission
	JWT Impersonation - For server-to-server applications with pre-configured access

OAuth2 Authorization Code Flow
Recommended for user-facing applications where users need to grant permission for your app to access their DocuSign account.
Benefits
	Users explicitly grant permission through DocuSign's consent screen
	No admin pre-approval required (unlike JWT impersonation)
	Tokens can be refreshed without user interaction
	Standard OAuth2 compliance

Quick Setup
config :docusign,
 hostname: "account-d.docusign.com", # or "account.docusign.com" for production
 client_id: "your_integration_key",
 client_secret: "your_secret_key"
Environment Auto-Detection
Automatically determine the correct OAuth hostname based on your API base URI:
Automatically detect sandbox vs production from base URI
base_uri = "https://demo.docusign.net/restapi"
hostname = DocuSign.Connection.determine_hostname(base_uri) # "account-d.docusign.com"

Configure OAuth with auto-detected hostname
Application.put_env(:docusign, :hostname, hostname)

Or use the enhanced connection function with auto-detection
{:ok, conn} = DocuSign.Connection.from_oauth_client_with_detection(
 oauth_client,
 account_id: account["account_id"],
 base_uri: account["base_uri"] <> "/restapi",
 auto_detect_hostname: true # Automatically sets hostname config
)
Usage
1. Create OAuth2 client
client = DocuSign.OAuth.AuthorizationCodeStrategy.client(
 redirect_uri: "https://yourapp.com/auth/callback"
)

2. Generate authorization URL (redirect user here)
auth_url = OAuth2.Client.authorize_url!(client, scope: "signature")

3. Exchange authorization code for tokens (in your callback handler)
client = OAuth2.Client.get_token!(client, code: auth_code_from_callback)

4. Get user info and create connection
user_info = DocuSign.OAuth.AuthorizationCodeStrategy.get_user_info!(client)
account = Enum.find(user_info["accounts"], &(&1["is_default"] == "true"))

{:ok, conn} = DocuSign.Connection.from_oauth_client(
 client,
 account_id: account["account_id"],
 base_uri: account["base_uri"] <> "/restapi"
)

5. Use connection with DocuSign APIs
{:ok, users} = DocuSign.Api.Users.users_get_users(conn, account["account_id"])
💡 For a complete interactive example, see the OAuth2 LiveBook guide!
JWT Impersonation
For server-to-server applications where you need to act on behalf of users with pre-configured access.
Requirements
	RSA Private key
	DocuSign Client ID (integration key)
	DocuSign Account ID
	One or more DocuSign User IDs

Note that you can test your integration with the full-featured sandbox environment provided by DocuSign.
Application Configuration
config :docusign,
 hostname: "account-d.docusign.com",
 client_id: "?????-?????-???????",
 private_key_file: "docusign_key.pem"
Notes:
	Set hostname to account.docusign.com for production
	Private key path can be relative or absolute
	Use private_key_contents instead of private_key_file for secrets stored in vault systems

Optional Configuration
config :docusign,
 timeout: 30_000, # 30 seconds
 token_expires_in: 7_200 # 2 hours
Environment Variables (Recommended)
For security, use environment variables instead of hardcoding credentials:
.env file
export DOCUSIGN_CLIENT_ID=<client id here>
export DOCUSIGN_PRIVATE_KEY_FILE=<private key file path here>

config.exs
config :docusign,
 client_id: System.fetch_env!("DOCUSIGN_CLIENT_ID"),
 private_key_file: System.fetch_env!("DOCUSIGN_PRIVATE_KEY_FILE")
DocuSign Setup for JWT
	Access DocuSign admin and go to Settings → Apps & Keys
	Note the API Account ID (this is your Account ID)
	Create a new app:	Provide a name
	In Authentication, click + GENERATE RSA
	Store the private key securely
	Add redirect URI: https://account-d.docusign.com/me (sandbox) or https://account.docusign.com/me (production)

	Note the Integration Key (this is your Client ID)

User Consent for Impersonation
For impersonating other users, they must first consent by visiting:
Sandbox:
https://account-d.docusign.com/oauth/auth?response_type=code&scope=signature%20impersonation&client_id=YOUR_CLIENT_ID&redirect_uri=https://account-d.docusign.com/me
Production:
https://account.docusign.com/oauth/auth?response_type=code&scope=signature%20impersonation&client_id=YOUR_CLIENT_ID&redirect_uri=https://account.docusign.com/me
Using JWT APIs
Establish connection
user_id = "USER_ID"
{:ok, conn} = DocuSign.Connection.get(user_id)

Call APIs
account_id = "ACCOUNT_ID"
{:ok, users} = DocuSign.Api.Users.users_get_users(conn, account_id)
Request/Response Debugging
The DocuSign Elixir client provides comprehensive debugging capabilities for HTTP requests and responses, similar to the Ruby client's debugging features.
Enable Debugging
Enable debugging in your configuration to log HTTP request/response details:
config :docusign, debugging: true
Or enable it at runtime:
DocuSign.Debug.enable_debugging()
Debug Output
When debugging is enabled, you'll see detailed logs including:
	HTTP request method, URL, and timing
	Request and response headers (with sensitive data filtered)
	Request and response bodies
	SDK identification headers

Example debug output:
[debug] GET https://demo.docusign.net/restapi/v2.1/accounts -> 200 (145.2 ms)
[debug] Request headers: [{"authorization", "[FILTERED]"}, {"X-DocuSign-SDK", "Elixir/3.0.0"}]
[debug] Response body: {"accounts": [...]}
Header Filtering
Sensitive headers like authorization tokens are automatically filtered in debug logs. You can customize which headers to filter:
config :docusign, :debug_filter_headers, ["authorization", "x-api-key", "x-custom-secret"]
SDK Identification
The client automatically includes SDK identification headers with all requests:
	X-DocuSign-SDK: Elixir/2.2.2 - Identifies the SDK and version
	User-Agent: DocuSign-Elixir/2.2.2 - Standard user agent header

These headers help DocuSign track API usage and provide better support.
Configuration Options
config :docusign,
 debugging: true, # Enable/disable debug logging
 debug_filter_headers: [# Headers to filter in logs
 "authorization",
 "x-api-key"
]
Timeout configuration
By default, HTTP requests will time out after 30_000 ms. You can configure the timeout:
config :docusign, timeout: 60_000
Structured Error Handling
The DocuSign Elixir client provides opt-in structured error handling, returning detailed error structs instead of generic tuples for API failures. This allows for more granular and robust error management in your application.
Enable Structured Errors
To enable structured errors, set the :structured_errors option in your application configuration:
config :docusign, :structured_errors, true
When enabled, API calls that result in an error (e.g., HTTP status codes 4xx or 5xx) will return an {:error, error_struct} tuple, where error_struct is one of the following:
	DocuSign.ApiError: A general API error.
	DocuSign.AuthenticationError: Specifically for 401 Unauthorized errors.
	DocuSign.RateLimitError: Specifically for 429 Too Many Requests errors.
	DocuSign.ValidationError: Specifically for 400 Bad Request errors.

Each error struct contains message, status, and body fields, providing comprehensive details about the error.
Example Usage
case DocuSign.Api.Envelopes.envelopes_get_envelope(conn, account_id, envelope_id) do
 {:ok, envelope} ->
 IO.puts("Envelope retrieved: #{envelope.status}")
 {:error, %DocuSign.AuthenticationError{message: msg, status: status}} ->
 IO.puts("Authentication failed (Status: #{status}): #{msg}")
 {:error, %DocuSign.ValidationError{message: msg, body: body}} ->
 IO.puts("Validation error: #{msg}. Details: #{inspect(body)}")
 {:error, %DocuSign.ApiError{message: msg, status: status}} ->
 IO.puts("API Error (Status: #{status}): #{msg}")
 {:error, reason} ->
 IO.puts("An unexpected error occurred: #{inspect(reason)}")
end
If :structured_errors is false (the default), errors will continue to be returned as {:error, {:http_error, status, body}} tuples for backward compatibility.
SSL/TLS Configuration
The DocuSign client supports comprehensive SSL/TLS configuration for secure connections. This is particularly useful for:
	Using custom CA certificates
	Client certificate authentication (mutual TLS)
	Controlling SSL verification behavior
	Configuring cipher suites and TLS versions

Basic SSL Configuration
Configure SSL options at the application level:
config :docusign, :ssl_options,
 verify: :verify_peer, # Always verify server certificates (default)
 cacertfile: "/path/to/ca-bundle.crt", # Custom CA certificate bundle
 depth: 3 # Certificate chain verification depth
Client Certificate Authentication
For mutual TLS authentication:
config :docusign, :ssl_options,
 certfile: "/path/to/client-cert.pem", # Client certificate
 keyfile: "/path/to/client-key.pem", # Client private key
 password: "keypassword" # Password for encrypted key (if needed)
Advanced SSL Options
config :docusign, :ssl_options,
 # TLS versions
 versions: [:"tlsv1.2", :"tlsv1.3"],

 # Cipher suites (example)
 ciphers: [
 "ECDHE-RSA-AES256-GCM-SHA384",
 "ECDHE-RSA-AES128-GCM-SHA256"
],

 # Custom hostname verification
 customize_hostname_check: [
 match_fun: :public_key.pkix_verify_hostname_match_fun(:https)
],

 # Custom verification function
 verify_fun: {&MyApp.SSLVerification.verify/3, nil}
Per-Request SSL Options
You can override SSL options for specific requests:
{:ok, conn} = DocuSign.Connection.get(user_id)

Use custom CA certificate for this request only
DocuSign.Connection.request(conn,
 method: :get,
 url: "/accounts",
 ssl_options: [
 cacertfile: "/special/ca.pem",
 verify: :verify_peer
]
)
Connection Pooling
Optimize HTTP connections for high-throughput applications:
Enable connection pooling with custom configuration
config :docusign, :pool_options, [
 size: 50, # Number of connections per pool (default: 10)
 count: 2, # Number of pools for concurrency (default: 1)
 max_idle_time: 600_000, # Keep connections alive for 10 minutes (default: 5 minutes)
 timeout: 30_000 # Connection timeout in ms (default: 30 seconds)
]
Benefits of connection pooling:
	Connection reuse - Reduces overhead of establishing new HTTPS connections
	Better throughput - Multiple pools allow concurrent request handling
	Resource management - Automatic cleanup of idle connections
	Performance monitoring - Track pool health with DocuSign.ConnectionPool.health()

Example usage:
Check if pooling is enabled
DocuSign.ConnectionPool.enabled?()
#=> true

Get current pool configuration
DocuSign.ConnectionPool.config()
#=> %{size: 50, count: 2, max_idle_time: 600_000, timeout: 30_000, enabled: true}

Monitor pool health
{:ok, health} = DocuSign.ConnectionPool.health()
#=> {:ok, %{status: :healthy, message: "Connection pooling is active", config: %{...}}}
Security Best Practices
	Always use :verify_peer in production - Never disable certificate verification in production environments
	Keep CA certificates updated - Ensure your CA bundle includes all necessary root certificates
	Use strong cipher suites - Configure only secure cipher suites
	Enable hostname verification - Always verify that the certificate matches the hostname

Automatic CA Certificate Detection
If you don't specify CA certificates, the library will attempt to use them in this order:
	User-specified :cacertfile or :cacerts
	CAStore library (if available as a dependency)
	System CA certificates from common locations
	Erlang's built-in CA certificates as a fallback

HTTP Client Configuration
The library uses Req with Finch as the underlying HTTP client.
Req automatically manages its own Finch instance named Req.Finch.
Advanced Configuration
To configure advanced HTTP options (connection pools, timeouts, etc.), you can configure the global Req.Finch instance:
config :req, :finch_options, [
 pools: %{
 :default => [size: 50, count: 1],
 "https://demo.docusign.net" => [size: 10, count: 2]
 }
]
See the Finch documentation for all available options.
Retry Configuration
The client includes automatic retry logic for transient failures. By default, it retries up to 3 times with exponential backoff.
Configuration
config :docusign, :retry_options,
 max_retries: 3, # Maximum retry attempts (default: 3)
 backoff_factor: 2, # Exponential backoff multiplier (default: 2)
 max_delay: 30_000 # Maximum delay between retries in ms (default: 30_000)

Disable retries entirely
config :docusign, :retry_options, enabled: false
The client automatically handles rate limits (429 responses) by honoring the Retry-After header when present.
Telemetry and Monitoring
The DocuSign client emits telemetry events for observability and monitoring. These events allow you to track API performance, error rates, and usage patterns.
Available Events
The following telemetry events are emitted:
	[:docusign, :api, :start] - Fired when an API call begins
	[:docusign, :api, :stop] - Fired when an API call completes successfully
	[:docusign, :api, :exception] - Fired when an API call fails
	[:docusign, :rate_limit, :hit] - Fired when rate limited by DocuSign

Additionally, since the client uses Finch for HTTP, you also get:
	[:finch, :request, :start] - HTTP request started
	[:finch, :request, :stop] - HTTP request completed

Basic Usage
Attach handlers to telemetry events:
:telemetry.attach(
 "log-docusign-requests",
 [:docusign, :api, :stop],
 fn _event, measurements, metadata, _config ->
 IO.puts("API call to #{metadata.operation} took #{measurements.duration / 1_000_000}ms")
 end,
 nil
)
Integration with Telemetry.Metrics
For production monitoring with tools like LiveDashboard:
defmodule MyApp.Telemetry do
 import Telemetry.Metrics

 def metrics do
 [
 # API performance
 summary("docusign.api.duration",
 unit: {:native, :millisecond},
 tags: [:operation, :status]
),

 # Request counts
 counter("docusign.api.count", tags: [:operation]),

 # Error rates
 counter("docusign.api.exception.count", tags: [:operation])
]
 end
end
See DocuSign.Telemetry module documentation for complete details.
DocuSign Connect
To receive webhooks from DocuSign Connect, you can use DocuSign.WebhookPlug with
your custom webhook handler. See the documentation of DocuSign.WebhookPlug for more
details.
Migration Guide
For information about migrating between versions, please see MIGRATING.md.
Regenerating the Library
The DocuSign Elixir library can be regenerated from the latest OpenAPI specification using the provided scripts.
cd scripts/regen
./regenerate_library.sh

See the regeneration README for details.

 DocuSign Embedded Signing with Elixir

Section
[image: Run in Livebook]
This LiveBook demonstrates how to create a complete embedded signing experience with the DocuSign Elixir SDK. It walks you through the entire process from authentication to retrieving a signed document.
IO.puts("Installing dependencies...")

Mix.install([
 # For local development/testing:
 # {:docusign, path: Path.join(__DIR__, ".."), app: false},
 # For released version:
 {:docusign, "~> 3.0"},
 {:kino, "~> 0.16.0"}
])

IO.puts("✅ Dependencies installed successfully!")
Setup for Local Development
When using the local path dependency, we need to start the ClientRegistry:
Only needed for local development with app: false
case Process.whereis(DocuSign.ClientRegistry) do
 nil ->
 {:ok, _pid} = DocuSign.ClientRegistry.start_link()
 IO.puts("✅ Started ClientRegistry for local development")
 pid ->
 IO.puts("✅ ClientRegistry already running: #{inspect(pid)}")
end
Introduction
This LiveBook demonstrates how to create an embedded signing experience with the DocuSign Elixir SDK. Embedded signing allows you to integrate the DocuSign signing process directly into your application, keeping users in your environment.
Configuration
First, let's set up our DocuSign configuration:
alias Kino.Input

Set up input forms for configuration
private_key_input = Input.textarea("Private Key (PEM format)",
 placeholder: "Paste your RSA private key here including BEGIN and END markers",
 label: "Your DocuSign integration's private key")
client_id_input = Input.text("Client ID (Integration Key)",
 label: "Found in the DocuSign admin under Apps & Keys")
account_id_input = Input.text("Account ID",
 label: "Your DocuSign account ID (found under Apps & Keys)")
user_id_input = Input.text("User ID",
 label: "The API Username of the DocuSign user to impersonate")
is_sandbox_input = Input.checkbox("Use Sandbox", default: true)
return_url_input = Input.text("Return URL",
 label: "Where the signer will be redirected after signing",
 default: "https://www.docusign.com")

Display input forms individually for proper rendering
 Kino.render(private_key_input)
Kino.render(client_id_input)
Kino.render(account_id_input)
Kino.render(user_id_input)
Kino.render(is_sandbox_input)
Kino.render(return_url_input)
Now let's configure the DocuSign client:
Get values from inputs
private_key = Kino.Input.read(private_key_input)
client_id = Kino.Input.read(client_id_input)
account_id = Kino.Input.read(account_id_input)
user_id = Kino.Input.read(user_id_input)
is_sandbox = Kino.Input.read(is_sandbox_input)
return_url = Kino.Input.read(return_url_input)

Fix key format if needed
private_key_formatted =
 private_key
 |> String.replace(~r/\r\n/, "\n") # Convert Windows line endings
 |> String.trim() # Remove leading/trailing whitespace

Configure DocuSign application
Application.put_env(:docusign, :client_id, client_id)
Application.put_env(:docusign, :private_key_contents, private_key_formatted)
Application.put_env(:docusign, :user_id, user_id)

Set hostname based on sandbox selection
hostname = if is_sandbox do
 "account-d.docusign.com"
else
 "account.docusign.com"
end
Application.put_env(:docusign, :hostname, hostname)

Debug: Check configuration
IO.puts("Configuration set:")
IO.puts("Client ID: #{client_id}")
IO.puts("User ID: #{user_id}")
IO.puts("Private key length: #{String.length(private_key_formatted)} chars")
IO.puts("Hostname: #{hostname}")
IO.puts("Is sandbox: #{is_sandbox}")
Create a Connection
Let's establish a connection to the DocuSign API:
IO.puts("=== Starting connection attempt ===")

Create a connection with the specified user
IO.puts("Attempting to connect with user_id: #{inspect(user_id)}")
connection_result = DocuSign.Connection.get(user_id)
IO.inspect(connection_result, label: "Connection result")

conn = case connection_result do
 {:ok, connection} ->
 IO.puts("✅ Successfully connected to DocuSign")
 connection

 {:error, {:consent_required, consent_message}} when is_binary(consent_message) ->
 original_url = Regex.run(~r/https:\/\/[^\s]+/, consent_message) |> List.first()

 # Fix the URL if it's using the old redirect URI format
 url =
 if String.contains?(original_url, "redirect_uri=https://account") do
 String.replace(original_url,
 ~r/redirect_uri=https:\/\/account[^&]+/,
 "redirect_uri=https://www.docusign.com")
 else
 original_url
 end

 # Only use Kino.Markdown for cleaner output
 Kino.Markdown.new("""
 ## ⚠️ DocuSign User Consent Required

 Before using the API, you need to grant consent for this application to act on your behalf.

 1. **Click this link**: [Grant Consent](#{url})
 2. Sign in to DocuSign if prompted
 3. Review and click "ALLOW ACCESS"
 4. Return here and run this cell again

 This is a one-time process per user.

 > **Note**: If you're seeing redirect URI errors, ensure your DocuSign application has
 > `https://www.docusign.com` configured as a redirect URI.
 """) |> Kino.render()

 nil # Return nil as conn value to avoid undefined variable

 {:error, reason} ->
 IO.puts("❌ Failed to connect to DocuSign")
 IO.inspect(reason, label: "Error")
 nil # Return nil as conn value to avoid undefined variable
end
Set Up Recipient Information
Let's create a form to input the recipient's information:
Verify that conn is available from previous cell
conn = conn || (
 IO.puts("⚠️ Connection not established. Please run the previous cell to connect to DocuSign.")
 nil
)

recipient_name_input = Input.text("Recipient Name")
recipient_email_input = Input.text("Recipient Email")
client_user_id_input = Input.text("Client User ID", default: "1001",
 placeholder: "Unique identifier for the recipient")

Render each input individually for proper display
Kino.render(recipient_name_input)
Kino.render(recipient_email_input)
Kino.render(client_user_id_input)
Create a Document
Let's create a simple document for signing:
Create a simple HTML document
html_document = """
<!DOCTYPE html>
<html>
<head>
 <title>DocuSign Embedded Signing Example</title>
 <style>
 body { font-family: Arial, sans-serif; margin: 40px; }
 .header { text-align: center; margin-bottom: 30px; }
 .content { margin-bottom: 50px; }
 .signature-section { margin-top: 50px; border-top: 1px solid #ccc; padding-top: 20px; }
 </style>
</head>
<body>
 <div class="header">
 <h1>Embedded Signing Agreement</h1>
 <p>Created with DocuSign Elixir SDK in LiveBook</p>
 </div>

 <div class="content">
 <p>This document demonstrates embedded signing with the DocuSign Elixir SDK.</p>
 <p>By signing this document, the signer acknowledges that:</p>

 They have read and understood the embedded signing process
 They agree to the terms outlined in this document
 This is a demonstration of embedded signing capabilities

 </div>

 <div class="signature-section">
 <p>Signed by: ____________________</p>
 <p>Date: ____________________</p>
 </div>
</body>
</html>
"""

Base64 encode the document
encoded_document = Base.encode64(html_document)
Create an Envelope for Embedded Signing
Now let's create an envelope specifically for embedded signing. For embedded signing, we must:
	Create an envelope with a recipient that has a clientUserId (this identifies the recipient as embedded)
	Set the envelope status to "created" (not "sent")

recipient_name = Kino.Input.read(recipient_name_input)
recipient_email = Kino.Input.read(recipient_email_input)
client_user_id = Kino.Input.read(client_user_id_input)

Use DocuSign SDK models for proper object creation

Create document object
document = %DocuSign.Model.Document{
 documentBase64: encoded_document,
 name: "Embedded Signing Example.html",
 fileExtension: "html",
 documentId: "1"
}

Create the signer with signature and date tabs
sign_here_tab = %DocuSign.Model.SignHere{
 anchorString: "Signed by:", # More specific anchor text
 anchorUnits: "pixels",
 anchorYOffset: "-5", # Slightly negative to position just above the line
 anchorXOffset: "110", # Slightly increased from original 100
 documentId: "1", # Match the document ID
 recipientId: "1" # Match the recipient ID
}

date_signed_tab = %DocuSign.Model.DateSigned{
 anchorString: "Date:", # Matches text in our document
 anchorUnits: "pixels",
 anchorYOffset: "-10", # Keep negative value to position above the line
 anchorXOffset: "80", # Increased from 50 to better center the date
 documentId: "1", # Match the document ID
 recipientId: "1" # Match the recipient ID
}

Create the signer object with signature and date tabs
signer = %DocuSign.Model.Signer{
 email: recipient_email,
 name: recipient_name,
 recipientId: "1",
 routingOrder: "1",
 clientUserId: client_user_id, # This identifies the recipient as embedded
 tabs: %DocuSign.Model.Tabs{
 signHereTabs: [sign_here_tab],
 dateSignedTabs: [date_signed_tab]
 }
}

Create envelope definition with status "sent"
envelope_definition = %DocuSign.Model.EnvelopeDefinition{
 emailSubject: "Please sign this document (Embedded Signing)",
 documents: [document],
 recipients: %DocuSign.Model.Recipients{
 signers: [signer]
 },
 status: "sent" # Important: For embedded signing, use "sent" (not "created")
}

Create the envelope using the standard API - note we use body: instead of envelopeDefinition:
result = DocuSign.Api.Envelopes.envelopes_post_envelopes(conn, account_id, body: envelope_definition)

Create a variable to hold the envelope ID
envelope_id =
 try do
 case result do
 {:ok, response} ->
 id = response.envelopeId
 IO.puts("✅ Envelope created successfully!")
 IO.puts("Envelope ID: #{id}")

 # Return the envelope ID
 id

 {:error, error} ->
 IO.puts("❌ Failed to create envelope")
 IO.inspect(error, label: "Error details:")
 nil
 end
 rescue
 e in KeyError ->
 IO.puts("⚠️ Received error response with unexpected format")
 IO.inspect(e, label: "KeyError details")
 IO.inspect(result, label: "Full response")
 nil
 end
Create the Embedded Signing URL
Now that we have created the envelope, we need to generate a URL that will allow the recipient to sign the document within your application:
Verify that conn is available from previous cells
conn = conn || (
 IO.puts("⚠️ Connection not established. Please run the previous cells to connect to DocuSign.")
 nil
)

Check if envelope_id is available from previous cell
If not defined in previous cell execution, we'll let the user input it

envelope_id_input =
 if envelope_id do
 Input.text("Envelope ID", default: envelope_id)
 else
 Input.text("Envelope ID")
 end

Kino.render(envelope_id_input)
signing_envelope_id = Kino.Input.read(envelope_id_input)

Use client_user_id from previous cell if available
client_user_id_to_use = client_user_id

Create the recipient view request properly using the DocuSign SDK model
recipient_view_request = %DocuSign.Model.RecipientViewRequest{
 authenticationMethod: "none",
 clientUserId: client_user_id_to_use, # Must match the clientUserId used in envelope creation
 recipientId: "1", # Must match the recipientId used in envelope creation
 returnUrl: return_url,
 userName: recipient_name,
 email: recipient_email
}

IO.puts("\nCreating recipient view URL for:")
IO.puts("- Envelope ID: #{signing_envelope_id}")
IO.puts("- Client User ID: #{client_user_id_to_use}")
IO.puts("- Return URL: #{return_url}")

Get the recipient view URL using the standard API
result = DocuSign.Api.EnvelopeViews.views_post_envelope_recipient_view(
 conn,
 account_id,
 signing_envelope_id,
 body: recipient_view_request
)

Create a frame at the beginning to hold the signing URL
signing_frame = Kino.Frame.new() |> Kino.render()

try do
 case result do
 {:ok, view_response} ->
 signing_url = view_response.url
 IO.puts("✅ Embedded signing URL generated successfully!")

 # Render the HTML into the existing frame (replaces content instead of duplicating)
 Kino.Frame.render(signing_frame, Kino.HTML.new("""
 <div style="margin: 20px 0; padding: 15px; border: 1px solid #e0e0e0; border-radius: 5px; background-color: #f9f9f9;">
 <h3 style="margin-top: 0;">Embedded Signing URL Generated</h3>
 <p>Click the button below to open the DocuSign signing experience in a new tab:</p>
 <a href="#{signing_url}" target="_blank" style="display: inline-block; background: #2F80ED; color: white;
 padding: 10px 20px; text-decoration: none; border-radius: 4px; font-weight: bold;">
 Open Signing Experience

 </div>
 """))

 {:error, error} ->
 IO.puts("❌ Failed to generate embedded signing URL")
 IO.inspect(error, label: "Error details:")
 end
rescue
 e in KeyError ->
 IO.puts("⚠️ Received error response with unexpected format")
 IO.inspect(e, label: "KeyError details")
 IO.inspect(result, label: "Full response")
end
Envelope Status and Document Retrieval
After the recipient completes the signing process, the system will automatically check the envelope status and retrieve the completed document if available.
Create status frame to display envelope status
status_frame = Kino.Frame.new() |> Kino.render()

Create document frame to display retrieved document
document_frame = Kino.Frame.new() |> Kino.render()

Verify that conn is available from previous cells
conn = conn || (
 IO.puts("⚠️ Connection not established. Please run the previous cells to connect to DocuSign.")
 nil
)

Function to check status and update UI
check_envelope_status = fn ->
 # Get envelope status using DocuSign client library
 case DocuSign.Api.Envelopes.envelopes_get_envelope(conn, account_id, signing_envelope_id) do
 {:ok, envelope} ->
 status = envelope.status

 status_description = case status do
 "created" -> "The envelope has been created, but not yet signed."
 "sent" -> "The envelope has been sent to the recipient, but not yet signed."
 "delivered" -> "The envelope has been delivered to the recipient, but not yet signed."
 "completed" -> "The envelope has been signed by all recipients."
 "declined" -> "The envelope has been declined by at least one recipient."
 "voided" -> "The envelope has been voided."
 _ -> "The envelope is in an unknown state."
 end

 # Update status frame with current status
 Kino.Frame.render(status_frame, Kino.Markdown.new("""
 ### Current Envelope Status: #{status}

 #{status_description}
 """))

 # Get recipient information
 case DocuSign.Api.EnvelopeRecipients.recipients_get_recipients(conn, account_id, signing_envelope_id) do
 {:ok, recipients} ->
 if recipients.signers && length(recipients.signers) > 0 do
 # Create a table of recipient info
 table = recipients.signers
 |> Enum.map(fn signer ->
 %{
 name: signer.name,
 email: signer.email,
 status: signer.status,
 delivered: signer.deliveredDateTime || "N/A",
 signed: signer.signedDateTime || "N/A"
 }
 end)
 |> Kino.DataTable.new()

 # Add the table to the status frame
 Kino.Frame.append(status_frame, table)
 end

 {:error, _} ->
 Kino.Frame.append(status_frame, Kino.Text.new("Could not retrieve recipient information"))
 end

 # If envelope is completed, automatically retrieve the document
 if status == "completed" do
 document_url = "/v2.1/accounts/#{account_id}/envelopes/#{signing_envelope_id}/documents/1"

 case DocuSign.Connection.download_file(conn, document_url, strategy: :memory) do
 {:ok, {document_content, filename, content_type}} ->
 cond do
 String.contains?(content_type, "pdf") ->
 pdf_base64 = Base.encode64(document_content)
 Kino.Frame.render(document_frame, Kino.HTML.new("""
 <div>
 <h3>✅ PDF Document Downloaded</h3>
 <p>Filename: #{filename} | Size: #{byte_size(document_content)} bytes</p>
 <a href="data:application/pdf;base64,#{pdf_base64}" download="#{filename}"
 style="display:inline-block; background:#4CAF50; color:white; padding:12px 20px;
 text-decoration:none; border-radius:4px; margin-top:10px; font-weight:bold;">
 📄 Download Signed PDF

 </div>
 """))

 String.contains?(content_type, "html") ->
 Kino.Frame.render(document_frame, Kino.HTML.new("""
 <div>
 <h3>✅ Document Downloaded</h3>
 <iframe srcdoc="#{String.replace(document_content, "\"", """)}"
 style="width: 100%; height: 400px; border: 1px solid #ccc; margin-top: 10px;">
 </iframe>
 </div>
 """))

 true ->
 Kino.Frame.render(document_frame, Kino.Text.new("✅ Document downloaded: #{filename} (#{content_type})"))
 end

 {:error, error} ->
 Kino.Frame.render(document_frame, Kino.Text.new("❌ Failed to download document: #{inspect(error)}"))
 end
 end

 # Return the status for potential further processing
 {:ok, status}

 {:error, error} ->
 Kino.Frame.render(status_frame, Kino.Text.new("❌ Failed to retrieve envelope status: #{inspect(error)}"))
 {:error, error}
 end
end

Check status immediately on cell execution
check_envelope_status.()

Create a manual refresh button (more compatible with Kino 0.10.0)
refresh_button = Kino.Control.button("Refresh Status")
Kino.render(refresh_button)
Kino.listen(refresh_button, fn _ -> check_envelope_status.() end)
Conclusion
This LiveBook demonstrates how to create a complete embedded signing experience with the DocuSign Elixir SDK.
You've learned how to:
	Create an envelope with a recipient specifically marked for embedded signing	Use status="sent" with a clientUserId to enable embedded signing

	Generate an embedded signing URL
	Automatically monitor the envelope status and download the completed document using the new FileDownloader (v2.2.1+)

In a real application, you would typically:
	Create the envelope with a recipient marked for embedded signing (status="sent" and include clientUserId)
	Generate the embedded signing URL
	Redirect the user to the URL or embed it in an iframe
	Handle the redirect back to your application after signing
	Check the status of the envelope and retrieve the completed documents

For more information, check out the DocuSign Elixir GitHub repository and the official DocuSign API documentation.

 Untitled notebook

DocuSign OAuth2 Authorization Code Flow with Elixir
Introduction
[image: Run in Livebook]
This LiveBook demonstrates how to implement the OAuth2 Authorization Code Flow with the DocuSign Elixir SDK using the battle-tested oauth2 library. This flow is ideal for web applications where users need to grant permission for your application to access their DocuSign account.
The Authorization Code Flow is more secure than JWT impersonation for user-facing applications because:
	Users grant permission explicitly through DocuSign's consent screen
	No need for admin pre-approval (like JWT impersonation requires)
	Tokens can be refreshed without user interaction
	Standard OAuth2 compliance
	Uses proven OAuth2 library patterns

IO.puts("Installing dependencies...")

Mix.install([
 {:docusign, "~> 3.0"},
 {:kino, "~> 0.16.0"},
 {:bandit, "~> 1.7"}
])

IO.puts("✅ Dependencies installed successfully!")
OAuth Callback Server
Let's start a simple web server to handle the OAuth callback:
Create a shared state store for OAuth data
defmodule OAuthState do
 use Agent

 def start_link(_) do
 Agent.start_link(fn -> %{} end, name: __MODULE__)
 end

 def put(key, value) do
 Agent.update(__MODULE__, &Map.put(&1, key, value))
 end

 def get(key) do
 Agent.get(__MODULE__, &Map.get(&1, key))
 end
end

Start the state store
{:ok, _} = OAuthState.start_link([])

defmodule OAuthCallbackServer do
 use Plug.Router

 plug(:match)
 plug(:dispatch)

 get "/auth/docusign/callback" do
 # Parse query parameters manually from query_string
 query_params = if conn.query_string && conn.query_string != "" do
 URI.decode_query(conn.query_string)
 else
 %{}
 end

 code = query_params["code"]
 state = query_params["state"]

 # Store the code in our shared state
 OAuthState.put(:code, code)
 OAuthState.put(:state, state)
 OAuthState.put(:received_at, DateTime.utc_now())

 send_resp(conn, 200, """
 <html>
 <head><title>DocuSign OAuth Callback</title></head>
 <body style="font-family: system-ui; text-align: center; padding: 50px;">
 <h1>✅ Authorization Successful!</h1>
 <p>You can now close this window and return to LiveBook.</p>
 <p>Authorization Code: #{String.slice(code || "none", 0, 20)}...</p>
 <p>The code has been automatically captured for use in LiveBook.</p>
 <script>
 setTimeout(() => window.close(), 3000);
 </script>
 </body>
 </html>
 """)
 end

 match _ do
 send_resp(conn, 404, "Not found")
 end
end

Start the server
{:ok, _} = Bandit.start_link(plug: OAuthCallbackServer, port: 4000)

IO.puts("🚀 OAuth callback server started on http://localhost:4000")
OAuth2 Authorization Code Flow Overview
The OAuth2 Authorization Code Flow consists of these steps:
	Generate Authorization URL - Redirect user to DocuSign for consent
	User Grants Permission - User signs in and authorizes your app
	Receive Authorization Code - DocuSign redirects back with a code
	Exchange Code for Tokens - Trade the code for access/refresh tokens
	Use Tokens for API Calls - Make authenticated requests to DocuSign
	Refresh Tokens - Get new access tokens when they expire

Configuration
First, let's set up our DocuSign OAuth2 configuration:
alias Kino.Input

Set up input forms for OAuth configuration
client_id_input = Input.text("Integration Key",
 label: "Found in the DocuSign admin under Apps & Keys")
client_secret_input = Input.password("Client Secret",
 label: "Found in the DocuSign admin under Apps & Keys")
redirect_uri_input = Input.text("Redirect URI",
 label: "Must match what's configured in DocuSign admin",
 default: "http://localhost:4000/auth/docusign/callback")
is_sandbox_input = Input.checkbox("Use Sandbox", default: true)

Display input forms individually for proper rendering
Kino.render(client_id_input)
Kino.render(client_secret_input)
Kino.render(redirect_uri_input)
Kino.render(is_sandbox_input)
Now let's configure the DocuSign OAuth client:
Get values from inputs
client_id = Kino.Input.read(client_id_input)
client_secret = Kino.Input.read(client_secret_input)
redirect_uri = Kino.Input.read(redirect_uri_input)
is_sandbox = Kino.Input.read(is_sandbox_input)

Configure DocuSign application
Application.put_env(:docusign, :client_id, client_id)
Application.put_env(:docusign, :client_secret, client_secret)

Debug: Check configuration
IO.puts("OAuth Configuration set:")
IO.puts("Integration Key: #{client_id}")
IO.puts("Client Secret: #{String.slice(client_secret, 0, 10)}...")
IO.puts("Redirect URI: #{redirect_uri}")
IO.puts("Is sandbox: #{is_sandbox}")
IO.puts("Hostname: will be auto-detected from account base URI")
Step 1: Generate Authorization URL
The first step is to create an OAuth2 client and generate an authorization URL where users can grant permission to your application:
Create OAuth2 client
oauth_client = DocuSign.OAuth.AuthorizationCodeStrategy.client(
 redirect_uri: redirect_uri,
 scope: "signature"
)

Generate the authorization URL with CSRF protection
state = "demo-state-#{:crypto.strong_rand_bytes(8) |> Base.encode16()}"
authorization_url = OAuth2.Client.authorize_url!(
 oauth_client,
 state: state
)

Display the authorization URL with a clickable link
Kino.HTML.new("""
<div style="margin: 20px 0; padding: 20px; border: 2px solid #007bff; border-radius: 8px; background-color: #f8f9fa;">
 <h3>Step 1: User Authorization</h3>
 <p>Click this link to authorize the application in DocuSign:</p>
 <a href="#{authorization_url}" target="_blank"
 style="display: inline-block; background: #007bff; color: white; padding: 12px 24px;
 text-decoration: none; border-radius: 4px; font-weight: bold; margin: 10px 0;">
 🔐 Authorize DocuSign Access

 <details>
 <summary>🔗 Full Authorization URL (click to expand)</summary>
 <div style="background: #f1f3f4; padding: 10px; margin-top: 10px; border-radius: 4px; word-break: break-all; font-family: monospace; font-size: 12px;">
 #{authorization_url}
 </div>
 </details>

 <div style="background: #fff3cd; border: 1px solid #ffeaa7; padding: 15px; border-radius: 4px;">
 📝 What happens next:

 Click the authorization link above
 Sign in to your DocuSign account
 Review the permissions and click "ALLOW ACCESS"
 You'll be redirected to your redirect URI with a <code>code</code> parameter
 Copy the <code>code</code> value and paste it in the next section

 </div>
</div>
""")
Step 2: Authorization Code Input
After clicking the authorization link and granting permission, DocuSign will redirect you back to the callback server. The authorization code will be automatically captured:
Check if we have a code from the callback
callback_code = OAuthState.get(:code)
callback_state = OAuthState.get(:state)
received_at = OAuthState.get(:received_at)

if callback_code do
 Kino.Markdown.new("""
 ## ✅ Authorization Code Received!

 Code: `#{String.slice(callback_code, 0, 30)}...`
 State: `#{callback_state}`
 Received: `#{received_at}`

 The authorization code has been automatically captured from the OAuth callback.
 """)
else
 Kino.Markdown.new("""
 ## ⏳ Waiting for Authorization...

 Please click the authorization link above and complete the OAuth flow.
 The authorization code will appear here automatically once you authorize.
 """)
end
Step 3: Exchange Authorization Code for Tokens
Now let's exchange the authorization code for access and refresh tokens:
Get the authorization code from the shared state
auth_code = OAuthState.get(:code)

Create a frame to display the token exchange results
token_frame = Kino.Frame.new() |> Kino.render()

if auth_code do
 Kino.Frame.render(token_frame, Kino.Markdown.new("🔄 Exchanging authorization code for tokens..."))

 # Exchange the authorization code for tokens using OAuth2 library
 try do
 oauth_client_with_tokens = OAuth2.Client.get_token!(
 oauth_client,
 code: auth_code
)

 # Store OAuth2 client for later use (in a real app, you'd store these securely)
 Process.put(:oauth_client, oauth_client_with_tokens)

 # Extract token information for display
 token = oauth_client_with_tokens.token
 expires_in = if token.expires_at do
 token.expires_at - System.system_time(:second)
 else
 "Unknown"
 end

 Kino.Frame.render(token_frame, Kino.Markdown.new("""
 ## ✅ Token Exchange Successful!

 Your authorization code has been successfully exchanged for OAuth tokens:

 - **Access Token**: `#{String.slice(token.access_token, 0, 30)}...`
 - **Refresh Token**: `#{if token.refresh_token, do: String.slice(token.refresh_token, 0, 30) <> "...", else: "Not provided"}`
 - **Token Type**: `#{token.token_type}`
 - **Expires In**: `#{expires_in}` seconds

 🎉 You can now use this OAuth2 client to make authenticated API calls to DocuSign!
 """))

 rescue
 error ->
 Kino.Frame.render(token_frame, Kino.Markdown.new("""
 ## ❌ Token Exchange Failed

 Error: `#{inspect(error)}`

 Common causes:
 - Authorization code has expired (they're only valid for a few minutes)
 - Authorization code has already been used
 - Redirect URI doesn't match what was used in the authorization step
 - Invalid client credentials

 Solution: Go back to Step 1 and generate a new authorization URL.
 """))
 end
else
 Kino.Frame.render(token_frame, Kino.Markdown.new("""
 ⏳ **Waiting for authorization code...**

 Please complete the authorization flow above and paste the authorization code here.
 """))
end
Step 4: Get User Information
Let's use our OAuth tokens to get information about the authenticated user and their DocuSign accounts:
Create frame for user info
user_info_frame = Kino.Frame.new() |> Kino.render()

Check if we have OAuth2 client from the previous step
oauth_client = Process.get(:oauth_client)

if oauth_client do
 Kino.Frame.render(user_info_frame, Kino.Markdown.new("🔄 Fetching user information..."))

 # Get user info using the OAuth2 strategy
 try do
 user_info = DocuSign.OAuth.AuthorizationCodeStrategy.get_user_info!(oauth_client)

 # Display user information
 accounts_info = if user_info["accounts"] do
 user_info["accounts"]
 |> Enum.with_index(1)
 |> Enum.map(fn {account, index} ->
 is_default = Map.get(account, "is_default", "false")
 default_marker = if is_default == "true", do: " (Default)", else: ""

 """
 Account #{index}#{default_marker}:
 - Account ID: `#{account["account_id"]}`
 - Account Name: `#{account["account_name"]}`
 - Base URI: `#{account["base_uri"]}`
 """
 end)
 |> Enum.join("\n")
 else
 "No account information available"
 end

 Kino.Frame.render(user_info_frame, Kino.Markdown.new("""
 ## 👤 User Information Retrieved

 User Details:
 - **Name**: #{user_info["name"]}
 - **Email**: #{user_info["email"]}
 - **User ID**: `#{user_info["sub"]}`
 - **Created**: #{user_info["created"]}

 DocuSign Accounts:
 #{accounts_info}

 🎯 **Next**: We'll use the default account to create a DocuSign connection for API calls.
 """))

 # Store user info for next step
 Process.put(:user_info, user_info)

 rescue
 error ->
 Kino.Frame.render(user_info_frame, Kino.Markdown.new("""
 ## ❌ Failed to Get User Information

 Error: #{inspect(error)}

 This might indicate that your access token is invalid or expired.
 Please try refreshing the token or re-authorizing.
 """))
 end
else
 Kino.Frame.render(user_info_frame, Kino.Markdown.new("""
 ⏳ **Waiting for OAuth tokens...**

 Please complete the token exchange step above first.
 """))
end
Step 5: Create DocuSign Connection
Now let's create a DocuSign connection using our OAuth tokens that we can use for API calls:
Create frame for connection setup
connection_frame = Kino.Frame.new() |> Kino.render()

oauth_client = Process.get(:oauth_client)
user_info = Process.get(:user_info)

if oauth_client && user_info do
 Kino.Frame.render(connection_frame, Kino.Markdown.new("🔄 Creating DocuSign connection..."))

 # Find the default account or use the first one
 default_account = user_info["accounts"]
 |> Enum.find(fn account -> Map.get(account, "is_default") == "true" end)

 default_account = default_account || List.first(user_info["accounts"])

 if default_account do
 account_id = default_account["account_id"]
 base_uri = "#{default_account["base_uri"]}/restapi"

 # Create DocuSign connection from OAuth2 client with auto-detection
 case DocuSign.Connection.from_oauth_client_with_detection(
 oauth_client,
 account_id: account_id,
 base_uri: base_uri,
 auto_detect_hostname: true # Automatically set hostname based on base_uri
) do
 {:ok, conn} ->
 # Store connection for API usage
 Process.put(:docusign_connection, conn)

 Kino.Frame.render(connection_frame, Kino.Markdown.new("""
 ## ✅ DocuSign Connection Created!

 Successfully created a DocuSign connection using OAuth2.Client:

 - **Account ID**: `#{account_id}`
 - **Account Name**: `#{default_account["account_name"]}`
 - **API Base URI**: `#{base_uri}`
 - **Connection Type**: OAuth2 Authorization Code Flow (using oauth2 library)

 🚀 **Ready for API calls!** You can now use this connection with any DocuSign API function.
 """))

 {:error, reason} ->
 Kino.Frame.render(connection_frame, Kino.Markdown.new("""
 ## ❌ Failed to Create Connection

 Error: #{inspect(reason)}

 This is unexpected - please check your token and account information.
 """))
 end
 else
 Kino.Frame.render(connection_frame, Kino.Markdown.new("""
 ## ❌ No DocuSign Accounts Found

 The user information doesn't contain any DocuSign accounts. This might indicate:
 - The user doesn't have access to any DocuSign accounts
 - There's an issue with the OAuth scope or permissions

 Please check your DocuSign account access.
 """))
 end
else
 Kino.Frame.render(connection_frame, Kino.Markdown.new("""
 ⏳ **Waiting for tokens and user info...**

 Please complete the previous steps first.
 """))
end
Step 6: Test API Call - Get Account Information
Let's test our OAuth connection by making an API call to get account information:
Create frame for API test
api_test_frame = Kino.Frame.new() |> Kino.render()

conn = Process.get(:docusign_connection)
user_info = Process.get(:user_info)

if conn && user_info do
 default_account = user_info["accounts"]
 |> Enum.find(fn account -> Map.get(account, "is_default") == "true" end)
 default_account = default_account || List.first(user_info["accounts"])

 account_id = default_account["account_id"]

 Kino.Frame.render(api_test_frame, Kino.Markdown.new("🔄 Testing API call..."))

 # Make an API call to get account information
 case DocuSign.Api.Accounts.accounts_get_account(conn, account_id) do
 {:ok, account_info} ->
 Kino.Frame.render(api_test_frame, Kino.Markdown.new("""
 ## ✅ API Call Successful!

 Successfully retrieved account information using OAuth connection:

 Account Details:
 - **Account Name**: #{account_info.accountName}
 - **Account ID**: `#{account_info.accountIdGuid}`
 - **Plan Name**: #{account_info.planName}
 - **External Account ID**: #{account_info.externalAccountId}
 - **Created Date**: #{account_info.createdDate}
 - **Suspension Status**: #{account_info.suspensionStatus}

 Billing Information:
 - **Billing Period**: #{account_info.billingPeriodStartDate} to #{account_info.billingPeriodEndDate}
 - **Payment Method**: #{account_info.paymentMethod}
 - **Envelope Unit Price**: #{account_info.envelopeUnitPrice}

 🎉 **OAuth Authorization Code Flow Complete!**

 Your application is now successfully authenticated with DocuSign using OAuth2 tokens and can make API calls on behalf of the user.
 """))

 {:error, %Req.Response{status: status, body: body}} ->
 Kino.Frame.render(api_test_frame, Kino.Markdown.new("""
 ## ❌ API Call Failed

 Status: #{status}
 Response: #{inspect(body)}

 This might indicate:
 - Access token has expired
 - Insufficient permissions
 - Account access issues
 """))

 {:error, reason} ->
 Kino.Frame.render(api_test_frame, Kino.Markdown.new("""
 ## ❌ API Call Error

 Error: #{inspect(reason)}

 There was an unexpected error making the API call.
 """))
 end
else
 Kino.Frame.render(api_test_frame, Kino.Markdown.new("""
 ⏳ **Waiting for DocuSign connection...**

 Please complete the connection setup step above first.
 """))
end
Step 7: Token Refresh (Optional)
OAuth access tokens expire (typically after 8 hours). Here's how you can refresh them using the refresh token:
Create frame for token refresh demo
refresh_frame = Kino.Frame.new() |> Kino.render()

oauth_client = Process.get(:oauth_client)

if oauth_client && oauth_client.token && oauth_client.token.refresh_token do
 refresh_button = Kino.Control.button("🔄 Refresh Access Token")
 Kino.render(refresh_button)

 Kino.listen(refresh_button, fn _ ->
 Kino.Frame.render(refresh_frame, Kino.Markdown.new("🔄 Refreshing access token..."))

 try do
 refreshed_client = OAuth2.Client.refresh_token!(oauth_client)

 # Store new OAuth2 client
 Process.put(:oauth_client, refreshed_client)

 new_token = refreshed_client.token
 expires_in = if new_token.expires_at do
 new_token.expires_at - System.system_time(:second)
 else
 "Unknown"
 end

 Kino.Frame.render(refresh_frame, Kino.Markdown.new("""
 ## ✅ Token Refresh Successful!

 Your access token has been refreshed:

 - **New Access Token**: `#{String.slice(new_token.access_token, 0, 30)}...`
 - **New Refresh Token**: `#{if new_token.refresh_token, do: String.slice(new_token.refresh_token, 0, 30) <> "...", else: "Same as before"}`
 - **Expires In**: `#{expires_in}` seconds

 💡 **Note**: Some OAuth providers rotate refresh tokens, meaning you get a new refresh token each time you refresh. Always use the latest tokens.
 """))

 rescue
 error ->
 Kino.Frame.render(refresh_frame, Kino.Markdown.new("""
 ## ❌ Token Refresh Failed

 Error: `#{inspect(error)}`

 Common causes:
 - Refresh token has expired
 - Refresh token has been revoked
 - Invalid client credentials

 Solution: The user will need to re-authorize through the full OAuth flow.
 """))
 end
 end)

 Kino.Frame.render(refresh_frame, Kino.Markdown.new("""
 ## 🔄 Token Refresh

 Click the button above to refresh your access token using the refresh token.

 When to refresh:
 - Before the access token expires (typically 8 hours)
 - When you receive 401 Unauthorized responses
 - As part of a scheduled token refresh process

 In production applications:
 - Implement automatic token refresh before expiration
 - Store tokens securely (encrypted in database)
 - Handle refresh token rotation properly
 - Implement fallback to re-authorization flow if refresh fails
 """))
else
 Kino.Frame.render(refresh_frame, Kino.Markdown.new("""
 ## ℹ️ Token Refresh Not Available

 #{if oauth_client && oauth_client.token do
 if oauth_client.token.refresh_token do
 "No refresh token available. Some OAuth flows don't provide refresh tokens."
 else
 "No refresh token available from the token exchange."
 end
 else
 "Please complete the OAuth flow first to get tokens."
 end}
 """))
end
Production Implementation Notes
This LiveBook demonstrates the OAuth2 Authorization Code Flow for DocuSign in an interactive way. When implementing this in a production web application, consider these important points:
Security Best Practices
	HTTPS Only: Always use HTTPS for redirect URIs in production
	State Parameter: Always validate the state parameter to prevent CSRF attacks
	Secure Token Storage: Store tokens encrypted in a secure database
	Token Scoping: Only request the minimum required OAuth scopes

Implementation Patterns
For production Phoenix applications, refer to the comprehensive examples in the DocuSign Elixir README which includes complete Phoenix controller implementation, token management patterns, and security best practices.
Conclusion
🎉 Congratulations! You've successfully implemented the OAuth2 Authorization Code Flow with DocuSign:
	✅ Generated authorization URL for user consent
	✅ Exchanged authorization code for access/refresh tokens
	✅ Retrieved user information using OAuth tokens
	✅ Created DocuSign connection from OAuth tokens
	✅ Made authenticated API calls to DocuSign
	✅ Demonstrated token refresh functionality

Key Benefits of OAuth2 Authorization Code Flow:
	User Control: Users explicitly grant permission through DocuSign's interface
	No Admin Pre-approval: Unlike JWT impersonation, no admin setup required
	Standard Compliance: Uses industry-standard OAuth2 flow
	Token Refresh: Long-term access through refresh tokens
	Secure: Follows OAuth2 security best practices

Next Steps:
	Implement this flow in your web application
	Set up secure token storage and management
	Handle token refresh and expiration gracefully
	Add error handling and user feedback
	Consider implementing webhook notifications for document status updates

For more information, check out the DocuSign Elixir GitHub repository and the official DocuSign API documentation.

 Migration Guide

Migrating to v2.0 from v1.x
Version 2.0.0 removes previously deprecated functionality. If you're still using any of these functions or configuration options, you'll need to update your code:
	Removed DocuSign.Connection.new/0 - use DocuSign.Connection.get/1 and provide a user ID
	Removed DocuSign.Connection.default_account/0 - the app_account is included in the connection returned by DocuSign.Connection.get/1
	Removed :private_key configuration option - use :private_key_file or :private_key_contents instead
	Removed the entire DocuSign.APIClient module - use corresponding functions in DocuSign.ClientRegistry instead
	Removed DocuSign.User.info/0 - use DocuSign.User.info/1 and provide a client parameter

Migrating to v0.4.0 from v0.3.x
Version 0.4.0 brings the ability to call DocuSign API with different user IDs. This is useful if your users have different security restrictions in DocuSign. The ClientRegistry takes care of tracking the API client for those users and refreshing the access tokens.
	Connection.new/0 has been deprecated. You should replace calls to Connection.new/0 with Connection.get/1 and provide a user ID.
	APIClient functions have been deprecated. Please use corresponding functions in ClientRegistry.

Migrating to v1.0 from an earlier version
This version contains some breaking changes. You may need to modify your code.
	DocuSign.Model.EnvelopeTemplateResult has been renamed to DocuSign.Model.EnvelopeTemplate
	DocuSign.Model.Number has been renamed to DocuSign.Model.DocuSignNumber
	Use body as an optional argument to some functions, e.g. use body instead of EnvelopeRecipientTabs when calling DocuSign.Api.EnvelopeRecipientTabs.recipients_put_recipient_tabs())

 Changelog

v3.1.0 (2025-09-01)
Improvements
	Connection Pooling: Add optimized connection pooling for high-throughput applications
	Configurable pool size and count for concurrent request handling
	Connection reuse to reduce HTTPS handshake overhead
	Automatic cleanup of idle connections with configurable timeout
	Health monitoring through DocuSign.ConnectionPool.health()
	Seamless integration with existing Connection module
	Custom Finch supervisor when pooling is enabled
	Full SSL/TLS support with pooled connections

	Retry Logic: Add configurable retry logic with exponential backoff
	Automatic retry on transient failures (5xx errors, network issues)
	Rate limit handling with Retry-After header support
	Configurable max retries, backoff factor, and max delay
	Exponential backoff with jitter to prevent thundering herd
	Can be disabled by setting retry_options: [enabled: false]

	Telemetry Integration: Add comprehensive telemetry events for monitoring and observability
	DocuSign-specific events for API operations (start, stop, exception)
	Rate limit tracking with dedicated telemetry events
	Integration with Finch telemetry for low-level HTTP metrics
	Support for Telemetry.Metrics and production monitoring tools
	Automatic operation name extraction from API paths
	Detailed metadata including account ID, operation, status codes

	SDK Version Management: Add proper SDK identification and version reporting
	User-Agent header includes SDK version, API version, and runtime info
	Format: docusign-elixir/3.0.0 (Elixir/1.18.4; OTP/28; API/v2.1)
	SDK metadata included in all telemetry events
	Support for custom User-Agent suffix for app identification
	Matches Ruby SDK pattern for version reporting

Bug Fixes
	Test Stability: Fix flaky async tests caused by Mock library	Replace Mock-based tests with Bypass integration tests
	Fix OAuth test log assertions to handle concurrent test execution
	All tests now pass consistently with async: true

Internal Changes
	Documentation: Add CLAUDE.md with critical CI requirements
	Regeneration Script: Update to handle correct OpenAPI Generator output paths
	Removed Files: Remove unused RecipientViewUrl model (API uses EnvelopeViews instead)
	Dependencies: Update ex_doc from 0.38.2 to 0.38.3

v3.0.0 (2025-09-01)
Breaking Changes
	HTTP Client Migration: Replace Tesla with Req HTTP client	Error responses now return {:error, Req.Response} instead of {:error, Tesla.Env}
	Connection module internally uses Req instead of Tesla
	Removed Tesla middleware system in favor of Req's request/response steps
	Debug module's middleware functions are deprecated (use sdk_headers() directly)
	Any code directly accessing error response structures will need updates

Major Improvements
	Removed Internal Workarounds:
	Eliminated ModelCleaner hack - Req properly handles nil values in request bodies
	No more INVALID_REQUEST_BODY errors from nil values
	Cleaner codebase without internal workarounds

	OpenAPI Generator Integration: Implement custom Mustache templates for OpenAPI Generator
	Custom templates for api, model, request_builder, and deserializer modules
	Correct type specifications that pass Dialyzer without warnings
	Jason encoder/decoder integration replacing Poison
	Generated code now requires minimal post-processing

	API Updates: Regenerate entire API from latest DocuSign OpenAPI specification (August 22, 2025)
	Uses the most recent spec available from DocuSign's official repository
	Added new models: ConnectedData, ConnectedObjectDetails, ConnectionInstance, ExtensionData
	Added new template view models: TemplateViewRecipientSettings, TemplateViewSettings
	Added recipient preview for template editing
	Updated all existing API endpoints to latest specifications

Improvements
	File Download: Add DocuSign.FileDownloader module for robust file downloads
	Support for documents, attachments, and any downloadable resources
	Multiple download strategies: memory, temp file, or specific path
	Automatic filename extraction from Content-Disposition headers
	Configurable temp file options with automatic cleanup
	Content-Type validation and size limits
	Convenient Connection.download_file/3 helper function

	Configuration: Add auto-detection of OAuth hostname based on base URI
	determine_hostname/1 function automatically detects sandbox vs production
	detect_environment/1 function identifies environment from base URI
	from_oauth_client_with_detection/2 for automatic hostname configuration
	Eliminates manual hostname configuration in most cases

	Error Handling: Add structured error support (opt-in)
	Set config :docusign, :structured_errors, true to enable
	Provides DocuSign.Error struct with detailed error information
	Backward compatible - defaults to tuple errors

Bug Fixes
	Fixed OAuth2 client integration to work with Req
	Fixed SSLOptions module to properly configure Finch transport options
	Fixed retry logic initialization when retries are disabled
	Fixed User module warning about is_binary guard
	Updated all API calls to handle Req.Response instead of Tesla.Env

Internal Changes
	Migrated from Tesla to Req for HTTP client
	Replaced Poison with Jason for JSON handling
	Updated all dependencies to latest versions
	Added comprehensive test coverage for new features
	Improved documentation with more examples

v2.0.0 (2021-11-11)
Breaking Changes
	The private_key parameter for JWT impersonation has been renamed to private_key_file.
The value is expected to be a file path now.
	Introduced a new private_key_contents parameter for JWT impersonation which expects a
string with the contents of the private key.

Improvements
	Allow a private_key_contents parameter for JWT impersonation, useful for applications
where the private key is stored in environment variables.
	Introduce ClientRegistry which allows using multiple DocuSign accounts in the same application.
	Increased the timeout for Accounts.refresh_access_token to account for real-world latencies
	Allow passing in :ssl_options per-request to configure SSL with custom CA certificates
	Add example error in docstrings for endpoints that use composite templates
	Added types, docs, specs, and fixed unused variable warnings

Bug Fixes
	Fixed an issue with newer OAuth library versions where JWT grant parameters
were incorrectly encoded, causing authentication failures
	Fixed missing alias for CompositeTemplate in Envelopes module
	Fixed broken refresh token flow that was using wrong token type
	Clarified error messages when OAuth configurations are missing or conflicting

Internal Changes
	Added dialyzer and resolved all warnings
	Upgraded dependencies to latest versions
	Fixed test async mode for more reliable test runs
	General code cleanup and maintenance

v1.2.0 (2021-03-25)
Added
	"JWT Flow for API impersonation added
	Enhanced Test Coverage

v1.1.0 (2019-09-17)
Improvements
	Ability to pass options to Tesla per request was added

v1.0.1 (2019-09-06)
Improvements
	Add support for resending an envelope

v1.0.0 (2019-07-23)
	Initial public release

DocuSign

Documentation for DocuSign Elixir SDK.

DocuSign.Debug

Debugging and logging configuration for the DocuSign Elixir client.
This module provides functionality to configure debug logging for HTTP requests and responses,
similar to the Ruby DocuSign client's debugging capabilities.
Configuration
Enable debugging by setting the :debug option in your application config:
config :docusign, debug: true
You can also configure logging at runtime:
DocuSign.Debug.enable_debugging()
DocuSign.Debug.disable_debugging()
Debug Logging
When debugging is enabled, the client will log:
	HTTP request method, URL, and headers
	HTTP request body (with sensitive data filtered)
	HTTP response status, headers, and body
	Request/response timing information

Header Filtering
Sensitive headers like authorization tokens are automatically filtered in debug logs:
config :docusign, :debug_filter_headers, ["authorization", "x-api-key"]
Examples
Enable debugging for development
config :docusign, debug: true

Configure debug settings
config :docusign,
 debug: true,
 debug_filter_headers: ["authorization", "x-custom-secret"]

Or enable at runtime
DocuSign.Debug.enable_debugging()

 Summary

 Functions

 all_middleware()

 deprecated

 Get all middleware for DocuSign connections including debugging and SDK headers.

 debugging_enabled?()

 Check if debugging is currently enabled.

 disable_debugging()

 Disable debugging for DocuSign HTTP requests.

 enable_debugging()

 Enable debugging for DocuSign HTTP requests.

 filter_headers()

 Get the list of headers to filter in debug logs.

 middleware()

 deprecated

 Build middleware for debugging based on current configuration.

 sdk_headers()

 Get SDK headers for identifying the Elixir client.

 Functions

 all_middleware()

 This function is deprecated. Use sdk_headers() directly with Req configuration.

 @spec all_middleware() :: list()

Get all middleware for DocuSign connections including debugging and SDK headers.
Note: This function is now deprecated as Req handles middleware differently.
Use sdk_headers() directly if needed.

 debugging_enabled?()

 @spec debugging_enabled?() :: boolean()

Check if debugging is currently enabled.

 disable_debugging()

 @spec disable_debugging() :: :ok

Disable debugging for DocuSign HTTP requests.

 enable_debugging()

 @spec enable_debugging() :: :ok

Enable debugging for DocuSign HTTP requests.
This will enable debug logging for all DocuSign connections.

 filter_headers()

 @spec filter_headers() :: [String.t()]

Get the list of headers to filter in debug logs.
Returns the configured filter headers or defaults to ["authorization"].

 middleware()

 This function is deprecated. Use sdk_headers() directly with Req configuration.

 @spec middleware() :: list()

Build middleware for debugging based on current configuration.
Note: This function is now deprecated as Req handles middleware differently.

 sdk_headers()

 @spec sdk_headers() :: [{String.t(), String.t()}]

Get SDK headers for identifying the Elixir client.
This adds the X-DocuSign-SDK header to identify the Elixir client,
matching the Ruby client's behavior.

DocuSign.Deserializer

Helper functions for deserializing responses into models

 Summary

 Functions

 deserialize(model, field, atom, decoder)

 Update the provided model with a deserialization of a nested value.

 Functions

 deserialize(model, field, atom, decoder)

 @spec deserialize(struct(), atom(), atom(), (any() -> any())) :: struct()

Update the provided model with a deserialization of a nested value.
Parameters
	model (struct) - The model to be updated
	field (atom) - The field to be updated
	field_type (atom) - The type of the field to be updated
	decoder (function) - A function that can decode the value

Returns
Struct

DocuSign.FileDownloader

File download utilities for DocuSign documents and attachments.
This module provides functionality for downloading files from DocuSign APIs
with automatic filename extraction from Content-Disposition headers,
flexible file handling options, and support for multiple file formats.
Features
	Automatic filename extraction from Content-Disposition headers
	Configurable temporary file management
	Multiple download strategies (to file, to memory, streaming)
	Support for various file formats (PDF, HTML, images, etc.)
	Filename sanitization and collision handling
	Content-Type detection and validation

Usage
Download to a temporary file
{:ok, path} = DocuSign.FileDownloader.download_to_temp(conn, url)

Download to a specific path
{:ok, path} = DocuSign.FileDownloader.download_to_file(conn, url, "/path/to/file.pdf")

Download to memory
{:ok, {content, filename, content_type}} = DocuSign.FileDownloader.download_to_memory(conn, url)

Download with options
{:ok, result} = DocuSign.FileDownloader.download(conn, url,
 strategy: :file,
 filename: "custom_name.pdf",
 temp_dir: "/custom/temp"
)
Configuration
You can configure the file downloader options:
config :docusign, :file_downloader,
 max_filename_length: 255,
 sanitize_filenames: true,
 allowed_content_types: ~w(application/pdf text/html image/png image/jpeg),
 track_temp_files: true

 Summary

 Types

 download_options()

 download_result()

 download_strategy()

 Functions

 cleanup_temp_files()

 Cleans up tracked temporary files.

 download(conn, url, opts \\ [])

 Downloads a file from the given URL using the DocuSign connection.

 download_to_file(conn, url, filepath, opts \\ [])

 Downloads a file to a specific path.

 download_to_memory(conn, url, opts \\ [])

 Downloads a file to memory.

 download_to_temp(conn, url, opts \\ [])

 Downloads a file to a temporary location.

 ensure_unique_filename(filepath)

 Generates a unique filename by appending a number if the file already exists.

 extract_filename_from_header(content_disposition)

 Extracts filename from Content-Disposition header.

 sanitize_filename(filename)

 Sanitizes a filename by removing invalid characters and path components.

 Types

 download_options()

 @type download_options() :: [
 strategy: download_strategy(),
 filename: String.t() | nil,
 temp_options: keyword() | nil,
 max_size: non_neg_integer() | nil,
 validate_content_type: boolean(),
 overwrite: boolean()
]

 download_result()

 @type download_result() ::
 {:ok, binary()}
 | {:ok, {binary(), String.t(), String.t()}}
 | {:ok, String.t()}
 | {:error, term()}

 download_strategy()

 @type download_strategy() :: :file | :memory | :temp | :stream

 Functions

 cleanup_temp_files()

 @spec cleanup_temp_files() :: :ok

Cleans up tracked temporary files.
This function calls Temp.cleanup/0 to remove all tracked temporary files.
Useful for manual cleanup before process exit.
Examples
DocuSign.FileDownloader.cleanup_temp_files()

 download(conn, url, opts \\ [])

 @spec download(DocuSign.Connection.t(), String.t(), download_options()) ::
 download_result()

Downloads a file from the given URL using the DocuSign connection.
Options
	:strategy - Download strategy (:file, :memory, :temp, :stream)
	:filename - Custom filename (overrides Content-Disposition)
	:temp_options - Options passed to Temp library for temporary files
	:max_size - Maximum file size in bytes
	:validate_content_type - Whether to validate content type
	:overwrite - Whether to overwrite existing files

Returns
	{:ok, content} when strategy is :memory
	{:ok, {content, filename, content_type}} when strategy is :memory with metadata
	{:ok, filepath} when strategy is :file or :temp
	{:error, reason} on failure

Examples
Download envelope document to temporary file
{:ok, temp_path} = DocuSign.FileDownloader.download(conn,
 "/v2.1/accounts/123/envelopes/456/documents/1")

Download with custom temp options
{:ok, path} = DocuSign.FileDownloader.download(conn, url,
 temp_options: [prefix: "contract", suffix: ".pdf"])

Download to memory for processing
{:ok, {content, filename, content_type}} = DocuSign.FileDownloader.download(conn, url,
 strategy: :memory)

 download_to_file(conn, url, filepath, opts \\ [])

 @spec download_to_file(DocuSign.Connection.t(), String.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, term()}

Downloads a file to a specific path.
Returns {:ok, filepath} on success.
Examples
{:ok, path} = DocuSign.FileDownloader.download_to_file(conn, url, "/path/to/save/document.pdf")

 download_to_memory(conn, url, opts \\ [])

 @spec download_to_memory(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, {binary(), String.t(), String.t()}} | {:error, term()}

Downloads a file to memory.
Returns {:ok, {content, filename, content_type}} on success.
Examples
{:ok, {pdf_content, "document.pdf", "application/pdf"}} =
 DocuSign.FileDownloader.download_to_memory(conn, url)

 download_to_temp(conn, url, opts \\ [])

 @spec download_to_temp(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, term()}

Downloads a file to a temporary location.
Returns {:ok, filepath} on success, where filepath is the path to the
temporary file. The caller is responsible for cleaning up the temporary file.
Examples
{:ok, temp_path} = DocuSign.FileDownloader.download_to_temp(conn, url)
content = File.read!(temp_path)
File.rm!(temp_path) # Clean up

 ensure_unique_filename(filepath)

 @spec ensure_unique_filename(String.t()) :: String.t()

Generates a unique filename by appending a number if the file already exists.
Examples
If document.pdf exists, returns document_1.pdf
If document_1.pdf also exists, returns document_2.pdf, etc.
DocuSign.FileDownloader.ensure_unique_filename("/path/to/document.pdf")

 extract_filename_from_header(content_disposition)

 @spec extract_filename_from_header(String.t()) ::
 {:ok, String.t()} | {:error, :no_filename}

Extracts filename from Content-Disposition header.
Examples
iex> DocuSign.FileDownloader.extract_filename_from_header("attachment; filename=document.pdf")
{:ok, "document.pdf"}

iex> DocuSign.FileDownloader.extract_filename_from_header("attachment; filename*=UTF-8''document%20name.pdf")
{:ok, "document name.pdf"}

iex> DocuSign.FileDownloader.extract_filename_from_header("attachment")
{:error, :no_filename}

 sanitize_filename(filename)

 @spec sanitize_filename(String.t()) :: String.t()

Sanitizes a filename by removing invalid characters and path components.
Examples
iex> DocuSign.FileDownloader.sanitize_filename("../../malicious.pdf")
"malicious.pdf"

iex> DocuSign.FileDownloader.sanitize_filename("file<>:"|?*.pdf")
"file.pdf"

DocuSign.RequestBuilder

Helper functions for building Req requests

 Summary

 Functions

 add_optional_params(request, definitions, list)

 Add optional parameters to a request

 add_param(request, arg2, key, value)

 Add non-optional parameters to a request

 ensure_body(request)

 This function ensures that the body parameter is always set.

 evaluate_response(error, mapping)

 Handle the response for a Req request.

 method(request, method)

 Specify the request method when building a request.

 url(request, url)

 Specify the request url when building a request.

 Functions

 add_optional_params(request, definitions, list)

 @spec add_optional_params(map(), %{optional(atom()) => atom()}, keyword()) :: map()

Add optional parameters to a request
Parameters
	request (Map) - Collected request options
	definitions (Map) - Map of parameter name to parameter location.
	options (KeywordList) - The provided optional parameters

Returns
Map

 add_param(request, arg2, key, value)

 @spec add_param(map(), atom(), atom(), any()) :: map()

Add non-optional parameters to a request
Parameters
	request (Map) - Collected request options
	location (atom) - Where to put the parameter
	key (atom) - The name of the parameter
	value (any) - The value of the parameter

Returns
Map

 ensure_body(request)

 @spec ensure_body(map()) :: map()

This function ensures that the body parameter is always set.
This handles cases where POST, PATCH and PUT requests require a body
even when it's empty.
Parameters
	request (Map) - Collected request options

Returns
Map

 evaluate_response(error, mapping)

 @spec evaluate_response({:ok, Req.Response.t()} | {:error, any()}, [
 {integer(), any()}
]) ::
 {:ok, any()} | {:error, Req.Response.t()}

Handle the response for a Req request.
Parameters
	response (Req.Response.t) - The response object

Returns
 on success
{:error, Req.Response.t} on failure

 method(request, method)

 @spec method(map(), atom()) :: map()

Specify the request method when building a request.
Does not override the method if one has already been specified.
Parameters
	request (Map) - Collected request options
	method (atom) - Request method

Returns
Map

 url(request, url)

 @spec url(map(), String.t()) :: map()

Specify the request url when building a request.
Does not override the url if one has already been specified.
Parameters
	request (Map) - Collected request options
	url (String) - Request URL

Returns
Map

DocuSign.SDKVersion

SDK version information and User-Agent header management.
This module provides version information about the DocuSign Elixir SDK
and formats the User-Agent header for API requests.

 Summary

 Functions

 api_version()

 Returns the API version this SDK targets.

 metadata()

 Returns a map of SDK metadata for telemetry and logging.

 user_agent(opts \\ [])

 Generates the User-Agent string for HTTP requests.

 version()

 Returns the SDK version.

 Functions

 api_version()

 @spec api_version() :: String.t()

Returns the API version this SDK targets.
Examples
iex> DocuSign.SDKVersion.api_version()
"v2.1"

 metadata()

 @spec metadata() :: map()

Returns a map of SDK metadata for telemetry and logging.
Examples
iex> DocuSign.SDKVersion.metadata()
%{
 sdk_name: "docusign-elixir",
 sdk_version: "3.0.0",
 api_version: "v2.1",
 elixir_version: "1.16.0",
 otp_version: "26"
}

 user_agent(opts \\ [])

 @spec user_agent(keyword()) :: String.t()

Generates the User-Agent string for HTTP requests.
Includes SDK version, API version, and runtime information (Elixir and OTP versions).
Options
	:custom_suffix - Optional custom string to append to the User-Agent

Examples
iex> DocuSign.SDKVersion.user_agent()
"docusign-elixir/3.0.0 (Elixir/1.16.0; OTP/26.0; API/v2.1)"

iex> DocuSign.SDKVersion.user_agent(custom_suffix: "MyApp/1.0")
"docusign-elixir/3.0.0 (Elixir/1.16.0; OTP/26.0; API/v2.1) MyApp/1.0"

 version()

 @spec version() :: String.t()

Returns the SDK version.
Examples
iex> DocuSign.SDKVersion.version()
"3.1.0"

DocuSign.SSLOptions

Provides SSL configuration options for DocuSign API connections.
This module handles SSL/TLS configuration for secure connections to DocuSign's API,
supporting custom certificates, verification options, and client authentication.
Configuration
SSL options can be configured at the application level:
config :docusign, :ssl_options,
 verify: :verify_peer,
 cacertfile: "/path/to/ca-bundle.crt",
 certfile: "/path/to/client-cert.pem",
 keyfile: "/path/to/client-key.pem",
 depth: 3,
 customize_hostname_check: [
 match_fun: :public_key.pkix_verify_hostname_match_fun(:https)
]
Options
	:verify - How to verify the server certificate
	:verify_peer - Verify the server certificate (default)
	:verify_none - Don't verify the server certificate (not recommended)

	:cacertfile - Path to CA certificate bundle file

	:cacerts - List of DER-encoded CA certificates

	:certfile - Path to client certificate file (for mutual TLS)

	:keyfile - Path to client private key file (for mutual TLS)

	:password - Password for encrypted private key

	:depth - Maximum certificate chain verification depth (default: 3)

	:verify_fun - Custom verification function

	:customize_hostname_check - Hostname verification options

	:versions - Allowed TLS versions (default: [:"tlsv1.2", :"tlsv1.3"])

	:ciphers - Allowed cipher suites

Security Considerations
	Always use :verify_peer in production
	Keep CA certificates up to date
	Use strong cipher suites
	Enable hostname verification

 Summary

 Functions

 build(opts \\ [])

 Builds SSL options from application configuration and runtime options.

 Functions

 build(opts \\ [])

 @spec build(keyword()) :: keyword()

Builds SSL options from application configuration and runtime options.
Examples
iex> opts = DocuSign.SSLOptions.build()
iex> opts[:verify]
:verify_peer
iex> opts[:depth]
3

iex> opts = DocuSign.SSLOptions.build(verify: :verify_none)
iex> opts[:verify]
:verify_none

iex> opts = DocuSign.SSLOptions.build(depth: 5)
iex> opts[:depth]
5

DocuSign.Telemetry

Telemetry integration for DocuSign API operations.
This module provides telemetry events for monitoring and observability of DocuSign API interactions.
It builds on top of the underlying Finch telemetry events to provide DocuSign-specific metrics.
Events
The following telemetry events are emitted:
API Operation Events
	[:docusign, :api, :start] - Executed before making an API call
Measurements:
	:system_time - System time when the operation started

Metadata:
	:operation - The API operation being performed (e.g., "envelopes_post_envelopes")
	:account_id - The DocuSign account ID
	:method - HTTP method (:get, :post, etc.)
	:path - API path being called
	:connection - The DocuSign.Connection struct

	[:docusign, :api, :stop] - Executed after a successful API call
Measurements:
	:duration - Time taken for the operation in native units

Metadata:
	:operation - The API operation performed
	:account_id - The DocuSign account ID
	:method - HTTP method
	:path - API path
	:status - HTTP response status code
	:connection - The DocuSign.Connection struct

	[:docusign, :api, :exception] - Executed when an API call fails
Measurements:
	:duration - Time taken before failure in native units

Metadata:
	:operation - The API operation attempted
	:account_id - The DocuSign account ID (if available)
	:method - HTTP method
	:path - API path
	:kind - The kind of exception (:throw, :error, :exit)
	:reason - The exception reason/error
	:stacktrace - The stacktrace
	:connection - The DocuSign.Connection struct

Authentication Events
	[:docusign, :auth, :token_refresh] - Executed when refreshing an OAuth tokenMeasurements:	:duration - Time taken to refresh the token

Metadata:	:success - Boolean indicating if refresh succeeded
	:user_id - User ID for JWT auth (if applicable)

Rate Limiting Events
	[:docusign, :rate_limit, :hit] - Executed when hitting a rate limitMeasurements:	:retry_after - Seconds to wait before retry (from header)

Metadata:	:operation - The API operation that hit the limit
	:account_id - The DocuSign account ID

Usage Examples
Basic Handler
defmodule MyApp.DocuSignTelemetry do
 require Logger

 def attach do
 :telemetry.attach_many(
 "docusign-handler",
 [
 [:docusign, :api, :start],
 [:docusign, :api, :stop],
 [:docusign, :api, :exception]
],
 &handle_event/4,
 nil
)
 end

 def handle_event([:docusign, :api, :stop], measurements, metadata, _config) do
 Logger.info(
 "DocuSign API call completed",
 operation: metadata.operation,
 duration_ms: System.convert_time_unit(measurements.duration, :native, :millisecond),
 status: metadata.status
)
 end

 def handle_event([:docusign, :api, :exception], _measurements, metadata, _config) do
 Logger.error(
 "DocuSign API call failed",
 operation: metadata.operation,
 error: metadata.reason
)
 end

 def handle_event(_event, _measurements, _metadata, _config), do: :ok
end
Integration with Telemetry.Metrics
defmodule MyApp.Telemetry do
 import Telemetry.Metrics

 def metrics do
 [
 # API performance metrics
 summary("docusign.api.duration",
 unit: {:native, :millisecond},
 tags: [:operation, :status]
),

 # Request rate
 counter("docusign.api.count",
 tags: [:operation, :status]
),

 # Error rate
 counter("docusign.api.exception.count",
 tags: [:operation]
),

 # Rate limiting
 counter("docusign.rate_limit.hit.count",
 tags: [:operation]
)
]
 end
end
Finch Telemetry Events
Since DocuSign uses Req/Finch under the hood, you also have access to lower-level HTTP telemetry:
	[:finch, :request, :start] - HTTP request started
	[:finch, :request, :stop] - HTTP request completed
	[:finch, :queue, :start] - Request queued for connection pool
	[:finch, :queue, :stop] - Request dequeued
	[:finch, :connect, :start] - Connection establishment started
	[:finch, :connect, :stop] - Connection established

See Finch.Telemetry for complete documentation of these events.

 Summary

 Functions

 execute_api_exception(operation, start_time, kind, reason, stacktrace, metadata)

 Execute a telemetry event for an API operation exception.

 execute_api_start(operation, metadata)

 Execute a telemetry event for an API operation start.

 execute_api_stop(operation, start_time, metadata)

 Execute a telemetry event for an API operation stop.

 execute_rate_limit(operation, retry_after, metadata)

 Execute a telemetry event for rate limiting.

 execute_token_refresh(duration, success, metadata)

 Execute a telemetry event for token refresh.

 span(event_prefix, metadata, fun)

 Wraps a function call with telemetry events.

 Functions

 execute_api_exception(operation, start_time, kind, reason, stacktrace, metadata)

Execute a telemetry event for an API operation exception.

 execute_api_start(operation, metadata)

Execute a telemetry event for an API operation start.

 execute_api_stop(operation, start_time, metadata)

Execute a telemetry event for an API operation stop.

 execute_rate_limit(operation, retry_after, metadata)

Execute a telemetry event for rate limiting.

 execute_token_refresh(duration, success, metadata)

Execute a telemetry event for token refresh.

 span(event_prefix, metadata, fun)

Wraps a function call with telemetry events.
This is a convenience function for wrapping any operation with start/stop/exception events.
Examples
Telemetry.span([:docusign, :custom, :operation], %{account_id: "123"}, fn ->
 # Your operation here
 {:ok, result}
end)

DocuSign.Api.AccountBrands

API calls for all endpoints tagged AccountBrands.

 Summary

 Functions

 brand_delete_brand(connection, account_id, brand_id, opts \\ [])

 Deletes a brand.
This method deletes a brand from an account. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).

 brand_export_get_brand_export_file(connection, account_id, brand_id, opts \\ [])

 Exports a brand.
This method exports information about a brand to an XML file. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).

 brand_get_brand(connection, account_id, brand_id, opts \\ [])

 Gets information about a brand.
This method returns details about an account brand. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).

 brand_logo_delete_brand_logo(connection, account_id, brand_id, logo_type, opts \\ [])

 Deletes a brand logo.
This method deletes a single logo from an account brand. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).

 brand_logo_get_brand_logo(connection, account_id, brand_id, logo_type, opts \\ [])

 Gets a brand logo.
This method returns a specific logo that is used in a brand. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).

 brand_logo_put_brand_logo(connection, account_id, brand_id, logo_type, logo_file_bytes, opts \\ [])

 Updates a brand logo.
This method updates a single brand logo. You pass in the new version of the resource in the Content-Disposition header. Example: Content-Disposition: form-data; name="file"; filename="logo.jpg" Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).

 brand_put_brand(connection, account_id, brand_id, opts \\ [])

 Updates an existing brand.
This method updates an account brand. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).

 brand_resources_get_brand_resources(connection, account_id, brand_id, resource_content_type, opts \\ [])

 Returns a branding resource file.
This method returns a specific branding resource file. A brand uses a set of brand resource files to control the sending, signing, email message, and captive (embedded) signing experiences. You can modify the default email messages and formats in these files and upload them to your brand to customize the user experience. Important: When you upload a modified resource file, only the elements that differ from the master resource file are saved as your resource file. Similarly, when you download your resource files, only the modified elements are included in the file. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).

 brand_resources_get_brand_resources_list(connection, account_id, brand_id, opts \\ [])

 Returns metadata about the branding resources for an account.
This method returns metadata about the branding resources that are associated with an account. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).

 brand_resources_put_brand_resources(connection, account_id, brand_id, resource_content_type, file_periodxml, opts \\ [])

 Updates a branding resource file.
This method updates a branding resource file. You pass in the new version of the resource file in the Content-Disposition header. Example: Content-Disposition: form-data; name="file"; filename="DocuSign_SigningResource_4328673.xml" Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true). Important: Customizing resource files is an advanced branding configuration option which can significantly impact your account, and should be done only by someone with expertise in XML and HTML. The master resource files are subject to change without notice. If you customize your resource files, after each release, Docusign recommends you review any changes and update your custom files as needed. When you upload a modified resource file, only the elements that differ from the master resource file are saved as your resource file. Similarly, when you download your resource files, only the modified elements are included in the file.

 brands_delete_brands(connection, account_id, opts \\ [])

 Deletes one or more brand profiles.
This method deletes one or more brand profiles from an account, based on the brand IDs that you include in the brandsRequest. Either or both of the following settings must be enabled for the account to use this method: - canSelfBrandSign - canSelfBrandSend ### Related topics - How to create a brand

 brands_get_brands(connection, account_id, opts \\ [])

 Gets a list of brands.
This method returns details about all of the brands associated with an account, including the default brand profiles. Either or both of the following settings must be enabled for the account to use this method: - canSelfBrandSign - canSelfBrandSend ### Related topics - How to create a brand - How to apply a brand to an envelope

 brands_post_brands(connection, account_id, opts \\ [])

 Creates one or more brand profiles for an account.
This method creates one or more brand profile files for an account. To specify logos for the brand, use the AccountBrands: updateLogo method after you create the brand. Either or both of the following settings must be enabled for the account to use this method: - canSelfBrandSign - canSelfBrandSend ### Related topics - How to create a brand

 Functions

 brand_delete_brand(connection, account_id, brand_id, opts \\ [])

 @spec brand_delete_brand(DocuSign.Connection.t(), String.t(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Req.Response.t()}

Deletes a brand.
This method deletes a brand from an account. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	brand_id (String.t): The ID of the brand.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 brand_export_get_brand_export_file(connection, account_id, brand_id, opts \\ [])

 @spec brand_export_get_brand_export_file(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Exports a brand.
This method exports information about a brand to an XML file. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	brand_id (String.t): The ID of the brand.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 brand_get_brand(connection, account_id, brand_id, opts \\ [])

 @spec brand_get_brand(DocuSign.Connection.t(), String.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.Brand.t()} | {:error, Req.Response.t()}

Gets information about a brand.
This method returns details about an account brand. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	brand_id (String.t): The ID of the brand.
	opts (keyword): Optional parameters	:include_external_references (String.t): When true, the landing pages and links associated with the brand are included in the response.
	:include_logos (String.t): When true, the URIs for the logos associated with the brand are included in the response.

Returns
	{:ok, DocuSign.Model.Brand.t} on success
	{:error, Req.Response.t} on failure

 brand_logo_delete_brand_logo(connection, account_id, brand_id, logo_type, opts \\ [])

 @spec brand_logo_delete_brand_logo(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes a brand logo.
This method deletes a single logo from an account brand. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	brand_id (String.t): The ID of the brand.
	logo_type (String.t): The type of logo. Valid values are: - primary - secondary - email
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 brand_logo_get_brand_logo(connection, account_id, brand_id, logo_type, opts \\ [])

 @spec brand_logo_get_brand_logo(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, String.t()} | {:error, Req.Response.t()}

Gets a brand logo.
This method returns a specific logo that is used in a brand. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	brand_id (String.t): The ID of the brand.
	logo_type (String.t): The type of logo. Valid values are: - primary - secondary - email
	opts (keyword): Optional parameters

Returns
	{:ok, String.t} on success
	{:error, Req.Response.t} on failure

 brand_logo_put_brand_logo(connection, account_id, brand_id, logo_type, logo_file_bytes, opts \\ [])

 @spec brand_logo_put_brand_logo(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Updates a brand logo.
This method updates a single brand logo. You pass in the new version of the resource in the Content-Disposition header. Example: Content-Disposition: form-data; name="file"; filename="logo.jpg" Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	brand_id (String.t): The ID of the brand.
	logo_type (String.t): The type of logo. Valid values are: - primary - secondary - email
	logo_file_bytes (String.t): Brand logo binary Stream. Supported formats: JPG, GIF, PNG. Maximum file size: 300 KB. Recommended dimensions: 296 x 76 pixels (larger images will be resized). Changes may take up to one hour to display in all places
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 brand_put_brand(connection, account_id, brand_id, opts \\ [])

 @spec brand_put_brand(DocuSign.Connection.t(), String.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.Brand.t()} | {:error, Req.Response.t()}

Updates an existing brand.
This method updates an account brand. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	brand_id (String.t): The ID of the brand.
	opts (keyword): Optional parameters	:replace_brand (String.t): When true, replaces the brand instead of updating it. The only unchanged value is the brand ID. The request body must be XML. The default value is false.
	:body (Brand):

Returns
	{:ok, DocuSign.Model.Brand.t} on success
	{:error, Req.Response.t} on failure

 brand_resources_get_brand_resources(connection, account_id, brand_id, resource_content_type, opts \\ [])

 @spec brand_resources_get_brand_resources(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Returns a branding resource file.
This method returns a specific branding resource file. A brand uses a set of brand resource files to control the sending, signing, email message, and captive (embedded) signing experiences. You can modify the default email messages and formats in these files and upload them to your brand to customize the user experience. Important: When you upload a modified resource file, only the elements that differ from the master resource file are saved as your resource file. Similarly, when you download your resource files, only the modified elements are included in the file. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	brand_id (String.t): The ID of the brand.
	resource_content_type (String.t): The type of brand resource file to return. Valid values are: - sending - signing - email - signing_captive
	opts (keyword): Optional parameters	:langcode (String.t): The ISO 3166-1 alpha-2 codes for the languages that the brand supports.
	:return_master (String.t): Specifies which resource file data to return. When true, only the master resource file is returned. When false, only the elements that you modified are returned.

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 brand_resources_get_brand_resources_list(connection, account_id, brand_id, opts \\ [])

 @spec brand_resources_get_brand_resources_list(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.BrandResourcesList.t()} | {:error, Req.Response.t()}

Returns metadata about the branding resources for an account.
This method returns metadata about the branding resources that are associated with an account. Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true).
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	brand_id (String.t): The ID of the brand.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.BrandResourcesList.t} on success
	{:error, Req.Response.t} on failure

 brand_resources_put_brand_resources(connection, account_id, brand_id, resource_content_type, file_periodxml, opts \\ [])

 @spec brand_resources_put_brand_resources(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.BrandResources.t()} | {:error, Req.Response.t()}

Updates a branding resource file.
This method updates a branding resource file. You pass in the new version of the resource file in the Content-Disposition header. Example: Content-Disposition: form-data; name="file"; filename="DocuSign_SigningResource_4328673.xml" Note: Branding for either signing or sending must be enabled for the account (canSelfBrandSend , canSelfBrandSign, or both of these account settings must be true). Important: Customizing resource files is an advanced branding configuration option which can significantly impact your account, and should be done only by someone with expertise in XML and HTML. The master resource files are subject to change without notice. If you customize your resource files, after each release, Docusign recommends you review any changes and update your custom files as needed. When you upload a modified resource file, only the elements that differ from the master resource file are saved as your resource file. Similarly, when you download your resource files, only the modified elements are included in the file.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	brand_id (String.t): The ID of the brand.
	resource_content_type (String.t): The type of brand resource file that you are updating. Valid values are: - sending - signing - email - signing_captive
	file_periodxml (String.t): Brand resource XML file.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.BrandResources.t} on success
	{:error, Req.Response.t} on failure

 brands_delete_brands(connection, account_id, opts \\ [])

 @spec brands_delete_brands(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.AccountBrands.t()} | {:error, Req.Response.t()}

Deletes one or more brand profiles.
This method deletes one or more brand profiles from an account, based on the brand IDs that you include in the brandsRequest. Either or both of the following settings must be enabled for the account to use this method: - canSelfBrandSign - canSelfBrandSend ### Related topics - How to create a brand
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (BrandsRequest):

Returns
	{:ok, DocuSign.Model.AccountBrands.t} on success
	{:error, Req.Response.t} on failure

 brands_get_brands(connection, account_id, opts \\ [])

 @spec brands_get_brands(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.AccountBrands.t()} | {:error, Req.Response.t()}

Gets a list of brands.
This method returns details about all of the brands associated with an account, including the default brand profiles. Either or both of the following settings must be enabled for the account to use this method: - canSelfBrandSign - canSelfBrandSend ### Related topics - How to create a brand - How to apply a brand to an envelope
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:exclude_distributor_brand (String.t): When true, excludes distributor brand information from the response set.
	:include_logos (String.t): When true, returns the logos associated with the brand.

Returns
	{:ok, DocuSign.Model.AccountBrands.t} on success
	{:error, Req.Response.t} on failure

 brands_post_brands(connection, account_id, opts \\ [])

 @spec brands_post_brands(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.AccountBrands.t()} | {:error, Req.Response.t()}

Creates one or more brand profiles for an account.
This method creates one or more brand profile files for an account. To specify logos for the brand, use the AccountBrands: updateLogo method after you create the brand. Either or both of the following settings must be enabled for the account to use this method: - canSelfBrandSign - canSelfBrandSend ### Related topics - How to create a brand
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (Brand):

Returns
	{:ok, DocuSign.Model.AccountBrands.t} on success
	{:error, Req.Response.t} on failure

DocuSign.Api.AccountConsumerDisclosures

API calls for all endpoints tagged AccountConsumerDisclosures.

 Summary

 Functions

 consumer_disclosure_get_consumer_disclosure(connection, account_id, opts \\ [])

 Gets the default Electronic Record and Signature Disclosure for an account.
Retrieves the default, HTML-formatted Electronic Record and Signature Disclosure (ERSD) associated with the account. This is the default ERSD disclosure that Docusign provides for the convenience of U.S.-based customers only. This default disclosure is only valid for transactions between U.S.-based parties. To set the language of the disclosure that you want to retrieve, use the optional langCode query parameter.

 consumer_disclosure_get_consumer_disclosure_lang_code(connection, account_id, lang_code, opts \\ [])

 Gets the Electronic Record and Signature Disclosure for an account.
Retrieves the HTML-formatted Electronic Record and Signature Disclosure (ERSD) associated with the account. To set the language of the disclosure that you want to retrieve, use the optional langCode query parameter. Note: The text of the default disclosure is always in English, but if you are using a custom disclosure and have created versions of it in different signer languages, you can use the langCode parameter to specify the signer language version that you want to retrieve.

 consumer_disclosure_put_consumer_disclosure(connection, account_id, lang_code, opts \\ [])

 Updates the Electronic Record and Signature Disclosure for an account.
Account administrators can use this method to perform the following tasks: - Customize values in the default disclosure. - Switch to a custom disclosure that uses your own text and HTML formatting. - Change values in your existing consumer disclosure. To specify the signer language version of the disclosure that you are updating, use the optional langCode query parameter. Note: Only account administrators can use this method. Each time you change the disclosure content, all unsigned recipients of outstanding documents will be required to accept a new version. ## Updating the default disclosure When you update the default disclosure, you can edit all properties except for the following ones: - accountEsignId: This property is read-only. - custom: The default value is false. Editing this property causes the default disclosure to switch to a custom disclosure. - esignAgreement: This property is read-only. - esignText: You cannot edit this property when custom is set to false. The API returns a 200 OK HTTP response, but does not update the esignText. - Metadata properties: These properties are read-only. Note: The text of the default disclosure is always in English. ## Switching to a custom disclosure To switch to a custom disclosure, set the custom property to true and customize the value for the eSignText property. You can also edit all of the other properties except for the following ones: - accountEsignId: This property is read-only. - esignAgreement: This property is read-only. - Metadata properties: These properties are read-only. Note: When you use a custom disclosure, you can create versions of it in different signer languages and se the langCode parameter to specify the signer language version that you are updating. Important: When you switch from a default to a custom disclosure, note the following information: - You will not be able to return to using the default disclosure. - Only the disclosure for the currently selected signer language is saved. Docusign will not automatically translate your custom disclosure. You must create a disclosure for each language that your signers use. ## Updating a custom disclosure When you update a custom disclosure, you can update all of the properties except for the following ones: - accountEsignId: This property is read-only. - esignAgreement: This property is read-only. - Metadata properties: These properties are read-only. Important: Only the disclosure for the currently selected signer language is saved. Docusign will not automatically translate your custom disclosure. You must create a disclosure for each language that your signers use.

 Functions

 consumer_disclosure_get_consumer_disclosure(connection, account_id, opts \\ [])

 @spec consumer_disclosure_get_consumer_disclosure(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountConsumerDisclosures.t()}
 | {:error, Req.Response.t()}

Gets the default Electronic Record and Signature Disclosure for an account.
Retrieves the default, HTML-formatted Electronic Record and Signature Disclosure (ERSD) associated with the account. This is the default ERSD disclosure that Docusign provides for the convenience of U.S.-based customers only. This default disclosure is only valid for transactions between U.S.-based parties. To set the language of the disclosure that you want to retrieve, use the optional langCode query parameter.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:langCode (String.t): The code for the signer language version of the disclosure that you want to retrieve. The following languages are supported: - Arabic (ar) - Bulgarian (bg) - Czech (cs) - Chinese Simplified (zh_CN) - Chinese Traditional (zh_TW) - Croatian (hr) - Danish (da) - Dutch (nl) - English US (en) - English UK (en_GB) - Estonian (et) - Farsi (fa) - Finnish (fi) - French (fr) - French Canadian (fr_CA) - German (de) - Greek (el) - Hebrew (he) - Hindi (hi) - Hungarian (hu) - Bahasa Indonesian (id) - Italian (it) - Japanese (ja) - Korean (ko) - Latvian (lv) - Lithuanian (lt) - Bahasa Melayu (ms) - Norwegian (no) - Polish (pl) - Portuguese (pt) - Portuguese Brazil (pt_BR) - Romanian (ro) - Russian (ru) - Serbian (sr) - Slovak (sk) - Slovenian (sl) - Spanish (es) - Spanish Latin America (es_MX) - Swedish (sv) - Thai (th) - Turkish (tr) - Ukrainian (uk) - Vietnamese (vi) Additionally, you can automatically detect the browser language being used by the viewer and display the disclosure in that language by setting the value to browser.

Returns
	{:ok, DocuSign.Model.AccountConsumerDisclosures.t} on success
	{:error, Req.Response.t} on failure

 consumer_disclosure_get_consumer_disclosure_lang_code(connection, account_id, lang_code, opts \\ [])

 @spec consumer_disclosure_get_consumer_disclosure_lang_code(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountConsumerDisclosures.t()}
 | {:error, Req.Response.t()}

Gets the Electronic Record and Signature Disclosure for an account.
Retrieves the HTML-formatted Electronic Record and Signature Disclosure (ERSD) associated with the account. To set the language of the disclosure that you want to retrieve, use the optional langCode query parameter. Note: The text of the default disclosure is always in English, but if you are using a custom disclosure and have created versions of it in different signer languages, you can use the langCode parameter to specify the signer language version that you want to retrieve.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	lang_code (String.t): The code for the signer language version of the disclosure that you want to retrieve. The following languages are supported: - Arabic (ar) - Bulgarian (bg) - Czech (cs) - Chinese Simplified (zh_CN) - Chinese Traditional (zh_TW) - Croatian (hr) - Danish (da) - Dutch (nl) - English US (en) - English UK (en_GB) - Estonian (et) - Farsi (fa) - Finnish (fi) - French (fr) - French Canadian (fr_CA) - German (de) - Greek (el) - Hebrew (he) - Hindi (hi) - Hungarian (hu) - Bahasa Indonesian (id) - Italian (it) - Japanese (ja) - Korean (ko) - Latvian (lv) - Lithuanian (lt) - Bahasa Melayu (ms) - Norwegian (no) - Polish (pl) - Portuguese (pt) - Portuguese Brazil (pt_BR) - Romanian (ro) - Russian (ru) - Serbian (sr) - Slovak (sk) - Slovenian (sl) - Spanish (es) - Spanish Latin America (es_MX) - Swedish (sv) - Thai (th) - Turkish (tr) - Ukrainian (uk) - Vietnamese (vi) Additionally, you can automatically detect the browser language being used by the viewer and display the disclosure in that language by setting the value to browser.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.AccountConsumerDisclosures.t} on success
	{:error, Req.Response.t} on failure

 consumer_disclosure_put_consumer_disclosure(connection, account_id, lang_code, opts \\ [])

 @spec consumer_disclosure_put_consumer_disclosure(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.ConsumerDisclosure.t()} | {:error, Req.Response.t()}

Updates the Electronic Record and Signature Disclosure for an account.
Account administrators can use this method to perform the following tasks: - Customize values in the default disclosure. - Switch to a custom disclosure that uses your own text and HTML formatting. - Change values in your existing consumer disclosure. To specify the signer language version of the disclosure that you are updating, use the optional langCode query parameter. Note: Only account administrators can use this method. Each time you change the disclosure content, all unsigned recipients of outstanding documents will be required to accept a new version. ## Updating the default disclosure When you update the default disclosure, you can edit all properties except for the following ones: - accountEsignId: This property is read-only. - custom: The default value is false. Editing this property causes the default disclosure to switch to a custom disclosure. - esignAgreement: This property is read-only. - esignText: You cannot edit this property when custom is set to false. The API returns a 200 OK HTTP response, but does not update the esignText. - Metadata properties: These properties are read-only. Note: The text of the default disclosure is always in English. ## Switching to a custom disclosure To switch to a custom disclosure, set the custom property to true and customize the value for the eSignText property. You can also edit all of the other properties except for the following ones: - accountEsignId: This property is read-only. - esignAgreement: This property is read-only. - Metadata properties: These properties are read-only. Note: When you use a custom disclosure, you can create versions of it in different signer languages and se the langCode parameter to specify the signer language version that you are updating. Important: When you switch from a default to a custom disclosure, note the following information: - You will not be able to return to using the default disclosure. - Only the disclosure for the currently selected signer language is saved. Docusign will not automatically translate your custom disclosure. You must create a disclosure for each language that your signers use. ## Updating a custom disclosure When you update a custom disclosure, you can update all of the properties except for the following ones: - accountEsignId: This property is read-only. - esignAgreement: This property is read-only. - Metadata properties: These properties are read-only. Important: Only the disclosure for the currently selected signer language is saved. Docusign will not automatically translate your custom disclosure. You must create a disclosure for each language that your signers use.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	lang_code (String.t): The code for the signer language version of the disclosure that you want to update. The following languages are supported: - Arabic (ar) - Bulgarian (bg) - Czech (cs) - Chinese Simplified (zh_CN) - Chinese Traditional (zh_TW) - Croatian (hr) - Danish (da) - Dutch (nl) - English US (en) - English UK (en_GB) - Estonian (et) - Farsi (fa) - Finnish (fi) - French (fr) - French Canadian (fr_CA) - German (de) - Greek (el) - Hebrew (he) - Hindi (hi) - Hungarian (hu) - Bahasa Indonesian (id) - Italian (it) - Japanese (ja) - Korean (ko) - Latvian (lv) - Lithuanian (lt) - Bahasa Melayu (ms) - Norwegian (no) - Polish (pl) - Portuguese (pt) - Portuguese Brazil (pt_BR) - Romanian (ro) - Russian (ru) - Serbian (sr) - Slovak (sk) - Slovenian (sl) - Spanish (es) - Spanish Latin America (es_MX) - Swedish (sv) - Thai (th) - Turkish (tr) - Ukrainian (uk) - Vietnamese (vi) Additionally, you can automatically detect the browser language being used by the viewer and display the disclosure in that language by setting the value to browser.
	opts (keyword): Optional parameters	:include_metadata (String.t): (Optional) When true, the response includes metadata indicating which properties are editable.
	:body (ConsumerDisclosure):

Returns
	{:ok, DocuSign.Model.ConsumerDisclosure.t} on success
	{:error, Req.Response.t} on failure

DocuSign.Api.AccountCustomFields

API calls for all endpoints tagged AccountCustomFields.

 Summary

 Functions

 account_custom_fields_delete_account_custom_fields(connection, account_id, custom_field_id, opts \\ [])

 Deletes an account custom field.
This method deletes an existing account custom field.

 account_custom_fields_get_account_custom_fields(connection, account_id, opts \\ [])

 Gets a list of custom fields.
This method returns a list of the envelope and document custom fields associated with an account.

 account_custom_fields_post_account_custom_fields(connection, account_id, opts \\ [])

 Creates an account custom field.
This method creates a custom field and makes it available for all new envelopes associated with an account.

 account_custom_fields_put_account_custom_fields(connection, account_id, custom_field_id, opts \\ [])

 Updates an account custom field.
This method updates an existing account custom field.

 Functions

 account_custom_fields_delete_account_custom_fields(connection, account_id, custom_field_id, opts \\ [])

 @spec account_custom_fields_delete_account_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes an account custom field.
This method deletes an existing account custom field.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	custom_field_id (String.t): The ID of the custom field.
	opts (keyword): Optional parameters	:apply_to_templates (String.t):

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 account_custom_fields_get_account_custom_fields(connection, account_id, opts \\ [])

 @spec account_custom_fields_get_account_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountCustomFields.t()} | {:error, Req.Response.t()}

Gets a list of custom fields.
This method returns a list of the envelope and document custom fields associated with an account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.AccountCustomFields.t} on success
	{:error, Req.Response.t} on failure

 account_custom_fields_post_account_custom_fields(connection, account_id, opts \\ [])

 @spec account_custom_fields_post_account_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountCustomFields.t()} | {:error, Req.Response.t()}

Creates an account custom field.
This method creates a custom field and makes it available for all new envelopes associated with an account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:apply_to_templates (String.t): (Optional) When true, the new custom field is applied to all of the templates on the account.
	:body (CustomField):

Returns
	{:ok, DocuSign.Model.AccountCustomFields.t} on success
	{:error, Req.Response.t} on failure

 account_custom_fields_put_account_custom_fields(connection, account_id, custom_field_id, opts \\ [])

 @spec account_custom_fields_put_account_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.AccountCustomFields.t()} | {:error, Req.Response.t()}

Updates an account custom field.
This method updates an existing account custom field.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	custom_field_id (String.t): The ID of the custom field.
	opts (keyword): Optional parameters	:apply_to_templates (String.t):
	:body (CustomField):

Returns
	{:ok, DocuSign.Model.AccountCustomFields.t} on success
	{:error, Req.Response.t} on failure

DocuSign.Api.AccountPasswordRules

API calls for all endpoints tagged AccountPasswordRules.

 Summary

 Functions

 account_password_rules_get_account_password_rules(connection, account_id, opts \\ [])

 Gets the password rules for an account.
This method retrieves the password rules for an account.

 account_password_rules_put_account_password_rules(connection, account_id, opts \\ [])

 Updates the password rules for an account.
This method updates the password rules for an account. Note: To update the password rules for an account, you must be an account administrator.

 password_rules_get_password_rules(connection, opts \\ [])

 Gets membership account password rules.

 Functions

 account_password_rules_get_account_password_rules(connection, account_id, opts \\ [])

 @spec account_password_rules_get_account_password_rules(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountPasswordRules.t()} | {:error, Req.Response.t()}

Gets the password rules for an account.
This method retrieves the password rules for an account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.AccountPasswordRules.t} on success
	{:error, Req.Response.t} on failure

 account_password_rules_put_account_password_rules(connection, account_id, opts \\ [])

 @spec account_password_rules_put_account_password_rules(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountPasswordRules.t()} | {:error, Req.Response.t()}

Updates the password rules for an account.
This method updates the password rules for an account. Note: To update the password rules for an account, you must be an account administrator.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (AccountPasswordRules):

Returns
	{:ok, DocuSign.Model.AccountPasswordRules.t} on success
	{:error, Req.Response.t} on failure

 password_rules_get_password_rules(connection, opts \\ [])

 @spec password_rules_get_password_rules(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, DocuSign.Model.UserPasswordRules.t()} | {:error, Req.Response.t()}

Gets membership account password rules.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.UserPasswordRules.t} on success
	{:error, Req.Response.t} on failure

DocuSign.Api.AccountPermissionProfiles

API calls for all endpoints tagged AccountPermissionProfiles.

 Summary

 Functions

 permission_profiles_delete_permission_profiles(connection, account_id, permission_profile_id, opts \\ [])

 Deletes a permission profile from an account.
This method deletes a permission profile from an account. To delete a permission profile, it must not have any users associated with it. When you use this method to delete a permission profile, you can reassign the users associated with it to a new permission profile at the same time by using the move_users_to query parameter. ### Related topics - How to delete a permission profile

 permission_profiles_get_permission_profile(connection, account_id, permission_profile_id, opts \\ [])

 Returns a permission profile for an account.
This method returns information about a specific permission profile that is associated with an account. ### Related topics - How to set a permission profile

 permission_profiles_get_permission_profiles(connection, account_id, opts \\ [])

 Gets a list of permission profiles.
This method returns a list of permission profiles that are associated with an account. Example: json { "permissionProfiles": [{ "permissionProfileId": "1665536", "permissionProfileName": "Account Administrator", "modifiedDateTime": "2018-03-26T03:54:40.4470000Z", "modifiedByUsername": "" }, { "permissionProfileId": "1665537", "permissionProfileName": "DocuSign Sender", "modifiedDateTime": "2018-03-26T03:54:40.4470000Z", "modifiedByUsername": "" }, { "permissionProfileId": "1665538", "permissionProfileName": "DocuSign Viewer", "modifiedDateTime": "2016-06-02T01:53:15.6830000Z", "modifiedByUsername": "" }, { "permissionProfileId": "10325926", "permissionProfileName": "DS Manage Company Member Accounts", "modifiedDateTime": "2020-05-15T00:28:36.8230000Z", "modifiedByUsername": "Nat Irving" }] }

 permission_profiles_post_permission_profiles(connection, account_id, opts \\ [])

 Creates a new permission profile for an account.
This method creates a new permission profile for an account. ### Related topics - How to create a permission profile

 permission_profiles_put_permission_profiles(connection, account_id, permission_profile_id, opts \\ [])

 Updates a permission profile.
This method updates an account permission profile. ### Related topics - How to update individual permission settings

 Functions

 permission_profiles_delete_permission_profiles(connection, account_id, permission_profile_id, opts \\ [])

 @spec permission_profiles_delete_permission_profiles(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes a permission profile from an account.
This method deletes a permission profile from an account. To delete a permission profile, it must not have any users associated with it. When you use this method to delete a permission profile, you can reassign the users associated with it to a new permission profile at the same time by using the move_users_to query parameter. ### Related topics - How to delete a permission profile
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	permission_profile_id (String.t): The ID of the permission profile. Use AccountPermissionProfiles: list to get a list of permission profiles and their IDs. You can also download a CSV file of all permission profiles and their IDs from the Settings > Permission Profiles page of your eSignature account page.
	opts (keyword): Optional parameters	:move_users_to (String.t):

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 permission_profiles_get_permission_profile(connection, account_id, permission_profile_id, opts \\ [])

 @spec permission_profiles_get_permission_profile(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.PermissionProfile.t()} | {:error, Req.Response.t()}

Returns a permission profile for an account.
This method returns information about a specific permission profile that is associated with an account. ### Related topics - How to set a permission profile
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	permission_profile_id (String.t): The ID of the permission profile. Use AccountPermissionProfiles: list to get a list of permission profiles and their IDs. You can also download a CSV file of all permission profiles and their IDs from the Settings > Permission Profiles page of your eSignature account page.
	opts (keyword): Optional parameters	:include (String.t): A comma-separated list of additional properties to return in the response. The only valid value for this request is metadata, which returns metadata indicating whether the properties associated with the account permission profile are editable.

Returns
	{:ok, DocuSign.Model.PermissionProfile.t} on success
	{:error, Req.Response.t} on failure

 permission_profiles_get_permission_profiles(connection, account_id, opts \\ [])

 @spec permission_profiles_get_permission_profiles(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.PermissionProfileInformation.t()}
 | {:error, Req.Response.t()}

Gets a list of permission profiles.
This method returns a list of permission profiles that are associated with an account. Example: json { "permissionProfiles": [{ "permissionProfileId": "1665536", "permissionProfileName": "Account Administrator", "modifiedDateTime": "2018-03-26T03:54:40.4470000Z", "modifiedByUsername": "" }, { "permissionProfileId": "1665537", "permissionProfileName": "DocuSign Sender", "modifiedDateTime": "2018-03-26T03:54:40.4470000Z", "modifiedByUsername": "" }, { "permissionProfileId": "1665538", "permissionProfileName": "DocuSign Viewer", "modifiedDateTime": "2016-06-02T01:53:15.6830000Z", "modifiedByUsername": "" }, { "permissionProfileId": "10325926", "permissionProfileName": "DS Manage Company Member Accounts", "modifiedDateTime": "2020-05-15T00:28:36.8230000Z", "modifiedByUsername": "Nat Irving" }] }
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:include (String.t): A comma-separated list of additional properties to return in the response. Valid values are: - user_count: The total number of users associated with the permission profile. - closed_users: Includes closed users in the user_count. - account_management: The account management settings. - metadata: Metadata indicating whether the properties associated with the account permission profile are editable. Example: user_count,closed_users

Returns
	{:ok, DocuSign.Model.PermissionProfileInformation.t} on success
	{:error, Req.Response.t} on failure

 permission_profiles_post_permission_profiles(connection, account_id, opts \\ [])

 @spec permission_profiles_post_permission_profiles(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.PermissionProfile.t()} | {:error, Req.Response.t()}

Creates a new permission profile for an account.
This method creates a new permission profile for an account. ### Related topics - How to create a permission profile
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:include (String.t): A comma-separated list of additional properties to return in the response. The only valid value for this request is metadata, which returns metadata indicating whether the properties associated with the account permission profile are editable.
	:body (PermissionProfile):

Returns
	{:ok, DocuSign.Model.PermissionProfile.t} on success
	{:error, Req.Response.t} on failure

 permission_profiles_put_permission_profiles(connection, account_id, permission_profile_id, opts \\ [])

 @spec permission_profiles_put_permission_profiles(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.PermissionProfile.t()} | {:error, Req.Response.t()}

Updates a permission profile.
This method updates an account permission profile. ### Related topics - How to update individual permission settings
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	permission_profile_id (String.t): The ID of the permission profile. Use AccountPermissionProfiles: list to get a list of permission profiles and their IDs. You can also download a CSV file of all permission profiles and their IDs from the Settings > Permission Profiles page of your eSignature account page.
	opts (keyword): Optional parameters	:include (String.t): A comma-separated list of additional properties to return in the response. The only valid value for this request is metadata, which returns metadata indicating whether the properties associated with the account permission profile are editable.
	:body (PermissionProfile):

Returns
	{:ok, DocuSign.Model.PermissionProfile.t} on success
	{:error, Req.Response.t} on failure

DocuSign.Api.AccountSealProviders

API calls for all endpoints tagged AccountSealProviders.

 Summary

 Functions

 account_signature_providers_get_seal_providers(connection, account_id, opts \\ [])

 Returns available seals for specified account.

 Functions

 account_signature_providers_get_seal_providers(connection, account_id, opts \\ [])

 @spec account_signature_providers_get_seal_providers(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountSealProviders.t()} | {:error, Req.Response.t()}

Returns available seals for specified account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.AccountSealProviders.t} on success
	{:error, Req.Response.t} on failure

DocuSign.Api.AccountSignatureProviders

API calls for all endpoints tagged AccountSignatureProviders.

 Summary

 Functions

 account_signature_providers_get_signature_providers(connection, account_id, opts \\ [])

 Gets the available signature providers for an account.
Returns a list of signature providers that the specified account can use.

 Functions

 account_signature_providers_get_signature_providers(connection, account_id, opts \\ [])

 @spec account_signature_providers_get_signature_providers(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountSignatureProviders.t()}
 | {:error, Req.Response.t()}

Gets the available signature providers for an account.
Returns a list of signature providers that the specified account can use.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.AccountSignatureProviders.t} on success
	{:error, Req.Response.t} on failure

DocuSign.Api.AccountSignatures

API calls for all endpoints tagged AccountSignatures.

 Summary

 Functions

 account_signatures_delete_account_signature(connection, account_id, signature_id, opts \\ [])

 Deletes an account stamp.
Deletes a stamp specified by signatureId.

 account_signatures_delete_account_signature_image(connection, account_id, image_type, signature_id, opts \\ [])

 Deletes the image for a stamp.
Deletes the image for a stamp specified by signatureId.

 account_signatures_get_account_signature(connection, account_id, signature_id, opts \\ [])

 Returns information about the specified stamp.
Returns information about the specified stamp.

 account_signatures_get_account_signature_image(connection, account_id, image_type, signature_id, opts \\ [])

 Returns the image for an account stamp.
Returns the image for an account stamp.

 account_signatures_get_account_signatures(connection, account_id, opts \\ [])

 Returns a list of stamps available in the account.
Returns a list of stamps available in the account.

 account_signatures_post_account_signatures(connection, account_id, opts \\ [])

 Adds or updates one or more account stamps.
Adds or updates one or more account stamps.

 account_signatures_put_account_signature(connection, account_id, opts \\ [])

 Updates an account stamp.
Adds or updates one or more account stamps. This request may include images in multi-part format.

 account_signatures_put_account_signature_by_id(connection, account_id, signature_id, opts \\ [])

 Updates an account stamp by ID.
Updates an account stamp specified by the signatureId query parameter.

 account_signatures_put_account_signature_image(connection, account_id, image_type, signature_id, opts \\ [])

 Sets a signature image, initials, or stamp.
Sets a signature image, initials, or stamp.

 Functions

 account_signatures_delete_account_signature(connection, account_id, signature_id, opts \\ [])

 @spec account_signatures_delete_account_signature(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes an account stamp.
Deletes a stamp specified by signatureId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	signature_id (String.t): The ID of the account stamp.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 account_signatures_delete_account_signature_image(connection, account_id, image_type, signature_id, opts \\ [])

 @spec account_signatures_delete_account_signature_image(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.AccountSignature.t()} | {:error, Req.Response.t()}

Deletes the image for a stamp.
Deletes the image for a stamp specified by signatureId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	image_type (String.t): Specificies the type of image. Valid values: - stamp_image - signature_image - initials_image
	signature_id (String.t): The ID of the account stamp.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.AccountSignature.t} on success
	{:error, Req.Response.t} on failure

 account_signatures_get_account_signature(connection, account_id, signature_id, opts \\ [])

 @spec account_signatures_get_account_signature(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.AccountSignature.t()} | {:error, Req.Response.t()}

Returns information about the specified stamp.
Returns information about the specified stamp.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	signature_id (String.t): The ID of the account stamp.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.AccountSignature.t} on success
	{:error, Req.Response.t} on failure

 account_signatures_get_account_signature_image(connection, account_id, image_type, signature_id, opts \\ [])

 @spec account_signatures_get_account_signature_image(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Req.Response.t()}

Returns the image for an account stamp.
Returns the image for an account stamp.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	image_type (String.t): Specificies the type of image. Valid values: - stamp_image - signature_image - initials_image
	signature_id (String.t): The ID of the account stamp.
	opts (keyword): Optional parameters	:include_chrome (String.t): When true, the chrome (or frame containing the added line and identifier) is included with the signature image.

Returns
	{:ok, String.t} on success
	{:error, Req.Response.t} on failure

 account_signatures_get_account_signatures(connection, account_id, opts \\ [])

 @spec account_signatures_get_account_signatures(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountSignaturesInformation.t()}
 | {:error, Req.Response.t()}

Returns a list of stamps available in the account.
Returns a list of stamps available in the account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:stamp_format (String.t): The format of the stamp to return. Valid values: - NameDateHanko - NameHanko - PlaceholderHanko
	:stamp_name (String.t): The name associated with the stamps to return. This value can be a Japanese surname (up to 5 characters) or a purchase order ID.
	:stamp_type (String.t): The type of the stamps to return. Valid values: - name_stamp - stamp - signature

Returns
	{:ok, DocuSign.Model.AccountSignaturesInformation.t} on success
	{:error, Req.Response.t} on failure

 account_signatures_post_account_signatures(connection, account_id, opts \\ [])

 @spec account_signatures_post_account_signatures(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountSignaturesInformation.t()}
 | {:error, Req.Response.t()}

Adds or updates one or more account stamps.
Adds or updates one or more account stamps.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:decode_only (String.t):
	:body (AccountSignaturesInformation):

Returns
	{:ok, DocuSign.Model.AccountSignaturesInformation.t} on success
	{:error, Req.Response.t} on failure

 account_signatures_put_account_signature(connection, account_id, opts \\ [])

 @spec account_signatures_put_account_signature(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountSignaturesInformation.t()}
 | {:error, Req.Response.t()}

Updates an account stamp.
Adds or updates one or more account stamps. This request may include images in multi-part format.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (AccountSignaturesInformation):

Returns
	{:ok, DocuSign.Model.AccountSignaturesInformation.t} on success
	{:error, Req.Response.t} on failure

 account_signatures_put_account_signature_by_id(connection, account_id, signature_id, opts \\ [])

 @spec account_signatures_put_account_signature_by_id(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.AccountSignature.t()} | {:error, Req.Response.t()}

Updates an account stamp by ID.
Updates an account stamp specified by the signatureId query parameter.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	signature_id (String.t): The ID of the account stamp.
	opts (keyword): Optional parameters	:close_existing_signature (String.t): When true, closes the current signature.
	:body (AccountSignatureDefinition):

Returns
	{:ok, DocuSign.Model.AccountSignature.t} on success
	{:error, Req.Response.t} on failure

 account_signatures_put_account_signature_image(connection, account_id, image_type, signature_id, opts \\ [])

 @spec account_signatures_put_account_signature_image(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.AccountSignature.t()} | {:error, Req.Response.t()}

Sets a signature image, initials, or stamp.
Sets a signature image, initials, or stamp.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	image_type (String.t): Specificies the type of image. Valid values: - stamp_image - signature_image - initials_image
	signature_id (String.t): The ID of the account stamp.
	opts (keyword): Optional parameters	:transparent_png (String.t):

Returns
	{:ok, DocuSign.Model.AccountSignature.t} on success
	{:error, Req.Response.t} on failure

DocuSign.Api.AccountTabSettings

API calls for all endpoints tagged AccountTabSettings.

 Summary

 Functions

 tab_settings_get_tab_settings(connection, account_id, opts \\ [])

 Returns tab settings list for specified account
This method returns information about the tab types and tab functionality that is currently enabled for an account.

 tab_settings_put_settings(connection, account_id, opts \\ [])

 Modifies tab settings for specified account
This method modifies the tab types and tab functionality that is enabled for an account.

 Functions

 tab_settings_get_tab_settings(connection, account_id, opts \\ [])

 @spec tab_settings_get_tab_settings(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.TabAccountSettings.t()} | {:error, Req.Response.t()}

Returns tab settings list for specified account
This method returns information about the tab types and tab functionality that is currently enabled for an account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.TabAccountSettings.t} on success
	{:error, Req.Response.t} on failure

 tab_settings_put_settings(connection, account_id, opts \\ [])

 @spec tab_settings_put_settings(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.TabAccountSettings.t()} | {:error, Req.Response.t()}

Modifies tab settings for specified account
This method modifies the tab types and tab functionality that is enabled for an account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (TabAccountSettings): Account-wide tab settings.

Returns
	{:ok, DocuSign.Model.TabAccountSettings.t} on success
	{:error, Req.Response.t} on failure

DocuSign.Api.AccountWatermarks

API calls for all endpoints tagged AccountWatermarks.

 Summary

 Functions

 watermark_get_watermark(connection, account_id, opts \\ [])

 Get watermark information.
Enables you to preview a watermark specified by the request.

 watermark_preview_put_watermark_preview(connection, account_id, opts \\ [])

 Get watermark preview.
Update the watermark for the account. Note: Many of the request fields must be set to specific values. If you use an invalid value for one of these fields, the endpoint may return 200 OK but set the field to a default value. See the request body for more information.

 watermark_put_watermark(connection, account_id, opts \\ [])

 Update watermark information.
Returns information about the watermark for the account.

 Functions

 watermark_get_watermark(connection, account_id, opts \\ [])

 @spec watermark_get_watermark(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.Watermark.t()} | {:error, Req.Response.t()}

Get watermark information.
Enables you to preview a watermark specified by the request.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.Watermark.t} on success
	{:error, Req.Response.t} on failure

 watermark_preview_put_watermark_preview(connection, account_id, opts \\ [])

 @spec watermark_preview_put_watermark_preview(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.Watermark.t()} | {:error, Req.Response.t()}

Get watermark preview.
Update the watermark for the account. Note: Many of the request fields must be set to specific values. If you use an invalid value for one of these fields, the endpoint may return 200 OK but set the field to a default value. See the request body for more information.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (Watermark): When true, the account has the watermark feature enabled, and the envelope is not complete, then the watermark for the account is added to the PDF documents. This option can remove the watermark.

Returns
	{:ok, DocuSign.Model.Watermark.t} on success
	{:error, Req.Response.t} on failure

 watermark_put_watermark(connection, account_id, opts \\ [])

 @spec watermark_put_watermark(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.Watermark.t()} | {:error, Req.Response.t()}

Update watermark information.
Returns information about the watermark for the account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (Watermark): When true, the account has the watermark feature enabled, and the envelope is not complete, then the watermark for the account is added to the PDF documents. This option can remove the watermark.

Returns
	{:ok, DocuSign.Model.Watermark.t} on success
	{:error, Req.Response.t} on failure

DocuSign.Api.Accounts

API calls for all endpoints tagged Accounts.

 Summary

 Functions

 accounts_delete_account(connection, account_id, opts \\ [])

 Deletes the specified account.
This closes the specified account. You must be an account admin to close your account. Once closed, an account must be reopened by Docusign.

 accounts_get_account(connection, account_id, opts \\ [])

 Retrieves the account information for the specified account.
Retrieves the account information for the specified account.

 accounts_get_provisioning(connection, opts \\ [])

 Retrieves the account provisioning information for the account.
Retrieves the account provisioning information for the account.

 accounts_post_accounts(connection, opts \\ [])

 Creates new accounts.
Creates new Docusign accounts. You can use this method to create a single account or up to 100 accounts at a time. Note: This method is restricted to partner integrations. You must work with Docusign Professional Services or Docusign Business Development, who will provide you with the Distributor Code and Distributor Password that you need to include in the request body. When creating a single account, the body of the request is a [newAccountRequest][newAccountRequest] object. Example: { "newAccountRequest": [{ "accountName":"Test Account", "distributorCode":"MY_DIST_CODE", "distributorPassword":"MY_DIST_PWD", "initialUser":{ "email":"user@emaildomain.com", "firstName":"John", "middleName": "Harry", "lastName":"Doe", "suffixName": "", "userName": "John Doe", "jobTitle": "Engineer", "company": "Test Company" }, "addressInformation":{ "address1": "1234 Main Street", "address2": "Suite 100", "city": "Seattle", "state": "WA", "postalCode": "98101", "country": "US", "phone": "1234567890", "fax": "1234567891" }, "planInformation":{ "planId":"37085696-xxxx-xxxx-xxxx-7ea067752959" }, "referralInformation":{ "includedSeats": "1", "referralCode": "code", "referrerName": "name" } }] } If the request succeeds, it returns a 201 (Created) HTTP response code. The response returns the new account ID, password, and the default user information for each newly created account. When creating multiple accounts, the body of the request is a newAccountRequests object, which contains one or more [newAccountDefinition][newAccountDefinition] objects. You can create up to 100 new accounts at a time this way. The body for a multi-account creation request looks like this in JSON: { "newAccountRequests": [{ "accountName": "accountone", . . . }, { "accountName": "accounttwo", . . . }] } A multi-account request looks like this in XML: <newAccountsDefinition xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.docusign.com/restapi"> <newAccountRequests> <newAccountDefinition> . . . </newAccountDefinition> <newAccountDefinition> . . . </newAccountDefinition> </newAccountRequests> </newAccountsDefinition> A multi-account creation request may succeed (report a 201 code) even if some accounts could not be created. In this case, the errorDetails property in the response contains specific information about the failure. [newAccountDefinition]: #/definitions/newAccountDefinition [nameValue]: #/definitions/nameValue [newAccountRequest]: #/definitions/newAccountRequest

 billing_charges_get_account_billing_charges(connection, account_id, opts \\ [])

 Gets list of recurring and usage charges for the account.
Retrieves the list of recurring and usage charges for the account. This can be used to determine the charge structure and usage of charge plan items. Privileges required: account administrator

 captive_recipients_delete_captive_recipients_part(connection, account_id, recipient_part, opts \\ [])

 Deletes the signature for one or more captive recipient records.
This method deletes the signature for one or more captive recipient records. It is primarily used for testing. This functionality provides a way to reset the signature associated with a client user ID so that a new signature can be created the next time the client user ID is used.

 envelope_purge_configuration_get_envelope_purge_configuration(connection, account_id, opts \\ [])

 Gets the envelope purge configuration for an account.
An envelope purge configuration enables account administrators to permanently remove documents and their field data from completed and voided envelopes after a specified retention period (retentionDays). This method retrieves the current envelope purge configuration for your account. Note: To use this method, you must be an account administrator.

 envelope_purge_configuration_put_envelope_purge_configuration(connection, account_id, opts \\ [])

 Sets the envelope purge configuration for an account.
An envelope purge configuration enables account administrators to permanently remove documents and their field data from completed and voided envelopes after a specified retention period (retentionDays). This method sets the envelope purge configuration for your account. Note: To use this method, you must be an account administrator. For more information, see Purge Envelopes.

 notification_defaults_get_notification_defaults(connection, account_id, opts \\ [])

 Gets envelope notification defaults.
This method returns the default settings for the email notifications that signers and senders receive about envelopes.

 notification_defaults_put_notification_defaults(connection, account_id, opts \\ [])

 Updates envelope notification default settings.
This method changes the default settings for the email notifications that signers and senders receive about envelopes.

 recipient_names_get_recipient_names(connection, account_id, opts \\ [])

 Gets the recipient names associated with an email address.
Retrieves a list of all of the names associated with the email address that you pass in. This list can include variants of a single recipient's name that are used for signing, as well as the names of multiple different recipients.

 settings_get_settings(connection, account_id, opts \\ [])

 Gets account settings information.
Retrieves the account settings information for the specified account.

 settings_put_settings(connection, account_id, opts \\ [])

 Updates the account settings for an account.
Updates the account settings for the specified account. Although the request body for this method is a complete accountSettingsInformation object, you only need to provide the properties that you are updating.

 shared_access_get_shared_access(connection, account_id, opts \\ [])

 Reserved: Gets the shared item status for one or more users.
Retrieves shared item status for one or more users and types of items. Users with account administration privileges can retrieve shared access information for all account users. Users without account administrator privileges can only retrieve shared access information for themselves, and the returned information is limited to retrieving the status of the members of the account that are sharing their folders to the user. This is equivalent to setting the shared parameter to shared_from. Note: This endpoint returns the shared status for the legacy Shared Envelopes feature. To use the new Shared Access feature, use the Authorizations resource. ### Related topics - How to share access to a Docusign envelope inbox

 shared_access_put_shared_access(connection, account_id, opts \\ [])

 Reserved: Sets the shared access information for users.
This sets the shared access status for one or more users or templates. When setting user shared access, only users with account administration privileges can set shared access status for envelopes. When setting template shared access, only users who own a template and have sharing permission or with account administration privileges can set shared access for templates. Changes to the shared items status are not additive. The change always replaces the current status. To change template shared access, add the query parameter item_type = templates to the request. When this is set, the user and envelopes properties are not required. Note: This functionality is a newer version of the Update Group Share functionality. ### Related topics - How to share access to a Docusign envelope inbox

 supported_languages_get_supported_languages(connection, account_id, opts \\ [])

 Gets the supported languages for envelope recipients.
Retrieves a list of supported languages that you can set for an individual recipient when creating an envelope, as well as their simple type enumeration values. These are the languages that you can set for the standard email format and signing view for each recipient. For example, in the recipient's email notification, this setting affects elements such as the standard introductory text describing the request to sign. It also determines the language used for buttons and tabs in both the email notification and the signing experience. Note: Setting a language for a recipient affects only the Docusign standard text. Any custom text that you enter for the emailBody and emailSubject of the notification is not translated, and appears exactly as you enter it. For more information, see Set Recipient Language and Specify Custom Email Messages.

 unsupported_file_types_get_unsupported_file_types(connection, account_id, opts \\ [])

 Gets a list of unsupported file types.
Retrieves a list of file types (mime-types and file-extensions) that are not supported for upload through the Docusign system.

 Functions

 accounts_delete_account(connection, account_id, opts \\ [])

 @spec accounts_delete_account(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Req.Response.t()}

Deletes the specified account.
This closes the specified account. You must be an account admin to close your account. Once closed, an account must be reopened by Docusign.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:redact_user_data (String.t):

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 accounts_get_account(connection, account_id, opts \\ [])

 @spec accounts_get_account(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.AccountInformation.t()} | {:error, Req.Response.t()}

Retrieves the account information for the specified account.
Retrieves the account information for the specified account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:include_account_settings (String.t): When true, includes account settings in the response. The default value is false.
	:include_trial_eligibility (String.t):

Returns
	{:ok, DocuSign.Model.AccountInformation.t} on success
	{:error, Req.Response.t} on failure

 accounts_get_provisioning(connection, opts \\ [])

 @spec accounts_get_provisioning(
 DocuSign.Connection.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ProvisioningInformation.t()} | {:error, Req.Response.t()}

Retrieves the account provisioning information for the account.
Retrieves the account provisioning information for the account.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ProvisioningInformation.t} on success
	{:error, Req.Response.t} on failure

 accounts_post_accounts(connection, opts \\ [])

 @spec accounts_post_accounts(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, DocuSign.Model.NewAccountSummary.t()} | {:error, Req.Response.t()}

Creates new accounts.
Creates new Docusign accounts. You can use this method to create a single account or up to 100 accounts at a time. Note: This method is restricted to partner integrations. You must work with Docusign Professional Services or Docusign Business Development, who will provide you with the Distributor Code and Distributor Password that you need to include in the request body. When creating a single account, the body of the request is a [newAccountRequest][newAccountRequest] object. Example: { "newAccountRequest": [{ "accountName":"Test Account", "distributorCode":"MY_DIST_CODE", "distributorPassword":"MY_DIST_PWD", "initialUser":{ "email":"user@emaildomain.com", "firstName":"John", "middleName": "Harry", "lastName":"Doe", "suffixName": "", "userName": "John Doe", "jobTitle": "Engineer", "company": "Test Company" }, "addressInformation":{ "address1": "1234 Main Street", "address2": "Suite 100", "city": "Seattle", "state": "WA", "postalCode": "98101", "country": "US", "phone": "1234567890", "fax": "1234567891" }, "planInformation":{ "planId":"37085696-xxxx-xxxx-xxxx-7ea067752959" }, "referralInformation":{ "includedSeats": "1", "referralCode": "code", "referrerName": "name" } }] } If the request succeeds, it returns a 201 (Created) HTTP response code. The response returns the new account ID, password, and the default user information for each newly created account. When creating multiple accounts, the body of the request is a newAccountRequests object, which contains one or more [newAccountDefinition][newAccountDefinition] objects. You can create up to 100 new accounts at a time this way. The body for a multi-account creation request looks like this in JSON: { "newAccountRequests": [{ "accountName": "accountone", . . . }, { "accountName": "accounttwo", . . . }] } A multi-account request looks like this in XML: <newAccountsDefinition xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.docusign.com/restapi"> <newAccountRequests> <newAccountDefinition> . . . </newAccountDefinition> <newAccountDefinition> . . . </newAccountDefinition> </newAccountRequests> </newAccountsDefinition> A multi-account creation request may succeed (report a 201 code) even if some accounts could not be created. In this case, the errorDetails property in the response contains specific information about the failure. [newAccountDefinition]: #/definitions/newAccountDefinition [nameValue]: #/definitions/nameValue [newAccountRequest]: #/definitions/newAccountRequest
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters	:body (NewAccountDefinition):

Returns
	{:ok, DocuSign.Model.NewAccountSummary.t} on success
	{:error, Req.Response.t} on failure

 billing_charges_get_account_billing_charges(connection, account_id, opts \\ [])

 @spec billing_charges_get_account_billing_charges(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BillingChargeResponse.t()} | {:error, Req.Response.t()}

Gets list of recurring and usage charges for the account.
Retrieves the list of recurring and usage charges for the account. This can be used to determine the charge structure and usage of charge plan items. Privileges required: account administrator
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:include_charges (String.t): Specifies which billing charges to return. Valid values are: envelopes seats

Returns
	{:ok, DocuSign.Model.BillingChargeResponse.t} on success
	{:error, Req.Response.t} on failure

 captive_recipients_delete_captive_recipients_part(connection, account_id, recipient_part, opts \\ [])

 @spec captive_recipients_delete_captive_recipients_part(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.CaptiveRecipientInformation.t()}
 | {:error, Req.Response.t()}

Deletes the signature for one or more captive recipient records.
This method deletes the signature for one or more captive recipient records. It is primarily used for testing. This functionality provides a way to reset the signature associated with a client user ID so that a new signature can be created the next time the client user ID is used.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	recipient_part (String.t): Signature is the only supported value.
	opts (keyword): Optional parameters	:body (CaptiveRecipientInformation):

Returns
	{:ok, DocuSign.Model.CaptiveRecipientInformation.t} on success
	{:error, Req.Response.t} on failure

 envelope_purge_configuration_get_envelope_purge_configuration(connection, account_id, opts \\ [])

 @spec envelope_purge_configuration_get_envelope_purge_configuration(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopePurgeConfiguration.t()}
 | {:error, Req.Response.t()}

Gets the envelope purge configuration for an account.
An envelope purge configuration enables account administrators to permanently remove documents and their field data from completed and voided envelopes after a specified retention period (retentionDays). This method retrieves the current envelope purge configuration for your account. Note: To use this method, you must be an account administrator.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.EnvelopePurgeConfiguration.t} on success
	{:error, Req.Response.t} on failure

 envelope_purge_configuration_put_envelope_purge_configuration(connection, account_id, opts \\ [])

 @spec envelope_purge_configuration_put_envelope_purge_configuration(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopePurgeConfiguration.t()}
 | {:error, Req.Response.t()}

Sets the envelope purge configuration for an account.
An envelope purge configuration enables account administrators to permanently remove documents and their field data from completed and voided envelopes after a specified retention period (retentionDays). This method sets the envelope purge configuration for your account. Note: To use this method, you must be an account administrator. For more information, see

 DocuSign.Api.Authorizations - DocuSign v3.1.0

DocuSign.Api.Authorizations

API calls for all endpoints tagged Authorizations.

 Summary

 Functions

 user_agent_authorizations_get_agent_user_authorizations(connection, account_id, user_id, opts \\ [])

 Returns the authorizations for which the specified user is the agent user.
Returns the user authorizations for which the user specified by userId is the agent user. If the calling user is an account administrator, the full results will be returned. Otherwise, only authorizations for which the calling user is the principal user will be returned.

 user_authorization_create_user_authorization(connection, account_id, user_id, opts \\ [])

 Creates a user authorization.
Creates an authorization allowing one user to send and/or manage envelopes on behalf of another user. The agent user acts on behalf of the principal user. The principal user is specified by the userId path parameter. The agent user is specified in the request body. Each principal user can only share signing permission with one agent user. Specify in the request the level of access to share with the agent user. If you share signing access, the agent user will receive an email notification. To call this endpoint: You must be an account administrator or you must be the principal user. The agent user and principal user must belong to the same account. * At least one of the following account settings must be enabled: AllowDelegatedSigning, AllowManagingEnvelopesOnBehalfOfOthers, AllowEditingEnvelopesOnBehalfOfOthers, AllowSendingEnvelopesOnBehalfOfOthers. These settings correspond to the level of access you can set for the authorization.

 user_authorization_delete_user_authorization(connection, account_id, authorization_id, user_id, opts \\ [])

 Deletes the user authorization.
Deletes the user authorization specified by the authorizationId. To call this endpoint, you must be an account administrator or you must be the principal user for the specified authorization.

 user_authorization_get_user_authorization(connection, account_id, authorization_id, user_id, opts \\ [])

 Returns the user authorization for a given authorization ID.
Returns the details for the user authorization specified by the authorizationId. To call this endpoint, you must be an account administrator or you must be the principal user for the specified authorization.

 user_authorization_update_user_authorization(connection, account_id, authorization_id, user_id, opts \\ [])

 Updates the start or end date for a user authorization.
Updates the start and/or end date for a given user authorization. Specify the user authorization and principal user with the path parameters. To call this endpoint, you must be an account administrator or you must be the principal user for the specified authorization.

 user_authorizations_delete_user_authorizations(connection, account_id, user_id, opts \\ [])

 Delete multiple user authorizations.
Delete one or more user authorizations for a given principal user. The principal user is specified by the userId path parameter. To call this endpoint, you must be an account administrator or you must be the principal user for the specified authorizations.

 user_authorizations_get_principal_user_authorizations(connection, account_id, user_id, opts \\ [])

 Returns the authorizations for which the specified user is the principal user.
Returns the user authorizations for which the user specified by userId is the principal user. To call this endpoint, you must be an account administrator or you must be the specified principal user.

 user_authorizations_post_user_authorizations(connection, account_id, user_id, opts \\ [])

 Create or update multiple user authorizations.
Create or update multiple user authorizations in a single request. The body of the request is a list of userAuthorizationSomething objects. To create a new authorization, specify the agentUser and permission fields, with the optional startDate and endDate fields. To update an existing authorization, specify the authorizationId field and the startDate and/or endDate fields. For example, to create a new authorization and update the end date of an existing authorization, your request body might look like this: { "authorizations": [{ "agentUser": { "userId": "1470ff66-xxxx-xxxx-xxxx-8c46f140da37", "accountId": "230546a7-xxxx-xxxx-xxxx-af205d5494ad" }, "permission": "manage" }, { "authorizationId": "b73ac983-xxxx-xxxx-xxxx-b3c0ea5b09d3", "endDate": "2023-05-09T21:36:27.0000000+00:00" }] } The principal user is specified by the userId path parameter. To call this endpoint, you must be an account administrator or the principal user. Note: To create an authorization with signing permission, the AllowDelegationSigning setting must be enabled on the account. If you share signing access, the agent user will receive an email notification. Each principal user can only share signing permission with one agent user.

 Functions

 user_agent_authorizations_get_agent_user_authorizations(connection, account_id, user_id, opts \\ [])

 @spec user_agent_authorizations_get_agent_user_authorizations(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.UserAuthorizations.t()} | {:error, Req.Response.t()}

Returns the authorizations for which the specified user is the agent user.
Returns the user authorizations for which the user specified by userId is the agent user. If the calling user is an account administrator, the full results will be returned. Otherwise, only authorizations for which the calling user is the principal user will be returned.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The user who is acting as the agent.
	opts (keyword): Optional parameters	:active_only (String.t): When true, only active users are returned. The default value is false.
	:count (String.t): The maximum number of results to return.
	:email_substring (String.t): Filters returned user records by full email address or a substring of email address.
	:include_closed_users (String.t): When true, returns active and scheduled authorizations of closed users. The default value is true. This value is only applied when active_only is false.
	:permissions (String.t):
	:start_position (String.t): The position within the total result set from which to start returning values. The value thumbnail may be used to return the page image.
	:user_name_substring (String.t): Filters results based on a full or partial user name. Note: When you enter a partial user name, you do not use a wildcard character.

Returns
	{:ok, DocuSign.Model.UserAuthorizations.t} on success
	{:error, Req.Response.t} on failure

 user_authorization_create_user_authorization(connection, account_id, user_id, opts \\ [])

 @spec user_authorization_create_user_authorization(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.UserAuthorization.t()} | {:error, Req.Response.t()}

Creates a user authorization.
Creates an authorization allowing one user to send and/or manage envelopes on behalf of another user. The agent user acts on behalf of the principal user. The principal user is specified by the userId path parameter. The agent user is specified in the request body. Each principal user can only share signing permission with one agent user. Specify in the request the level of access to share with the agent user. If you share signing access, the agent user will receive an email notification. To call this endpoint: You must be an account administrator or you must be the principal user. The agent user and principal user must belong to the same account. * At least one of the following account settings must be enabled: AllowDelegatedSigning, AllowManagingEnvelopesOnBehalfOfOthers, AllowEditingEnvelopesOnBehalfOfOthers, AllowSendingEnvelopesOnBehalfOfOthers. These settings correspond to the level of access you can set for the authorization.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the principal user.
	opts (keyword): Optional parameters	:body (UserAuthorizationCreateRequest):

Returns
	{:ok, DocuSign.Model.UserAuthorization.t} on success
	{:error, Req.Response.t} on failure

 user_authorization_delete_user_authorization(connection, account_id, authorization_id, user_id, opts \\ [])

 @spec user_authorization_delete_user_authorization(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes the user authorization.
Deletes the user authorization specified by the authorizationId. To call this endpoint, you must be an account administrator or you must be the principal user for the specified authorization.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	authorization_id (String.t): The ID of the user authorization.
	user_id (String.t): The ID of the principal user.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 user_authorization_get_user_authorization(connection, account_id, authorization_id, user_id, opts \\ [])

 @spec user_authorization_get_user_authorization(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.UserAuthorization.t()} | {:error, Req.Response.t()}

Returns the user authorization for a given authorization ID.
Returns the details for the user authorization specified by the authorizationId. To call this endpoint, you must be an account administrator or you must be the principal user for the specified authorization.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	authorization_id (String.t): The ID of the user authorization.
	user_id (String.t): The ID of the principal user.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.UserAuthorization.t} on success
	{:error, Req.Response.t} on failure

 user_authorization_update_user_authorization(connection, account_id, authorization_id, user_id, opts \\ [])

 @spec user_authorization_update_user_authorization(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.UserAuthorization.t()} | {:error, Req.Response.t()}

Updates the start or end date for a user authorization.
Updates the start and/or end date for a given user authorization. Specify the user authorization and principal user with the path parameters. To call this endpoint, you must be an account administrator or you must be the principal user for the specified authorization.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	authorization_id (String.t): The ID of the user authorization.
	user_id (String.t): The ID of the principal user.
	opts (keyword): Optional parameters	:body (UserAuthorizationUpdateRequest):

Returns
	{:ok, DocuSign.Model.UserAuthorization.t} on success
	{:error, Req.Response.t} on failure

 user_authorizations_delete_user_authorizations(connection, account_id, user_id, opts \\ [])

 @spec user_authorizations_delete_user_authorizations(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.UserAuthorizationsDeleteResponse.t()}
 | {:error, Req.Response.t()}

Delete multiple user authorizations.
Delete one or more user authorizations for a given principal user. The principal user is specified by the userId path parameter. To call this endpoint, you must be an account administrator or you must be the principal user for the specified authorizations.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the principal user.
	opts (keyword): Optional parameters	:body (UserAuthorizationsDeleteRequest):

Returns
	{:ok, DocuSign.Model.UserAuthorizationsDeleteResponse.t} on success
	{:error, Req.Response.t} on failure

 user_authorizations_get_principal_user_authorizations(connection, account_id, user_id, opts \\ [])

 @spec user_authorizations_get_principal_user_authorizations(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.UserAuthorizations.t()} | {:error, Req.Response.t()}

Returns the authorizations for which the specified user is the principal user.
Returns the user authorizations for which the user specified by userId is the principal user. To call this endpoint, you must be an account administrator or you must be the specified principal user.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the principal user.
	opts (keyword): Optional parameters	:active_only (String.t): When true, return only active authorizations. The default value is true.
	:count (String.t): The maximum number of results to return.
	:email_substring (String.t): Filters returned user records by full email address or a substring of email address.
	:include_closed_users (String.t): When true, returns active and scheduled authorizations of closed users. The default value is true. This value is only applied when active_only is false.
	:permissions (String.t): Filters results by authorization permission. Valid values: Send Manage * Sign
	:start_position (String.t): The position within the total result set from which to start returning values. The value thumbnail may be used to return the page image.
	:user_name_substring (String.t): Filters results based on a full or partial user name. Note: When you enter a partial user name, you do not use a wildcard character.

Returns
	{:ok, DocuSign.Model.UserAuthorizations.t} on success
	{:error, Req.Response.t} on failure

 user_authorizations_post_user_authorizations(connection, account_id, user_id, opts \\ [])

 @spec user_authorizations_post_user_authorizations(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.UserAuthorizationsResponse.t()}
 | {:error, Req.Response.t()}

Create or update multiple user authorizations.
Create or update multiple user authorizations in a single request. The body of the request is a list of userAuthorizationSomething objects. To create a new authorization, specify the agentUser and permission fields, with the optional startDate and endDate fields. To update an existing authorization, specify the authorizationId field and the startDate and/or endDate fields. For example, to create a new authorization and update the end date of an existing authorization, your request body might look like this: { "authorizations": [{ "agentUser": { "userId": "1470ff66-xxxx-xxxx-xxxx-8c46f140da37", "accountId": "230546a7-xxxx-xxxx-xxxx-af205d5494ad" }, "permission": "manage" }, { "authorizationId": "b73ac983-xxxx-xxxx-xxxx-b3c0ea5b09d3", "endDate": "2023-05-09T21:36:27.0000000+00:00" }] } The principal user is specified by the userId path parameter. To call this endpoint, you must be an account administrator or the principal user. Note: To create an authorization with signing permission, the AllowDelegationSigning setting must be enabled on the account. If you share signing access, the agent user will receive an email notification. Each principal user can only share signing permission with one agent user.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the principal user.
	opts (keyword): Optional parameters	:body (UserAuthorizationsRequest):

Returns
	{:ok, DocuSign.Model.UserAuthorizationsResponse.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.BCCEmailArchive - DocuSign v3.1.0

DocuSign.Api.BCCEmailArchive

API calls for all endpoints tagged BCCEmailArchive.

 Summary

 Functions

 b_cc_email_archive_delete_bcc_email_archive(connection, account_id, bcc_email_archive_id, opts \\ [])

 Deletes a BCC email archive configuration.
This method deletes a BCC email archive configuration from an account. When you use this method, the status of the BCC email archive configuration switches to closed and the BCC email address is no longer used to archive Docusign-generated email messages.

 b_cc_email_archive_get_bcc_email_archive_history_list(connection, account_id, bcc_email_archive_id, opts \\ [])

 Gets a BCC email archive configuration and its history.
This method returns a specific BCC email archive configuration for an account, as well as the history of changes to the email address.

 b_cc_email_archive_get_bcc_email_archive_list(connection, account_id, opts \\ [])

 Gets the BCC email archive configurations for an account.
This method retrieves all of the BCC email archive configurations associated with an account.

 b_cc_email_archive_post_bcc_email_archive(connection, account_id, opts \\ [])

 Creates a BCC email archive configuration.
This method creates a BCC email archive configuration for an account (adds a BCC email address to the account for archiving the emails that Docusign generates). The only property that you must set in the request body is the BCC email address that you want to use. Note: An account can have up to five active and pending email archive addresses combined, but you must use this method to add them to the account one at a time. Each email address is considered a separate BCC email archive configuration.

 Functions

 b_cc_email_archive_delete_bcc_email_archive(connection, account_id, bcc_email_archive_id, opts \\ [])

 @spec b_cc_email_archive_delete_bcc_email_archive(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes a BCC email archive configuration.
This method deletes a BCC email archive configuration from an account. When you use this method, the status of the BCC email archive configuration switches to closed and the BCC email address is no longer used to archive Docusign-generated email messages.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	bcc_email_archive_id (String.t): The ID of the BCC email archive configuration.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 b_cc_email_archive_get_bcc_email_archive_history_list(connection, account_id, bcc_email_archive_id, opts \\ [])

 @spec b_cc_email_archive_get_bcc_email_archive_history_list(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BccEmailArchiveHistoryList.t()}
 | {:error, Req.Response.t()}

Gets a BCC email archive configuration and its history.
This method returns a specific BCC email archive configuration for an account, as well as the history of changes to the email address.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	bcc_email_archive_id (String.t): The ID of the BCC email archive configuration.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return. Use start_position to specify the number of items to skip.
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.

Returns
	{:ok, DocuSign.Model.BccEmailArchiveHistoryList.t} on success
	{:error, Req.Response.t} on failure

 b_cc_email_archive_get_bcc_email_archive_list(connection, account_id, opts \\ [])

 @spec b_cc_email_archive_get_bcc_email_archive_list(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BccEmailArchiveList.t()} | {:error, Req.Response.t()}

Gets the BCC email archive configurations for an account.
This method retrieves all of the BCC email archive configurations associated with an account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return. Use start_position to specify the number of results to skip.
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.

Returns
	{:ok, DocuSign.Model.BccEmailArchiveList.t} on success
	{:error, Req.Response.t} on failure

 b_cc_email_archive_post_bcc_email_archive(connection, account_id, opts \\ [])

 @spec b_cc_email_archive_post_bcc_email_archive(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BccEmailArchive.t()} | {:error, Req.Response.t()}

Creates a BCC email archive configuration.
This method creates a BCC email archive configuration for an account (adds a BCC email address to the account for archiving the emails that Docusign generates). The only property that you must set in the request body is the BCC email address that you want to use. Note: An account can have up to five active and pending email archive addresses combined, but you must use this method to add them to the account one at a time. Each email address is considered a separate BCC email archive configuration.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (BccEmailArchive): Boolean that specifies whether BCC for Email Archive is enabled for the account. BCC for Email Archive allows you to set up an archive email address so that a BCC copy of an envelope is sent only to that address.

Returns
	{:ok, DocuSign.Model.BccEmailArchive.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.BillingPlans - DocuSign v3.1.0

DocuSign.Api.BillingPlans

API calls for all endpoints tagged BillingPlans.

 Summary

 Functions

 billing_plan_get_billing_plan(connection, account_id, opts \\ [])

 Get Account Billing Plan
Retrieves the billing plan information for the specified account, including the current billing plan, successor plans, billing address, and billing credit card. By default the successor plan and credit card information is included in the response. You can exclude this information from the response by adding the appropriate optional query string and setting it to false. Response The response returns the billing plan information, including the currency code, for the plan. The billingPlan and succesorPlans property values are the same as those shown in the Billing: getBillingPlan reference. the billingAddress and creditCardInformation property values are the same as those shown in the Billing: updatePlan reference. Note: When credit card number information displays, a mask is applied to the response so that only the last 4 digits of the card number are visible.

 billing_plan_get_credit_card_info(connection, account_id, opts \\ [])

 Get credit card information
This method returns information about a credit card associated with an account.

 billing_plan_get_downgrade_request_billing_info(connection, account_id, opts \\ [])

 Returns downgrade plan information for the specified account.

 billing_plan_put_billing_plan(connection, account_id, opts \\ [])

 Updates an account billing plan.
Updates the billing plan information, billing address, and credit card information for the specified account.

 billing_plan_put_downgrade_account_billing_plan(connection, account_id, opts \\ [])

 Queues downgrade billing plan request for an account.

 billing_plans_get_billing_plan(connection, billing_plan_id, opts \\ [])

 Gets billing plan details.
Retrieves the billing plan details for the specified billing plan ID.

 billing_plans_get_billing_plans(connection, opts \\ [])

 Gets a list of available billing plans.
Retrieves a list of the billing plans associated with a distributor.

 purchased_envelopes_put_purchased_envelopes(connection, account_id, opts \\ [])

 Reserved: Purchase additional envelopes.
Reserved: At this time, this endpoint is limited to Docusign internal use only. Completes the purchase of envelopes for your account. The actual purchase is done as part of an internal workflow interaction with an envelope vendor.

 Functions

 billing_plan_get_billing_plan(connection, account_id, opts \\ [])

 @spec billing_plan_get_billing_plan(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.AccountBillingPlanResponse.t()}
 | {:error, Req.Response.t()}

Get Account Billing Plan
Retrieves the billing plan information for the specified account, including the current billing plan, successor plans, billing address, and billing credit card. By default the successor plan and credit card information is included in the response. You can exclude this information from the response by adding the appropriate optional query string and setting it to false. Response The response returns the billing plan information, including the currency code, for the plan. The billingPlan and succesorPlans property values are the same as those shown in the Billing: getBillingPlan reference. the billingAddress and creditCardInformation property values are the same as those shown in the Billing: updatePlan reference. Note: When credit card number information displays, a mask is applied to the response so that only the last 4 digits of the card number are visible.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:include_credit_card_information (String.t): When true, payment information including credit card information will show in the return.
	:include_downgrade_information (String.t):
	:include_metadata (String.t): When true, the canUpgrade and renewalStatus properties are included the response and an array of supportedCountries is added to the billingAddress information.
	:include_successor_plans (String.t): When true, excludes successor information from the response.
	:include_tax_exempt_id (String.t):

Returns
	{:ok, DocuSign.Model.AccountBillingPlanResponse.t} on success
	{:error, Req.Response.t} on failure

 billing_plan_get_credit_card_info(connection, account_id, opts \\ [])

 @spec billing_plan_get_credit_card_info(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.CreditCardInformation.t()} | {:error, Req.Response.t()}

Get credit card information
This method returns information about a credit card associated with an account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.CreditCardInformation.t} on success
	{:error, Req.Response.t} on failure

 billing_plan_get_downgrade_request_billing_info(connection, account_id, opts \\ [])

 @spec billing_plan_get_downgrade_request_billing_info(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DowngradRequestBillingInfoResponse.t()}
 | {:error, Req.Response.t()}

Returns downgrade plan information for the specified account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DowngradRequestBillingInfoResponse.t} on success
	{:error, Req.Response.t} on failure

 billing_plan_put_billing_plan(connection, account_id, opts \\ [])

 @spec billing_plan_put_billing_plan(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.BillingPlanUpdateResponse.t()}
 | {:error, Req.Response.t()}

Updates an account billing plan.
Updates the billing plan information, billing address, and credit card information for the specified account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:preview_billing_plan (String.t): When true, updates the account using a preview billing plan.
	:body (BillingPlanInformation):

Returns
	{:ok, DocuSign.Model.BillingPlanUpdateResponse.t} on success
	{:error, Req.Response.t} on failure

 billing_plan_put_downgrade_account_billing_plan(connection, account_id, opts \\ [])

 @spec billing_plan_put_downgrade_account_billing_plan(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DowngradePlanUpdateResponse.t()}
 | {:error, Req.Response.t()}

Queues downgrade billing plan request for an account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (DowngradeBillingPlanInformation):

Returns
	{:ok, DocuSign.Model.DowngradePlanUpdateResponse.t} on success
	{:error, Req.Response.t} on failure

 billing_plans_get_billing_plan(connection, billing_plan_id, opts \\ [])

 @spec billing_plans_get_billing_plan(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.BillingPlanResponse.t()} | {:error, Req.Response.t()}

Gets billing plan details.
Retrieves the billing plan details for the specified billing plan ID.
Parameters
	connection (DocuSign.Connection): Connection to server
	billing_plan_id (String.t): The ID of the billing plan being accessed.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.BillingPlanResponse.t} on success
	{:error, Req.Response.t} on failure

 billing_plans_get_billing_plans(connection, opts \\ [])

 @spec billing_plans_get_billing_plans(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, DocuSign.Model.BillingPlansResponse.t()} | {:error, Req.Response.t()}

Gets a list of available billing plans.
Retrieves a list of the billing plans associated with a distributor.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.BillingPlansResponse.t} on success
	{:error, Req.Response.t} on failure

 purchased_envelopes_put_purchased_envelopes(connection, account_id, opts \\ [])

 @spec purchased_envelopes_put_purchased_envelopes(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Reserved: Purchase additional envelopes.
Reserved: At this time, this endpoint is limited to Docusign internal use only. Completes the purchase of envelopes for your account. The actual purchase is done as part of an internal workflow interaction with an envelope vendor.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (PurchasedEnvelopesInformation):

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.BulkSend - DocuSign v3.1.0

DocuSign.Api.BulkSend

API calls for all endpoints tagged BulkSend.

 Summary

 Functions

 bulk_send_v2_batch_get_bulk_send_batch_status(connection, account_id, bulk_send_batch_id, opts \\ [])

 Gets the status of a specific bulk send batch.
Gets the general status of a specific bulk send batch such as: - number of successes - number pending - number of errors The bulkErrors property of the response object contains more information about the errors. ### Related topics - How to bulk send envelopes

 bulk_send_v2_batch_get_bulk_send_batches(connection, account_id, opts \\ [])

 Returns a list of bulk send batch summaries.
Returns a summary of bulk send batches. Use the batch_ids query parameter to narrow the list of batches. You must specify exactly one of the following query parameters to get back a list of batch summaries: | Parameter | Description | | :---------------- | :--- | | from_date | A valid UTC DateTime: 2016-01-01 | | batch_ids | A comma-separated list of batch IDs to query. | If neither query parameter is provided, a high-level, account-wide, overall bulk send status report is returned.

 bulk_send_v2_batch_put_bulk_send_batch_action(connection, account_id, bulk_action, bulk_send_batch_id, opts \\ [])

 Applies a bulk action to all envelopes from a specified bulk send.
Use this endpoint to resend, correct, or void all envelopes from a specified bulk send.

 bulk_send_v2_batch_put_bulk_send_batch_status(connection, account_id, bulk_send_batch_id, opts \\ [])

 Updates the name of a bulk send batch.
Updates the name of a bulk send batch.

 bulk_send_v2_crud_delete_bulk_send_list(connection, account_id, bulk_send_list_id, opts \\ [])

 Deletes a bulk send list.
This method deletes a bulk send list.

 bulk_send_v2_crud_get_bulk_send_list(connection, account_id, bulk_send_list_id, opts \\ [])

 Gets a specific bulk send list.
This method returns all of the details associated with a specific bulk send list that belongs to the current user.

 bulk_send_v2_crud_get_bulk_send_lists(connection, account_id, opts \\ [])

 Gets bulk send lists.
This method returns a list of bulk send lists belonging to the current user, as well as basic information about each list.

 bulk_send_v2_crud_post_bulk_send_list(connection, account_id, opts \\ [])

 Creates a bulk send list.
This method creates a bulk send list that you can use to send an envelope to up to 1,000 recipients at once. ### Related topics - How to bulk send envelopes ### Errors | Error code | Description | | :-- | :--- | | BULK_SEND_MAX_COPIES_EXCEEDED | A bulk sending list cannot specify more than XXX copies in the mailing list. Call the settings API endpoint to find the maximum number of copies in a batch allowed for your account. In almost all cases, the default limit is 1000. | | BULK_SEND_RECIPIENT_IDS_MUST_BE_UNIQUE | No two recipientIds can be same within a bulkCopy. Same restriction as a regular envelope applies. Specify unique recipient IDs for each recipient within a bulkCopy (model for envelope in mailing list). | | BULK_SEND_RECIPIENT_ID_REQUIRED | If no RoleName is present, recipientID is required in mailing list's bulkCopy. Add a roleName (that coalesces with template/envelope) or a recipientID. | | BULK_SEND_RECIPIENT_NAME_REQUIRED | Recipient {0} has no name. Specify a name for the recipient. | | BULK_SEND_EMAIL_ADDRESS_REQUIRED_FOR_EMAIL_RECIPIENT | Recipient {0} is an email recipient with no email address. Specify an email for the email recipient. | | BULK_SEND_FAX_NUMBER_REQUIRED_FOR_FAX_RECIPIENT | Recipient {0} is a fax recipient with no fax number. Specify a fax number for the fax recipient. | | BULK_SEND_FAX_NUMBER_NOT_VALID | Recipient {0} specifies fax number {1}, which is not valid. Specify a valid fax number for the fax recipient. | | BULK_SEND_EMAIL_ADDRESS_NOT_VALID | Recipient {0} specifies email address {1}, which is not a valid email address. Specify a valid email address for the recipient. | | BULK_SEND_PHONE_NUMBER_REQURED_FOR_SMS_AUTH | Recipient {0} specifies SMS auth, but no number was provided. Specify a phone number for the SMS auth recipient. | | BULK_SEND_PHONE_NUMBER_INVALID_FOR_SMS_AUTH | Recipient {0} specifies phone number {1} for SMS auth, which is not valid. Specify a valid phone number for the SMS auth recipient. | | BULK_SEND_ROLE_NAMES_MUST_BE_UNIQUE | Recipient role names cannot be duplicated; role {duplicateRecipientRole} appears multiple times. Use unique roleNames for recipients. | | BULK_SEND_CANNOT_USE_BOTH_ROLE_AND_ID_ON_SAME_RECIPIENT | Recipients cannot have both ID and Role; {0} has both. Specify a roleName or recipientId, but not both for the same recipient. | | BULK_SEND_CANNOT_USE_BOTH_ROLE_AND_ID_IN_SAME_LIST | Cannot use both recipient role and ID in the same list. Specify a roleName or recipientId, but not both in the same list. | | BULK_SEND_INVALID_ID_CHECK_CONFIGURATION | Recipient {0} specified SMS authentication, but no SMS auth settings were provided. Provide an SMS auth setting (proper ID configuration) if SMS auth is specified. | | BULK_SEND_INVALID_SBS_INPUT_CONFIGURATION | Recipient {0} has more than one signature provider specified. Or signingProviderName is not specified. Or Signature provider : {0} is either unknown or not an available pen for this account. One or more SBS configuration is missing or invalid. The error details provide specifics. | | BULK_SEND_TAB_LABELS_MUST_BE_UNIQUE | Tab label {0} is duplicated. Needs to be unique. Use a unique tab label. | | BULK_SEND_TAB_LABEL_REQUIRED | Tab label is required. Specify a tab label. | | BULK_SEND_TAB_VALUE_REQUIRED | Tab Label value is required. Specify a value for the tab label. | | BULK_SEND_ENVELOPE_CUSTOM_FIELD_NAME_MUST_BE_UNIQUE | Custom fields must have distinct names. The field {0} appears more than once in a copy. Use unique names for custom fields. | | BULK_SEND_ENVELOPE_CUSTOM_FIELD_NAME_REQUIRED | All custom fields must have names. Specify a name for the custom field. | | BULK_SEND_ENVELOPE_CUSTOM_FIELD_VALUE_REQUIRED | Custom field {0} has no value. A custom field can have an empty value, but it cannot have a null value. Specify a value for the custom field. |

 bulk_send_v2_crud_put_bulk_send_list(connection, account_id, bulk_send_list_id, opts \\ [])

 Updates a bulk send list.
This method replaces the definition of an existing bulk send list.

 bulk_send_v2_envelopes_get_bulk_send_batch_envelopes(connection, account_id, bulk_send_batch_id, opts \\ [])

 Gets envelopes from a specific bulk send batch.
This method returns a list of envelopes in a specified bulk batch. Use the query parameters to filter and sort the envelopes by different attributes.

 bulk_send_v2_send_post_bulk_send_request(connection, account_id, bulk_send_list_id, opts \\ [])

 Creates a bulk send request.
This method initiates the bulk send process. It generates a bulk send request based on an [existing bulk send list][create_list] and an envelope or template. Consider using the [BulkSend::createBulkSendTestRequest][create_test] method to test your bulk send list for compatibility with the envelope or template that you want to send first. To learn about the complete bulk send flow, see the [Bulk Send overview][BulkSendOverview]. If the envelopes were successfully queued for asynchronous processing, the response contains a batchId that you can use to get the status of the batch. If a failure occurs, the API returns an error message. Note: Partial success or failure generally does not occur. Only the entire batch is queued for asynchronous processing. ### Related topics - How to bulk send envelopes ### Errors This method returns the following errors: | Error code | Description | | :--- | :--- | | BULK_SEND_ENVELOPE_NOT_IN_SENDABLE_STATE | Envelope {0} is not in a sendable state. The envelope is not complete. Make sure it has a sendable status, such as created. | | BULK_SEND_ENVELOPE_LIST_CONTAINS_NO_COPIES | Cannot send an envelope with a bulk sending list which contains no copies. The list you're trying to bulk send is empty. Make sure the bulk sending list you're using contains recipients. | | BULK_SEND_ENVELOPE_LIST_CONTAINS_TOO_MANY_COPIES | Bulk sending list contains more than {0} copies. The list you're trying to bulk send will cause your account to exceed the 1,000-copy limit imposed for all accounts. Try sending two or more separate lists. | | BULK_SEND_ENVELOPE_CANNOT_BE_NULL | Cannot send a bulk list without an envelope. Specify the envelope ID or template ID for the envelope you want to bulk send. | | BULK_SEND_BLOB_STORE_ERROR | Could not save copy of bulk sending list. An error writing to the database occurred. Try again. If the error persists, contact Docusign Support. | | BULK_SEND_ACCOUNT_HAS_TOO_MANY_QUEUED_ENVELOPES | Cannot send this bulk sending list because doing so would exceed the maximum of {maxCopies} in-flight envelopes. This account currently has {unprocessedEnvelopes} envelopes waiting to be processed. Please try again later." .Try again later, or contact Docusign Support to request a higher tier. | | BULK_SEND_ENVELOPE_NOT_FOUND | Envelope {envelopeOrTemplateId} does not exist or you do not have permission to access it. The envelopeId or templateId specified could not be found. Specify a valid value. | | BULK_SEND_LIST_NOT_FOUND | Bulk Sending list {listId} does not exist or you do not have permission to access it. The mailingListId specified could not be found. Specify a valid value. | | BULK_SEND_ENVELOPE_HAS_NO_RECIPIENTS | Bulk sending copy contains recipients, but the specified envelope does not. The recipients on the envelope and the bulk send list do not match. Make sure the envelope and list are compatible for sending. | | BULK_SEND_RECIPIENT_ID_DOES_NOT_EXIST_IN_ENVELOPE | Recipient {0} does not exist in the envelope. Add the missing recipient to the envelope. | | BULK_SEND_RECIPIENT_ID_DOES_NOT_MATCH | Recipient ID {envelopeMember.ID} does not match. Make sure the recipient information in the list and the envelope match up. | | BULK_SEND_ENVELOPE_HAS_BULK_RECIPIENT | Recipient {0} is a bulk recipient. This is not supported. No legacy 'bulk recipient' allowed. In v2.1 of the eSignature API, you must use a bulk send list instead of a bulk recipient. See the API documentation for details. | | BULK_SEND_RECIPIENT_ROLE_DOES_NOT_MATCH | Recipient Role {envelopeMember.RoleName} does not match. Make sure the recipient information in the list and the envelope is compatible. | | BULK_SEND_DUPLICATE_RECIPIENT_DETECTED | Duplicate recipients ({0}) not allowed, unless recipients have unique routing order specified on envelope. | | BULK_SEND_ENVELOPE_HAS_NO_TABS | Bulk sending copy contains tabs, but the specified envelope does not. List and envelope tabs cannot be coalesced. Make sure they are compatible for sending. | | BULK_SEND_TAB_LABEL_DOES_NOT_EXIST_IN_ENVELOPE | Tab with label {0} does not exist in envelope. Add the tab label to the envelope, remove the label from the list, or make sure you're specifying the correct list and envelope. | | BULK_SEND_TAB_DOES_NOT_MATCH | Tab {0} does not match {0} in envelope. A tab exists on the list that does not match or is missing on the envelope. Make sure the tabs on the list and the envelope match. | | BULK_SEND_ENVELOPE_HAS_NO_ENVELOPE_CUSTOM_FIELDS | Bulk sending copy contains custom fields, but the specified envelope does not. There are custom fields on the list that the envelope does not have. Make sure that any custom fields on the list and the envelope match. | | BULK_SEND_ENVELOPE_CUSTOM_FIELD_DOES_NOT_EXIST_IN_ENVELOPE | Custom field {0} does not exist in the envelope. Either add the custom field on the list to the envelope, remove the custom field from the list, or make sure you're specifying the correct list and envelope. | | BULK_SEND_ENVELOPE_CUSTOM_FIELD_NAME_DOES_NOT_MATCH | Custom field names must match. {0} and {1} do not match. The custom field names on the list and the envelope do not match. Use identical names for both. | [create_list]: /docs/esign-rest-api/reference/bulkenvelopes/bulksend/createbulksendlist/ [create_test]: /docs/esign-rest-api/reference/bulkenvelopes/bulksend/createbulksendtestrequest/ [BulkSendOverview]: /docs/esign-rest-api/reference/bulkenvelopes/bulksend/

 bulk_send_v2_test_post_bulk_send_test_request(connection, account_id, bulk_send_list_id, opts \\ [])

 Creates a bulk send test.
This method tests a bulk send list for compatibility with the envelope or template that you want to send. For example, a template that has three roles is not compatible with a bulk send list that has only two recipients. For this reason, you might want to test compatibility first. A successful test result returns true for the canBeSent property. An unsuccessful test returns a JSON response that contains information about the errors that occurred. If the test is successful, you can then send the envelope or template by using the [BulkSend::createBulkSendRequest][BulkSendRequest] method. ## Envelope Compatibility Checks This section describes the envelope compatibility checks that the system performs. Top-Level Issues - Envelopes must be in a sendable state. - The bulk send list must contain at least one copy (instance of an envelope), and no more than the maximum number of copies allowed for the account. - The envelope must not be null and must be visible to the current user. - The account cannot have more queued envelopes than the maximum number configured for the account. - The bulk send list must exist. Recipients - The envelope must have recipients. - If you are using an envelope, all of the recipients defined in the bulk send list must have corresponding recipient IDs in the envelope definition. If you are using a template, you must either match the recipient IDs or role IDs. - The envelope cannot contain a bulk recipient (an artifact of the legacy version of Docusign's bulk send functionality). Recipient Tabs - Every recipient ID, tab label pair in the bulk send list must correspond to a tab in the envelope. Custom Fields - Each envelope-level custom field in the bulk send list must correspond to the name of a customField in the envelope definition. You do not have to match the recipient-level custom fields. [BulkSendRequest]: /docs/esign-rest-api/reference/bulkenvelopes/bulksend/createbulksendrequest/

 Functions

 bulk_send_v2_batch_get_bulk_send_batch_status(connection, account_id, bulk_send_batch_id, opts \\ [])

 @spec bulk_send_v2_batch_get_bulk_send_batch_status(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.BulkSendBatchStatus.t()} | {:error, Req.Response.t()}

Gets the status of a specific bulk send batch.
Gets the general status of a specific bulk send batch such as: - number of successes - number pending - number of errors The bulkErrors property of the response object contains more information about the errors. ### Related topics - How to bulk send envelopes
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	bulk_send_batch_id (String.t): The batch ID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.BulkSendBatchStatus.t} on success
	{:error, Req.Response.t} on failure

 bulk_send_v2_batch_get_bulk_send_batches(connection, account_id, opts \\ [])

 @spec bulk_send_v2_batch_get_bulk_send_batches(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BulkSendBatchSummaries.t()} | {:error, Req.Response.t()}

Returns a list of bulk send batch summaries.
Returns a summary of bulk send batches. Use the batch_ids query parameter to narrow the list of batches. You must specify exactly one of the following query parameters to get back a list of batch summaries: | Parameter | Description | | :---------------- | :--- | | from_date | A valid UTC DateTime: 2016-01-01 | | batch_ids | A comma-separated list of batch IDs to query. | If neither query parameter is provided, a high-level, account-wide, overall bulk send status report is returned.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:batch_ids (String.t): A comma-separated list of batch IDs to query.
	:count (String.t): The maximum number of results to return. Use start_position to specify the number of results to skip. Valid values: 1 to 100
 Default: 100
	:from_date (String.t): The start date for a date range in UTC DateTime format.
	:search_text (String.t): Use this parameter to search for specific text.
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.
	:status (String.t): The kind of results to collect. Must be one of: - all - failed - sent - queued
	:to_date (String.t): The end of a search date range in UTC DateTime format. When you use this parameter, only templates created up to this date and time are returned. Note: If this property is null, the value defaults to the current date.
	:user_id (String.t):

Returns
	{:ok, DocuSign.Model.BulkSendBatchSummaries.t} on success
	{:error, Req.Response.t} on failure

 bulk_send_v2_batch_put_bulk_send_batch_action(connection, account_id, bulk_action, bulk_send_batch_id, opts \\ [])

 @spec bulk_send_v2_batch_put_bulk_send_batch_action(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.BulkSendBatchStatus.t()} | {:error, Req.Response.t()}

Applies a bulk action to all envelopes from a specified bulk send.
Use this endpoint to resend, correct, or void all envelopes from a specified bulk send.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	bulk_action (String.t): The action to apply. Valid values: resend correct * void
	bulk_send_batch_id (String.t): The batch ID.
	opts (keyword): Optional parameters	:body (BulkSendBatchActionRequest):

Returns
	{:ok, DocuSign.Model.BulkSendBatchStatus.t} on success
	{:error, Req.Response.t} on failure

 bulk_send_v2_batch_put_bulk_send_batch_status(connection, account_id, bulk_send_batch_id, opts \\ [])

 @spec bulk_send_v2_batch_put_bulk_send_batch_status(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.BulkSendBatchStatus.t()} | {:error, Req.Response.t()}

Updates the name of a bulk send batch.
Updates the name of a bulk send batch.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	bulk_send_batch_id (String.t): The batch ID.
	opts (keyword): Optional parameters	:body (BulkSendBatchRequest):

Returns
	{:ok, DocuSign.Model.BulkSendBatchStatus.t} on success
	{:error, Req.Response.t} on failure

 bulk_send_v2_crud_delete_bulk_send_list(connection, account_id, bulk_send_list_id, opts \\ [])

 @spec bulk_send_v2_crud_delete_bulk_send_list(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BulkSendingListSummaries.t()}
 | {:error, Req.Response.t()}

Deletes a bulk send list.
This method deletes a bulk send list.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	bulk_send_list_id (String.t): The GUID of the bulk send list. This property is created after you post a new bulk send list.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.BulkSendingListSummaries.t} on success
	{:error, Req.Response.t} on failure

 bulk_send_v2_crud_get_bulk_send_list(connection, account_id, bulk_send_list_id, opts \\ [])

 @spec bulk_send_v2_crud_get_bulk_send_list(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BulkSendingList.t()} | {:error, Req.Response.t()}

Gets a specific bulk send list.
This method returns all of the details associated with a specific bulk send list that belongs to the current user.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	bulk_send_list_id (String.t): The GUID of the bulk send list. This property is created after you post a new bulk send list.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.BulkSendingList.t} on success
	{:error, Req.Response.t} on failure

 bulk_send_v2_crud_get_bulk_send_lists(connection, account_id, opts \\ [])

 @spec bulk_send_v2_crud_get_bulk_send_lists(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BulkSendingListSummaries.t()}
 | {:error, Req.Response.t()}

Gets bulk send lists.
This method returns a list of bulk send lists belonging to the current user, as well as basic information about each list.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.BulkSendingListSummaries.t} on success
	{:error, Req.Response.t} on failure

 bulk_send_v2_crud_post_bulk_send_list(connection, account_id, opts \\ [])

 @spec bulk_send_v2_crud_post_bulk_send_list(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BulkSendingList.t()} | {:error, Req.Response.t()}

Creates a bulk send list.
This method creates a bulk send list that you can use to send an envelope to up to 1,000 recipients at once. ### Related topics - How to bulk send envelopes ### Errors | Error code | Description | | :-- | :--- | | BULK_SEND_MAX_COPIES_EXCEEDED | A bulk sending list cannot specify more than XXX copies in the mailing list. Call the settings API endpoint to find the maximum number of copies in a batch allowed for your account. In almost all cases, the default limit is 1000. | | BULK_SEND_RECIPIENT_IDS_MUST_BE_UNIQUE | No two recipientIds can be same within a bulkCopy. Same restriction as a regular envelope applies. Specify unique recipient IDs for each recipient within a bulkCopy (model for envelope in mailing list). | | BULK_SEND_RECIPIENT_ID_REQUIRED | If no RoleName is present, recipientID is required in mailing list's bulkCopy. Add a roleName (that coalesces with template/envelope) or a recipientID. | | BULK_SEND_RECIPIENT_NAME_REQUIRED | Recipient {0} has no name. Specify a name for the recipient. | | BULK_SEND_EMAIL_ADDRESS_REQUIRED_FOR_EMAIL_RECIPIENT | Recipient {0} is an email recipient with no email address. Specify an email for the email recipient. | | BULK_SEND_FAX_NUMBER_REQUIRED_FOR_FAX_RECIPIENT | Recipient {0} is a fax recipient with no fax number. Specify a fax number for the fax recipient. | | BULK_SEND_FAX_NUMBER_NOT_VALID | Recipient {0} specifies fax number {1}, which is not valid. Specify a valid fax number for the fax recipient. | | BULK_SEND_EMAIL_ADDRESS_NOT_VALID | Recipient {0} specifies email address {1}, which is not a valid email address. Specify a valid email address for the recipient. | | BULK_SEND_PHONE_NUMBER_REQURED_FOR_SMS_AUTH | Recipient {0} specifies SMS auth, but no number was provided. Specify a phone number for the SMS auth recipient. | | BULK_SEND_PHONE_NUMBER_INVALID_FOR_SMS_AUTH | Recipient {0} specifies phone number {1} for SMS auth, which is not valid. Specify a valid phone number for the SMS auth recipient. | | BULK_SEND_ROLE_NAMES_MUST_BE_UNIQUE | Recipient role names cannot be duplicated; role {duplicateRecipientRole} appears multiple times. Use unique roleNames for recipients. | | BULK_SEND_CANNOT_USE_BOTH_ROLE_AND_ID_ON_SAME_RECIPIENT | Recipients cannot have both ID and Role; {0} has both. Specify a roleName or recipientId, but not both for the same recipient. | | BULK_SEND_CANNOT_USE_BOTH_ROLE_AND_ID_IN_SAME_LIST | Cannot use both recipient role and ID in the same list. Specify a roleName or recipientId, but not both in the same list. | | BULK_SEND_INVALID_ID_CHECK_CONFIGURATION | Recipient {0} specified SMS authentication, but no SMS auth settings were provided. Provide an SMS auth setting (proper ID configuration) if SMS auth is specified. | | BULK_SEND_INVALID_SBS_INPUT_CONFIGURATION | Recipient {0} has more than one signature provider specified. Or signingProviderName is not specified. Or Signature provider : {0} is either unknown or not an available pen for this account. One or more SBS configuration is missing or invalid. The error details provide specifics. | | BULK_SEND_TAB_LABELS_MUST_BE_UNIQUE | Tab label {0} is duplicated. Needs to be unique. Use a unique tab label. | | BULK_SEND_TAB_LABEL_REQUIRED | Tab label is required. Specify a tab label. | | BULK_SEND_TAB_VALUE_REQUIRED | Tab Label value is required. Specify a value for the tab label. | | BULK_SEND_ENVELOPE_CUSTOM_FIELD_NAME_MUST_BE_UNIQUE | Custom fields must have distinct names. The field {0} appears more than once in a copy. Use unique names for custom fields. | | BULK_SEND_ENVELOPE_CUSTOM_FIELD_NAME_REQUIRED | All custom fields must have names. Specify a name for the custom field. | | BULK_SEND_ENVELOPE_CUSTOM_FIELD_VALUE_REQUIRED | Custom field {0} has no value. A custom field can have an empty value, but it cannot have a null value. Specify a value for the custom field. |
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The ID of the account.
	opts (keyword): Optional parameters	:body (BulkSendingList):

Returns
	{:ok, DocuSign.Model.BulkSendingList.t} on success
	{:error, Req.Response.t} on failure

 bulk_send_v2_crud_put_bulk_send_list(connection, account_id, bulk_send_list_id, opts \\ [])

 @spec bulk_send_v2_crud_put_bulk_send_list(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BulkSendingList.t()} | {:error, Req.Response.t()}

Updates a bulk send list.
This method replaces the definition of an existing bulk send list.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	bulk_send_list_id (String.t): The GUID of the bulk send list. This property is created after you post a new bulk send list.
	opts (keyword): Optional parameters	:body (BulkSendingList):

Returns
	{:ok, DocuSign.Model.BulkSendingList.t} on success
	{:error, Req.Response.t} on failure

 bulk_send_v2_envelopes_get_bulk_send_batch_envelopes(connection, account_id, bulk_send_batch_id, opts \\ [])

 @spec bulk_send_v2_envelopes_get_bulk_send_batch_envelopes(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.EnvelopesInformation.t()} | {:error, Req.Response.t()}

Gets envelopes from a specific bulk send batch.
This method returns a list of envelopes in a specified bulk batch. Use the query parameters to filter and sort the envelopes by different attributes.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	bulk_send_batch_id (String.t): The batch ID.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return. Use start_position to specify the number of results to skip. Valid values: 1 to 1000
	:include (String.t): When recipients, only envelopes with recipient nodes will be included in the response.
	:order (String.t): The order in which to sort the results. Valid values are: - Descending order: desc (default) - Ascending order: asc
	:order_by (String.t): The envelope attribute used to sort the results. Valid values are: - created (default) - completed - last_modified - sent - status - subject - status_changed
	:search_text (String.t): Use this parameter to search for specific text.
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.
	:status (String.t): Comma-separated list of envelope statuses. Note that any should not be included with other statuses. In other words, any is a valid parameter value, but any,sent is not. Use the value deliveryfailure to get all envelopes with AuthFailed and AutoResponded status. This value is specific to bulk sending.

Returns
	{:ok, DocuSign.Model.EnvelopesInformation.t} on success
	{:error, Req.Response.t} on failure

 bulk_send_v2_send_post_bulk_send_request(connection, account_id, bulk_send_list_id, opts \\ [])

 @spec bulk_send_v2_send_post_bulk_send_request(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.BulkSendResponse.t()} | {:error, Req.Response.t()}

Creates a bulk send request.
This method initiates the bulk send process. It generates a bulk send request based on an [existing bulk send list][create_list] and an envelope or template. Consider using the [BulkSend::createBulkSendTestRequest][create_test] method to test your bulk send list for compatibility with the envelope or template that you want to send first. To learn about the complete bulk send flow, see the [Bulk Send overview][BulkSendOverview]. If the envelopes were successfully queued for asynchronous processing, the response contains a batchId that you can use to get the status of the batch. If a failure occurs, the API returns an error message. Note: Partial success or failure generally does not occur. Only the entire batch is queued for asynchronous processing. ### Related topics - How to bulk send envelopes ### Errors This method returns the following errors: | Error code | Description | | :--- | :--- | | BULK_SEND_ENVELOPE_NOT_IN_SENDABLE_STATE | Envelope {0} is not in a sendable state. The envelope is not complete. Make sure it has a sendable status, such as created. | | BULK_SEND_ENVELOPE_LIST_CONTAINS_NO_COPIES | Cannot send an envelope with a bulk sending list which contains no copies. The list you're trying to bulk send is empty. Make sure the bulk sending list you're using contains recipients. | | BULK_SEND_ENVELOPE_LIST_CONTAINS_TOO_MANY_COPIES | Bulk sending list contains more than {0} copies. The list you're trying to bulk send will cause your account to exceed the 1,000-copy limit imposed for all accounts. Try sending two or more separate lists. | | BULK_SEND_ENVELOPE_CANNOT_BE_NULL | Cannot send a bulk list without an envelope. Specify the envelope ID or template ID for the envelope you want to bulk send. | | BULK_SEND_BLOB_STORE_ERROR | Could not save copy of bulk sending list. An error writing to the database occurred. Try again. If the error persists, contact Docusign Support. | | BULK_SEND_ACCOUNT_HAS_TOO_MANY_QUEUED_ENVELOPES | Cannot send this bulk sending list because doing so would exceed the maximum of {maxCopies} in-flight envelopes. This account currently has {unprocessedEnvelopes} envelopes waiting to be processed. Please try again later." .Try again later, or contact Docusign Support to request a higher tier. | | BULK_SEND_ENVELOPE_NOT_FOUND | Envelope {envelopeOrTemplateId} does not exist or you do not have permission to access it. The envelopeId or templateId specified could not be found. Specify a valid value. | | BULK_SEND_LIST_NOT_FOUND | Bulk Sending list {listId} does not exist or you do not have permission to access it. The mailingListId specified could not be found. Specify a valid value. | | BULK_SEND_ENVELOPE_HAS_NO_RECIPIENTS | Bulk sending copy contains recipients, but the specified envelope does not. The recipients on the envelope and the bulk send list do not match. Make sure the envelope and list are compatible for sending. | | BULK_SEND_RECIPIENT_ID_DOES_NOT_EXIST_IN_ENVELOPE | Recipient {0} does not exist in the envelope. Add the missing recipient to the envelope. | | BULK_SEND_RECIPIENT_ID_DOES_NOT_MATCH | Recipient ID {envelopeMember.ID} does not match. Make sure the recipient information in the list and the envelope match up. | | BULK_SEND_ENVELOPE_HAS_BULK_RECIPIENT | Recipient {0} is a bulk recipient. This is not supported. No legacy 'bulk recipient' allowed. In v2.1 of the eSignature API, you must use a bulk send list instead of a bulk recipient. See the API documentation for details. | | BULK_SEND_RECIPIENT_ROLE_DOES_NOT_MATCH | Recipient Role {envelopeMember.RoleName} does not match. Make sure the recipient information in the list and the envelope is compatible. | | BULK_SEND_DUPLICATE_RECIPIENT_DETECTED | Duplicate recipients ({0}) not allowed, unless recipients have unique routing order specified on envelope. | | BULK_SEND_ENVELOPE_HAS_NO_TABS | Bulk sending copy contains tabs, but the specified envelope does not. List and envelope tabs cannot be coalesced. Make sure they are compatible for sending. | | BULK_SEND_TAB_LABEL_DOES_NOT_EXIST_IN_ENVELOPE | Tab with label {0} does not exist in envelope. Add the tab label to the envelope, remove the label from the list, or make sure you're specifying the correct list and envelope. | | BULK_SEND_TAB_DOES_NOT_MATCH | Tab {0} does not match {0} in envelope. A tab exists on the list that does not match or is missing on the envelope. Make sure the tabs on the list and the envelope match. | | BULK_SEND_ENVELOPE_HAS_NO_ENVELOPE_CUSTOM_FIELDS | Bulk sending copy contains custom fields, but the specified envelope does not. There are custom fields on the list that the envelope does not have. Make sure that any custom fields on the list and the envelope match. | | BULK_SEND_ENVELOPE_CUSTOM_FIELD_DOES_NOT_EXIST_IN_ENVELOPE | Custom field {0} does not exist in the envelope. Either add the custom field on the list to the envelope, remove the custom field from the list, or make sure you're specifying the correct list and envelope. | | BULK_SEND_ENVELOPE_CUSTOM_FIELD_NAME_DOES_NOT_MATCH | Custom field names must match. {0} and {1} do not match. The custom field names on the list and the envelope do not match. Use identical names for both. | [create_list]: /docs/esign-rest-api/reference/bulkenvelopes/bulksend/createbulksendlist/ [create_test]: /docs/esign-rest-api/reference/bulkenvelopes/bulksend/createbulksendtestrequest/ [BulkSendOverview]: /docs/esign-rest-api/reference/bulkenvelopes/bulksend/
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	bulk_send_list_id (String.t): The GUID of the bulk send list. This property is created after you post a new bulk send list.
	opts (keyword): Optional parameters	:body (BulkSendRequest):

Returns
	{:ok, DocuSign.Model.BulkSendResponse.t} on success
	{:error, Req.Response.t} on failure

 bulk_send_v2_test_post_bulk_send_test_request(connection, account_id, bulk_send_list_id, opts \\ [])

 @spec bulk_send_v2_test_post_bulk_send_test_request(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.BulkSendTestResponse.t()} | {:error, Req.Response.t()}

Creates a bulk send test.
This method tests a bulk send list for compatibility with the envelope or template that you want to send. For example, a template that has three roles is not compatible with a bulk send list that has only two recipients. For this reason, you might want to test compatibility first. A successful test result returns true for the canBeSent property. An unsuccessful test returns a JSON response that contains information about the errors that occurred. If the test is successful, you can then send the envelope or template by using the [BulkSend::createBulkSendRequest][BulkSendRequest] method. ## Envelope Compatibility Checks This section describes the envelope compatibility checks that the system performs. Top-Level Issues - Envelopes must be in a sendable state. - The bulk send list must contain at least one copy (instance of an envelope), and no more than the maximum number of copies allowed for the account. - The envelope must not be null and must be visible to the current user. - The account cannot have more queued envelopes than the maximum number configured for the account. - The bulk send list must exist. Recipients - The envelope must have recipients. - If you are using an envelope, all of the recipients defined in the bulk send list must have corresponding recipient IDs in the envelope definition. If you are using a template, you must either match the recipient IDs or role IDs. - The envelope cannot contain a bulk recipient (an artifact of the legacy version of Docusign's bulk send functionality). Recipient Tabs - Every recipient ID, tab label pair in the bulk send list must correspond to a tab in the envelope. Custom Fields - Each envelope-level custom field in the bulk send list must correspond to the name of a customField in the envelope definition. You do not have to match the recipient-level custom fields. [BulkSendRequest]: /docs/esign-rest-api/reference/bulkenvelopes/bulksend/createbulksendrequest/
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	bulk_send_list_id (String.t): The GUID of the bulk send list. This property is created after you post a new bulk send list.
	opts (keyword): Optional parameters	:body (BulkSendRequest):

Returns
	{:ok, DocuSign.Model.BulkSendTestResponse.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.ChunkedUploads - DocuSign v3.1.0

DocuSign.Api.ChunkedUploads

API calls for all endpoints tagged ChunkedUploads.

 Summary

 Functions

 chunked_uploads_delete_chunked_upload(connection, account_id, chunked_upload_id, opts \\ [])

 Deletes a chunked upload.
Deletes a chunked upload that has been committed but not yet consumed. This method cannot be used to delete the following types of chunked uploads, which the system deletes automatically: - Chunked uploads that have been consumed by use in another API call. - Expired chunked uploads. Note: If you are aware of a chunked upload that can be discarded, the best practice is to explicitly delete it. If you wait for the system to automatically delete it after it expires, the chunked upload will continue to count against your quota.

 chunked_uploads_get_chunked_upload(connection, account_id, chunked_upload_id, opts \\ [])

 Retrieves metadata about a chunked upload.
Returns the details (but not the content) about a chunked upload. Note: You cannot obtain details about a chunked upload that has expired, been deleted, or consumed by other actions.

 chunked_uploads_post_chunked_uploads(connection, account_id, opts \\ [])

 Initiate a new chunked upload.
This method initiates a new chunked upload with the first part of the content.

 chunked_uploads_put_chunked_upload_part(connection, account_id, chunked_upload_id, chunked_upload_part_seq, opts \\ [])

 Add a chunk to an existing chunked upload.
Adds a chunk or part to an existing chunked upload. After you use the Create method to initiate a new chunked upload and upload the first part, use this method to upload subsequent parts. For simplicity, Docusign recommends that you upload the parts in their sequential order (1,2, 3, 4, etc.). The Create method adds the first part and assigns it the sequence value 0. As a result, Docusign recommends that you start with a sequence value of 1 when you use this method, and continue uploading parts contiguously until you have uploaded the entirety of the original content to Docusign. Example: PUT /v2.1/accounts/{accountId}/chunked_uploads/{chunkedUploadId}/1 PUT /v2.1/accounts/{accountId}/chunked_uploads/{chunkedUploadId}/2 PUT /v2.1/accounts/{accountId}/chunked_uploads/{chunkedUploadId}/3 Note: You cannot replace a part that Docusign has already received, or add parts to a chunked upload that is already successfully committed.

 chunked_uploads_put_chunked_uploads(connection, account_id, chunked_upload_id, opts \\ [])

 Commit a chunked upload.
This method checks the integrity of a chunked upload and then commits it. When this request is successful, the chunked upload is then ready to be referenced in other API calls. If the request is unsuccessful, ensure that you have uploaded all of the parts by using the Update method. Note: After you commit a chunked upload, it no longer accepts additional parts.

 Functions

 chunked_uploads_delete_chunked_upload(connection, account_id, chunked_upload_id, opts \\ [])

 @spec chunked_uploads_delete_chunked_upload(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ChunkedUploadResponse.t()} | {:error, Req.Response.t()}

Deletes a chunked upload.
Deletes a chunked upload that has been committed but not yet consumed. This method cannot be used to delete the following types of chunked uploads, which the system deletes automatically: - Chunked uploads that have been consumed by use in another API call. - Expired chunked uploads. Note: If you are aware of a chunked upload that can be discarded, the best practice is to explicitly delete it. If you wait for the system to automatically delete it after it expires, the chunked upload will continue to count against your quota.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	chunked_upload_id (String.t): The ID of the chunked upload.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ChunkedUploadResponse.t} on success
	{:error, Req.Response.t} on failure

 chunked_uploads_get_chunked_upload(connection, account_id, chunked_upload_id, opts \\ [])

 @spec chunked_uploads_get_chunked_upload(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ChunkedUploadResponse.t()} | {:error, Req.Response.t()}

Retrieves metadata about a chunked upload.
Returns the details (but not the content) about a chunked upload. Note: You cannot obtain details about a chunked upload that has expired, been deleted, or consumed by other actions.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	chunked_upload_id (String.t): The ID of the chunked upload.
	opts (keyword): Optional parameters	:include (String.t): (Optional) This parameter enables you to include additional attribute data in the response. The valid value for this method is checksum, which returns an SHA256 checksum of the content of the chunked upload in the response. You can use compare this checksum against your own checksum of the original content to verify that there are no missing parts before you attempt to commit the chunked upload.

Returns
	{:ok, DocuSign.Model.ChunkedUploadResponse.t} on success
	{:error, Req.Response.t} on failure

 chunked_uploads_post_chunked_uploads(connection, account_id, opts \\ [])

 @spec chunked_uploads_post_chunked_uploads(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ChunkedUploadResponse.t()} | {:error, Req.Response.t()}

Initiate a new chunked upload.
This method initiates a new chunked upload with the first part of the content.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (ChunkedUploadRequest):

Returns
	{:ok, DocuSign.Model.ChunkedUploadResponse.t} on success
	{:error, Req.Response.t} on failure

 chunked_uploads_put_chunked_upload_part(connection, account_id, chunked_upload_id, chunked_upload_part_seq, opts \\ [])

 @spec chunked_uploads_put_chunked_upload_part(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ChunkedUploadResponse.t()} | {:error, Req.Response.t()}

Add a chunk to an existing chunked upload.
Adds a chunk or part to an existing chunked upload. After you use the Create method to initiate a new chunked upload and upload the first part, use this method to upload subsequent parts. For simplicity, Docusign recommends that you upload the parts in their sequential order (1,2, 3, 4, etc.). The Create method adds the first part and assigns it the sequence value 0. As a result, Docusign recommends that you start with a sequence value of 1 when you use this method, and continue uploading parts contiguously until you have uploaded the entirety of the original content to Docusign. Example: PUT /v2.1/accounts/{accountId}/chunked_uploads/{chunkedUploadId}/1 PUT /v2.1/accounts/{accountId}/chunked_uploads/{chunkedUploadId}/2 PUT /v2.1/accounts/{accountId}/chunked_uploads/{chunkedUploadId}/3 Note: You cannot replace a part that Docusign has already received, or add parts to a chunked upload that is already successfully committed.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	chunked_upload_id (String.t): The ID of the chunked upload.
	chunked_upload_part_seq (String.t): The sequence or order of the part in the chunked upload. By default, the sequence of the first part that is uploaded as part of the Create request is 0. Note: You can add parts out of order. However, the chunked upload must consist of a contiguous series of one or more parts before you can successfully commit it.
	opts (keyword): Optional parameters	:body (ChunkedUploadRequest):

Returns
	{:ok, DocuSign.Model.ChunkedUploadResponse.t} on success
	{:error, Req.Response.t} on failure

 chunked_uploads_put_chunked_uploads(connection, account_id, chunked_upload_id, opts \\ [])

 @spec chunked_uploads_put_chunked_uploads(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ChunkedUploadResponse.t()} | {:error, Req.Response.t()}

Commit a chunked upload.
This method checks the integrity of a chunked upload and then commits it. When this request is successful, the chunked upload is then ready to be referenced in other API calls. If the request is unsuccessful, ensure that you have uploaded all of the parts by using the Update method. Note: After you commit a chunked upload, it no longer accepts additional parts.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): (Required) The external account number (int) or account ID GUID.
	chunked_upload_id (String.t): (Required) The ID of the chunked upload to commit.
	opts (keyword): Optional parameters	:action (String.t): (Required) You must use this query parameter with the value commit, which affirms the request to validate and prepare the chunked upload for use with other API calls.

Returns
	{:ok, DocuSign.Model.ChunkedUploadResponse.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.CloudStorage - DocuSign v3.1.0

DocuSign.Api.CloudStorage

API calls for all endpoints tagged CloudStorage.

 Summary

 Functions

 cloud_storage_folder_get_cloud_storage_folder(connection, account_id, folder_id, service_id, user_id, opts \\ [])

 Gets a list of items from a cloud storage provider.
Retrieves a list of the user's items from the specified cloud storage provider. To limit the scope of the items returned, provide a comma-separated list of folder IDs in the request.

 cloud_storage_folder_get_cloud_storage_folder_all(connection, account_id, service_id, user_id, opts \\ [])

 Retrieves a list of all the items in a specified folder from the specified cloud storage provider.
Retrieves a list of all the items in a specified folder from the specified cloud storage provider.

 Functions

 cloud_storage_folder_get_cloud_storage_folder(connection, account_id, folder_id, service_id, user_id, opts \\ [])

 @spec cloud_storage_folder_get_cloud_storage_folder(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.ExternalFolder.t()} | {:error, Req.Response.t()}

Gets a list of items from a cloud storage provider.
Retrieves a list of the user's items from the specified cloud storage provider. To limit the scope of the items returned, provide a comma-separated list of folder IDs in the request.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	folder_id (String.t): The ID of the folder.
	service_id (String.t): The ID of the service to access. Valid values are the service name ("Box") or the numerical serviceId ("4136").
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:cloud_storage_folder_path (String.t): The file path to a cloud storage folder.
	:cloud_storage_folderid_plain (String.t): A plain-text folder ID that you can use as an alternative to the existing folder id. This property is mainly used for rooms. Enter multiple folder IDs as a comma-separated list.
	:count (String.t): The maximum number of results to return. Use start_position to specify the number of results to skip. Default: 25
	:order (String.t): The order in which to sort the results. Valid values are: asc: Ascending order. desc: Descending order.
	:order_by (String.t): The file attribute to use to sort the results. Valid values are: modified name
	:search_text (String.t): Use this parameter to search for specific text.
	:sky_drive_skip_token (String.t):
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.

Returns
	{:ok, DocuSign.Model.ExternalFolder.t} on success
	{:error, Req.Response.t} on failure

 cloud_storage_folder_get_cloud_storage_folder_all(connection, account_id, service_id, user_id, opts \\ [])

 @spec cloud_storage_folder_get_cloud_storage_folder_all(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.ExternalFolder.t()} | {:error, Req.Response.t()}

Retrieves a list of all the items in a specified folder from the specified cloud storage provider.
Retrieves a list of all the items in a specified folder from the specified cloud storage provider.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	service_id (String.t): The ID of the service to access. Valid values are the service name ("Box") or the numerical serviceId ("4136").
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:cloud_storage_folder_path (String.t): A comma separated list of folder IDs included in the request.
	:count (String.t): The maximum number of results to return. Use start_position to specify the number of results to skip. Default: 25
	:order (String.t): The order in which to sort the results. Valid values are: asc: Ascending order. desc: Descending order.
	:order_by (String.t): The file attribute to use to sort the results. Valid values are: modified name
	:search_text (String.t): Use this parameter to search for specific text.
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.

Returns
	{:ok, DocuSign.Model.ExternalFolder.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.CloudStorageProviders - DocuSign v3.1.0

DocuSign.Api.CloudStorageProviders

API calls for all endpoints tagged CloudStorageProviders.

 Summary

 Functions

 cloud_storage_delete_cloud_storage(connection, account_id, service_id, user_id, opts \\ [])

 Deletes the user authentication information for the specified cloud storage provider.
Deletes the user authentication information for the specified cloud storage provider. The next time the user tries to access the cloud storage provider, they must pass normal authentication for this cloud storage provider.

 cloud_storage_delete_cloud_storage_providers(connection, account_id, user_id, opts \\ [])

 Deletes the user authentication information for one or more cloud storage providers.
Deletes the user authentication information for one or more cloud storage providers. The next time the user tries to access the cloud storage provider, they must pass normal authentication.

 cloud_storage_get_cloud_storage(connection, account_id, service_id, user_id, opts \\ [])

 Gets the specified Cloud Storage Provider configuration for the User.
Retrieves the list of cloud storage providers enabled for the account and the configuration information for the user.

 cloud_storage_get_cloud_storage_providers(connection, account_id, user_id, opts \\ [])

 Get the Cloud Storage Provider configuration for the specified user.
Retrieves the list of cloud storage providers enabled for the account and the configuration information for the user.

 cloud_storage_post_cloud_storage(connection, account_id, user_id, opts \\ [])

 Configures the redirect URL information for one or more cloud storage providers for the specified user.
Configures the redirect URL information for one or more cloud storage providers for the specified user. The redirect URL is added to the authentication URL to complete the return route.

 Functions

 cloud_storage_delete_cloud_storage(connection, account_id, service_id, user_id, opts \\ [])

 @spec cloud_storage_delete_cloud_storage(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.CloudStorageProviders.t()} | {:error, Req.Response.t()}

Deletes the user authentication information for the specified cloud storage provider.
Deletes the user authentication information for the specified cloud storage provider. The next time the user tries to access the cloud storage provider, they must pass normal authentication for this cloud storage provider.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	service_id (String.t): The ID of the service to access. Valid values are the service name ("Box") or the numerical serviceId ("4136").
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.CloudStorageProviders.t} on success
	{:error, Req.Response.t} on failure

 cloud_storage_delete_cloud_storage_providers(connection, account_id, user_id, opts \\ [])

 @spec cloud_storage_delete_cloud_storage_providers(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.CloudStorageProviders.t()} | {:error, Req.Response.t()}

Deletes the user authentication information for one or more cloud storage providers.
Deletes the user authentication information for one or more cloud storage providers. The next time the user tries to access the cloud storage provider, they must pass normal authentication.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:body (CloudStorageProviders):

Returns
	{:ok, DocuSign.Model.CloudStorageProviders.t} on success
	{:error, Req.Response.t} on failure

 cloud_storage_get_cloud_storage(connection, account_id, service_id, user_id, opts \\ [])

 @spec cloud_storage_get_cloud_storage(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.CloudStorageProviders.t()} | {:error, Req.Response.t()}

Gets the specified Cloud Storage Provider configuration for the User.
Retrieves the list of cloud storage providers enabled for the account and the configuration information for the user.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	service_id (String.t): The ID of the service to access. Valid values are the service name ("Box") or the numerical serviceId ("4136").
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:redirectUrl (String.t): The URL the user is redirected to after the cloud storage provider authenticates the user. Using this will append the redirectUrl to the authenticationUrl. The redirectUrl is restricted to URLs in the docusign.com or docusign.net domains.

Returns
	{:ok, DocuSign.Model.CloudStorageProviders.t} on success
	{:error, Req.Response.t} on failure

 cloud_storage_get_cloud_storage_providers(connection, account_id, user_id, opts \\ [])

 @spec cloud_storage_get_cloud_storage_providers(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.CloudStorageProviders.t()} | {:error, Req.Response.t()}

Get the Cloud Storage Provider configuration for the specified user.
Retrieves the list of cloud storage providers enabled for the account and the configuration information for the user.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:redirectUrl (String.t): The URL the user is redirected to after the cloud storage provider authenticates the user. Using this will append the redirectUrl to the authenticationUrl. The redirectUrl is restricted to URLs in the docusign.com or docusign.net domains.

Returns
	{:ok, DocuSign.Model.CloudStorageProviders.t} on success
	{:error, Req.Response.t} on failure

 cloud_storage_post_cloud_storage(connection, account_id, user_id, opts \\ [])

 @spec cloud_storage_post_cloud_storage(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.CloudStorageProviders.t()} | {:error, Req.Response.t()}

Configures the redirect URL information for one or more cloud storage providers for the specified user.
Configures the redirect URL information for one or more cloud storage providers for the specified user. The redirect URL is added to the authentication URL to complete the return route.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:body (CloudStorageProviders):

Returns
	{:ok, DocuSign.Model.CloudStorageProviders.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.Comments - DocuSign v3.1.0

DocuSign.Api.Comments

API calls for all endpoints tagged Comments.

 Summary

 Functions

 comments_get_comments_transcript(connection, account_id, envelope_id, opts \\ [])

 Gets a PDF transcript of all of the comments in an envelope.
Retrieves a PDF file containing all of the comments that senders and recipients have added to the documents in an envelope. The response body of this method is the PDF file as a byte stream. Note: Comments are disabled by default. To use the comments feature, an account administrator must enable comments on the account (in the accountSettingsInformation object, set the enableSigningExtensionComments property to true).

 Functions

 comments_get_comments_transcript(connection, account_id, envelope_id, opts \\ [])

 @spec comments_get_comments_transcript(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, String.t()} | {:error, Req.Response.t()}

Gets a PDF transcript of all of the comments in an envelope.
Retrieves a PDF file containing all of the comments that senders and recipients have added to the documents in an envelope. The response body of this method is the PDF file as a byte stream. Note: Comments are disabled by default. To use the comments feature, an account administrator must enable comments on the account (in the accountSettingsInformation object, set the enableSigningExtensionComments property to true).
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:encoding (String.t): (Optional) The encoding to use for the file.

Returns
	{:ok, String.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.ConnectConfigurations - DocuSign v3.1.0

DocuSign.Api.ConnectConfigurations

API calls for all endpoints tagged ConnectConfigurations.

 Summary

 Functions

 connect_delete_connect_config(connection, account_id, connect_id, opts \\ [])

 Deletes the specified Connect configuration.
Deletes the specified Docusign Connect configuration. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>

 connect_get_connect_all_users(connection, account_id, connect_id, opts \\ [])

 Returns all users from the configured Connect service.
Returns all users from the configured Connect service. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>

 connect_get_connect_config(connection, account_id, connect_id, opts \\ [])

 Gets the details about a Connect configuration.
Retrieves the information for the specified Docusign Connect configuration. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>

 connect_get_connect_configs(connection, account_id, opts \\ [])

 Get Connect configuration information.
Retrieves all the Docusign Custom Connect definitions for the specified account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>

 connect_get_connect_users(connection, account_id, connect_id, opts \\ [])

 Returns users from the configured Connect service.
Returns users from the configured Connect service. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>

 connect_o_auth_config_delete_connect_o_auth_config(connection, account_id, opts \\ [])

 Delete the Connect OAuth configuration.
Deletes the Connect OAuth configuration for the specified account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> ## Related topics: - OAuth for Docusign Connect

 connect_o_auth_config_get_connect_o_auth_config(connection, account_id, opts \\ [])

 Retrieves the Connect OAuth information for the account.
Gets the Connect OAuth configuration for the specified account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> ## Related topics: - OAuth for Docusign Connect

 connect_o_auth_config_post_connect_o_auth_config(connection, account_id, opts \\ [])

 Set up Connect OAuth for the specified account.
Sets up Connect OAuth for the specified account using an authorization server of your choice. To use this endpoint, get the client ID and client secret from your authorization server. When you call this endpoint, Docusign requests an access token from your authorization server. Docusign will use that token in the Authorization HTTP header of your account's Connect messages. Finally, your listener will be responsible for validating the token by calling the authorization server. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> ## Related topics: - OAuth for Docusign Connect

 connect_o_auth_config_put_connect_o_auth_config(connection, account_id, opts \\ [])

 Updates the existing Connect OAuth configuration for the account.

 connect_post_connect_configuration(connection, account_id, opts \\ [])

 Creates a Connect configuration.
Creates a custom Connect configuration for the specified account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> Connect is a webhook service that provides updates when certain events occur in your eSignature workflows. You can use this endpoint to create: Account-level Connect configurations to listen for events related to any envelopes sent by one or more account users Recipient Connect configurations that are triggered when one or more of your account users receive an envelope To set an account-level configuration, set configurationType to custom. To set a Recipient Connect configuration, set configurationType to customrecipient. If you want to listen for events on only one envelope, use the eventNotification object instead. ## Data models There are four possible data models for your Connect configuration. Consider: Do you want the data in JSON or XML? Do you want events sent individually (SIM) or in aggregate? Docusign recommends using the JSON SIM event model. <ds-column> <ds-step open="false" hideIcon="true"> <h3>JSON SIM (Recommended)</h3> <div> Set deliveryMode to SIM and eventData.version to restv2.1. Use the events property to set the event statuses that will trigger your configuration. The following sample request shows how to create an envelope-level configuration using JSON SIM: { "configurationType": "custom", "urlToPublishTo": "YOUR-WEBHOOK-URL", "allUsers": "true", "name": "jsonSimTest", "deliveryMode": "SIM", "allowEnvelopePublish": "true", "enableLog": "true", "eventData": { "version": "restv2.1" }, "events": ["envelope-sent", "envelope-delivered", "envelope-completed"] } The following sample request shows how to create a Recipient Connect configuration using JSON SIM: { "configurationType": "customrecipient", "urlToPublishTo": "YOUR-WEBHOOK-URL", "allUsers": "true", "name": "jsonSimTest", "deliveryMode": "SIM", "allowEnvelopePublish": "true", "enableLog": "true", "eventData": { "version": "restv2.1" }, "events": ["recipient-sent", "recipient-completed"] } </div></ds-step> <ds-step open="false" hideIcon="true"> <h3>JSON Aggregate</h3> <div> Set deliveryMode to aggregate and eventData.version to restv2.1. Use the envelopeEvents or recipientEvents property to set the event statuses that will trigger your configuration. </div></ds-step> <ds-step open="false" hideIcon="true"> <h3>XML Aggregate</h3> <div> Set deliveryMode to aggregate. Use the envelopeEvents or recipientEvents property to set the event statuses that will trigger your configuration. </div></ds-step> <ds-step open="false" hideIcon="true"> <h3>XML SIM (Legacy apps only)</h3> <div> Note: This model is deprecated. Set deliveryMode to SIM. Use the envelopeEvents or recipientEvents property to set the event statuses that will trigger your configuration. </div></ds-step> </ds-column> ## Troubleshooting If your configuration is not working, check the following. Connect must be enabled for your account to use this function. If you are using envelopeEvents or recipientEvents, make sure that the event values are sentence case, not lowercase. Make sure you have either set allUsers to true or set userIds to a non-empty array of IDs. By default, this endpoint creates a disabled configuration. To enable the configuration immediately, set the body parameter allowEnvelopePublish to true. You can also enable the configuration in the UI. To check if events are being emitted, set enableLog to true to view event logs in the Connect console. ## Related topics For more information about Connect, see the Docusign Connect guide. * Use the MyAPICalls sample app to see an example of this endpoint using the JSON SIM model.

 connect_put_connect_configuration(connection, account_id, opts \\ [])

 Updates a specified Connect configuration.
Updates the specified Docusign Connect configuration in your account. To enable the configuration, set the allowEnvelopePublish property to true. After any updates, test your configuration to make sure it works as expected. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>

 Functions

 connect_delete_connect_config(connection, account_id, connect_id, opts \\ [])

 @spec connect_delete_connect_config(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Deletes the specified Connect configuration.
Deletes the specified Docusign Connect configuration. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	connect_id (String.t): The ID of the custom Connect configuration being accessed.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 connect_get_connect_all_users(connection, account_id, connect_id, opts \\ [])

 @spec connect_get_connect_all_users(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.IntegratedConnectUserInfoList.t()}
 | {:error, Req.Response.t()}

Returns all users from the configured Connect service.
Returns all users from the configured Connect service. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	connect_id (String.t): The ID of the custom Connect configuration being accessed.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return.
	:domain_users_only (String.t):
	:email_substring (String.t): Filters returned user records by full email address or a substring of email address.
	:start_position (String.t): The position within the total result set from which to start returning values. The value thumbnail may be used to return the page image.
	:status (String.t): The status of the item.
	:user_name_substring (String.t): Filters results based on a full or partial user name. Note: When you enter a partial user name, you do not use a wildcard character.

Returns
	{:ok, DocuSign.Model.IntegratedConnectUserInfoList.t} on success
	{:error, Req.Response.t} on failure

 connect_get_connect_config(connection, account_id, connect_id, opts \\ [])

 @spec connect_get_connect_config(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ConnectConfigResults.t()} | {:error, Req.Response.t()}

Gets the details about a Connect configuration.
Retrieves the information for the specified Docusign Connect configuration. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	connect_id (String.t): The ID of the custom Connect configuration being accessed.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ConnectConfigResults.t} on success
	{:error, Req.Response.t} on failure

 connect_get_connect_configs(connection, account_id, opts \\ [])

 @spec connect_get_connect_configs(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.ConnectConfigResults.t()} | {:error, Req.Response.t()}

Get Connect configuration information.
Retrieves all the Docusign Custom Connect definitions for the specified account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ConnectConfigResults.t} on success
	{:error, Req.Response.t} on failure

 connect_get_connect_users(connection, account_id, connect_id, opts \\ [])

 @spec connect_get_connect_users(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.IntegratedUserInfoList.t()} | {:error, Req.Response.t()}

Returns users from the configured Connect service.
Returns users from the configured Connect service. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	connect_id (String.t): The ID of the custom Connect configuration being accessed.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return. Use start_position to specify the number of results to skip.
	:email_substring (String.t): Filters returned user records by full email address or a substring of email address.
	:list_included_users (String.t):
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.
	:status (String.t): Filters the results by user status. You can specify a comma-separated list of the following statuses: ActivationRequired ActivationSent Active Closed * Disabled
	:user_name_substring (String.t): Filters results based on a full or partial user name. Note: When you enter a partial user name, you do not use a wildcard character.

Returns
	{:ok, DocuSign.Model.IntegratedUserInfoList.t} on success
	{:error, Req.Response.t} on failure

 connect_o_auth_config_delete_connect_o_auth_config(connection, account_id, opts \\ [])

 @spec connect_o_auth_config_delete_connect_o_auth_config(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Delete the Connect OAuth configuration.
Deletes the Connect OAuth configuration for the specified account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> ## Related topics: - OAuth for Docusign Connect
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 connect_o_auth_config_get_connect_o_auth_config(connection, account_id, opts \\ [])

 @spec connect_o_auth_config_get_connect_o_auth_config(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ConnectOAuthConfig.t()} | {:error, Req.Response.t()}

Retrieves the Connect OAuth information for the account.
Gets the Connect OAuth configuration for the specified account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> ## Related topics: - OAuth for Docusign Connect
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ConnectOAuthConfig.t} on success
	{:error, Req.Response.t} on failure

 connect_o_auth_config_post_connect_o_auth_config(connection, account_id, opts \\ [])

 @spec connect_o_auth_config_post_connect_o_auth_config(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ConnectOAuthConfig.t()} | {:error, Req.Response.t()}

Set up Connect OAuth for the specified account.
Sets up Connect OAuth for the specified account using an authorization server of your choice. To use this endpoint, get the client ID and client secret from your authorization server. When you call this endpoint, Docusign requests an access token from your authorization server. Docusign will use that token in the Authorization HTTP header of your account's Connect messages. Finally, your listener will be responsible for validating the token by calling the authorization server. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> ## Related topics: - OAuth for Docusign Connect
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (ConnectOAuthConfig):

Returns
	{:ok, DocuSign.Model.ConnectOAuthConfig.t} on success
	{:error, Req.Response.t} on failure

 connect_o_auth_config_put_connect_o_auth_config(connection, account_id, opts \\ [])

 @spec connect_o_auth_config_put_connect_o_auth_config(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ConnectOAuthConfig.t()} | {:error, Req.Response.t()}

Updates the existing Connect OAuth configuration for the account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (ConnectOAuthConfig):

Returns
	{:ok, DocuSign.Model.ConnectOAuthConfig.t} on success
	{:error, Req.Response.t} on failure

 connect_post_connect_configuration(connection, account_id, opts \\ [])

 @spec connect_post_connect_configuration(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ConnectCustomConfiguration.t()}
 | {:error, Req.Response.t()}

Creates a Connect configuration.
Creates a custom Connect configuration for the specified account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> Connect is a webhook service that provides updates when certain events occur in your eSignature workflows. You can use this endpoint to create: Account-level Connect configurations to listen for events related to any envelopes sent by one or more account users Recipient Connect configurations that are triggered when one or more of your account users receive an envelope To set an account-level configuration, set configurationType to custom. To set a Recipient Connect configuration, set configurationType to customrecipient. If you want to listen for events on only one envelope, use the eventNotification object instead. ## Data models There are four possible data models for your Connect configuration. Consider: Do you want the data in JSON or XML? Do you want events sent individually (SIM) or in aggregate? Docusign recommends using the JSON SIM event model. <ds-column> <ds-step open="false" hideIcon="true"> <h3>JSON SIM (Recommended)</h3> <div> Set deliveryMode to SIM and eventData.version to restv2.1. Use the events property to set the event statuses that will trigger your configuration. The following sample request shows how to create an envelope-level configuration using JSON SIM: { "configurationType": "custom", "urlToPublishTo": "YOUR-WEBHOOK-URL", "allUsers": "true", "name": "jsonSimTest", "deliveryMode": "SIM", "allowEnvelopePublish": "true", "enableLog": "true", "eventData": { "version": "restv2.1" }, "events": ["envelope-sent", "envelope-delivered", "envelope-completed"] } The following sample request shows how to create a Recipient Connect configuration using JSON SIM: { "configurationType": "customrecipient", "urlToPublishTo": "YOUR-WEBHOOK-URL", "allUsers": "true", "name": "jsonSimTest", "deliveryMode": "SIM", "allowEnvelopePublish": "true", "enableLog": "true", "eventData": { "version": "restv2.1" }, "events": ["recipient-sent", "recipient-completed"] } </div></ds-step> <ds-step open="false" hideIcon="true"> <h3>JSON Aggregate</h3> <div> Set deliveryMode to aggregate and eventData.version to restv2.1. Use the envelopeEvents or recipientEvents property to set the event statuses that will trigger your configuration. </div></ds-step> <ds-step open="false" hideIcon="true"> <h3>XML Aggregate</h3> <div> Set deliveryMode to aggregate. Use the envelopeEvents or recipientEvents property to set the event statuses that will trigger your configuration. </div></ds-step> <ds-step open="false" hideIcon="true"> <h3>XML SIM (Legacy apps only)</h3> <div> Note: This model is deprecated. Set deliveryMode to SIM. Use the envelopeEvents or recipientEvents property to set the event statuses that will trigger your configuration. </div></ds-step> </ds-column> ## Troubleshooting If your configuration is not working, check the following. Connect must be enabled for your account to use this function. If you are using envelopeEvents or recipientEvents, make sure that the event values are sentence case, not lowercase. Make sure you have either set allUsers to true or set userIds to a non-empty array of IDs. By default, this endpoint creates a disabled configuration. To enable the configuration immediately, set the body parameter allowEnvelopePublish to true. You can also enable the configuration in the UI. To check if events are being emitted, set enableLog to true to view event logs in the Connect console. ## Related topics For more information about Connect, see the Docusign Connect guide. * Use the MyAPICalls sample app to see an example of this endpoint using the JSON SIM model.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (ConnectCustomConfiguration):

Returns
	{:ok, DocuSign.Model.ConnectCustomConfiguration.t} on success
	{:error, Req.Response.t} on failure

 connect_put_connect_configuration(connection, account_id, opts \\ [])

 @spec connect_put_connect_configuration(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ConnectCustomConfiguration.t()}
 | {:error, Req.Response.t()}

Updates a specified Connect configuration.
Updates the specified Docusign Connect configuration in your account. To enable the configuration, set the allowEnvelopePublish property to true. After any updates, test your configuration to make sure it works as expected. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (ConnectCustomConfiguration):

Returns
	{:ok, DocuSign.Model.ConnectCustomConfiguration.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.ConnectEvents - DocuSign v3.1.0

DocuSign.Api.ConnectEvents

API calls for all endpoints tagged ConnectEvents.

 Summary

 Functions

 connect_failures_delete_connect_failure_log(connection, account_id, failure_id, opts \\ [])

 Deletes a Connect failure log entry.
Deletes a Connect failure log entry. To delete all the Connect failure log entries, specify all for the failureId path parameter. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>

 connect_failures_get_connect_logs(connection, account_id, opts \\ [])

 Gets the Connect failure log information.
Retrieves the Connect failure log information. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> Use this method to determine which envelopes failed to post. You can then use [ConnectEvents: retryForEnvelopes][retry] to create a republish request. [retry]: /docs/esign-rest-api/reference/connect/connectevents/retryforenvelopes/

 connect_log_delete_connect_log(connection, account_id, log_id, opts \\ [])

 Deletes a specified Connect log entry.
Deletes a specified entry from the Connect Log. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>

 connect_log_delete_connect_logs(connection, account_id, opts \\ [])

 Deletes a list of Connect log entries.
Deletes a list of Connect log entries for your account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>

 connect_log_get_connect_log(connection, account_id, log_id, opts \\ [])

 Gets a Connect log entry.
Retrieves the specified Connect log entry for your account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> The enableLog setting in the Connect configuration must be set to true to enable logging. If logging is not enabled, then no log entries are recorded.

 connect_log_get_connect_logs(connection, account_id, opts \\ [])

 Gets the Connect log.
Retrieves a list of the 100 most recent Connect log entries for your account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> The enableLog setting in the Connect configuration must be set to true to enable logging. Log entries are deleted after 15 days.

 connect_publish_put_connect_retry(connection, account_id, opts \\ [])

 Republishes Connect information for multiple envelopes.
Republishes Connect information for the specified set of envelopes. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> The primary use is to republish Connect post failures by including envelope IDs for the envelopes that failed to post in the request. The list of envelope IDs that failed to post correctly can be retrieved by calling to Connect::listEventLogs retrieve the failure log.

 connect_publish_put_connect_retry_by_envelope(connection, account_id, envelope_id, opts \\ [])

 Republishes Connect information for the specified envelope.
Republishes Connect information for the specified envelope. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>

 Functions

 connect_failures_delete_connect_failure_log(connection, account_id, failure_id, opts \\ [])

 @spec connect_failures_delete_connect_failure_log(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, map()} | {:error, Req.Response.t()}

Deletes a Connect failure log entry.
Deletes a Connect failure log entry. To delete all the Connect failure log entries, specify all for the failureId path parameter. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	failure_id (String.t): The ID of the Connect post failure. Use all to delete all failures for the account.
	opts (keyword): Optional parameters

Returns
	{:ok, map()} on success
	{:error, Req.Response.t} on failure

 connect_failures_get_connect_logs(connection, account_id, opts \\ [])

 @spec connect_failures_get_connect_logs(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ConnectLogs.t()} | {:error, Req.Response.t()}

Gets the Connect failure log information.
Retrieves the Connect failure log information. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> Use this method to determine which envelopes failed to post. You can then use [ConnectEvents: retryForEnvelopes][retry] to create a republish request. [retry]: /docs/esign-rest-api/reference/connect/connectevents/retryforenvelopes/
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:from_date (String.t): The start date for a date range in UTC DateTime format. Note: If this property is null, no date filtering is applied.
	:to_date (String.t): The end of a search date range in UTC DateTime format. When you use this parameter, only templates created up to this date and time are returned. Note: If this property is null, the value defaults to the current date.

Returns
	{:ok, DocuSign.Model.ConnectLogs.t} on success
	{:error, Req.Response.t} on failure

 connect_log_delete_connect_log(connection, account_id, log_id, opts \\ [])

 @spec connect_log_delete_connect_log(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Deletes a specified Connect log entry.
Deletes a specified entry from the Connect Log. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	log_id (String.t): The ID of the Connect log entry. Use all to delete all entries for the account.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 connect_log_delete_connect_logs(connection, account_id, opts \\ [])

 @spec connect_log_delete_connect_logs(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, nil} | {:error, Req.Response.t()}

Deletes a list of Connect log entries.
Deletes a list of Connect log entries for your account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 connect_log_get_connect_log(connection, account_id, log_id, opts \\ [])

 @spec connect_log_get_connect_log(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ConnectLog.t()} | {:error, Req.Response.t()}

Gets a Connect log entry.
Retrieves the specified Connect log entry for your account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> The enableLog setting in the Connect configuration must be set to true to enable logging. If logging is not enabled, then no log entries are recorded.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	log_id (String.t): The ID of the Connect log entry.
	opts (keyword): Optional parameters	:additional_info (String.t): When true, the response includes the connectDebugLog information.

Returns
	{:ok, DocuSign.Model.ConnectLog.t} on success
	{:error, Req.Response.t} on failure

 connect_log_get_connect_logs(connection, account_id, opts \\ [])

 @spec connect_log_get_connect_logs(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.ConnectLogs.t()} | {:error, Req.Response.t()}

Gets the Connect log.
Retrieves a list of the 100 most recent Connect log entries for your account. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> The enableLog setting in the Connect configuration must be set to true to enable logging. Log entries are deleted after 15 days.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:from_date (String.t): The start date for a date range in UTC DateTime format. Note: If this property is null, no date filtering is applied.
	:to_date (String.t): The end of a search date range in UTC DateTime format. When you use this parameter, only templates created up to this date and time are returned. Note: If this property is null, the value defaults to the current date.

Returns
	{:ok, DocuSign.Model.ConnectLogs.t} on success
	{:error, Req.Response.t} on failure

 connect_publish_put_connect_retry(connection, account_id, opts \\ [])

 @spec connect_publish_put_connect_retry(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ConnectFailureResults.t()} | {:error, Req.Response.t()}

Republishes Connect information for multiple envelopes.
Republishes Connect information for the specified set of envelopes. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage> The primary use is to republish Connect post failures by including envelope IDs for the envelopes that failed to post in the request. The list of envelope IDs that failed to post correctly can be retrieved by calling to Connect::listEventLogs retrieve the failure log.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (ConnectFailureFilter):

Returns
	{:ok, DocuSign.Model.ConnectFailureResults.t} on success
	{:error, Req.Response.t} on failure

 connect_publish_put_connect_retry_by_envelope(connection, account_id, envelope_id, opts \\ [])

 @spec connect_publish_put_connect_retry_by_envelope(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ConnectFailureResults.t()} | {:error, Req.Response.t()}

Republishes Connect information for the specified envelope.
Republishes Connect information for the specified envelope. <ds-inlinemessage> To use this method, you must be an account administrator and Connect must be enabled on your account. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ConnectFailureResults.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.Contacts - DocuSign v3.1.0

DocuSign.Api.Contacts

API calls for all endpoints tagged Contacts.

 Summary

 Functions

 contacts_delete_contact_with_id(connection, account_id, contact_id, opts \\ [])

 Deletes a contact.
This method deletes a contact associated with an account.

 contacts_delete_contacts(connection, account_id, opts \\ [])

 Deletes multiple contacts from an account.
This method deletes multiple contacts associated with an account.

 contacts_get_contact_by_id(connection, account_id, contact_id, opts \\ [])

 Gets one or more contacts.
This method returns one or more contacts associated with a Docusign account. You can also retrieve contacts from connected [cloud storage][CloudStorage] providers by using the cloud_provider query parameter. By default, contacts are retrieved from the Docusign account's default address book. To return a specific contact, use the contactId query parameter. To return all contacts associated with an account, omit this parameter. [CloudStorage]: /docs/esign-rest-api/reference/cloudstorage/

 contacts_post_contacts(connection, account_id, opts \\ [])

 Add contacts to a contacts list.
This method adds multiple contacts into a contacts list.

 contacts_put_contacts(connection, account_id, opts \\ [])

 Updates one or more contacts.
This method updates one or more contacts associated with an account.

 Functions

 contacts_delete_contact_with_id(connection, account_id, contact_id, opts \\ [])

 @spec contacts_delete_contact_with_id(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ContactUpdateResponse.t()} | {:error, Req.Response.t()}

Deletes a contact.
This method deletes a contact associated with an account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	contact_id (String.t): The ID of a contact person in the account's address book.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ContactUpdateResponse.t} on success
	{:error, Req.Response.t} on failure

 contacts_delete_contacts(connection, account_id, opts \\ [])

 @spec contacts_delete_contacts(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.ContactUpdateResponse.t()} | {:error, Req.Response.t()}

Deletes multiple contacts from an account.
This method deletes multiple contacts associated with an account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (ContactModRequest):

Returns
	{:ok, DocuSign.Model.ContactUpdateResponse.t} on success
	{:error, Req.Response.t} on failure

 contacts_get_contact_by_id(connection, account_id, contact_id, opts \\ [])

 @spec contacts_get_contact_by_id(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ContactGetResponse.t()} | {:error, Req.Response.t()}

Gets one or more contacts.
This method returns one or more contacts associated with a Docusign account. You can also retrieve contacts from connected [cloud storage][CloudStorage] providers by using the cloud_provider query parameter. By default, contacts are retrieved from the Docusign account's default address book. To return a specific contact, use the contactId query parameter. To return all contacts associated with an account, omit this parameter. [CloudStorage]: /docs/esign-rest-api/reference/cloudstorage/
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	contact_id (String.t): The ID of a contact person in the account's address book. Note: To return all contacts, omit this parameter. It is not required.
	opts (keyword): Optional parameters	:cloud_provider (String.t): (Optional) The cloud provider from which to retrieve the contacts. Valid values are: - rooms - docusignCore (default)

Returns
	{:ok, DocuSign.Model.ContactGetResponse.t} on success
	{:error, Req.Response.t} on failure

 contacts_post_contacts(connection, account_id, opts \\ [])

 @spec contacts_post_contacts(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.ContactUpdateResponse.t()} | {:error, Req.Response.t()}

Add contacts to a contacts list.
This method adds multiple contacts into a contacts list.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (ContactModRequest):

Returns
	{:ok, DocuSign.Model.ContactUpdateResponse.t} on success
	{:error, Req.Response.t} on failure

 contacts_put_contacts(connection, account_id, opts \\ [])

 @spec contacts_put_contacts(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.ContactUpdateResponse.t()} | {:error, Req.Response.t()}

Updates one or more contacts.
This method updates one or more contacts associated with an account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (ContactModRequest):

Returns
	{:ok, DocuSign.Model.ContactUpdateResponse.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.CustomTabs - DocuSign v3.1.0

DocuSign.Api.CustomTabs

API calls for all endpoints tagged CustomTabs.

 Summary

 Functions

 tab_delete_custom_tab(connection, account_id, custom_tab_id, opts \\ [])

 Deletes custom tab information.
Deletes the custom from the specified account.

 tab_get_custom_tab(connection, account_id, custom_tab_id, opts \\ [])

 Gets custom tab information.
Retrieves information about the requested custom tab on the specified account.

 tab_put_custom_tab(connection, account_id, custom_tab_id, opts \\ [])

 Updates custom tab information.
Updates the information in a custom tab for the specified account.

 tabs_get_tab_definitions(connection, account_id, opts \\ [])

 Gets a list of all account tabs.
Retrieves a list of all tabs associated with the account.

 tabs_post_tab_definitions(connection, account_id, opts \\ [])

 Creates a custom tab.
Creates a tab with pre-defined properties, such as a text tab with a certain font type and validation pattern. Users can access the custom tabs when sending documents through the Docusign web application. Custom tabs can be created for approve, checkbox, company, date, date signed, decline, email, email address, envelope ID, first name, formula, full name, initial here, last name, list, note, number, radio, sign here, signer attachment, SSN, text, title, and zip tabs.

 Functions

 tab_delete_custom_tab(connection, account_id, custom_tab_id, opts \\ [])

 @spec tab_delete_custom_tab(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Deletes custom tab information.
Deletes the custom from the specified account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	custom_tab_id (String.t): The Docusign-generated custom tab ID for the custom tab to be applied. This can only be used when adding new tabs for a recipient. When used, the new tab inherits all the custom tab properties.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 tab_get_custom_tab(connection, account_id, custom_tab_id, opts \\ [])

 @spec tab_get_custom_tab(DocuSign.Connection.t(), String.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.TabMetadata.t()} | {:error, Req.Response.t()}

Gets custom tab information.
Retrieves information about the requested custom tab on the specified account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	custom_tab_id (String.t): The Docusign-generated custom tab ID for the custom tab to be applied. This can only be used when adding new tabs for a recipient. When used, the new tab inherits all the custom tab properties.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.TabMetadata.t} on success
	{:error, Req.Response.t} on failure

 tab_put_custom_tab(connection, account_id, custom_tab_id, opts \\ [])

 @spec tab_put_custom_tab(DocuSign.Connection.t(), String.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.TabMetadata.t()} | {:error, Req.Response.t()}

Updates custom tab information.
Updates the information in a custom tab for the specified account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	custom_tab_id (String.t): The Docusign-generated custom tab ID for the custom tab to be applied. This can only be used when adding new tabs for a recipient. When used, the new tab inherits all the custom tab properties.
	opts (keyword): Optional parameters	:body (TabMetadata):

Returns
	{:ok, DocuSign.Model.TabMetadata.t} on success
	{:error, Req.Response.t} on failure

 tabs_get_tab_definitions(connection, account_id, opts \\ [])

 @spec tabs_get_tab_definitions(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.TabMetadataList.t()} | {:error, Req.Response.t()}

Gets a list of all account tabs.
Retrieves a list of all tabs associated with the account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:custom_tab_only (String.t): When true, only custom tabs are returned in the response.

Returns
	{:ok, DocuSign.Model.TabMetadataList.t} on success
	{:error, Req.Response.t} on failure

 tabs_post_tab_definitions(connection, account_id, opts \\ [])

 @spec tabs_post_tab_definitions(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.TabMetadata.t()} | {:error, Req.Response.t()}

Creates a custom tab.
Creates a tab with pre-defined properties, such as a text tab with a certain font type and validation pattern. Users can access the custom tabs when sending documents through the Docusign web application. Custom tabs can be created for approve, checkbox, company, date, date signed, decline, email, email address, envelope ID, first name, formula, full name, initial here, last name, list, note, number, radio, sign here, signer attachment, SSN, text, title, and zip tabs.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (TabMetadata):

Returns
	{:ok, DocuSign.Model.TabMetadata.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.DocumentGeneration - DocuSign v3.1.0

DocuSign.Api.DocumentGeneration

API calls for all endpoints tagged DocumentGeneration.

 Summary

 Functions

 doc_gen_form_fields_get_envelope_doc_gen_form_fields(connection, account_id, envelope_id, opts \\ [])

 Returns sender fields for an envelope.
Given an envelopeId, this method returns the sender fields found in that envelope's documents. After you retrieve the sender fields, use the DocumentGeneration::updateEnvelopeDocGenFormFields method to populate the fields. If the specified envelope does not contain a document with sender fields, the method will return success (200) and an empty object ({}) in the response. ### Next steps - Learn about document generation in the eSignature concepts guide. - Learn how to send an envelope with document generation in your preferred coding language.

 doc_gen_form_fields_put_envelope_doc_gen_form_fields(connection, account_id, envelope_id, opts \\ [])

 Updates sender fields for an envelope.
This method dynamically generates an envelope's documents by populating its sender fields. The envelope must be in a draft state. Use the DocumentGeneration::getEnvelopeDocGenFormFields response to retrieve the list of sender fields for your envelope. Use that list to build the request for this method. For each field, specify the field name and the value to populate. For example, your request body might look like this: json { "docGenFormFields": [{ "documentId": "bf3202e1-xxxx-xxxx-xxxx-af4f41366879", "docGenFormFieldList": [{ "name": "Candidate_Name", "value": "Peggy Olson" }, { "name": "Job_Title", "value": "Technical Writer" }, { "name": "Manager_Name", "value": "Donald Draper" }, { "name": "Start_Date", "value": "1960-02-28" }, { "name": "Salary", "value": "3380" }] }] } ### Important notes If update_docgen_formfields_only is false (the default), the documentId changes after the update. This endpoint does not validate number, date, or select data field values. The request can succeed even if a number or date field value is not a valid number or date, or if a select field value is not one of the allowed values. ### Related topics - Learn about document generation in the eSignature concepts guide. - See this method in use in your preferred coding language.

 Functions

 doc_gen_form_fields_get_envelope_doc_gen_form_fields(connection, account_id, envelope_id, opts \\ [])

 @spec doc_gen_form_fields_get_envelope_doc_gen_form_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocGenFormFieldResponse.t()} | {:error, Req.Response.t()}

Returns sender fields for an envelope.
Given an envelopeId, this method returns the sender fields found in that envelope's documents. After you retrieve the sender fields, use the DocumentGeneration::updateEnvelopeDocGenFormFields method to populate the fields. If the specified envelope does not contain a document with sender fields, the method will return success (200) and an empty object ({}) in the response. ### Next steps - Learn about document generation in the eSignature concepts guide. - Learn how to send an envelope with document generation in your preferred coding language.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DocGenFormFieldResponse.t} on success
	{:error, Req.Response.t} on failure

 doc_gen_form_fields_put_envelope_doc_gen_form_fields(connection, account_id, envelope_id, opts \\ [])

 @spec doc_gen_form_fields_put_envelope_doc_gen_form_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocGenFormFieldResponse.t()} | {:error, Req.Response.t()}

Updates sender fields for an envelope.
This method dynamically generates an envelope's documents by populating its sender fields. The envelope must be in a draft state. Use the DocumentGeneration::getEnvelopeDocGenFormFields response to retrieve the list of sender fields for your envelope. Use that list to build the request for this method. For each field, specify the field name and the value to populate. For example, your request body might look like this: json { "docGenFormFields": [{ "documentId": "bf3202e1-xxxx-xxxx-xxxx-af4f41366879", "docGenFormFieldList": [{ "name": "Candidate_Name", "value": "Peggy Olson" }, { "name": "Job_Title", "value": "Technical Writer" }, { "name": "Manager_Name", "value": "Donald Draper" }, { "name": "Start_Date", "value": "1960-02-28" }, { "name": "Salary", "value": "3380" }] }] } ### Important notes If update_docgen_formfields_only is false (the default), the documentId changes after the update. This endpoint does not validate number, date, or select data field values. The request can succeed even if a number or date field value is not a valid number or date, or if a select field value is not one of the allowed values. ### Related topics - Learn about document generation in the eSignature concepts guide. - See this method in use in your preferred coding language.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:update_docgen_formfields_only (String.t): When false or omitted, the documents are updated. When true, only the form fields are updated. The documents are unchanged.
	:body (DocGenFormFieldRequest):

Returns
	{:ok, DocuSign.Model.DocGenFormFieldResponse.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.DocumentResponsiveHtmlPreview - DocuSign v3.1.0

DocuSign.Api.DocumentResponsiveHtmlPreview

API calls for all endpoints tagged DocumentResponsiveHtmlPreview.

 Summary

 Functions

 responsive_html_post_document_responsive_html_preview(connection, account_id, document_id, envelope_id, opts \\ [])

 Creates a preview of the responsive version of a document.
Creates a preview of the responsive HTML version of a specific document. This method enables you to preview a PDF document conversion to responsive HTML across device types prior to sending. The request body is a documentHtmlDefinition object, which holds the responsive signing parameters that define how to generate the HTML version of the signing document.

 Functions

 responsive_html_post_document_responsive_html_preview(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec responsive_html_post_document_responsive_html_preview(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentHtmlDefinitions.t()} | {:error, Req.Response.t()}

Creates a preview of the responsive version of a document.
Creates a preview of the responsive HTML version of a specific document. This method enables you to preview a PDF document conversion to responsive HTML across device types prior to sending. The request body is a documentHtmlDefinition object, which holds the responsive signing parameters that define how to generate the HTML version of the signing document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (DocumentHtmlDefinition):

Returns
	{:ok, DocuSign.Model.DocumentHtmlDefinitions.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.ENoteConfigurations - DocuSign v3.1.0

DocuSign.Api.ENoteConfigurations

API calls for all endpoints tagged ENoteConfigurations.

 Summary

 Functions

 e_note_configuration_delete_e_note_configuration(connection, account_id, opts \\ [])

 Deletes configuration information for the eNote eOriginal integration.

 e_note_configuration_get_e_note_configuration(connection, account_id, opts \\ [])

 Returns the configuration information for the eNote eOriginal integration.

 e_note_configuration_put_e_note_configuration(connection, account_id, opts \\ [])

 Updates configuration information for the eNote eOriginal integration.

 Functions

 e_note_configuration_delete_e_note_configuration(connection, account_id, opts \\ [])

 @spec e_note_configuration_delete_e_note_configuration(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Deletes configuration information for the eNote eOriginal integration.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 e_note_configuration_get_e_note_configuration(connection, account_id, opts \\ [])

 @spec e_note_configuration_get_e_note_configuration(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ENoteConfiguration.t()} | {:error, Req.Response.t()}

Returns the configuration information for the eNote eOriginal integration.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ENoteConfiguration.t} on success
	{:error, Req.Response.t} on failure

 e_note_configuration_put_e_note_configuration(connection, account_id, opts \\ [])

 @spec e_note_configuration_put_e_note_configuration(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ENoteConfiguration.t()} | {:error, Req.Response.t()}

Updates configuration information for the eNote eOriginal integration.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (ENoteConfiguration):

Returns
	{:ok, DocuSign.Model.ENoteConfiguration.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeAttachments - DocuSign v3.1.0

DocuSign.Api.EnvelopeAttachments

API calls for all endpoints tagged EnvelopeAttachments.

 Summary

 Functions

 attachments_delete_attachments(connection, account_id, envelope_id, opts \\ [])

 Deletes one or more envelope attachments from a draft envelope.
Deletes one or more envelope attachments from a draft envelope. <!-- std notice DEVDOCS-114911 --> <ds-inlinemessage kind="information" markdown="1"> It's easy to confuse envelope attachments, which are developer-only files associated with an envelope, with signer attachments. To learn about the different types of attachments, see Attachments in the concept guide. </ds-inlinemessage> <!-- end notice DEVDOCS-114911 -->

 attachments_get_attachment(connection, account_id, attachment_id, envelope_id, opts \\ [])

 Retrieves an envelope attachment from an envelope.
Retrieves an envelope attachment from an envelope. <!-- std notice DEVDOCS-114911 --> <ds-inlinemessage kind="information" markdown="1"> It's easy to confuse envelope attachments, which are developer-only files associated with an envelope, with signer attachments. To learn about the different types of attachments, see Attachments in the concept guide. </ds-inlinemessage> <!-- end notice DEVDOCS-114911 -->

 attachments_get_attachments(connection, account_id, envelope_id, opts \\ [])

 Returns a list of envelope attachments associated with a specified envelope.
Returns a list of envelope attachments associated with a specified envelope. <!-- std notice DEVDOCS-114911 --> <ds-inlinemessage kind="information" markdown="1"> It's easy to confuse envelope attachments, which are developer-only files associated with an envelope, with signer attachments. To get a list of user-visible attachments, use EnvelopeDocuments: get. To learn about the different types of attachments, see Attachments in the concept guide. </ds-inlinemessage> <!-- end notice DEVDOCS-114911 -->

 attachments_put_attachment(connection, account_id, attachment_id, envelope_id, opts \\ [])

 Updates an envelope attachment in a draft or in-process envelope.
Updates an envelope attachment to a draft or in-process envelope. <!-- std notice DEVDOCS-114911 --> <ds-inlinemessage kind="information" markdown="1"> It's easy to confuse envelope attachments, which are developer-only files associated with an envelope, with signer attachments. To learn about the different types of attachments, see Attachments in the concept guide. </ds-inlinemessage> <!-- end notice DEVDOCS-114911 -->

 attachments_put_attachments(connection, account_id, envelope_id, opts \\ [])

 Adds one or more envelope attachments to a draft or in-process envelope.
Adds one or more envelope attachments to a draft or in-process envelope. Each envelope can have a maximum of 12 attachments. Envelope attachments are files that an application can include in an envelope. They are not converted to PDF. Envelope attachments are available only through the API. There is no user interface in the Docusign web application for them. For a list of supported file formats, see Supported File Formats. <!-- std notice DEVDOCS-114911 --> <ds-inlinemessage kind="information" markdown="1"> It's easy to confuse envelope attachments, which are developer-only files associated with an envelope, with signer attachments. To learn about the different types of attachments, see Attachments in the concept guide. </ds-inlinemessage> <!-- end notice DEVDOCS-114911 -->

 Functions

 attachments_delete_attachments(connection, account_id, envelope_id, opts \\ [])

 @spec attachments_delete_attachments(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeAttachmentsResult.t()}
 | {:error, Req.Response.t()}

Deletes one or more envelope attachments from a draft envelope.
Deletes one or more envelope attachments from a draft envelope. <!-- std notice DEVDOCS-114911 --> <ds-inlinemessage kind="information" markdown="1"> It's easy to confuse envelope attachments, which are developer-only files associated with an envelope, with signer attachments. To learn about the different types of attachments, see Attachments in the concept guide. </ds-inlinemessage> <!-- end notice DEVDOCS-114911 -->
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EnvelopeAttachmentsRequest):

Returns
	{:ok, DocuSign.Model.EnvelopeAttachmentsResult.t} on success
	{:error, Req.Response.t} on failure

 attachments_get_attachment(connection, account_id, attachment_id, envelope_id, opts \\ [])

 @spec attachments_get_attachment(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, String.t()} | {:error, Req.Response.t()}

Retrieves an envelope attachment from an envelope.
Retrieves an envelope attachment from an envelope. <!-- std notice DEVDOCS-114911 --> <ds-inlinemessage kind="information" markdown="1"> It's easy to confuse envelope attachments, which are developer-only files associated with an envelope, with signer attachments. To learn about the different types of attachments, see Attachments in the concept guide. </ds-inlinemessage> <!-- end notice DEVDOCS-114911 -->
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	attachment_id (String.t): The unique identifier for the attachment.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, String.t} on success
	{:error, Req.Response.t} on failure

 attachments_get_attachments(connection, account_id, envelope_id, opts \\ [])

 @spec attachments_get_attachments(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeAttachmentsResult.t()}
 | {:error, Req.Response.t()}

Returns a list of envelope attachments associated with a specified envelope.
Returns a list of envelope attachments associated with a specified envelope. <!-- std notice DEVDOCS-114911 --> <ds-inlinemessage kind="information" markdown="1"> It's easy to confuse envelope attachments, which are developer-only files associated with an envelope, with signer attachments. To get a list of user-visible attachments, use EnvelopeDocuments: get. To learn about the different types of attachments, see Attachments in the concept guide. </ds-inlinemessage> <!-- end notice DEVDOCS-114911 -->
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.EnvelopeAttachmentsResult.t} on success
	{:error, Req.Response.t} on failure

 attachments_put_attachment(connection, account_id, attachment_id, envelope_id, opts \\ [])

 @spec attachments_put_attachment(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeAttachmentsResult.t()}
 | {:error, Req.Response.t()}

Updates an envelope attachment in a draft or in-process envelope.
Updates an envelope attachment to a draft or in-process envelope. <!-- std notice DEVDOCS-114911 --> <ds-inlinemessage kind="information" markdown="1"> It's easy to confuse envelope attachments, which are developer-only files associated with an envelope, with signer attachments. To learn about the different types of attachments, see Attachments in the concept guide. </ds-inlinemessage> <!-- end notice DEVDOCS-114911 -->
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	attachment_id (String.t): The unique identifier for the attachment.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (Attachment):

Returns
	{:ok, DocuSign.Model.EnvelopeAttachmentsResult.t} on success
	{:error, Req.Response.t} on failure

 attachments_put_attachments(connection, account_id, envelope_id, opts \\ [])

 @spec attachments_put_attachments(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeAttachmentsResult.t()}
 | {:error, Req.Response.t()}

Adds one or more envelope attachments to a draft or in-process envelope.
Adds one or more envelope attachments to a draft or in-process envelope. Each envelope can have a maximum of 12 attachments. Envelope attachments are files that an application can include in an envelope. They are not converted to PDF. Envelope attachments are available only through the API. There is no user interface in the Docusign web application for them. For a list of supported file formats, see

 DocuSign.Api.EnvelopeConsumerDisclosures - DocuSign v3.1.0

DocuSign.Api.EnvelopeConsumerDisclosures

API calls for all endpoints tagged EnvelopeConsumerDisclosures.

 Summary

 Functions

 consumer_disclosure_get_consumer_disclosure_envelope_id_recipient_id(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Gets the default Electronic Record and Signature Disclosure for an envelope.
Retrieves the default, HTML-formatted Electronic Record and Signature Disclosure (ERSD) for the envelope that you specify. This is the default ERSD disclosure that Docusign provides for the convenience of U.S.-based customers only. This default disclosure is only valid for transactions between U.S.-based parties. To set the language of the disclosure that you want to retrieve, use the optional langCode query parameter.

 consumer_disclosure_get_consumer_disclosure_envelope_id_recipient_id_lang_code(connection, account_id, envelope_id, lang_code, recipient_id, opts \\ [])

 Gets the Electronic Record and Signature Disclosure for a specific envelope recipient.
Retrieves the HTML-formatted Electronic Record and Signature Disclosure (ERSD) for the envelope recipient that you specify. This disclosure might differ from the account-level disclosure, based on the signing brand applied to the envelope and the recipient's language settings. To set the language of the disclosure that you want to retrieve, specify the langCode as either a path or query parameter.

 Functions

 consumer_disclosure_get_consumer_disclosure_envelope_id_recipient_id(connection, account_id, envelope_id, recipient_id, opts \\ [])

 @spec consumer_disclosure_get_consumer_disclosure_envelope_id_recipient_id(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.ConsumerDisclosure.t()} | {:error, Req.Response.t()}

Gets the default Electronic Record and Signature Disclosure for an envelope.
Retrieves the default, HTML-formatted Electronic Record and Signature Disclosure (ERSD) for the envelope that you specify. This is the default ERSD disclosure that Docusign provides for the convenience of U.S.-based customers only. This default disclosure is only valid for transactions between U.S.-based parties. To set the language of the disclosure that you want to retrieve, use the optional langCode query parameter.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	opts (keyword): Optional parameters	:langCode (String.t): (Optional) The code for the signer language version of the disclosure that you want to retrieve. The following languages are supported: - Arabic (ar) - Bulgarian (bg) - Czech (cs) - Chinese Simplified (zh_CN) - Chinese Traditional (zh_TW) - Croatian (hr) - Danish (da) - Dutch (nl) - English US (en) - English UK (en_GB) - Estonian (et) - Farsi (fa) - Finnish (fi) - French (fr) - French Canadian (fr_CA) - German (de) - Greek (el) - Hebrew (he) - Hindi (hi) - Hungarian (hu) - Bahasa Indonesian (id) - Italian (it) - Japanese (ja) - Korean (ko) - Latvian (lv) - Lithuanian (lt) - Bahasa Melayu (ms) - Norwegian (no) - Polish (pl) - Portuguese (pt) - Portuguese Brazil (pt_BR) - Romanian (ro) - Russian (ru) - Serbian (sr) - Slovak (sk) - Slovenian (sl) - Spanish (es) - Spanish Latin America (es_MX) - Swedish (sv) - Thai (th) - Turkish (tr) - Ukrainian (uk) - Vietnamese (vi) Additionally, you can automatically detect the browser language being used by the viewer and display the disclosure in that language by setting the value to browser.

Returns
	{:ok, DocuSign.Model.ConsumerDisclosure.t} on success
	{:error, Req.Response.t} on failure

 consumer_disclosure_get_consumer_disclosure_envelope_id_recipient_id_lang_code(connection, account_id, envelope_id, lang_code, recipient_id, opts \\ [])

 @spec consumer_disclosure_get_consumer_disclosure_envelope_id_recipient_id_lang_code(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.ConsumerDisclosure.t()} | {:error, Req.Response.t()}

Gets the Electronic Record and Signature Disclosure for a specific envelope recipient.
Retrieves the HTML-formatted Electronic Record and Signature Disclosure (ERSD) for the envelope recipient that you specify. This disclosure might differ from the account-level disclosure, based on the signing brand applied to the envelope and the recipient's language settings. To set the language of the disclosure that you want to retrieve, specify the langCode as either a path or query parameter.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	lang_code (String.t): (Optional) The code for the signer language version of the disclosure that you want to retrieve, as a path parameter. The following languages are supported: - Arabic (ar) - Bulgarian (bg) - Czech (cs) - Chinese Simplified (zh_CN) - Chinese Traditional (zh_TW) - Croatian (hr) - Danish (da) - Dutch (nl) - English US (en) - English UK (en_GB) - Estonian (et) - Farsi (fa) - Finnish (fi) - French (fr) - French Canadian (fr_CA) - German (de) - Greek (el) - Hebrew (he) - Hindi (hi) - Hungarian (hu) - Bahasa Indonesian (id) - Italian (it) - Japanese (ja) - Korean (ko) - Latvian (lv) - Lithuanian (lt) - Bahasa Melayu (ms) - Norwegian (no) - Polish (pl) - Portuguese (pt) - Portuguese Brazil (pt_BR) - Romanian (ro) - Russian (ru) - Serbian (sr) - Slovak (sk) - Slovenian (sl) - Spanish (es) - Spanish Latin America (es_MX) - Swedish (sv) - Thai (th) - Turkish (tr) - Ukrainian (uk) - Vietnamese (vi) Additionally, you can automatically detect the browser language being used by the viewer and display the disclosure in that language by setting the value to browser.
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	opts (keyword): Optional parameters	:langCode (String.t): (Optional) The code for the signer language version of the disclosure that you want to retrieve, as a query parameter. The following languages are supported: - Arabic (ar) - Bulgarian (bg) - Czech (cs) - Chinese Simplified (zh_CN) - Chinese Traditional (zh_TW) - Croatian (hr) - Danish (da) - Dutch (nl) - English US (en) - English UK (en_GB) - Estonian (et) - Farsi (fa) - Finnish (fi) - French (fr) - French Canadian (fr_CA) - German (de) - Greek (el) - Hebrew (he) - Hindi (hi) - Hungarian (hu) - Bahasa Indonesian (id) - Italian (it) - Japanese (ja) - Korean (ko) - Latvian (lv) - Lithuanian (lt) - Bahasa Melayu (ms) - Norwegian (no) - Polish (pl) - Portuguese (pt) - Portuguese Brazil (pt_BR) - Romanian (ro) - Russian (ru) - Serbian (sr) - Slovak (sk) - Slovenian (sl) - Spanish (es) - Spanish Latin America (es_MX) - Swedish (sv) - Thai (th) - Turkish (tr) - Ukrainian (uk) - Vietnamese (vi) Additionally, you can automatically detect the browser language being used by the viewer and display the disclosure in that language by setting the value to browser.

Returns
	{:ok, DocuSign.Model.ConsumerDisclosure.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeCustomFields - DocuSign v3.1.0

DocuSign.Api.EnvelopeCustomFields

API calls for all endpoints tagged EnvelopeCustomFields.

 Summary

 Functions

 custom_fields_delete_custom_fields(connection, account_id, envelope_id, opts \\ [])

 Deletes envelope custom fields for draft and in-process envelopes.
Deletes envelope custom fields for draft and in-process envelopes.

 custom_fields_get_custom_fields(connection, account_id, envelope_id, opts \\ [])

 Gets the custom field information for the specified envelope.
Retrieves the custom field information for the specified envelope. You can use these fields in the envelopes for your account to record information about the envelope, help search for envelopes, and track information. The envelope custom fields are shown in the Envelope Settings section when a user is creating an envelope in the Docusign member console. The envelope custom fields are not seen by the envelope recipients. There are two types of envelope custom fields, text, and list. A text custom field lets the sender enter the value for the field. With a list custom field, the sender selects the value of the field from a pre-made list. ### Related topics - How to get envelope custom tab values

 custom_fields_post_custom_fields(connection, account_id, envelope_id, opts \\ [])

 Creates envelope custom fields for an envelope.
Updates the envelope custom fields for draft and in-process envelopes. ### Related topics - How to bulk send envelopes

 custom_fields_put_custom_fields(connection, account_id, envelope_id, opts \\ [])

 Updates envelope custom fields in an envelope.
Updates the envelope custom fields in draft and in-process envelopes. Each custom field used in an envelope must have a unique name.

 Functions

 custom_fields_delete_custom_fields(connection, account_id, envelope_id, opts \\ [])

 @spec custom_fields_delete_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeCustomFields.t()} | {:error, Req.Response.t()}

Deletes envelope custom fields for draft and in-process envelopes.
Deletes envelope custom fields for draft and in-process envelopes.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EnvelopeCustomFields):

Returns
	{:ok, DocuSign.Model.EnvelopeCustomFields.t} on success
	{:error, Req.Response.t} on failure

 custom_fields_get_custom_fields(connection, account_id, envelope_id, opts \\ [])

 @spec custom_fields_get_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.CustomFieldsEnvelope.t()} | {:error, Req.Response.t()}

Gets the custom field information for the specified envelope.
Retrieves the custom field information for the specified envelope. You can use these fields in the envelopes for your account to record information about the envelope, help search for envelopes, and track information. The envelope custom fields are shown in the Envelope Settings section when a user is creating an envelope in the Docusign member console. The envelope custom fields are not seen by the envelope recipients. There are two types of envelope custom fields, text, and list. A text custom field lets the sender enter the value for the field. With a list custom field, the sender selects the value of the field from a pre-made list. ### Related topics - How to get envelope custom tab values
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.CustomFieldsEnvelope.t} on success
	{:error, Req.Response.t} on failure

 custom_fields_post_custom_fields(connection, account_id, envelope_id, opts \\ [])

 @spec custom_fields_post_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeCustomFields.t()} | {:error, Req.Response.t()}

Creates envelope custom fields for an envelope.
Updates the envelope custom fields for draft and in-process envelopes. ### Related topics - How to bulk send envelopes
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EnvelopeCustomFields):

Returns
	{:ok, DocuSign.Model.EnvelopeCustomFields.t} on success
	{:error, Req.Response.t} on failure

 custom_fields_put_custom_fields(connection, account_id, envelope_id, opts \\ [])

 @spec custom_fields_put_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeCustomFields.t()} | {:error, Req.Response.t()}

Updates envelope custom fields in an envelope.
Updates the envelope custom fields in draft and in-process envelopes. Each custom field used in an envelope must have a unique name.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EnvelopeCustomFields):

Returns
	{:ok, DocuSign.Model.EnvelopeCustomFields.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeDocumentFields - DocuSign v3.1.0

DocuSign.Api.EnvelopeDocumentFields

API calls for all endpoints tagged EnvelopeDocumentFields.

 Summary

 Functions

 document_fields_delete_document_fields(connection, account_id, document_id, envelope_id, opts \\ [])

 Deletes custom document fields from an existing envelope document.
Deletes custom document fields from an existing envelope document.

 document_fields_get_document_fields(connection, account_id, document_id, envelope_id, opts \\ [])

 Gets the custom document fields from an existing envelope document.
Retrieves the custom document field information from an existing envelope document.

 document_fields_post_document_fields(connection, account_id, document_id, envelope_id, opts \\ [])

 Creates custom document fields in an existing envelope document.
Creates custom document fields in an existing envelope document.

 document_fields_put_document_fields(connection, account_id, document_id, envelope_id, opts \\ [])

 Updates existing custom document fields in an existing envelope document.
Updates existing custom document fields in an existing envelope document.

 Functions

 document_fields_delete_document_fields(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec document_fields_delete_document_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeDocumentFields.t()} | {:error, Req.Response.t()}

Deletes custom document fields from an existing envelope document.
Deletes custom document fields from an existing envelope document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EnvelopeDocumentFields):

Returns
	{:ok, DocuSign.Model.EnvelopeDocumentFields.t} on success
	{:error, Req.Response.t} on failure

 document_fields_get_document_fields(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec document_fields_get_document_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeDocumentFields.t()} | {:error, Req.Response.t()}

Gets the custom document fields from an existing envelope document.
Retrieves the custom document field information from an existing envelope document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.EnvelopeDocumentFields.t} on success
	{:error, Req.Response.t} on failure

 document_fields_post_document_fields(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec document_fields_post_document_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeDocumentFields.t()} | {:error, Req.Response.t()}

Creates custom document fields in an existing envelope document.
Creates custom document fields in an existing envelope document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EnvelopeDocumentFields):

Returns
	{:ok, DocuSign.Model.EnvelopeDocumentFields.t} on success
	{:error, Req.Response.t} on failure

 document_fields_put_document_fields(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec document_fields_put_document_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeDocumentFields.t()} | {:error, Req.Response.t()}

Updates existing custom document fields in an existing envelope document.
Updates existing custom document fields in an existing envelope document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EnvelopeDocumentFields):

Returns
	{:ok, DocuSign.Model.EnvelopeDocumentFields.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeDocumentHtmlDefinitions - DocuSign v3.1.0

DocuSign.Api.EnvelopeDocumentHtmlDefinitions

API calls for all endpoints tagged EnvelopeDocumentHtmlDefinitions.

 Summary

 Functions

 responsive_html_get_envelope_document_html_definitions(connection, account_id, document_id, envelope_id, opts \\ [])

 Retrieves the HTML definition used to generate a dynamically sized responsive document.
Retrieves the HTML definition used to generate a dynamically sized responsive document. If the document was not created as a signable HTML document, this endpoint will return a 200-OK response and an empty JSON body. Note: The documentId query parameter is a GUID value, not an integer document ID. If an invalid document ID is provided, this endpoint will return a 200-OK response and an empty JSON body. ### Related topics - Responsive signing

 Functions

 responsive_html_get_envelope_document_html_definitions(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec responsive_html_get_envelope_document_html_definitions(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentHtmlDefinitionOriginals.t()}
 | {:error, Req.Response.t()}

Retrieves the HTML definition used to generate a dynamically sized responsive document.
Retrieves the HTML definition used to generate a dynamically sized responsive document. If the document was not created as a signable HTML document, this endpoint will return a 200-OK response and an empty JSON body. Note: The documentId query parameter is a GUID value, not an integer document ID. If an invalid document ID is provided, this endpoint will return a 200-OK response and an empty JSON body. ### Related topics - Responsive signing
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The GUID of the document. Example: c671747c-xxxx-xxxx-xxxx-4a4a48e23744
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DocumentHtmlDefinitionOriginals.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeDocumentTabs - DocuSign v3.1.0

DocuSign.Api.EnvelopeDocumentTabs

API calls for all endpoints tagged EnvelopeDocumentTabs.

 Summary

 Functions

 tabs_delete_document_tabs(connection, account_id, document_id, envelope_id, opts \\ [])

 Deletes tabs from a document in an envelope.
Deletes tabs from the document specified by documentId in the envelope specified by envelopeId.

 tabs_get_document_tabs(connection, account_id, document_id, envelope_id, opts \\ [])

 Returns the tabs on a document.
Returns the tabs on the document specified by documentId in the envelope specified by envelopeId.

 tabs_get_page_tabs(connection, account_id, document_id, envelope_id, page_number, opts \\ [])

 Returns tabs on the specified page.
Returns the tabs from the page specified by pageNumber of the document specified by documentId in the envelope specified by envelopeId.

 tabs_post_document_tabs(connection, account_id, document_id, envelope_id, opts \\ [])

 Adds tabs to a document in an envelope.
Adds tabs to the document specified by documentId in the envelope specified by envelopeId. <ds-inlinemessage kind="information" markdown="1"> This method operates only on <code>smartSection</code> and <code>polyLineOverlay</code> tabs. </ds-inlinemessage>

 tabs_put_document_tabs(connection, account_id, document_id, envelope_id, opts \\ [])

 Updates the tabs for document.
Updates tabs in the document specified by documentId in the envelope specified by envelopeId. <ds-inlinemessage kind="information" markdown="1"> This method operates only on <code>smartSection</code> and <code>polyLineOverlay</code> tabs. </ds-inlinemessage>

 Functions

 tabs_delete_document_tabs(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec tabs_delete_document_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.Tabs.t()} | {:error, Req.Response.t()}

Deletes tabs from a document in an envelope.
Deletes tabs from the document specified by documentId in the envelope specified by envelopeId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (Tabs): A list of tabs, which are represented graphically as symbols on documents at the time of signing. Tabs show recipients where to sign, initial, or enter data. They may also display data to the recipients.

Returns
	{:ok, DocuSign.Model.Tabs.t} on success
	{:error, Req.Response.t} on failure

 tabs_get_document_tabs(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec tabs_get_document_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeDocumentTabs.t()} | {:error, Req.Response.t()}

Returns the tabs on a document.
Returns the tabs on the document specified by documentId in the envelope specified by envelopeId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:include_metadata (String.t): When true, the response includes metadata indicating which properties are editable.
	:page_numbers (String.t): Filters for tabs that occur on the pages that you specify. Enter as a comma-separated list of page GUIDs. Example: page_numbers=2,6 Note: You can only enter individual page numbers, and not a page range.

Returns
	{:ok, DocuSign.Model.EnvelopeDocumentTabs.t} on success
	{:error, Req.Response.t} on failure

 tabs_get_page_tabs(connection, account_id, document_id, envelope_id, page_number, opts \\ [])

 @spec tabs_get_page_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.EnvelopeDocumentTabs.t()} | {:error, Req.Response.t()}

Returns tabs on the specified page.
Returns the tabs from the page specified by pageNumber of the document specified by documentId in the envelope specified by envelopeId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	page_number (String.t): The page number being accessed.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.EnvelopeDocumentTabs.t} on success
	{:error, Req.Response.t} on failure

 tabs_post_document_tabs(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec tabs_post_document_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.Tabs.t()} | {:error, Req.Response.t()}

Adds tabs to a document in an envelope.
Adds tabs to the document specified by documentId in the envelope specified by envelopeId. <ds-inlinemessage kind="information" markdown="1"> This method operates only on <code>smartSection</code> and <code>polyLineOverlay</code> tabs. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (Tabs): A list of tabs, which are represented graphically as symbols on documents at the time of signing. Tabs show recipients where to sign, initial, or enter data. They may also display data to the recipients.

Returns
	{:ok, DocuSign.Model.Tabs.t} on success
	{:error, Req.Response.t} on failure

 tabs_put_document_tabs(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec tabs_put_document_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.Tabs.t()} | {:error, Req.Response.t()}

Updates the tabs for document.
Updates tabs in the document specified by documentId in the envelope specified by envelopeId. <ds-inlinemessage kind="information" markdown="1"> This method operates only on <code>smartSection</code> and <code>polyLineOverlay</code> tabs. </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (Tabs): A list of tabs, which are represented graphically as symbols on documents at the time of signing. Tabs show recipients where to sign, initial, or enter data. They may also display data to the recipients.

Returns
	{:ok, DocuSign.Model.Tabs.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeDocumentVisibility - DocuSign v3.1.0

DocuSign.Api.EnvelopeDocumentVisibility

API calls for all endpoints tagged EnvelopeDocumentVisibility.

 Summary

 Functions

 recipients_get_recipient_document_visibility(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Returns document visibility for a recipient
This method returns information about document visibility for a recipient.

 recipients_put_recipient_document_visibility(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Updates document visibility for a recipient
This method updates document visibility for a recipient. Note: A document cannot be hidden from a recipient if the recipient has tabs assigned to them on the document. Carbon Copy, Certified Delivery (Needs to Sign), Editor, and Agent recipients can always see all documents.

 recipients_put_recipients_document_visibility(connection, account_id, envelope_id, opts \\ [])

 Updates document visibility for recipients
This method updates document visibility for one or more recipients based on the recipientId and visible values that you include in the request body. Note: A document cannot be hidden from a recipient if the recipient has tabs assigned to them on the document. Carbon Copy, Certified Delivery (Needs to Sign), Editor, and Agent recipients can always see all documents.

 Functions

 recipients_get_recipient_document_visibility(connection, account_id, envelope_id, recipient_id, opts \\ [])

 @spec recipients_get_recipient_document_visibility(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentVisibilityList.t()} | {:error, Req.Response.t()}

Returns document visibility for a recipient
This method returns information about document visibility for a recipient.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DocumentVisibilityList.t} on success
	{:error, Req.Response.t} on failure

 recipients_put_recipient_document_visibility(connection, account_id, envelope_id, recipient_id, opts \\ [])

 @spec recipients_put_recipient_document_visibility(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentVisibilityList.t()} | {:error, Req.Response.t()}

Updates document visibility for a recipient
This method updates document visibility for a recipient. Note: A document cannot be hidden from a recipient if the recipient has tabs assigned to them on the document. Carbon Copy, Certified Delivery (Needs to Sign), Editor, and Agent recipients can always see all documents.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	opts (keyword): Optional parameters	:body (DocumentVisibilityList):

Returns
	{:ok, DocuSign.Model.DocumentVisibilityList.t} on success
	{:error, Req.Response.t} on failure

 recipients_put_recipients_document_visibility(connection, account_id, envelope_id, opts \\ [])

 @spec recipients_put_recipients_document_visibility(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentVisibilityList.t()} | {:error, Req.Response.t()}

Updates document visibility for recipients
This method updates document visibility for one or more recipients based on the recipientId and visible values that you include in the request body. Note: A document cannot be hidden from a recipient if the recipient has tabs assigned to them on the document. Carbon Copy, Certified Delivery (Needs to Sign), Editor, and Agent recipients can always see all documents.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (DocumentVisibilityList):

Returns
	{:ok, DocuSign.Model.DocumentVisibilityList.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeDocuments - DocuSign v3.1.0

DocuSign.Api.EnvelopeDocuments

API calls for all endpoints tagged EnvelopeDocuments.

 Summary

 Functions

 documents_delete_documents(connection, account_id, envelope_id, opts \\ [])

 Deletes documents from a draft envelope.
Deletes one or more documents from an existing envelope that has not yet been completed. To delete a document, use only the relevant parts of the envelopeDefinition. For example, this request body specifies that you want to delete the document whose documentId is "1". text { "documents": [{ "documentId": "1" }] } The envelope status must be one of: - created - sent - delivered

 documents_get_document(connection, account_id, document_id, envelope_id, opts \\ [])

 Retrieves a single document or all documents from an envelope.
Retrieves a single document or all documents from an envelope. To retrieve a single document, provide the ID of the document in the documentId path parameter. Alternatively, by setting the documentId parameter to special keyword values, you can retrieve all the documents (as a combined PDF, portfolio PDF, or ZIP archive) or just the certificate of completion. See the documentId description for how to retrieve each format. The response body of this method is a file. If you request multiple documents, the result is a ZIP archive that contains all of the documents. In all other cases, the response is a PDF file or PDF portfolio. You can get the file name and document ID from the response's Content-Disposition header: Content-Disposition: file; filename="NDA.pdf"; documentid="1 By default, the response is the PDF file as a byte stream. For example a request/response in curl looks like this: $ curl --request GET 'https://demo.docusign.net/restapi/v2/accounts/0cdb3ff3-xxxx-xxxx-xxxx-e43af011006d/envelopes/ea4cc25b-xxxx-xxxx-xxxx-a67a0a2a4f6c/documents/1/' \ --header 'Authorization: Bearer eyJ...bqg' HTTP/1.1 200 OK Content-Length: 167539 Content-Type: application/pdf . . . Content-Disposition: file; filename="Lorem_Ipsum.pdf"; documentid="1" Date: Tue, 23 Aug 2022 01:13:15 GMT %PDF-1.4 %˚¸˝˛ 6 0 obj <</Length 14>>stream . . . By using the Content-Transfer-Encoding header in the request, you can obtain the PDF file encoded in base64. The same curl request with the base64 header would look like this: $ curl --request GET 'https://demo.docusign.net/restapi/v2/accounts/0cdb3ff3-xxxx-xxxx-xxxx-e43af011006d/envelopes/ea4cc25b-xxxx-xxxx-xxxx-a67a0a2a4f6c/documents/1/' \ --header 'Authorization: Bearer eyJ...bqg' \ --header 'Content-Transfer-Encoding: base64' HTTP/1.1 200 OK Content-Length: 223384 Content-Type: application/pdf . . . Content-Disposition: file; filename="Lorem_Ipsum.pdf"; documentid="1" Content-Transfer-Encoding: base64 Date: Tue, 23 Aug 2022 01:12:30 GMT JVBERi0xLjQKJfv8/f4KNiAwIG9iago8PC9MZW. . .== (In an actual curl request you would use the --output switch to save the byte stream into a file.) ### Related topics - How to download envelope documents

 documents_get_documents(connection, account_id, envelope_id, opts \\ [])

 Gets a list of documents in an envelope.
Retrieves a list of documents associated with the specified envelope. ### Related topics - How to list envelope documents

 documents_put_document(connection, account_id, document_id, envelope_id, document_file_bytes, opts \\ [])

 Adds or replaces a document in an existing envelope.
Adds or replaces a document in an existing draft or in-process envelope. An in-process envelope is one that has been sent but not yet completed or voided. Note: When adding or modifying documents for an in-process envelope, Docusign recommends locking the envelope prior to making any changes. To add a new document, set the documentId path parameter to a new document ID. To replace a document, set the documentId path parameter to the document ID of the existing document. The tabs of the original document will be applied to the new document. For example, a request in cURL looks like this: $ curl --location --request PUT 'https://demo.docusign.net/restapi/v2.1/accounts/0cdb3ff3-xxxx-xxxx-xxxx-e43af011006d/envelopes/ea4cc25b-xxxx-xxxx-xxxx-a67a0a2a4f6c/documents/1' \ --header 'Authorization: Bearer eyJ...bqg' \ --header 'Content-Disposition: filename="newDocument"' \ --header 'Content-Type: application/pdf' \ --data-binary '@/location/of/document.pdf' <ds-inlinemessage kind="warning"> If HTML document files contain <code></code> elements with the <code>src</code> attribute set to a path or URL, those images will not be displayed. Images in HTML files must be encoded in Base64 format, like this:
 <code></code> </ds-inlinemessage>

 documents_put_documents(connection, account_id, envelope_id, opts \\ [])

 Adds one or more documents to an existing envelope.
Adds one or more documents to an existing envelope. The tabs of the original document will be applied to the new document. Note: When adding or modifying documents for an in-process envelope, Docusign recommends locking the envelope prior to making any changes. If the file name of a document contains Unicode characters, you need to include a Content-Disposition header. Example: Header: Content-Disposition Value: file; filename=\"name\";fileExtension=ext;documentId=1 Note: This method works on documents only. To add recipient or document tabs, use methods from the EnvelopeRecipientTabs resource. <ds-inlinemessage kind="warning"> If HTML document files contain <code></code> elements with the <code>src</code> attribute set to a path or URL, those images will not be displayed. Images in HTML files must be encoded in Base64 format, like this:
 <code></code> </ds-inlinemessage>

 Functions

 documents_delete_documents(connection, account_id, envelope_id, opts \\ [])

 @spec documents_delete_documents(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeDocumentsResult.t()} | {:error, Req.Response.t()}

Deletes documents from a draft envelope.
Deletes one or more documents from an existing envelope that has not yet been completed. To delete a document, use only the relevant parts of the envelopeDefinition. For example, this request body specifies that you want to delete the document whose documentId is "1". text { "documents": [{ "documentId": "1" }] } The envelope status must be one of: - created - sent - delivered
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EnvelopeDefinition):

Returns
	{:ok, DocuSign.Model.EnvelopeDocumentsResult.t} on success
	{:error, Req.Response.t} on failure

 documents_get_document(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec documents_get_document(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, String.t()} | {:error, Req.Response.t()}

Retrieves a single document or all documents from an envelope.
Retrieves a single document or all documents from an envelope. To retrieve a single document, provide the ID of the document in the documentId path parameter. Alternatively, by setting the documentId parameter to special keyword values, you can retrieve all the documents (as a combined PDF, portfolio PDF, or ZIP archive) or just the certificate of completion. See the documentId description for how to retrieve each format. The response body of this method is a file. If you request multiple documents, the result is a ZIP archive that contains all of the documents. In all other cases, the response is a PDF file or PDF portfolio. You can get the file name and document ID from the response's Content-Disposition header: Content-Disposition: file; filename="NDA.pdf"; documentid="1 By default, the response is the PDF file as a byte stream. For example a request/response in curl looks like this: $ curl --request GET 'https://demo.docusign.net/restapi/v2/accounts/0cdb3ff3-xxxx-xxxx-xxxx-e43af011006d/envelopes/ea4cc25b-xxxx-xxxx-xxxx-a67a0a2a4f6c/documents/1/' \ --header 'Authorization: Bearer eyJ...bqg' HTTP/1.1 200 OK Content-Length: 167539 Content-Type: application/pdf . . . Content-Disposition: file; filename="Lorem_Ipsum.pdf"; documentid="1" Date: Tue, 23 Aug 2022 01:13:15 GMT %PDF-1.4 %˚¸˝˛ 6 0 obj <</Length 14>>stream . . . By using the Content-Transfer-Encoding header in the request, you can obtain the PDF file encoded in base64. The same curl request with the base64 header would look like this: $ curl --request GET 'https://demo.docusign.net/restapi/v2/accounts/0cdb3ff3-xxxx-xxxx-xxxx-e43af011006d/envelopes/ea4cc25b-xxxx-xxxx-xxxx-a67a0a2a4f6c/documents/1/' \ --header 'Authorization: Bearer eyJ...bqg' \ --header 'Content-Transfer-Encoding: base64' HTTP/1.1 200 OK Content-Length: 223384 Content-Type: application/pdf . . . Content-Disposition: file; filename="Lorem_Ipsum.pdf"; documentid="1" Content-Transfer-Encoding: base64 Date: Tue, 23 Aug 2022 01:12:30 GMT JVBERi0xLjQKJfv8/f4KNiAwIG9iago8PC9MZW. . .== (In an actual curl request you would use the --output switch to save the byte stream into a file.) ### Related topics - How to download envelope documents
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The ID of the document to retrieve. Alternatively, you can use one of the following special keywords: - combined: Retrieves all of the documents as a single PDF file. When the query parameter certificate is true, the certificate of completion is included in the PDF file. When the query parameter certificate is false, the certificate of completion is not included in the PDF file. - archive: Retrieves a ZIP archive that contains all of the PDF documents and the certificate of completion. - certificate: Retrieves only the certificate of completion as a PDF file. - portfolio: Retrieves the envelope documents as a PDF portfolio.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:certificate (String.t): Used only when the documentId parameter is the special keyword combined. When true, the certificate of completion is included in the combined PDF file. When false, (the default) the certificate of completion is not included in the combined PDF file.
	:documents_by_userid (String.t): When true, allows recipients to get documents by their user id. For example, if a user is included in two different routing orders with different visibilities, using this parameter returns all of the documents from both routing orders.
	:encoding (String.t): Reserved for Docusign.
	:encrypt (String.t): When true, the PDF bytes returned in the response are encrypted for all the key managers configured on your Docusign account. You can decrypt the documents by using the Key Manager DecryptDocument API method. For more information about Key Manager, see the Docusign Security Appliance Installation Guide that your organization received from Docusign.
	:language (String.t): Specifies the language for the Certificate of Completion in the response. The supported languages are: Chinese Simplified (zh_CN), Chinese Traditional (zh_TW), Dutch (nl), English US (en), French (fr), German (de), Italian (it), Japanese (ja), Korean (ko), Portuguese (pt), Portuguese (Brazil) (pt_BR), Russian (ru), Spanish (es).
	:recipient_id (String.t): Allows the sender to retrieve the documents as one of the recipients that they control. The documents_by_userid parameter must be set to false for this functionality to work.
	:shared_user_id (String.t): The ID of a shared user that you want to impersonate in order to retrieve their view of the list of documents. This parameter is used in the context of a shared inbox (i.e., when you share envelopes from one user to another through the Docusign Admin console).
	:show_changes (String.t): When true, any changed fields for the returned PDF are highlighted in yellow and optional signatures or initials outlined in red. The account must have the Highlight Data Changes feature enabled.
	:watermark (String.t): When true, the account has the watermark feature enabled, and the envelope is not complete, then the watermark for the account is added to the PDF documents. This option can remove the watermark.

Returns
	{:ok, String.t} on success
	{:error, Req.Response.t} on failure

 documents_get_documents(connection, account_id, envelope_id, opts \\ [])

 @spec documents_get_documents(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeDocumentsResult.t()} | {:error, Req.Response.t()}

Gets a list of documents in an envelope.
Retrieves a list of documents associated with the specified envelope. ### Related topics - How to list envelope documents
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:documents_by_userid (String.t): When true, allows recipients to get documents by their user id. For example, if a user is included in two different routing orders with different visibilities, using this parameter returns all of the documents from both routing orders.
	:include_agreement_type (String.t):
	:include_docgen_formfields (String.t): Reserved for Docusign.
	:include_metadata (String.t): When true, the response includes metadata that indicates which properties the sender can edit.
	:include_tabs (String.t): Reserved for Docusign.
	:recipient_id (String.t): Allows the sender to retrieve the documents as one of the recipients that they control. The documents_by_userid parameter must be set to false for this to work.
	:shared_user_id (String.t): The ID of a shared user that you want to impersonate in order to retrieve their view of the list of documents. This parameter is used in the context of a shared inbox (i.e., when you share envelopes from one user to another through the Docusign Admin console).

Returns
	{:ok, DocuSign.Model.EnvelopeDocumentsResult.t} on success
	{:error, Req.Response.t} on failure

 documents_put_document(connection, account_id, document_id, envelope_id, document_file_bytes, opts \\ [])

 @spec documents_put_document(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.EnvelopeDocument.t()} | {:error, Req.Response.t()}

Adds or replaces a document in an existing envelope.
Adds or replaces a document in an existing draft or in-process envelope. An in-process envelope is one that has been sent but not yet completed or voided. Note: When adding or modifying documents for an in-process envelope, Docusign recommends locking the envelope prior to making any changes. To add a new document, set the documentId path parameter to a new document ID. To replace a document, set the documentId path parameter to the document ID of the existing document. The tabs of the original document will be applied to the new document. For example, a request in cURL looks like this: $ curl --location --request PUT 'https://demo.docusign.net/restapi/v2.1/accounts/0cdb3ff3-xxxx-xxxx-xxxx-e43af011006d/envelopes/ea4cc25b-xxxx-xxxx-xxxx-a67a0a2a4f6c/documents/1' \ --header 'Authorization: Bearer eyJ...bqg' \ --header 'Content-Disposition: filename="newDocument"' \ --header 'Content-Type: application/pdf' \ --data-binary '@/location/of/document.pdf' <ds-inlinemessage kind="warning"> If HTML document files contain <code></code> elements with the <code>src</code> attribute set to a path or URL, those images will not be displayed. Images in HTML files must be encoded in Base64 format, like this:
 <code></code> </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	document_file_bytes (String.t): Updated document content.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.EnvelopeDocument.t} on success
	{:error, Req.Response.t} on failure

 documents_put_documents(connection, account_id, envelope_id, opts \\ [])

 @spec documents_put_documents(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeDocumentsResult.t()} | {:error, Req.Response.t()}

Adds one or more documents to an existing envelope.
Adds one or more documents to an existing envelope. The tabs of the original document will be applied to the new document. Note: When adding or modifying documents for an in-process envelope, Docusign recommends locking the envelope prior to making any changes. If the file name of a document contains Unicode characters, you need to include a Content-Disposition header. Example: Header: Content-Disposition Value: file; filename=\"name\";fileExtension=ext;documentId=1 Note: This method works on documents only. To add recipient or document tabs, use methods from the EnvelopeRecipientTabs resource. <ds-inlinemessage kind="warning"> If HTML document files contain <code></code> elements with the <code>src</code> attribute set to a path or URL, those images will not be displayed. Images in HTML files must be encoded in Base64 format, like this:
 <code></code> </ds-inlinemessage>
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EnvelopeDefinition):

Returns
	{:ok, DocuSign.Model.EnvelopeDocumentsResult.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeEmailSettings - DocuSign v3.1.0

DocuSign.Api.EnvelopeEmailSettings

API calls for all endpoints tagged EnvelopeEmailSettings.

 Summary

 Functions

 email_settings_delete_email_settings(connection, account_id, envelope_id, opts \\ [])

 Deletes the email setting overrides for an envelope.
Deletes all existing email override settings for the envelope. If you want to delete an individual email override setting, use the PUT and set the value to an empty string. Note that deleting email settings will only affect email communications that occur after the deletion and the normal account email settings are used for future email communications.

 email_settings_get_email_settings(connection, account_id, envelope_id, opts \\ [])

 Gets the email setting overrides for an envelope.
Retrieves the email override settings for the specified envelope.

 email_settings_post_email_settings(connection, account_id, envelope_id, opts \\ [])

 Adds email setting overrides to an envelope.
Adds email override settings, changing the email address to reply to an email address, name, or the BCC for email archive information, for the envelope. Note that adding email settings will only affect email communications that occur after the addition was made. The BCC Email address feature is designed to provide a copy of all email communications for external archiving purposes. To send a copy of the envelope to a recipient who does not need to sign, use a Carbon Copy or Certified Delivery recipient type. Note: Docusign recommends that envelopes sent using the BCC for Email Archive feature, including the BCC Email Override option, include additional signer authentication options.

 email_settings_put_email_settings(connection, account_id, envelope_id, opts \\ [])

 Updates the email setting overrides for an envelope.
Updates the existing email override settings for the specified envelope. Note that modifying email settings will only affect email communications that occur after the modification was made. This can also be used to delete an individual email override setting by using an empty string for the value to be deleted.

 Functions

 email_settings_delete_email_settings(connection, account_id, envelope_id, opts \\ [])

 @spec email_settings_delete_email_settings(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EmailSettings.t()} | {:error, Req.Response.t()}

Deletes the email setting overrides for an envelope.
Deletes all existing email override settings for the envelope. If you want to delete an individual email override setting, use the PUT and set the value to an empty string. Note that deleting email settings will only affect email communications that occur after the deletion and the normal account email settings are used for future email communications.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.EmailSettings.t} on success
	{:error, Req.Response.t} on failure

 email_settings_get_email_settings(connection, account_id, envelope_id, opts \\ [])

 @spec email_settings_get_email_settings(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EmailSettings.t()} | {:error, Req.Response.t()}

Gets the email setting overrides for an envelope.
Retrieves the email override settings for the specified envelope.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.EmailSettings.t} on success
	{:error, Req.Response.t} on failure

 email_settings_post_email_settings(connection, account_id, envelope_id, opts \\ [])

 @spec email_settings_post_email_settings(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EmailSettings.t()} | {:error, Req.Response.t()}

Adds email setting overrides to an envelope.
Adds email override settings, changing the email address to reply to an email address, name, or the BCC for email archive information, for the envelope. Note that adding email settings will only affect email communications that occur after the addition was made. The BCC Email address feature is designed to provide a copy of all email communications for external archiving purposes. To send a copy of the envelope to a recipient who does not need to sign, use a Carbon Copy or Certified Delivery recipient type. Note: Docusign recommends that envelopes sent using the BCC for Email Archive feature, including the BCC Email Override option, include additional signer authentication options.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EmailSettings): A complex type that contains email settings.

Returns
	{:ok, DocuSign.Model.EmailSettings.t} on success
	{:error, Req.Response.t} on failure

 email_settings_put_email_settings(connection, account_id, envelope_id, opts \\ [])

 @spec email_settings_put_email_settings(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EmailSettings.t()} | {:error, Req.Response.t()}

Updates the email setting overrides for an envelope.
Updates the existing email override settings for the specified envelope. Note that modifying email settings will only affect email communications that occur after the modification was made. This can also be used to delete an individual email override setting by using an empty string for the value to be deleted.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EmailSettings): A complex type that contains email settings.

Returns
	{:ok, DocuSign.Model.EmailSettings.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeFormData - DocuSign v3.1.0

DocuSign.Api.EnvelopeFormData

API calls for all endpoints tagged EnvelopeFormData.

 Summary

 Functions

 form_data_get_form_data(connection, account_id, envelope_id, opts \\ [])

 Returns envelope tab data for an existing envelope.
This method downloads the envelope and tab data (also called form data) from any in-process, completed, or canceled envelope that you sent or that is shared with you. Recipients who are also full administrators on an account can view form data for any envelopes that another user on the account has sent to them. Note: To use this feature, the Sending Setting "Allow sender to download form data" must be enabled for the account. ### Related topics - How to get envelope tab values

 Functions

 form_data_get_form_data(connection, account_id, envelope_id, opts \\ [])

 @spec form_data_get_form_data(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeFormData.t()} | {:error, Req.Response.t()}

Returns envelope tab data for an existing envelope.
This method downloads the envelope and tab data (also called form data) from any in-process, completed, or canceled envelope that you sent or that is shared with you. Recipients who are also full administrators on an account can view form data for any envelopes that another user on the account has sent to them. Note: To use this feature, the Sending Setting "Allow sender to download form data" must be enabled for the account. ### Related topics - How to get envelope tab values
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.EnvelopeFormData.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeHtmlDefinitions - DocuSign v3.1.0

DocuSign.Api.EnvelopeHtmlDefinitions

API calls for all endpoints tagged EnvelopeHtmlDefinitions.

 Summary

 Functions

 responsive_html_get_envelope_html_definitions(connection, account_id, envelope_id, opts \\ [])

 Gets the Original HTML Definition used to generate the Responsive HTML for the envelope.

 Functions

 responsive_html_get_envelope_html_definitions(connection, account_id, envelope_id, opts \\ [])

 @spec responsive_html_get_envelope_html_definitions(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentHtmlDefinitionOriginals.t()}
 | {:error, Req.Response.t()}

Gets the Original HTML Definition used to generate the Responsive HTML for the envelope.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DocumentHtmlDefinitionOriginals.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeLocks - DocuSign v3.1.0

DocuSign.Api.EnvelopeLocks

API calls for all endpoints tagged EnvelopeLocks.

 Summary

 Functions

 lock_delete_envelope_lock(connection, account_id, envelope_id, opts \\ [])

 Deletes an envelope lock.
Deletes the lock from the specified envelope. The user deleting the lock must be the same user who locked the envelope. You must include the X-DocuSign-Edit header as described in EnvelopeLocks: create. This method takes an optional query parameter that lets you specify whether changes made while the envelope was locked are kept or discarded. | Query Parameter | Description | | :-------------- | :-- | | save_changes | When true (the default), any changes made while the lock was active are saved. When false, any changes made while the envelope was locked are discarded. | ### Related topics - Common API Tasks: Locking and unlocking envelopes

 lock_get_envelope_lock(connection, account_id, envelope_id, opts \\ [])

 Gets envelope lock information.
Retrieves general information about an envelope lock. The user requesting the information must be the same user who locked the envelope. You can use this method to recover the lock information, including the lockToken, for a locked envelope. The X-DocuSign-Edit header is included in the response. See EnvelopeLocks: create for a description of the X-DocuSign-Edit header. ### Related topics - Common API Tasks: Locking and unlocking envelopes

 lock_post_envelope_lock(connection, account_id, envelope_id, opts \\ [])

 Locks an envelope.
This method locks the specified envelope and sets the time until the lock expires to prevent other users or recipients from changing the envelope. The response to this request includes a lockToken parameter that you must use in the X-DocuSign-Edit header for every PUT method (typically a method that updates an envelope) while the envelope is locked. If you do not provide the lockToken when accessing a locked envelope, you will get the following error: { "errorCode": "EDIT_LOCK_NOT_LOCK_OWNER", "message": "The user is not the owner of the lock. The template is locked by another user or in another application" } ### The X-DocuSign-Edit header The X-DocuSign-Edit header looks like this and can be specified in either JSON or XML. JSON { "LockToken": "token-from-response", "LockDurationInSeconds": "600" } XML <DocuSignEdit> <LockToken>token-from-response</LockToken> <LockDurationInSeconds>600</LockDurationInSeconds> </DocuSignEdit> In the actual HTTP header, you would remove the linebreaks: X-DocuSign-Edit: {"LockToken": "token-from-response", "LockDurationInSeconds": "600" } or X-DocuSign-Edit:<DocuSignEdit><LockToken>token-from-response</LockToken><LockDurationInSeconds>600</LockDurationInSeconds></DocuSignEdit> ### Related topics - Common API Tasks: Locking and unlocking envelopes

 lock_put_envelope_lock(connection, account_id, envelope_id, opts \\ [])

 Updates an envelope lock.
Updates the lock information for a locked envelope. You must include the X-DocuSign-Edit header as described in EnvelopeLocks: create. Use this method to change the duration of the lock (lockDurationInSeconds) or the lockedByApp string. The request body is a full lockRequest object, but you only need to specify the properties that you are updating. For example: { "lockDurationInSeconds": "3600", "lockedByApp": "My Application" }

 Functions

 lock_delete_envelope_lock(connection, account_id, envelope_id, opts \\ [])

 @spec lock_delete_envelope_lock(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeLocks.t()} | {:error, Req.Response.t()}

Deletes an envelope lock.
Deletes the lock from the specified envelope. The user deleting the lock must be the same user who locked the envelope. You must include the X-DocuSign-Edit header as described in EnvelopeLocks: create. This method takes an optional query parameter that lets you specify whether changes made while the envelope was locked are kept or discarded. | Query Parameter | Description | | :-------------- | :-- | | save_changes | When true (the default), any changes made while the lock was active are saved. When false, any changes made while the envelope was locked are discarded. | ### Related topics - Common API Tasks: Locking and unlocking envelopes
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.EnvelopeLocks.t} on success
	{:error, Req.Response.t} on failure

 lock_get_envelope_lock(connection, account_id, envelope_id, opts \\ [])

 @spec lock_get_envelope_lock(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeLocks.t()} | {:error, Req.Response.t()}

Gets envelope lock information.
Retrieves general information about an envelope lock. The user requesting the information must be the same user who locked the envelope. You can use this method to recover the lock information, including the lockToken, for a locked envelope. The X-DocuSign-Edit header is included in the response. See EnvelopeLocks: create for a description of the X-DocuSign-Edit header. ### Related topics - Common API Tasks: Locking and unlocking envelopes
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.EnvelopeLocks.t} on success
	{:error, Req.Response.t} on failure

 lock_post_envelope_lock(connection, account_id, envelope_id, opts \\ [])

 @spec lock_post_envelope_lock(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeLocks.t()} | {:error, Req.Response.t()}

Locks an envelope.
This method locks the specified envelope and sets the time until the lock expires to prevent other users or recipients from changing the envelope. The response to this request includes a lockToken parameter that you must use in the X-DocuSign-Edit header for every PUT method (typically a method that updates an envelope) while the envelope is locked. If you do not provide the lockToken when accessing a locked envelope, you will get the following error: { "errorCode": "EDIT_LOCK_NOT_LOCK_OWNER", "message": "The user is not the owner of the lock. The template is locked by another user or in another application" } ### The X-DocuSign-Edit header The X-DocuSign-Edit header looks like this and can be specified in either JSON or XML. JSON { "LockToken": "token-from-response", "LockDurationInSeconds": "600" } XML <DocuSignEdit> <LockToken>token-from-response</LockToken> <LockDurationInSeconds>600</LockDurationInSeconds> </DocuSignEdit> In the actual HTTP header, you would remove the linebreaks: X-DocuSign-Edit: {"LockToken": "token-from-response", "LockDurationInSeconds": "600" } or X-DocuSign-Edit:<DocuSignEdit><LockToken>token-from-response</LockToken><LockDurationInSeconds>600</LockDurationInSeconds></DocuSignEdit> ### Related topics - Common API Tasks: Locking and unlocking envelopes
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (LockRequest):

Returns
	{:ok, DocuSign.Model.EnvelopeLocks.t} on success
	{:error, Req.Response.t} on failure

 lock_put_envelope_lock(connection, account_id, envelope_id, opts \\ [])

 @spec lock_put_envelope_lock(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeLocks.t()} | {:error, Req.Response.t()}

Updates an envelope lock.
Updates the lock information for a locked envelope. You must include the X-DocuSign-Edit header as described in EnvelopeLocks: create. Use this method to change the duration of the lock (lockDurationInSeconds) or the lockedByApp string. The request body is a full lockRequest object, but you only need to specify the properties that you are updating. For example: { "lockDurationInSeconds": "3600", "lockedByApp": "My Application" }
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (LockRequest):

Returns
	{:ok, DocuSign.Model.EnvelopeLocks.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopePublish - DocuSign v3.1.0

DocuSign.Api.EnvelopePublish

API calls for all endpoints tagged EnvelopePublish.

 Summary

 Functions

 historical_envelope_publish_post_historical_envelope_publish_transaction(connection, account_id, opts \\ [])

 Submits a batch of historical envelopes for republish to a webhook.
This endpoint submits a batch of existing envelopes to a webhook of your choice. Set the webhook address with the urlToPublishTo request body parameter. This endpoint does not call an existing Connect configuration or create a new Connect listener to monitor new activity. It simply uses an ad hoc configuration to submit existing envelopes. You must include all the configuration data in the request body. The envelope data will always be transmitted in JSON format. XML, Salesforce, and eOriginal configuration types are not supported. Your request should match the following format: { "envelopes": ["4280f274-xxxx-xxxx-xxxx-b218b7eeda08", "8373a938-xxxx-xxxx-xxxx-e992a2abae01"], "config": { "configurationType":"custom", "name": "Test", "urlToPublishTo":"YOUR-WEBHOOK-URL", "allowEnvelopePublish": "true", "enableLog": "true", "requiresAcknowledgement": "true", "IncludeHMAC": "true", "SignMessageWithX509Cert": "true", "deliveryMode": "SIM", "eventData": { "version": "restv2.1", "format": "json", "includedata": ["tabs","payment_tabs","custom_fields","powerform","recipients","folders","extensions","attachments", "prefill_tabs", "documents"] } } } If the request succeeds, it returns a 201 (Created) HTTP response code and the response body property processingStatus will be set to processing. You can then view the status of each historical republish request in the Bulk Actions Log.

 Functions

 historical_envelope_publish_post_historical_envelope_publish_transaction(connection, account_id, opts \\ [])

 @spec historical_envelope_publish_post_historical_envelope_publish_transaction(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopePublishTransaction.t()}
 | {:error, Req.Response.t()}

Submits a batch of historical envelopes for republish to a webhook.
This endpoint submits a batch of existing envelopes to a webhook of your choice. Set the webhook address with the urlToPublishTo request body parameter. This endpoint does not call an existing Connect configuration or create a new Connect listener to monitor new activity. It simply uses an ad hoc configuration to submit existing envelopes. You must include all the configuration data in the request body. The envelope data will always be transmitted in JSON format. XML, Salesforce, and eOriginal configuration types are not supported. Your request should match the following format: { "envelopes": ["4280f274-xxxx-xxxx-xxxx-b218b7eeda08", "8373a938-xxxx-xxxx-xxxx-e992a2abae01"], "config": { "configurationType":"custom", "name": "Test", "urlToPublishTo":"YOUR-WEBHOOK-URL", "allowEnvelopePublish": "true", "enableLog": "true", "requiresAcknowledgement": "true", "IncludeHMAC": "true", "SignMessageWithX509Cert": "true", "deliveryMode": "SIM", "eventData": { "version": "restv2.1", "format": "json", "includedata": ["tabs","payment_tabs","custom_fields","powerform","recipients","folders","extensions","attachments", "prefill_tabs", "documents"] } } } If the request succeeds, it returns a 201 (Created) HTTP response code and the response body property processingStatus will be set to processing. You can then view the status of each historical republish request in the

 DocuSign.Api.EnvelopeRecipientTabs - DocuSign v3.1.0

DocuSign.Api.EnvelopeRecipientTabs

API calls for all endpoints tagged EnvelopeRecipientTabs.

 Summary

 Functions

 recipients_delete_recipient_tabs(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Deletes the tabs associated with a recipient. Note: It is an error to delete a tab that has the templateLocked property set to true. This property corresponds to the Restrict changes option in the web app.
Deletes one or more tabs associated with a recipient in a draft envelope.

 recipients_get_recipient_tabs(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Gets the tabs information for a signer or sign-in-person recipient in an envelope.
Retrieves information about the tabs associated with a recipient. You can make a single API call to get all the tab values and information from a given, completed envelope in addition to draft ones. Tab values can be retrieved by using the EnvelopeRecipients:list method with query parameter include_tabs set to true.

 recipients_post_recipient_tabs(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Adds tabs for a recipient.
Adds one or more tabs for a recipient.

 recipients_put_recipient_tabs(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Updates the tabs for a recipient.
Updates one or more tabs for a recipient in a draft envelope. A draft envelope is one that is not yet complete. Note: It is an error to update a tab that has the templateLocked property set to true. This property corresponds to the Restrict changes option in the web app.

 Functions

 recipients_delete_recipient_tabs(connection, account_id, envelope_id, recipient_id, opts \\ [])

 @spec recipients_delete_recipient_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeRecipientTabs.t()} | {:error, Req.Response.t()}

Deletes the tabs associated with a recipient. Note: It is an error to delete a tab that has the templateLocked property set to true. This property corresponds to the Restrict changes option in the web app.
Deletes one or more tabs associated with a recipient in a draft envelope.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	opts (keyword): Optional parameters	:body (EnvelopeRecipientTabs):

Returns
	{:ok, DocuSign.Model.EnvelopeRecipientTabs.t} on success
	{:error, Req.Response.t} on failure

 recipients_get_recipient_tabs(connection, account_id, envelope_id, recipient_id, opts \\ [])

 @spec recipients_get_recipient_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeRecipientTabs.t()} | {:error, Req.Response.t()}

Gets the tabs information for a signer or sign-in-person recipient in an envelope.
Retrieves information about the tabs associated with a recipient. You can make a single API call to get all the tab values and information from a given, completed envelope in addition to draft ones. Tab values can be retrieved by using the EnvelopeRecipients:list method with query parameter include_tabs set to true.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	opts (keyword): Optional parameters	:include_anchor_tab_locations (String.t): When true, all tabs with anchor tab properties are included in the response. The default value is false.
	:include_metadata (String.t): When true, the response includes metadata indicating which properties are editable.

Returns
	{:ok, DocuSign.Model.EnvelopeRecipientTabs.t} on success
	{:error, Req.Response.t} on failure

 recipients_post_recipient_tabs(connection, account_id, envelope_id, recipient_id, opts \\ [])

 @spec recipients_post_recipient_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeRecipientTabs.t()} | {:error, Req.Response.t()}

Adds tabs for a recipient.
Adds one or more tabs for a recipient.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	opts (keyword): Optional parameters	:body (EnvelopeRecipientTabs):

Returns
	{:ok, DocuSign.Model.EnvelopeRecipientTabs.t} on success
	{:error, Req.Response.t} on failure

 recipients_put_recipient_tabs(connection, account_id, envelope_id, recipient_id, opts \\ [])

 @spec recipients_put_recipient_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeRecipientTabs.t()} | {:error, Req.Response.t()}

Updates the tabs for a recipient.
Updates one or more tabs for a recipient in a draft envelope. A draft envelope is one that is not yet complete. Note: It is an error to update a tab that has the templateLocked property set to true. This property corresponds to the Restrict changes option in the web app.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	opts (keyword): Optional parameters	:body (EnvelopeRecipientTabs):

Returns
	{:ok, DocuSign.Model.EnvelopeRecipientTabs.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeRecipients - DocuSign v3.1.0

DocuSign.Api.EnvelopeRecipients

API calls for all endpoints tagged EnvelopeRecipients.

 Summary

 Functions

 recipients_delete_recipient(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Deletes a recipient from an envelope.
Deletes a recipient from a draft or sent envelope. If the envelope is "In Process" (has been sent and is not completed or voided), recipients that have completed their actions cannot be deleted.

 recipients_delete_recipients(connection, account_id, envelope_id, opts \\ [])

 Deletes recipients from an envelope.
Deletes one or more recipients from a draft or sent envelope. List the recipients that you want to delete in the body of the request. This method uses the recipientId as the key for deleting recipients. If the envelope is In Process, meaning that it has been sent and has not been completed or voided, recipients that have completed their actions cannot be deleted.

 recipients_get_recipients(connection, account_id, envelope_id, opts \\ [])

 Gets the status of recipients for an envelope.
Retrieves the status of all recipients in a single envelope and identifies the current recipient in the routing list. This method can also be used to retrieve the tab values. The currentRoutingOrder property of the response contains the routingOrder value of the current recipient indicating that the envelope has been sent to the recipient, but the recipient has not completed their actions. ### Related topics - How to list envelope recipients - How to retrieve ID Evidence events - How to retrieve ID Evidence media

 recipients_post_recipient_proof_file_resource_token(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Creates a resource token for a sender to request ID Evidence data.
Creates a resource token for a sender. This token allows a sender to return identification data for a recipient using the ID Evidence API. ### Related topics - How to retrieve ID Evidence events - How to retrieve ID Evidence media

 recipients_post_recipients(connection, account_id, envelope_id, opts \\ [])

 Adds one or more recipients to an envelope.
Adds one or more recipients to an envelope. For an in-process envelope, one that has been sent and has not been completed or voided, an email is sent to a new recipient when they are reached in the routing order. If the new recipient's routing order is before or the same as the envelope's next recipient, an email is only sent if the optional resend_envelope query string is set to true. Note: This method works on recipients only. To add recipient tabs, use methods from the [EnvelopeRecipientTabs][recipientTabs] resource. For example, this request body will add a recipient (astanton@example.com) but NOT the Sign Here recipient tab. json { "signers": [{ "email": "astanton@example.com", "name": "Anne Stanton", "recipientId": "1", "tabs": { // These tabs will NOT be added "signHereTabs": [// with this method. See note above. { "anchorString": "below", "tooltip": "please sign here" }, . . .] } }] } [recipientTabs]: /docs/esign-rest-api/reference/envelopes/enveloperecipienttabs/ ### Related topics - How to bulk send envelopes - How to request a signature by email - How to request a signature through your app

 recipients_put_recipients(connection, account_id, envelope_id, opts \\ [])

 Updates recipients in a draft envelope or corrects recipient information for an in-process envelope.
Updates the recipients of a draft envelope or corrects recipient information for an in-process envelope. If you send information for a recipient that does not already exist in a draft envelope, the recipient is added to the envelope (similar to the [EnvelopeRecipients: Create][EnvelopeRecipients-create] method). You can also use this method to resend an envelope to a recipient by using the resend_envelope option. Updating Sent Envelopes After an envelope has been sent, you can edit only the following properties: - accessCode - agentCanEditName - agentCanEditEmail - customFields - deliveryMethod - documentVisibility - email (If you provide an email address in this method, it will be treated as a new email address, even if it is exactly the same as the current address. Do not provide an email address if you do not want a correction email sent.) - emailNotification - idCheckConfigurationName - identityVerification - name - note - phoneAuthentication - recipientType (For this to work, you must also change the recipient object to match the recipient type.) - requireIdLookup - routingOrder - signingGroupId (You can change this ID to switch to a different signing group and its corresponding set of recipients.) - smsAuthentication - suppressEmails - userName If the recipient has signed, but the envelope is still active, the method will return success, but the recipientUpdateResults property in the response will include an error that the recipient could not be updated: { "recipientUpdateResults": [{ "recipientId": "999", "errorDetails": { "errorCode": "RECIPIENT_UPDATE_FAILED", "message": "The recipient could not be updated. Recipient not in state that allows correction." } }] } If the envelope is completed, and you try to change a recipient's address, the method will fail with this error: { "errorCode": "ENVELOPE_INVALID_STATUS", "message": "Invalid envelope status. Envelope status is not one of: Created, Sent, Delivered, Correct." } Note: This method works on recipients only. To add recipient tabs, use methods from the [EnvelopeRecipientTabs][recipientTabs] resource. For example, this request body will add a recipient (astanton@example.com) but NOT the Sign Here recipient tab. json { "signers": [{ "email": "astanton@example.com", "name": "Anne Stanton", "recipientId": "1", // THIS WILL NOT WORK "tabs": { "signHereTabs": [{ "anchorString": "below", "tooltip": "please sign here3" }, . . .] } }] } [EnvelopeRecipients-create]: /docs/esign-rest-api/reference/envelopes/enveloperecipients/create/ [recipientTabs]: /docs/esign-rest-api/reference/envelopes/enveloperecipienttabs/

 views_post_envelope_recipient_preview(connection, account_id, envelope_id, opts \\ [])

 Creates an envelope recipient preview.
Returns a URL to preview the recipients' view of a draft envelope or template. You can embed this view in your application to enable the sender to preview the recipients' experience. You must specify a returnUrl value in the request body. For more information, see Preview and Send.

 views_post_recipient_manual_review_view(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Create the link to the page for manually reviewing IDs.
This method returns the URL of the page that allows a sender to manually review the ID of a recipient.

 Functions

 recipients_delete_recipient(connection, account_id, envelope_id, recipient_id, opts \\ [])

 @spec recipients_delete_recipient(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.EnvelopeRecipients.t()} | {:error, Req.Response.t()}

Deletes a recipient from an envelope.
Deletes a recipient from a draft or sent envelope. If the envelope is "In Process" (has been sent and is not completed or voided), recipients that have completed their actions cannot be deleted.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.EnvelopeRecipients.t} on success
	{:error, Req.Response.t} on failure

 recipients_delete_recipients(connection, account_id, envelope_id, opts \\ [])

 @spec recipients_delete_recipients(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeRecipients.t()} | {:error, Req.Response.t()}

Deletes recipients from an envelope.
Deletes one or more recipients from a draft or sent envelope. List the recipients that you want to delete in the body of the request. This method uses the recipientId as the key for deleting recipients. If the envelope is In Process, meaning that it has been sent and has not been completed or voided, recipients that have completed their actions cannot be deleted.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (EnvelopeRecipients):

Returns
	{:ok, DocuSign.Model.EnvelopeRecipients.t} on success
	{:error, Req.Response.t} on failure

 recipients_get_recipients(connection, account_id, envelope_id, opts \\ [])

 @spec recipients_get_recipients(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeRecipients.t()} | {:error, Req.Response.t()}

Gets the status of recipients for an envelope.
Retrieves the status of all recipients in a single envelope and identifies the current recipient in the routing list. This method can also be used to retrieve the tab values. The currentRoutingOrder property of the response contains the routingOrder value of the current recipient indicating that the envelope has been sent to the recipient, but the recipient has not completed their actions. ### Related topics - How to list envelope recipients - How to retrieve ID Evidence events - How to retrieve ID Evidence media
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:include_anchor_tab_locations (String.t): When true and include_tabs value is set to true, all tabs with anchor tab properties are included in the response.
	:include_extended (String.t): When true, the extended properties are included in the response.
	:include_metadata (String.t): Boolean value that specifies whether to include metadata associated with the recipients (for envelopes only, not templates).
	:include_tabs (String.t): When true, the tab information associated with the recipient is included in the response.

Returns
	{:ok, DocuSign.Model.EnvelopeRecipients.t} on success
	{:error, Req.Response.t} on failure

 recipients_post_recipient_proof_file_resource_token(connection, account_id, envelope_id, recipient_id, opts \\ [])

 @spec recipients_post_recipient_proof_file_resource_token(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.IdEvidenceResourceToken.t()} | {:error, Req.Response.t()}

Creates a resource token for a sender to request ID Evidence data.
Creates a resource token for a sender. This token allows a sender to return identification data for a recipient using the ID Evidence API. ### Related topics - How to retrieve ID Evidence events - How to retrieve ID Evidence media
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The account ID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	recipient_id (String.t): The recipientIdGuid.
	opts (keyword): Optional parameters	:token_scopes (String.t):

Returns
	{:ok, DocuSign.Model.IdEvidenceResourceToken.t} on success
	{:error, Req.Response.t} on failure

 recipients_post_recipients(connection, account_id, envelope_id, opts \\ [])

 @spec recipients_post_recipients(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeRecipients.t()} | {:error, Req.Response.t()}

Adds one or more recipients to an envelope.
Adds one or more recipients to an envelope. For an in-process envelope, one that has been sent and has not been completed or voided, an email is sent to a new recipient when they are reached in the routing order. If the new recipient's routing order is before or the same as the envelope's next recipient, an email is only sent if the optional resend_envelope query string is set to true. Note: This method works on recipients only. To add recipient tabs, use methods from the [EnvelopeRecipientTabs][recipientTabs] resource. For example, this request body will add a recipient (astanton@example.com) but NOT the Sign Here recipient tab. json { "signers": [{ "email": "astanton@example.com", "name": "Anne Stanton", "recipientId": "1", "tabs": { // These tabs will NOT be added "signHereTabs": [// with this method. See note above. { "anchorString": "below", "tooltip": "please sign here" }, . . .] } }] } [recipientTabs]: /docs/esign-rest-api/reference/envelopes/enveloperecipienttabs/ ### Related topics - How to bulk send envelopes - How to request a signature by email - How to request a signature through your app
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:resend_envelope (String.t): When true, forces the envelope to be resent if it would not be resent otherwise. Ordinarily, if the recipient's routing order is before or the same as the envelope's next recipient, the envelope is not resent. Setting this query parameter to false has no effect and is the same as omitting it altogether.
	:body (EnvelopeRecipients):

Returns
	{:ok, DocuSign.Model.EnvelopeRecipients.t} on success
	{:error, Req.Response.t} on failure

 recipients_put_recipients(connection, account_id, envelope_id, opts \\ [])

 @spec recipients_put_recipients(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.RecipientsUpdateSummary.t()} | {:error, Req.Response.t()}

Updates recipients in a draft envelope or corrects recipient information for an in-process envelope.
Updates the recipients of a draft envelope or corrects recipient information for an in-process envelope. If you send information for a recipient that does not already exist in a draft envelope, the recipient is added to the envelope (similar to the [EnvelopeRecipients: Create][EnvelopeRecipients-create] method). You can also use this method to resend an envelope to a recipient by using the resend_envelope option. Updating Sent Envelopes After an envelope has been sent, you can edit only the following properties: - accessCode - agentCanEditName - agentCanEditEmail - customFields - deliveryMethod - documentVisibility - email (If you provide an email address in this method, it will be treated as a new email address, even if it is exactly the same as the current address. Do not provide an email address if you do not want a correction email sent.) - emailNotification - idCheckConfigurationName - identityVerification - name - note - phoneAuthentication - recipientType (For this to work, you must also change the recipient object to match the recipient type.) - requireIdLookup - routingOrder - signingGroupId (You can change this ID to switch to a different signing group and its corresponding set of recipients.) - smsAuthentication - suppressEmails - userName If the recipient has signed, but the envelope is still active, the method will return success, but the recipientUpdateResults property in the response will include an error that the recipient could not be updated: { "recipientUpdateResults": [{ "recipientId": "999", "errorDetails": { "errorCode": "RECIPIENT_UPDATE_FAILED", "message": "The recipient could not be updated. Recipient not in state that allows correction." } }] } If the envelope is completed, and you try to change a recipient's address, the method will fail with this error: { "errorCode": "ENVELOPE_INVALID_STATUS", "message": "Invalid envelope status. Envelope status is not one of: Created, Sent, Delivered, Correct." } Note: This method works on recipients only. To add recipient tabs, use methods from the [EnvelopeRecipientTabs][recipientTabs] resource. For example, this request body will add a recipient (astanton@example.com) but NOT the Sign Here recipient tab. json { "signers": [{ "email": "astanton@example.com", "name": "Anne Stanton", "recipientId": "1", // THIS WILL NOT WORK "tabs": { "signHereTabs": [{ "anchorString": "below", "tooltip": "please sign here3" }, . . .] } }] } [EnvelopeRecipients-create]: /docs/esign-rest-api/reference/envelopes/enveloperecipients/create/ [recipientTabs]: /docs/esign-rest-api/reference/envelopes/enveloperecipienttabs/
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:combine_same_order_recipients (String.t): When true, recipients are combined or merged with matching recipients. Recipient matching occurs as part of

 DocuSign.Api.EnvelopeTemplates - DocuSign v3.1.0

DocuSign.Api.EnvelopeTemplates

API calls for all endpoints tagged EnvelopeTemplates.

 Summary

 Functions

 templates_delete_document_templates(connection, account_id, document_id, envelope_id, template_id, opts \\ [])

 Deletes a template from a document in an existing envelope.
Deletes the specified template from a document in an existing envelope.

 templates_get_document_templates(connection, account_id, document_id, envelope_id, opts \\ [])

 Gets the templates associated with a document in an existing envelope.
Retrieves the templates associated with a document in the specified envelope.

 templates_get_envelope_templates(connection, account_id, envelope_id, opts \\ [])

 Gets templates used in an envelope.
This returns a list of the server-side templates, their name and ID, used in an envelope.

 templates_post_document_templates(connection, account_id, document_id, envelope_id, opts \\ [])

 Adds templates to a document in an envelope.
Adds templates to a document in the specified envelope.

 templates_post_envelope_templates(connection, account_id, envelope_id, opts \\ [])

 Adds templates to an envelope.
Adds templates to the specified envelope.

 Functions

 templates_delete_document_templates(connection, account_id, document_id, envelope_id, template_id, opts \\ [])

 @spec templates_delete_document_templates(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes a template from a document in an existing envelope.
Deletes the specified template from a document in an existing envelope.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 templates_get_document_templates(connection, account_id, document_id, envelope_id, opts \\ [])

 @spec templates_get_document_templates(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.TemplateInformation.t()} | {:error, Req.Response.t()}

Gets the templates associated with a document in an existing envelope.
Retrieves the templates associated with a document in the specified envelope.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:include (String.t): A comma-separated list that limits the results. Valid values are: applied matched

Returns
	{:ok, DocuSign.Model.TemplateInformation.t} on success
	{:error, Req.Response.t} on failure

 templates_get_envelope_templates(connection, account_id, envelope_id, opts \\ [])

 @spec templates_get_envelope_templates(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.TemplateInformation.t()} | {:error, Req.Response.t()}

Gets templates used in an envelope.
This returns a list of the server-side templates, their name and ID, used in an envelope.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:include (String.t): Filters the results by template type. Valid values: applied: Returns the templates applied to an envelope. matching: Returns the

 DocuSign.Api.EnvelopeTransferRules - DocuSign v3.1.0

DocuSign.Api.EnvelopeTransferRules

API calls for all endpoints tagged EnvelopeTransferRules.

 Summary

 Functions

 envelope_transfer_rules_delete_envelope_transfer_rules(connection, account_id, envelope_transfer_rule_id, opts \\ [])

 Deletes an envelope transfer rule.
This method deletes an envelope transfer rule. Note: Only Administrators can delete envelope transfer rules. In addition, to use envelope transfer rules, the Transfer Custody feature must be enabled for your account.

 envelope_transfer_rules_get_envelope_transfer_rules(connection, account_id, opts \\ [])

 Gets envelope transfer rules.
This method retrieves a list of envelope transfer rules associated with an account. Note: Only Administrators can create and use envelope transfer rules. In addition, to use envelope transfer rules, the Transfer Custody feature must be enabled for your account.

 envelope_transfer_rules_post_envelope_transfer_rules(connection, account_id, opts \\ [])

 Creates an envelope transfer rule.
This method creates an envelope transfer rule. When you create an envelope transfer rule, you specify the following properties: - eventType - fromGroups - toUser - toFolder - carbonCopyOriginalOwner - enabled Note: Only Administrators can create envelope transfer rules. In addition, to use envelope transfer rules, the Transfer Custody feature must be enabled for your account.

 envelope_transfer_rules_put_envelope_transfer_rule(connection, account_id, envelope_transfer_rule_id, opts \\ [])

 Changes the status of an envelope transfer rule.
This method changes the status of an envelope transfer rule. You use this method to change whether or not the rule is enabled. You must include the envelopeTransferRuleId both as a query parameter, and in the request body. Note: You cannot change any other information about the envelope transfer rule. Only Administrators can update an envelope transfer rule. In addition, to use envelope transfer rules, the Transfer Custody feature must be enabled for your account.

 envelope_transfer_rules_put_envelope_transfer_rules(connection, account_id, opts \\ [])

 Changes the status of multiple envelope transfer rules.
This method changes the status for one or more envelope transfer rules based on the envelopeTransferRuleIds in the request body. You use this method to change whether or not the rules are enabled. Note: You cannot change any other information about the envelope transfer rule. Only Administrators can update envelope transfer rules. In addition, to use envelope transfer rules, the Transfer Custody feature must be enabled for your account.

 Functions

 envelope_transfer_rules_delete_envelope_transfer_rules(connection, account_id, envelope_transfer_rule_id, opts \\ [])

 @spec envelope_transfer_rules_delete_envelope_transfer_rules(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes an envelope transfer rule.
This method deletes an envelope transfer rule. Note: Only Administrators can delete envelope transfer rules. In addition, to use envelope transfer rules, the Transfer Custody feature must be enabled for your account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_transfer_rule_id (String.t): The ID of the envelope transfer rule. The system generates this ID when the rule is first created.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 envelope_transfer_rules_get_envelope_transfer_rules(connection, account_id, opts \\ [])

 @spec envelope_transfer_rules_get_envelope_transfer_rules(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeTransferRuleInformation.t()}
 | {:error, Req.Response.t()}

Gets envelope transfer rules.
This method retrieves a list of envelope transfer rules associated with an account. Note: Only Administrators can create and use envelope transfer rules. In addition, to use envelope transfer rules, the Transfer Custody feature must be enabled for your account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return. Use start_position to specify the number of results to skip.
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.

Returns
	{:ok, DocuSign.Model.EnvelopeTransferRuleInformation.t} on success
	{:error, Req.Response.t} on failure

 envelope_transfer_rules_post_envelope_transfer_rules(connection, account_id, opts \\ [])

 @spec envelope_transfer_rules_post_envelope_transfer_rules(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeTransferRuleInformation.t()}
 | {:error, Req.Response.t()}

Creates an envelope transfer rule.
This method creates an envelope transfer rule. When you create an envelope transfer rule, you specify the following properties: - eventType - fromGroups - toUser - toFolder - carbonCopyOriginalOwner - enabled Note: Only Administrators can create envelope transfer rules. In addition, to use envelope transfer rules, the Transfer Custody feature must be enabled for your account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (EnvelopeTransferRuleRequest):

Returns
	{:ok, DocuSign.Model.EnvelopeTransferRuleInformation.t} on success
	{:error, Req.Response.t} on failure

 envelope_transfer_rules_put_envelope_transfer_rule(connection, account_id, envelope_transfer_rule_id, opts \\ [])

 @spec envelope_transfer_rules_put_envelope_transfer_rule(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.EnvelopeTransferRule.t()} | {:error, Req.Response.t()}

Changes the status of an envelope transfer rule.
This method changes the status of an envelope transfer rule. You use this method to change whether or not the rule is enabled. You must include the envelopeTransferRuleId both as a query parameter, and in the request body. Note: You cannot change any other information about the envelope transfer rule. Only Administrators can update an envelope transfer rule. In addition, to use envelope transfer rules, the Transfer Custody feature must be enabled for your account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_transfer_rule_id (String.t): The ID of the envelope transfer rule. The system generates this ID when the rule is first created.
	opts (keyword): Optional parameters	:body (EnvelopeTransferRule):

Returns
	{:ok, DocuSign.Model.EnvelopeTransferRule.t} on success
	{:error, Req.Response.t} on failure

 envelope_transfer_rules_put_envelope_transfer_rules(connection, account_id, opts \\ [])

 @spec envelope_transfer_rules_put_envelope_transfer_rules(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeTransferRuleInformation.t()}
 | {:error, Req.Response.t()}

Changes the status of multiple envelope transfer rules.
This method changes the status for one or more envelope transfer rules based on the envelopeTransferRuleIds in the request body. You use this method to change whether or not the rules are enabled. Note: You cannot change any other information about the envelope transfer rule. Only Administrators can update envelope transfer rules. In addition, to use envelope transfer rules, the Transfer Custody feature must be enabled for your account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (EnvelopeTransferRuleInformation):

Returns
	{:ok, DocuSign.Model.EnvelopeTransferRuleInformation.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.EnvelopeViews - DocuSign v3.1.0

DocuSign.Api.EnvelopeViews

API calls for all endpoints tagged EnvelopeViews.

 Summary

 Functions

 views_delete_envelope_correct_view(connection, account_id, envelope_id, opts \\ [])

 Revokes the correction view URL to the Envelope UI.
This API method is obsolete. Your application should not call it. It acts as a null operation.

 views_post_account_console_view(connection, account_id, opts \\ [])

 Returns a URL to the Docusign eSignature web application.
Returns a URL that enables you to embed the Docusign UI in your applications. To view a specific envelope, set the envelopeId property in the request body. ## Information security notice This method provides full access to the sending account. ### Related topics - How to embed the Docusign UI in your app

 views_post_envelope_correct_view(connection, account_id, envelope_id, opts \\ [])

 Returns a URL to the envelope correction UI. Use after an envelope has been sent.
Returns a URL that enables you to embed the envelope sender view of the Docusign UI. You can customize the appearance of the view via the settings request attribute. You can embed the view in an iframe. API request update The request object for this API method was updated in June 2024. The new API request format is described below. Existing applications must update to the new version; it solves a security issue with the old version. The deprecation schedule has been announced in the Docusign Core Release Notes. While backwards compatibility will be provided for a while for existing applications, all applications must be updated to be secure. See below for migration information. Best practices The returned URL expires after 10 minutes. Therefore, request the URL immediately before you redirect your user to it. Due to screen space issues, do not use an iframe for embedded operations on mobile devices. For mobile applications, use a WebView (Android) or WKWebView (iOS). ## Customizing the user experience By default, the view includes two pages: the Prepare and Tagger pages. The settings object is used to control the user experience. For example, to limit the user to the Tagger page, and not allow the user to change the recipient information: "startingScreen": "Tagger" "showBackButton": "false" "showEditRecipients": "false" Use the Embedded Views Test Too to try the different UX controls. Some UI settings attributes are not yet implemented. ### The envelope must be in the correct state for the Embedded View To use the Correct View, the envelope must be in the sent or delivered state. Otherwise, a 400 error will be returned with an error message in the response body: { "errorCode": "ENVELOPE_INVALID_STATUS", "message": "Invalid envelope status. Correct view cannot be created for an envelope in a Created state." } ### Modifying the envelope after redirection If you set "sendButtonAction": "redirect" or "backButtonAction": "redirect", and your app will modify the envelope before or after the view completes, you must lock the envelope before the API call and provide the lock as the lockToken attribute in the API request object. Delete the lock token after the browser has been redirected to your application. ### Closing the view's iframe If you choose to embed the view in your application via an iframe, Docusign recommends this software pattern to close the iframe after the view has completed: (One time) create a standalone â��returnâ�� page that you will use as the returnUrl target for the view. The view will redirect the iframe to this URL when it has completed. Here's an example return page. In this page, use JavaScript and the postMessage method to send a message to your application with the results of the view. In your application, use window.addEventListener("message", function_name) to register a listener for incoming messages. To show the view, use this API method, then set the iframe to load the URL from the API response. In your application, receive the completion message, validate it, and then close the iframe. ### Information security This view only has write access to the specific envelope referenced in the API call. It also has read access to templates and other secondary information that a user can access to modify the envelope. The read access corresponds to the access rights of the user associated with the access token used for the API call. >Recommendations: > Use the access token of a service user who can access the templates appropriate for your use case. > Do not use the access token of a user with administrator privileges. ## Migrating to the current version of the request object This section only applies to existing applications that use the older version of the request object. Migrating from the old API request object to the new version will take under a day of developer time. Step 1. Does your application set the returnUrl attribute? Yes: continue with step 2. No: In this case, your users first update the envelope, and then the Docusign eSignature home screen is shown. To accomplish this UI pattern with the new API request format: Set the returnUrl to a new endpoint for your application. You can use query parameters or session data to manage state. Remember to authenticate the incoming requests. When the new endpoint is called, use the EnvelopeViews:createConsole API call to obtain and then display the Docusign eSignature home page to your application's user. Step 2. Does your application modify the default UI of the view? No: continue with step 3. Yes: With the new API request object, UI controls for the view are now set when you make the API call via the settings attribute. Note the UI settings your application is currently modifying by adding and updating query parameters on the URL returned by the API method. Using the reference documentation below, create a settings object that accomplishes your UI goals. You can use the Embedded Views Test tool to check your UI settings. Note that the settings object includes multiple objects and subobjects for various UI settings. Delete the code in your application that modifies and adds query parameters to the URL returned by the API. With the new API format, your application will not make any changes to the returned URL. Exception: If you set the view's locale specifically, that is still accomplished by appending the locale query parameter. Step 3. Is the envelope always in the right state before you call the Embedded View? If your software may try to create the Embedded View when the envelope is not in the right state (see above), then you must add additional checks and logic to prevent this. Step 4. Check that these API attributes are set: "view" = "envelope" The returnUrl is set Step 5. All done! Test your application.

 views_post_envelope_edit_view(connection, account_id, envelope_id, opts \\ [])

 Returns a URL to the edit view UI. Use before an envelope has been sent.
This API method has been replaced by the EnvelopeViews:createSender API method. The two API methods work exactly the same, Migration required To solve an application security issue, you must migrate to the new API request format. See the EnvelopeViews:createSender API method for more information. Backwards compatibility will be provided for a limited time.

 views_post_envelope_recipient_shared_view(connection, account_id, envelope_id, opts \\ [])

 Returns a URL to the shared recipient view UI for an envelope.
Returns a URL that enables you to embed the Docusign UI recipient view of a shared envelope in your applications. This is the view that a user sees of an envelope that a recipient on the same account has shared with them. Due to screen space issues, do not use an <iframe> for embedded operations on mobile devices. For iOS devices, Docusign recommends using a WebView. ### Related topics - Embedded signing and sending - How to send an envelope via your app - How to embed the Docusign UI in your app

 views_post_envelope_recipient_view(connection, account_id, envelope_id, opts \\ [])

 Returns a URL to the recipient view UI. For signer recipients, returns the embedded signing view. Can also be used for other recipient types.
Returns a URL that enables you to embed the recipient view of the DocuSign UI in your applications. If the recipient is a signer, then the view will provide the signing ceremony. This method is only used with envelopes in the sent status. <ds-inlinemessage kind="information" markdown="1"> Due to screen space issues, do not use an <code><iframe></code> for embedded operations on mobile devices. For iOS devices, Docusign recommends using a WebView. </ds-inlinemessage> ### The returned URL The URL returned in this method's response is intended to be used immediately to redirect the signer to the recipient view. You can open the recipient view in the current browser or in a new tab. After the signer is redirected to the recipient view, they must interact with the Docusign system periodically or their session will time out. <ds-inlinemessage kind="warning" markdown="1"> The returned URL can be used only once and expires after 5 minutes. Do not store or email the returned URL. </ds-inlinemessage> If you want to invite someone to an embedded signing session via email, the email invitation's URL must be to your application. When invoked, your app should request a recipientView URL from Docusign and then redirect the signer to that URL. ### How to specify the default language You can append the locale query parameter to the URL returned by this method to specify a language. The language for the recipient view follows this order or precedence: - The language specified by the sender for the recipient. - The locale parameter appended to the URL. - The account language if the signer has a Docusign account. - The language used in a previous signing if the signer is return signer. - The browser language. For example, to set the default language to Canadian French, you would add this query parameter to the returned URL: ...&locale=fr_CA ## Authentication Your application is responsible for authenticating the identity of the recipient or signer when you use this method. Use the following parameters to record how the recipient was authenticated. - assertionId - authenticationInstant - authenticationMethod - clientUserId - securityDomain At a minimum, authenticationMethod and clientUserId are required. The information that you provide is included in the envelope's certificate of completion. ## Sending to a remote signer You can request a signing session for a remote recipient who has a Docusign account. Authenticate the request using the recipient's credentials, and do not specify a clientUserId. This differs from the typical behavior where the request is authenticated using the sender's credentials, and the recipient has a clientUserId defined. ## Redirecting back to returnUrl After the signer completes or ends the signing ceremony, Docusign redirects the user's browser back to your app via the returnUrl that you supplied in the request. The signer may be redirected through various Docusign subdomains, depending on the region of the account sending the envelope. Please consult Allowlists for Docusign eSignature service in Security for Docusign eSignature when setting up your allowlists ### The event status parameter Docusign appends an event query parameter to the returnUrl with the outcome of the signing ceremony. Your app can use this event parameter to determine the next step for the envelope. Do not fetch the envelope status by using Envelopes: get or a similar method because doing so will probably hit request and polling limits. | event query parameter | Meaning | | :------------------- | :--- | | signing_complete | The recipient has signed the document. | | cancel | The recipient decided to finish later. | | decline | The recipient declined to sign the document. | | exception | An exception has occurred on the server during the signing session. | | fax_pending | Recipient has a fax pending. | | session_timeout | The recipient did not sign the document in time. The timeout is set to 20 minutes. | | ttl_expired | The token was not used within the timeout period or the token has already been accessed. | | viewing_complete | The recipient did not need to sign but has completed the viewing ceremony. | <ds-inlinemessage kind="information" markdown="1"> Because a user can cancel redirection, close their browser after signing, or spoof the landing URL, you should not rely on the <code>returnUrl</code> alone as the single source of truth for envelope status for your integration. </ds-inlinemessage> ### Maintaining State After the recipient completes the recipient view (or signing ceremony), they are redirected to your application. Your application can recover state information about the transaction by storing information in a cookie, or by including query parameters in the returnUrl field. For example. https://myapp.example.com/docusign_return?myState=12345 When the user is redirected to your app, the event query parameter will be appended. In this example, prevent spoofing by not using a guessable value as the state value. ### Related topics - How to request a signature through your app - How to request a signature using a composite template - How to send an envelope via your app - How to set envelope tab values - How to set tab values in a template - How to request a signature using focused view

 views_post_envelope_sender_view(connection, account_id, envelope_id, opts \\ [])

 Returns a URL to the sender view UI. Used before an envelope has been sent.
Returns a URL that enables you to embed the envelope sender view of the Docusign UI. You can customize the appearance of the view via the settings request attribute. You can embed the view in an iframe. API request update The request object for this API method was updated in June 2024. The new API request format is described below. Existing applications must update to the new version; it solves a security issue with the old version. The deprecation schedule has been announced in the Docusign Core Release Notes. While backwards compatibility will be provided for a while for existing applications, all applications must be updated to be secure. See below for migration information. Best practices The returned URL expires after 10 minutes. Therefore, request the URL immediately before you redirect your user to it. Due to screen space issues, do not use an iframe for embedded operations on mobile devices. For mobile applications, use a WebView (Android) or WKWebView (iOS). ## Customizing the user experience By default, the view includes two pages: the Prepare and Tagger pages. The settings object is used to control the user experience. For example, to limit the user to the Tagger page, and not allow the user to change the recipient information: "startingScreen": "Tagger" "showBackButton": "false" "showEditRecipients": "false" Use the Embedded Views Test Too to try the different UX controls. Some UI settings attributes are not yet implemented. ### The envelope must be in the correct state for the Embedded View To use the Sender View, the envelope must be in the created state. Otherwise, a 400 error will be returned with an error message in the response body: { "errorCode": "ENVELOPE_INVALID_STATUS", "message": "Invalid envelope status. Sender view cannot be created for an envelope that is not in a draft state." } ### Closing the view's iframe If you choose to embed the view in your application via an iframe, Docusign recommends this software pattern to close the iframe after the view has completed: (One time) create a standalone “return” page that you will use as the returnUrl target for the view. The view will redirect the iframe to this URL when it has completed. Here's an example return page. In this page, use JavaScript and the postMessage method to send a message to your application with the results of the view. In your application, use window.addEventListener("message", function_name) to register a listener for incoming messages. To show the view, use this API method, then set the iframe to load the URL from the API response. In your application, receive the completion message, validate it, and then close the iframe. ### Information security This view only has write access to the specific envelope referenced in the API call. It also has read access to templates and other secondary information that a user can access to modify the envelope. The read access corresponds to the access rights of the user associated with the access token used for the API call. >Recommendations: > Use the access token of a service user who can access the templates appropriate for your use case. > Do not use the access token of a user with administrator privileges. ## Migrating to the current version of the request object This section only applies to existing applications that use the older version of the request object. Migrating from the old API request object to the new version will take under a day of developer time. Step 1. Does your application set the returnUrl attribute? Yes: continue with step 2. No: In this case, your users first update the envelope, and then the Docusign eSignature home screen is shown. To accomplish this UI pattern with the new API request format: Set the returnUrl to a new endpoint for your application. You can use query parameters or session data to manage state. Remember to authenticate the incoming requests. When the new endpoint is called, use the EnvelopeViews:createConsole API call to obtain and then display the Docusign eSignature home page to your application's user. Step 2. Does your application modify the default UI of the view? No: continue with step 3. Yes: With the new API request object, UI controls for the view are now set when you make the API call via the settings attribute. Note the UI settings your application is currently modifying by adding and updating query parameters on the URL returned by the API method. Using the reference documentation below, create a settings object that accomplishes your UI goals. You can use the Embedded Views Test tool to check your UI settings. Note that the settings object includes multiple objects and subobjects for various UI settings. Delete the code in your application that modifies and adds query parameters to the URL returned by the API. With the new API format, your application will not make any changes to the returned URL. Exception: If you set the view's locale specifically, that is still accomplished by appending the locale query parameter. Step 3. Is the envelope always in the right state before you call the Embedded View? If your software may try to create the Embedded View when the envelope is not in the right state (see above), then you must add additional checks and logic to prevent this. Step 4. Check that these API attributes are set: "view" = "envelope" The returnUrl is set Step 5. All done! Test your application.

 Functions

 views_delete_envelope_correct_view(connection, account_id, envelope_id, opts \\ [])

 @spec views_delete_envelope_correct_view(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Revokes the correction view URL to the Envelope UI.
This API method is obsolete. Your application should not call it. It acts as a null operation.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (CorrectViewRequest):

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 views_post_account_console_view(connection, account_id, opts \\ [])

 @spec views_post_account_console_view(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.EnvelopeViews.t()} | {:error, Req.Response.t()}

Returns a URL to the Docusign eSignature web application.
Returns a URL that enables you to embed the Docusign UI in your applications. To view a specific envelope, set the envelopeId property in the request body. ## Information security notice This method provides full access to the sending account. ### Related topics - How to embed the Docusign UI in your app
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (ConsoleViewRequest):

Returns
	{:ok, DocuSign.Model.EnvelopeViews.t} on success
	{:error, Req.Response.t} on failure

 views_post_envelope_correct_view(connection, account_id, envelope_id, opts \\ [])

 @spec views_post_envelope_correct_view(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeViews.t()} | {:error, Req.Response.t()}

Returns a URL to the envelope correction UI. Use after an envelope has been sent.
Returns a URL that enables you to embed the envelope sender view of the Docusign UI. You can customize the appearance of the view via the settings request attribute. You can embed the view in an iframe. API request update The request object for this API method was updated in June 2024. The new API request format is described below. Existing applications must update to the new version; it solves a security issue with the old version. The deprecation schedule has been announced in the

 DocuSign.Api.EnvelopeWorkflowDefinition - DocuSign v3.1.0

DocuSign.Api.EnvelopeWorkflowDefinition

API calls for all endpoints tagged EnvelopeWorkflowDefinition.

 Summary

 Functions

 envelope_workflow_definition_v2_delete_envelope_workflow_definition(connection, account_id, envelope_id, opts \\ [])

 Delete the workflow definition for an envelope.
Deletes the specified envelope's workflow definition if it has one. Note: If the envelope was scheduled to be sent, this endpoint will cancel the scheduled send and the envelope status will be reset to created. To resend the envelope, call the update the status to sent with the Envelopes::Update method.

 envelope_workflow_definition_v2_get_envelope_workflow_definition(connection, account_id, envelope_id, opts \\ [])

 Returns the workflow definition for an envelope.
Returns the workflow definition for the envelope specified by envelopeId. If the envelope does not have a workflow object, this method returns a 404.

 envelope_workflow_definition_v2_put_envelope_workflow_definition(connection, account_id, envelope_id, opts \\ [])

 Updates the workflow definition for an envelope.
Updates the specified envelope's workflow. You can use this endpoint to add scheduled sending to a draft envelope. You can also update the scheduled sending for a sent envelope if the scheduled sending countdown is in progress. In that case, the envelope will be reset to a draft state. You can also add delayed routing to a draft envelope or a sent envelope that has not started workflow processing.

 envelope_workflow_delayed_routing_delete_envelope_delayed_routing_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 Deletes the delayed routing rules for the specified envelope workflow step.
Delete the delayed routing object for an envelope's workflow step. You cannot call this endpoint once the delay is in progress. As a workaround, you can update the delay or send time to one minute in the future using the updateEnvelopeDelayedRoutingDefinition endpoint. Note: After deleting the delayed routing object, the workflow step still contains the pause_before action. Once the workflow step is reached, you will need to unpause the envelope. If you want to delete the step entirely, use deleteEnvelopeWorkflowStepDefinition instead.

 envelope_workflow_delayed_routing_get_envelope_delayed_routing_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 Returns the delayed routing rules for an envelope's workflow step definition.
Given an envelope and a workflow step, returns the delayed routing rules for that workflow step. Note: If the workflow step does not have a delayed routing object, this method returns a 404.

 envelope_workflow_delayed_routing_put_envelope_delayed_routing_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 Updates the delayed routing rules for an envelope's workflow step definition.
Updates the delayed routing rules for an envelope's workflow step definition. You can use this endpoint to add delayed routing to a draft envelope or a sent envelope (as long as the previous workflow step has not yet been completed). You can also update the delayed routing rule for an envelope, as long as the delay is not yet complete. If you update the delayed routing rule while the delay is already in progress, the countdown will reset.

 envelope_workflow_scheduled_sending_delete_envelope_scheduled_sending_definition(connection, account_id, envelope_id, opts \\ [])

 Deletes the scheduled sending rules for the envelope's workflow.
Deletes the scheduled sending rules for an envelope's workflow. You cannot call this endpoint once the scheduled sending countdown has begun.

 envelope_workflow_scheduled_sending_get_envelope_scheduled_sending_definition(connection, account_id, envelope_id, opts \\ [])

 Returns the scheduled sending rules for an envelope's workflow definition.
Given a template and a workflow step, returns the scheduled sending rules for that workflow step. Note: If the workflow step does not have a scheduled sending object, this method returns a 404.

 envelope_workflow_scheduled_sending_put_envelope_scheduled_sending_definition(connection, account_id, envelope_id, opts \\ [])

 Updates the scheduled sending rules for an envelope's workflow.
Updates the scheduled sending rules for an envelope's workflow. The envelope must have an existing workflow object.

 envelope_workflow_step_delete_envelope_workflow_step_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 Deletes a workflow step from an envelope's workflow definition.
Deletes the workflow step specified by workflowStepId from an envelope specified by envelopeId.

 envelope_workflow_step_get_envelope_workflow_step_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 Returns a specified workflow step for a specified template.
Returns a workflow step specified by workflowStepId for an envelope specified by envelopeId.

 envelope_workflow_step_post_envelope_workflow_step_definition(connection, account_id, envelope_id, opts \\ [])

 Adds a new step to an envelope's workflow.
Adds a new step to an envelope's workflow.

 envelope_workflow_step_put_envelope_workflow_step_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 Updates the specified workflow step for an envelope.
Updates the workflow step specified by workflowStepId for an envelope. You can use this endpoint to add or update delayed routing for a draft envelope. You can add or update delayed routing for a sent envelope as long as the previous workflow step has not been completed.

 template_workflow_definition_delete_template_workflow_definition(connection, account_id, template_id, opts \\ [])

 Delete the workflow definition for a template.
Deletes the specified template's workflow definition if it has one. Note: If the specified template does not have a workflow definition, this endpoint returns a 200 response.

 template_workflow_definition_get_template_workflow_definition(connection, account_id, template_id, opts \\ [])

 Returns the workflow definition for a template.
Returns the workflow definition for the template specified by templateId. If the template does not have a workflow object, this method returns a 404.

 template_workflow_definition_put_template_workflow_definition(connection, account_id, template_id, opts \\ [])

 Updates the workflow definition for a template.
Updates the specified template's workflow definition.

 template_workflow_delayed_routing_delete_template_delayed_routing_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 Deletes the delayed routing rules for the specified template workflow step.
Deletes the delayed routing rules for the specified template workflow step.

 template_workflow_delayed_routing_get_template_delayed_routing_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 Returns the delayed routing rules for a template's workflow step definition.
Given a template and a workflow step, returns the delayed routing rules for that workflow step. Note: If the workflow step does not have a delayed routing object, this method returns a 404.

 template_workflow_delayed_routing_put_template_delayed_routing_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 Updates the delayed routing rules for a template's workflow step.
Updates the scheduled sending rules for a template's workflow.

 template_workflow_scheduled_sending_delete_template_scheduled_sending_definition(connection, account_id, template_id, opts \\ [])

 Deletes the scheduled sending rules for the template's workflow.
Deletes the scheduled sending rules for the template's workflow.

 template_workflow_scheduled_sending_get_template_scheduled_sending_definition(connection, account_id, template_id, opts \\ [])

 Returns the scheduled sending rules for a template's workflow definition.
Given a template specified by templateId, returns the scheduled sending rules for that template's workflow object. Note: If the template's workflow does not have a scheduled sending object, this method returns a 404.

 template_workflow_scheduled_sending_put_template_scheduled_sending_definition(connection, account_id, template_id, opts \\ [])

 Updates the scheduled sending rules for a template's workflow definition.

 template_workflow_step_delete_template_workflow_step_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 Deletes a workflow step from an template's workflow definition.
Deletes a workflow step from an template's workflow definition.

 template_workflow_step_get_template_workflow_step_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 Returns a specified workflow step for a specified envelope.
Returns a workflow step specified by workflowStepId for a template specified by templateId.

 template_workflow_step_post_template_workflow_step_definition(connection, account_id, template_id, opts \\ [])

 Adds a new step to a template's workflow.
Adds a new step to a template's workflow.

 template_workflow_step_put_template_workflow_step_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 Updates a specified workflow step for a template.
Updates a specified workflow step for a template.

 Functions

 envelope_workflow_definition_v2_delete_envelope_workflow_definition(connection, account_id, envelope_id, opts \\ [])

 @spec envelope_workflow_definition_v2_delete_envelope_workflow_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Delete the workflow definition for an envelope.
Deletes the specified envelope's workflow definition if it has one. Note: If the envelope was scheduled to be sent, this endpoint will cancel the scheduled send and the envelope status will be reset to created. To resend the envelope, call the update the status to sent with the Envelopes::Update method.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_definition_v2_get_envelope_workflow_definition(connection, account_id, envelope_id, opts \\ [])

 @spec envelope_workflow_definition_v2_get_envelope_workflow_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Workflow.t()} | {:error, Req.Response.t()}

Returns the workflow definition for an envelope.
Returns the workflow definition for the envelope specified by envelopeId. If the envelope does not have a workflow object, this method returns a 404.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.Workflow.t} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_definition_v2_put_envelope_workflow_definition(connection, account_id, envelope_id, opts \\ [])

 @spec envelope_workflow_definition_v2_put_envelope_workflow_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Workflow.t()} | {:error, Req.Response.t()}

Updates the workflow definition for an envelope.
Updates the specified envelope's workflow. You can use this endpoint to add scheduled sending to a draft envelope. You can also update the scheduled sending for a sent envelope if the scheduled sending countdown is in progress. In that case, the envelope will be reset to a draft state. You can also add delayed routing to a draft envelope or a sent envelope that has not started workflow processing.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (Workflow):

Returns
	{:ok, DocuSign.Model.Workflow.t} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_delayed_routing_delete_envelope_delayed_routing_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 @spec envelope_workflow_delayed_routing_delete_envelope_delayed_routing_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes the delayed routing rules for the specified envelope workflow step.
Delete the delayed routing object for an envelope's workflow step. You cannot call this endpoint once the delay is in progress. As a workaround, you can update the delay or send time to one minute in the future using the updateEnvelopeDelayedRoutingDefinition endpoint. Note: After deleting the delayed routing object, the workflow step still contains the pause_before action. Once the workflow step is reached, you will need to unpause the envelope. If you want to delete the step entirely, use deleteEnvelopeWorkflowStepDefinition instead.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_delayed_routing_get_envelope_delayed_routing_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 @spec envelope_workflow_delayed_routing_get_envelope_delayed_routing_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.DelayedRouting.t()} | {:error, Req.Response.t()}

Returns the delayed routing rules for an envelope's workflow step definition.
Given an envelope and a workflow step, returns the delayed routing rules for that workflow step. Note: If the workflow step does not have a delayed routing object, this method returns a 404.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DelayedRouting.t} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_delayed_routing_put_envelope_delayed_routing_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 @spec envelope_workflow_delayed_routing_put_envelope_delayed_routing_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.DelayedRouting.t()} | {:error, Req.Response.t()}

Updates the delayed routing rules for an envelope's workflow step definition.
Updates the delayed routing rules for an envelope's workflow step definition. You can use this endpoint to add delayed routing to a draft envelope or a sent envelope (as long as the previous workflow step has not yet been completed). You can also update the delayed routing rule for an envelope, as long as the delay is not yet complete. If you update the delayed routing rule while the delay is already in progress, the countdown will reset.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters	:body (DelayedRouting): A complex element that specifies the delayed routing settings for the workflow step.

Returns
	{:ok, DocuSign.Model.DelayedRouting.t} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_scheduled_sending_delete_envelope_scheduled_sending_definition(connection, account_id, envelope_id, opts \\ [])

 @spec envelope_workflow_scheduled_sending_delete_envelope_scheduled_sending_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes the scheduled sending rules for the envelope's workflow.
Deletes the scheduled sending rules for an envelope's workflow. You cannot call this endpoint once the scheduled sending countdown has begun.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_scheduled_sending_get_envelope_scheduled_sending_definition(connection, account_id, envelope_id, opts \\ [])

 @spec envelope_workflow_scheduled_sending_get_envelope_scheduled_sending_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.ScheduledSending.t()} | {:error, Req.Response.t()}

Returns the scheduled sending rules for an envelope's workflow definition.
Given a template and a workflow step, returns the scheduled sending rules for that workflow step. Note: If the workflow step does not have a scheduled sending object, this method returns a 404.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ScheduledSending.t} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_scheduled_sending_put_envelope_scheduled_sending_definition(connection, account_id, envelope_id, opts \\ [])

 @spec envelope_workflow_scheduled_sending_put_envelope_scheduled_sending_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.ScheduledSending.t()} | {:error, Req.Response.t()}

Updates the scheduled sending rules for an envelope's workflow.
Updates the scheduled sending rules for an envelope's workflow. The envelope must have an existing workflow object.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (ScheduledSending): An object that describes the settings for scheduled sending.

Returns
	{:ok, DocuSign.Model.ScheduledSending.t} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_step_delete_envelope_workflow_step_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 @spec envelope_workflow_step_delete_envelope_workflow_step_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes a workflow step from an envelope's workflow definition.
Deletes the workflow step specified by workflowStepId from an envelope specified by envelopeId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_step_get_envelope_workflow_step_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 @spec envelope_workflow_step_get_envelope_workflow_step_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.WorkflowStep.t()} | {:error, Req.Response.t()}

Returns a specified workflow step for a specified template.
Returns a workflow step specified by workflowStepId for an envelope specified by envelopeId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.WorkflowStep.t} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_step_post_envelope_workflow_step_definition(connection, account_id, envelope_id, opts \\ [])

 @spec envelope_workflow_step_post_envelope_workflow_step_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.WorkflowStep.t()} | {:error, Req.Response.t()}

Adds a new step to an envelope's workflow.
Adds a new step to an envelope's workflow.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (WorkflowStep):

Returns
	{:ok, DocuSign.Model.WorkflowStep.t} on success
	{:error, Req.Response.t} on failure

 envelope_workflow_step_put_envelope_workflow_step_definition(connection, account_id, envelope_id, workflow_step_id, opts \\ [])

 @spec envelope_workflow_step_put_envelope_workflow_step_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.WorkflowStep.t()} | {:error, Req.Response.t()}

Updates the specified workflow step for an envelope.
Updates the workflow step specified by workflowStepId for an envelope. You can use this endpoint to add or update delayed routing for a draft envelope. You can add or update delayed routing for a sent envelope as long as the previous workflow step has not been completed.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters	:body (WorkflowStep):

Returns
	{:ok, DocuSign.Model.WorkflowStep.t} on success
	{:error, Req.Response.t} on failure

 template_workflow_definition_delete_template_workflow_definition(connection, account_id, template_id, opts \\ [])

 @spec template_workflow_definition_delete_template_workflow_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Delete the workflow definition for a template.
Deletes the specified template's workflow definition if it has one. Note: If the specified template does not have a workflow definition, this endpoint returns a 200 response.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 template_workflow_definition_get_template_workflow_definition(connection, account_id, template_id, opts \\ [])

 @spec template_workflow_definition_get_template_workflow_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Workflow.t()} | {:error, Req.Response.t()}

Returns the workflow definition for a template.
Returns the workflow definition for the template specified by templateId. If the template does not have a workflow object, this method returns a 404.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.Workflow.t} on success
	{:error, Req.Response.t} on failure

 template_workflow_definition_put_template_workflow_definition(connection, account_id, template_id, opts \\ [])

 @spec template_workflow_definition_put_template_workflow_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Workflow.t()} | {:error, Req.Response.t()}

Updates the workflow definition for a template.
Updates the specified template's workflow definition.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (Workflow):

Returns
	{:ok, DocuSign.Model.Workflow.t} on success
	{:error, Req.Response.t} on failure

 template_workflow_delayed_routing_delete_template_delayed_routing_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 @spec template_workflow_delayed_routing_delete_template_delayed_routing_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes the delayed routing rules for the specified template workflow step.
Deletes the delayed routing rules for the specified template workflow step.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 template_workflow_delayed_routing_get_template_delayed_routing_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 @spec template_workflow_delayed_routing_get_template_delayed_routing_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.DelayedRouting.t()} | {:error, Req.Response.t()}

Returns the delayed routing rules for a template's workflow step definition.
Given a template and a workflow step, returns the delayed routing rules for that workflow step. Note: If the workflow step does not have a delayed routing object, this method returns a 404.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DelayedRouting.t} on success
	{:error, Req.Response.t} on failure

 template_workflow_delayed_routing_put_template_delayed_routing_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 @spec template_workflow_delayed_routing_put_template_delayed_routing_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.DelayedRouting.t()} | {:error, Req.Response.t()}

Updates the delayed routing rules for a template's workflow step.
Updates the scheduled sending rules for a template's workflow.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters	:body (DelayedRouting): A complex element that specifies the delayed routing settings for the workflow step.

Returns
	{:ok, DocuSign.Model.DelayedRouting.t} on success
	{:error, Req.Response.t} on failure

 template_workflow_scheduled_sending_delete_template_scheduled_sending_definition(connection, account_id, template_id, opts \\ [])

 @spec template_workflow_scheduled_sending_delete_template_scheduled_sending_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes the scheduled sending rules for the template's workflow.
Deletes the scheduled sending rules for the template's workflow.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 template_workflow_scheduled_sending_get_template_scheduled_sending_definition(connection, account_id, template_id, opts \\ [])

 @spec template_workflow_scheduled_sending_get_template_scheduled_sending_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.ScheduledSending.t()} | {:error, Req.Response.t()}

Returns the scheduled sending rules for a template's workflow definition.
Given a template specified by templateId, returns the scheduled sending rules for that template's workflow object. Note: If the template's workflow does not have a scheduled sending object, this method returns a 404.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ScheduledSending.t} on success
	{:error, Req.Response.t} on failure

 template_workflow_scheduled_sending_put_template_scheduled_sending_definition(connection, account_id, template_id, opts \\ [])

 @spec template_workflow_scheduled_sending_put_template_scheduled_sending_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.ScheduledSending.t()} | {:error, Req.Response.t()}

Updates the scheduled sending rules for a template's workflow definition.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (ScheduledSending): An object that describes the settings for scheduled sending.

Returns
	{:ok, DocuSign.Model.ScheduledSending.t} on success
	{:error, Req.Response.t} on failure

 template_workflow_step_delete_template_workflow_step_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 @spec template_workflow_step_delete_template_workflow_step_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes a workflow step from an template's workflow definition.
Deletes a workflow step from an template's workflow definition.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 template_workflow_step_get_template_workflow_step_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 @spec template_workflow_step_get_template_workflow_step_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.WorkflowStep.t()} | {:error, Req.Response.t()}

Returns a specified workflow step for a specified envelope.
Returns a workflow step specified by workflowStepId for a template specified by templateId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.WorkflowStep.t} on success
	{:error, Req.Response.t} on failure

 template_workflow_step_post_template_workflow_step_definition(connection, account_id, template_id, opts \\ [])

 @spec template_workflow_step_post_template_workflow_step_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.WorkflowStep.t()} | {:error, Req.Response.t()}

Adds a new step to a template's workflow.
Adds a new step to a template's workflow.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (WorkflowStep):

Returns
	{:ok, DocuSign.Model.WorkflowStep.t} on success
	{:error, Req.Response.t} on failure

 template_workflow_step_put_template_workflow_step_definition(connection, account_id, template_id, workflow_step_id, opts \\ [])

 @spec template_workflow_step_put_template_workflow_step_definition(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.WorkflowStep.t()} | {:error, Req.Response.t()}

Updates a specified workflow step for a template.
Updates a specified workflow step for a template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	workflow_step_id (String.t): The ID of the workflow step.
	opts (keyword): Optional parameters	:body (WorkflowStep):

Returns
	{:ok, DocuSign.Model.WorkflowStep.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.Envelopes - DocuSign v3.1.0

DocuSign.Api.Envelopes

API calls for all endpoints tagged Envelopes.

 Summary

 Functions

 audit_events_get_audit_events(connection, account_id, envelope_id, opts \\ [])

 Gets the envelope audit events for an envelope.
Gets the envelope audit events for the specified envelope.

 envelopes_get_envelope(connection, account_id, envelope_id, opts \\ [])

 Gets the status of a single envelope.
Retrieves the overall status for the specified envelope. To get the status of a list of envelopes, use Envelope: listStatusChanges . ### Related topics - How to get envelope information

 envelopes_get_envelopes(connection, account_id, opts \\ [])

 Search for specific sets of envelopes by using search filters.
This method lets you search for envelopes in your accounts. A large set of filters let you narrow the scope of your search by date, by envelope ID, or by status codes. Your request must include one or more of the following parameters: from_date envelope_ids * transaction_ids ### Restrictions The number of envelopes returned is limited to 1,000 per call. To retrieve the next or previous set of envelopes, use the nextUri and previousUri parameters returned in the original call's response. If no from_date query parameter is specified, envelopes from more than two years ago will not be returned. To fetch older envelopes, set the specific date range using the from_date and to_date parameters. To avoid unnecessary database queries, the Docusign signature platform first checks requests to ensure that the filter set supplied does not result in a zero-size response before querying the database. ### Envelope statuses This table shows the valid current envelope statuses (status parameter) for the different status qualifiers (from_to_status parameter) in the request. If the status and status qualifiers in the API request do not contain any of the values shown in the Valid Current Statuses column, then an empty list is returned. Client applications should check that the statuses (status parameter) they are requesting make sense for a given from_to_status parameter value. | Status Qualifier
(from_to_status) | Effective Status Qualifier | Valid Current Statuses | | :------------------------------------- | :------------------------- | :-- | | any (changed) | StatusChanged | any, created, sent, delivered, signed, completed, declined, voided, deleted | | created | Created | any, created, sent, delivered, signed, completed, declined, voided, deleted | | sent | Sent | any, sent, delivered, signed, completed, declined, voided, deleted | | delivered | StatusChanged | any, delivered, signed, completed, declined, voided, deleted | | signed | StatusChanged | any, signed, completed, declined, voided, deleted | | completed | Completed | any, completed, declined, voided, deleted | | declined | StatusChanged | any, declined, voided, deleted | | timedout
always return zero results | StatusChanged | any, voided, deleted | | voided | Voided | any, voided, deleted | | deleted | StatusChanged | any, deleted | ### Extraneous results In some cases, a request for a specific envelope status will include envelopes with additional statuses. For example, in a request with a from_date of 2017-01-01, a to_date of 2017-01-07 and the status qualifier (from_to_status) set to delivered, the response set might contain envelopes that were created during that time period, but not delivered during the time period. As a workaround, check the envelope status values in the result set as needed. ### Related topics - Searching for envelopes - How to list envelope status changes

 envelopes_post_envelopes(connection, account_id, opts \\ [])

 Creates an envelope.
Creates and sends an envelope or creates a draft envelope. Envelopes are fundamental resources in the Docusign platform. With this method you can: Create and send an envelope with [documents][], [recipients][], and [tabs][]. Create and send an envelope from a template. Create and send an envelope from a combination of documents and templates. Create a draft envelope. When you use this method to create and send an envelope in a single request, the following parameters in the request body (an [envelopeDefinition][envelopeDefinition] object) are required: | Parameter | Description | | :-------- | :---------- | | status | Set to sent to send the envelope to recipients.
Set to created (or don't set at all) to save the envelope as a draft. | | emailSubject | The subject of the email used to send the envelope. | | documents | The [documents][] to be signed. | | recipients | The email addresses of the envelope [recipients][]. | When you create an envelope by using a composite template, you should specify the envelope custom fields in the inline template. Any custom fields that you specify at the root level are ignored. If the envelope has a workflow definition and the workflowStatus is paused, the envelope will not be sent immediately, even if the envelope's status is sent. ### Related topics [Envelope][envelopes] and [template][templates] objects along with [documents][documents], [recipients][recipients], and [tabs][tabs] are the five object models at the core of the eSignature API. The eSignature concepts guide describes how the five object models work together. The following how-to articles contain practical examples that show you how to to configure this method's [envelopeDefinition][envelopeDefinition] request body to perform common tasks. Requesting a signature - How to request a signature by email - How to request a signature through your app - How to request a signature by email using a template - How to request a signature using a composite template - How to request a signature by SMS or WhatsApp delivery - How to send a request for payment - How to send an envelope to an In Person Signer - How to request a signature by email using CORS - How to request a signature through your CORS-enabled browser app - How to request a signature through your app (embedded signing) with a CFR Part 11 account Working with envelopes and templates - How to get envelope information - How to list envelope recipients - How to list envelope status changes - How to create a template - How to send an envelope via your app - How to bulk send envelopes Working with advanced recipient routing - How to pause a signature workflow - How to unpause a signature workflow - How to use conditional recipients - How to schedule an envelope - How to send an envelope with delayed routing Working with documents - How to list envelope documents - How to download envelope documents - How to attach documents via binary transfer - How to create a signable HTML document - How to convert a PDF file into a signable HTML document - How to set document visibility for envelope recipients - How to request a signature by email with document generation Working with tabs - How to get envelope tab values - How to get envelope custom tab values - How to set envelope tab values - How to set tab values in a template Working with brands - How to create a brand - How to apply a brand to an envelope - How to apply a brand and template to an envelope Working with permissions - How to create a permission profile - How to update individual permission settings - How to set a permission profile - How to delete a permission profile Implementing multi-factor recipient (signer) authentication - How to require ID verification (IDV) for a recipient - How to require knowledge-based authentication (KBA) for a recipient - How to require phone authentication for a recipient - How to require access code authentication for a recipient <!-- this should mirror /docs/esign-rest-api/how-to/ --> [addingdocs]: /docs/esign-rest-api/esign101/concepts/envelopes/ [attachments]: /docs/esign-rest-api/esign101/concepts/documents/attachments/ [authcopies]: /docs/esign-rest-api/esign101/concepts/documents/authoritative-copies/ [conoverview]: /docs/esign-rest-api/esign101/concepts/overview/ [deleting]: /docs/esign-rest-api/esign101/concepts/envelopes/ [documents]: /docs/esign-rest-api/esign101/concepts/documents/ [envelopeDefinition]: /docs/esign-rest-api/reference/envelopes/envelopes/create/#schema__envelopedefinition [envelopes]: /docs/esign-rest-api/esign101/concepts/envelopes/ [locking]: /docs/esign-rest-api/esign101/concepts/envelopes/lock/ [payments]: /docs/esign-rest-api/esign101/concepts/tabs/payment/ [purging]: /docs/esign-rest-api/esign101/concepts/documents/purging/ [recipients]: /docs/esign-rest-api/esign101/concepts/recipients/ [recipstatus]: /docs/esign-rest-api/esign101/concepts/recipients/#recipient-status [reciptypes]: /docs/esign-rest-api/esign101/concepts/recipients/#recipient-types [supdocs]: /docs/esign-rest-api/esign101/concepts/documents/supplemental/ [tabanchor]: /docs/esign-rest-api/esign101/concepts/tabs/auto-place/ [tabcustom]: /docs/esign-rest-api/esign101/concepts/tabs/custom-tabs/ [tabs]: /docs/esign-rest-api/esign101/concepts/tabs/ [tabtypes]: /docs/esign-rest-api/esign101/concepts/tabs/ [templates]: /docs/esign-rest-api/esign101/concepts/templates/ [tracking]: /docs/esign-rest-api/esign101/concepts/envelopes/

 envelopes_put_envelope(connection, account_id, envelope_id, opts \\ [])

 Send, void, or modify a draft envelope. Purge documents from a completed envelope.
This method enables you to make changes to an envelope. You can use it to: Send a draft envelope Void an in-process envelope Modify a draft envelope Purge documents and envelope metadata from the Docusign platform Although the request body for this method is a complete envelope definition, you only need to provide the properties that you're updating. ## Sending a draft envelope To send a draft envelope, include the following code in the request body: json { "status": "sent" } You can attach a workflow before sending the envelope: json { "status": "sent", "workflow": { "workflowSteps": [{ "action": "pause_before", "description": "pause_before routing order 2", "itemId": 2, "triggerOnItem": "routing_order" }] } } ## Working with workflows To unpause a workflow, the request body should include this: json { "workflow": { "workflowStatus": "in_progress" } } ## Voiding an in-process envelope To void an in-process envelope, include the following code in the request body: json { "status": "voided", "voidedReason": "The reason for voiding the envelope" } ## Modifying envelope email information To change the email subject and message of a draft envelope, include the following code in the request body: json { "emailSubject": "new email subject", "emailBlurb": "new email message" } ## Purging documents from Docusign To place only the documents in the purge queue, leaving any corresponding attachments and tabs in the Docusign platform, set the purgeState property to documents_queued. json { "envelopeId": "222e6847-xxxx-xxxx-xxxx-72a3c9c16fca", "purgeState": "documents_queued" } To place documents, attachments, and tabs in the purge queue, set the purgeState property to documents_and_metadata_queued. json { "envelopeId": "222e6847-xxxx-xxxx-xxxx-72a3c9c16fca", "purgeState": "documents_and_metadata_queued" } To place documents, attachments, and tabs in the purge queue and to redact personal information, set the purgeState property to documents_and_metadata_and_redact_queued. json { "envelopeId": "222e6847-xxxx-xxxx-xxxx-72a3c9c16fca", "purgeState": "documents_and_metadata_and_redact_queued" } You can purge documents only from completed envelopes that are not marked as the authoritative copy. The user requesting the purge must have permission to purge documents and must be the sender or be acting on behalf of the sender. When the purge request is initiated the items to be purged are placed in the purge queue for deletion in 14 days. The sender and all recipients with Docusign accounts associated with the envelope get an email notification the documents will be deleted in 14 days. The notification contains a link to the documents. A second email notification is sent 7 days later. At the end of the 14-day period the documents are deleted from the system. Recipients without Docusign accounts do not receive email notifications. If your account has a Document Retention policy, envelope documents are automatically placed in the purge queue, and notification emails are sent at the end of the retention period. Setting a Document Retention policy is the same as setting a schedule for purging documents. ## Removing documents from the purge queue To remove documents from the purge queue, include the following code in the request body: json { "envelopeId": "222e6847-xxxx-xxxx-xxxx-72a3c9c16fca", "purgeState": "documents_dequeued" } ### Related topics - Void an envelope (Common API Tasks) - Purging documents (eSignature Concepts) - Purging documents in an envelope (blog post) - How to unpause a signature workflow

 envelopes_put_status(connection, account_id, opts \\ [])

 Gets envelope statuses for a set of envelopes.
Retrieves envelope statuses for a set of envelopes. Envelopes: listStatus has both a GET and a PUT implementation: PUT /restapi/v2.1/accounts/{accountId}/envelopes/status is passed a set of envelope IDs in the request body. This version of the method returns a smaller subset of envelope information. GET /restapi/v2.1/accounts/{accountId}/envelopes/status is passed a list of envelope IDs in a query string. <ds-inlinemessage> To search for envelopes using a broad range of filters, use Envelopes: listStatusChanges instead of this method. </ds-inlinemessage> You must specify exactly one of the following query parameters: | Parameter | Description | | :---------------- | :--- | | from_date | a valid UTC DateTime: 2016-01-01 | | envelope_ids | For the <code>GET</code> implementation of this method, include the envelope IDs in a comma-separated list. For the <code>PUT</code> version of this method, you should use the <code>request_body</code> value for this parameter and include the list of envelope IDs in the request body. | | transaction_ids | A comma-separated list of transaction IDs
or the special value <code>request_body</code> | When you use the special value request_body, the request body looks like this: { "envelopeIds": ["44c5ad6c-xxxx-xxxx-xxxx-ebda5e2dfe15", "8e26040d-xxxx-xxxx-xxxx-1e29b924d237", "c8b40a2d-xxxx-xxxx-xxxx-4fe56fe10f95"] } <ds-inlinemessage kind="warning"> Omitting the request body altogether causes the endpoint to return an error. The request body must be at least <code>{}</code>. </ds-inlinemessage> ### Related topics - Searching for envelopes - How to list envelope status changes

 notification_get_envelopes_envelope_id_notification(connection, account_id, envelope_id, opts \\ [])

 Gets envelope notification information.
Retrieves the envelope notification, reminders and expirations, information for an existing envelope.

 notification_put_envelopes_envelope_id_notification(connection, account_id, envelope_id, opts \\ [])

 Sets envelope notifications for an existing envelope.
This method sets the notifications (reminders and expirations) for an existing envelope. The request body sends a structure containing reminders and expirations settings. It also specifies whether to use the settings specified in the request, or the account default notification settings for the envelope. Note that this request only specifies when notifications are sent; it does not initiate sending of email messages.

 pages_delete_page(connection, account_id, document_id, envelope_id, page_number, opts \\ [])

 Deletes a page from a document in an envelope.
Deletes a page from a document in an envelope based on the page number.

 pages_get_page_image(connection, account_id, document_id, envelope_id, page_number, opts \\ [])

 Gets a page image from an envelope for display.
Returns an image of a page in a document for display.

 pages_get_page_images(connection, account_id, document_id, envelope_id, opts \\ [])

 Returns document page images based on input.
Returns images of the pages in a document for display based on the parameters that you specify.

 pages_put_page_image(connection, account_id, document_id, envelope_id, page_number, opts \\ [])

 Rotates page image from an envelope for display.
Rotates page image from an envelope for display. The page image can be rotated to the left or right.

 recipients_get_recipient_initials_image(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Gets the initials image for a user.
Retrieves the initials image for the specified recipient.

 recipients_get_recipient_signature(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Gets signature information for a signer or sign-in-person recipient.
Retrieves signature information for a signer or sign-in-person recipient.

 recipients_get_recipient_signature_image(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Retrieve signature image information for a signer/sign-in-person recipient.
Retrieves the specified recipient signature image.

 recipients_put_recipient_initials_image(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Sets the initials image for an accountless signer.
Updates the initials image for a signer that does not have a Docusign account. The supported image formats for this file are: gif, png, jpeg, and bmp. The file size must be less than 200K. For the Authentication/Authorization for this call, the credentials must match the sender of the envelope, the recipient must be an accountless signer or in person signer. The account must have the CanSendEnvelope property set to true and the ExpressSendOnly property in SendingUser structure must be set to false.

 recipients_put_recipient_signature_image(connection, account_id, envelope_id, recipient_id, opts \\ [])

 Sets the signature image for an accountless signer.
Updates the signature image for an accountless signer. The supported image formats for this file are: gif, png, jpeg, and bmp. The file size must be less than 200K. For the Authentication/Authorization for this call, the credentials must match the sender of the envelope, the recipient must be an accountless signer or in person signer. The account must have the CanSendEnvelope property set to true and the ExpressSendOnly property in SendingUser structure must be set to false.

 Functions

 audit_events_get_audit_events(connection, account_id, envelope_id, opts \\ [])

 @spec audit_events_get_audit_events(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeAuditEventResponse.t()}
 | {:error, Req.Response.t()}

Gets the envelope audit events for an envelope.
Gets the envelope audit events for the specified envelope.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:locale (String.t): The user's locale code. Valid values are: - zh_CN - zh_TW - nl - en - fr - de - it - ja - ko - pt - pt_BR - ru - es

Returns
	{:ok, DocuSign.Model.EnvelopeAuditEventResponse.t} on success
	{:error, Req.Response.t} on failure

 envelopes_get_envelope(connection, account_id, envelope_id, opts \\ [])

 @spec envelopes_get_envelope(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.Envelope.t()} | {:error, Req.Response.t()}

Gets the status of a single envelope.
Retrieves the overall status for the specified envelope. To get the status of a list of envelopes, use Envelope: listStatusChanges . ### Related topics - How to get envelope information
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:advanced_update (String.t): When true, envelope information can be added or modified.
	:include (String.t): Specifies additional information about the envelope to return. Enter a comma-separated list, such as tabs,recipients. Valid values are: - custom_fields: The custom fields associated with the envelope. - documents: The documents associated with the envelope. - attachments: The attachments associated with the envelope. - extensions: The email settings associated with the envelope. - folders: The folder where the envelope exists. - recipients: The recipients associated with the envelope. - powerform: The PowerForms associated with the envelope. - prefill_tabs: The pre-filled tabs associated with the envelope. - tabs: The tabs associated with the envelope. - payment_tabs: The payment tabs associated with the envelope. - workflow: The workflow definition associated with the envelope.
	:include_anchor_tab_locations (String.t): When true, all tabs with anchor tab properties are included in the response. The default value is false.

Returns
	{:ok, DocuSign.Model.Envelope.t} on success
	{:error, Req.Response.t} on failure

 envelopes_get_envelopes(connection, account_id, opts \\ [])

 @spec envelopes_get_envelopes(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.EnvelopesInformation.t()} | {:error, Req.Response.t()}

Search for specific sets of envelopes by using search filters.
This method lets you search for envelopes in your accounts. A large set of filters let you narrow the scope of your search by date, by envelope ID, or by status codes. Your request must include one or more of the following parameters: from_date envelope_ids * transaction_ids ### Restrictions The number of envelopes returned is limited to 1,000 per call. To retrieve the next or previous set of envelopes, use the nextUri and previousUri parameters returned in the original call's response. If no from_date query parameter is specified, envelopes from more than two years ago will not be returned. To fetch older envelopes, set the specific date range using the from_date and to_date parameters. To avoid unnecessary database queries, the Docusign signature platform first checks requests to ensure that the filter set supplied does not result in a zero-size response before querying the database. ### Envelope statuses This table shows the valid current envelope statuses (status parameter) for the different status qualifiers (from_to_status parameter) in the request. If the status and status qualifiers in the API request do not contain any of the values shown in the Valid Current Statuses column, then an empty list is returned. Client applications should check that the statuses (status parameter) they are requesting make sense for a given from_to_status parameter value. | Status Qualifier
(from_to_status) | Effective Status Qualifier | Valid Current Statuses | | :------------------------------------- | :------------------------- | :-- | | any (changed) | StatusChanged | any, created, sent, delivered, signed, completed, declined, voided, deleted | | created | Created | any, created, sent, delivered, signed, completed, declined, voided, deleted | | sent | Sent | any, sent, delivered, signed, completed, declined, voided, deleted | | delivered | StatusChanged | any, delivered, signed, completed, declined, voided, deleted | | signed | StatusChanged | any, signed, completed, declined, voided, deleted | | completed | Completed | any, completed, declined, voided, deleted | | declined | StatusChanged | any, declined, voided, deleted | | timedout
always return zero results | StatusChanged | any, voided, deleted | | voided | Voided | any, voided, deleted | | deleted | StatusChanged | any, deleted | ### Extraneous results In some cases, a request for a specific envelope status will include envelopes with additional statuses. For example, in a request with a from_date of 2017-01-01, a to_date of 2017-01-07 and the status qualifier (from_to_status) set to delivered, the response set might contain envelopes that were created during that time period, but not delivered during the time period. As a workaround, check the envelope status values in the result set as needed. ### Related topics - Searching for envelopes - How to list envelope status changes
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:ac_status (String.t): Specifies the authoritative copy status for the envelopes. Valid values: Unknown Original Transferred AuthoritativeCopy AuthoritativeCopyExportPending AuthoritativeCopyExported DepositPending Deposited DepositedEO DepositFailed
	:block (String.t): Reserved for Docusign.
	:cdse_mode (String.t): Reserved for Docusign.
	:continuation_token (String.t): Reserved for Docusign.
	:count (String.t): The maximum number of results to return. The maximum value is 1000. To get the next or previous set of envelopes, use nextUri or previousUri from the response.
	:custom_field (String.t): Optional. Specifies an envelope custom field name and value searched for in the envelopes. Format: custom_envelope_field_name=desired_value Example: If you have an envelope custom field named "Region" and you want to search for all envelopes where the value is "West" you would use set this parameter to Region=West.
	:email (String.t): Limit results to envelopes sent by the account user with this email address. user_name must be given as well, and both email and user_name must refer to an existing account user.
	:envelope_ids (String.t): Comma separated list of envelopeId values.
	:exclude (String.t): Excludes information from the response. Enter as a comma-separated list (e.g., folders,powerforms). Valid values: - recipients - powerforms - folders
	:folder_ids (String.t): Returns the envelopes from specific folders. Enter as a comma-separated list of either valid folder GUIDs or the following values: - awaiting_my_signature - completed - draft - drafts - expiring_soon - inbox - out_for_signature - recyclebin - sentitems - waiting_for_others
	:folder_types (String.t): Returns the envelopes from folders of a specific type. Enter as a comma-separated list of the following values: - normal - inbox - sentitems - draft - templates
	:from_date (String.t): Specifies the date and time to start looking for status changes. This parameter is required unless envelopeIds or transactionIds are set. Although you can use any date format supported by the .NET system library's [DateTime.Parse()][msoft] function, Docusign recommends using [ISO 8601][] format dates with an explicit time zone offset. If you do not provide a time zone offset, the method uses the server's time zone. For example, the following dates and times refer to the same instant: 2017-05-02T01:44Z 2017-05-01T21:44-04:00 * 2017-05-01T18:44-07:00 If this property is not included, envelopes from the last two years will be returned. [msoft]:

 DocuSign.Api.FavoriteTemplates - DocuSign v3.1.0

DocuSign.Api.FavoriteTemplates

API calls for all endpoints tagged FavoriteTemplates.

 Summary

 Functions

 favorite_templates_get_favorite_templates(connection, account_id, opts \\ [])

 Retrieves the list of favorite templates for the account.
Retrieves the list of favorite templates for the account.

 favorite_templates_put_favorite_template(connection, account_id, opts \\ [])

 Set one or more templates as account favorites.
Set one or more templates as account favorites. Your request should include each template as a separate favoriteTemplatesContentItem JSON object, like this: { "favoriteTemplates": [{ "templateId": "6bc0584f-xxxx-xxxx-xxxx-35ab28cc44e1" }, { "templateId": "8ae9b3452-xxxx-xxxx-xxx-ac0de23fa57f" }] }

 favorite_templates_un_favorite_template(connection, account_id, opts \\ [])

 Remove one or more templates from the account favorites.
Remove one or more templates from the account favorites. Your request should include each template to remove as a separate favoriteTemplatesContentItem JSON object, like this: { "favoriteTemplates": [{ "templateId": "6bc0584f-xxxx-xxxx-xxxx-35ab28cc44e1" }, { "templateId": "8ae9b3452-xxxx-xxxx-xxx-ac0de23fa57f" }] } The response includes the IDs of the templates that were successfully removed from your favorites. To get the account's remaining favorite templates, use the getFavoriteTemplates endpoint.

 Functions

 favorite_templates_get_favorite_templates(connection, account_id, opts \\ [])

 @spec favorite_templates_get_favorite_templates(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.FavoriteTemplatesInfo.t()} | {:error, Req.Response.t()}

Retrieves the list of favorite templates for the account.
Retrieves the list of favorite templates for the account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.FavoriteTemplatesInfo.t} on success
	{:error, Req.Response.t} on failure

 favorite_templates_put_favorite_template(connection, account_id, opts \\ [])

 @spec favorite_templates_put_favorite_template(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.FavoriteTemplatesInfo.t()} | {:error, Req.Response.t()}

Set one or more templates as account favorites.
Set one or more templates as account favorites. Your request should include each template as a separate favoriteTemplatesContentItem JSON object, like this: { "favoriteTemplates": [{ "templateId": "6bc0584f-xxxx-xxxx-xxxx-35ab28cc44e1" }, { "templateId": "8ae9b3452-xxxx-xxxx-xxx-ac0de23fa57f" }] }
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (FavoriteTemplatesInfo):

Returns
	{:ok, DocuSign.Model.FavoriteTemplatesInfo.t} on success
	{:error, Req.Response.t} on failure

 favorite_templates_un_favorite_template(connection, account_id, opts \\ [])

 @spec favorite_templates_un_favorite_template(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.FavoriteTemplatesInfo.t()} | {:error, Req.Response.t()}

Remove one or more templates from the account favorites.
Remove one or more templates from the account favorites. Your request should include each template to remove as a separate favoriteTemplatesContentItem JSON object, like this: { "favoriteTemplates": [{ "templateId": "6bc0584f-xxxx-xxxx-xxxx-35ab28cc44e1" }, { "templateId": "8ae9b3452-xxxx-xxxx-xxx-ac0de23fa57f" }] } The response includes the IDs of the templates that were successfully removed from your favorites. To get the account's remaining favorite templates, use the getFavoriteTemplates endpoint.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (FavoriteTemplatesInfo):

Returns
	{:ok, DocuSign.Model.FavoriteTemplatesInfo.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.Folders - DocuSign v3.1.0

DocuSign.Api.Folders

API calls for all endpoints tagged Folders.

 Summary

 Functions

 folders_get_folder_items(connection, account_id, folder_id, opts \\ [])

 Gets information about items in a specified folder.
Gets information about items in the specified folder. To include a list of the items in the folder, set the include_items query parameter to true. ### Related topics - Searching for envelopes - Sharing templates

 folders_get_folders(connection, account_id, opts \\ [])

 Returns a list of the account's folders.
Returns a list of the account's folders. Use the include query parameter to specify the kinds of folders to return. By default, only the first level of subfolders is shown. Set the sub_folder_depth query parameter to -1 to return the entire folder hierarchy. <ds-column> <ds-step open="false" hideIcon="true"> Default returns only top-level folders. Click to show. <div> GET 'https://demo.docusign.net/restapi/v2.1/accounts/624e3e00-xxxx-xxxx-xxxx-43918c520dab/folders' json { "resultSetSize": "5", "startPosition": "0", "endPosition": "4", "totalSetSize": "5", "folders": [{ "name": "Draft", "type": "draft", "itemCount": "1", "subFolderCount": "0", "hasSubFolders": "false" }, { "name": "Inbox", "type": "inbox", "itemCount": "0", "subFolderCount": "1", "hasSubFolders": "true", "folders": [{ "name": "Project Fair", "type": "normal", "hasSubFolders": "false", "parentFolderId": "3ed02ee3-xxxx-xxxx-xxxx-e6795f96a840", "parentFolderUri": "/folders/3ed02ee3-xxxx-xxxx-xxxx-e6795f96a840" }] }, { "name": "Deleted Items", "type": "recyclebin", "itemCount": "0", "subFolderCount": "0", "hasSubFolders": "false" }, { "name": "Sent Items", "type": "sentitems", "itemCount": "3", "subFolderCount": "0", "hasSubFolders": "false" }] } </div></ds-step> <ds-step open="false" hideIcon="true"> Setting sub_folder_depth to -1 returns the entire folder hierarchy. Click to show. <div> GET 'https://demo.docusign.net/restapi/v2.1/accounts/624e3e00-xxxx-xxxx-xxxx-43918c520dab/folders?sub_folder_depth=-1' One envelope has been moved from the Inbox folder to the Project Fair/Phase 1 folder, and the endpoint is invoked with sub_folder_depth=-1. json { "resultSetSize": "5", "startPosition": "0", "endPosition": "4", "totalSetSize": "4", "folders": [{ "name": "Draft", "type": "draft", "itemCount": "1", "hasSubFolders": "false" }, { "name": "Inbox", "type": "inbox", "itemCount": "0", "hasSubFolders": "true", "folders": [{ "name": "Project Fair", "type": "normal", "itemCount": "0", "hasSubFolders": "true", "parentFolderId": "3ed02ee3-xxxx-xxxx-xxxx-e6795f96a840", "parentFolderUri": "/folders/3ed02ee3-xxxx-xxxx-xxxx-e6795f96a840", "folders": [{ "name": "NDAs", "type": "normal", "itemCount": "0", "hasSubFolders": "false", "parentFolderId": "12882f2f-xxxx-xxxx-xxxx-e04a714f8e2d", "parentFolderUri": "/folders/12882f2f-xxxx-xxxx-xxxx-e04a714f8e2d" }, { "name": "Phase 1", "type": "normal", "itemCount": "1", "hasSubFolders": "false", "parentFolderId": "12882f2f-xxxx-xxxx-xxxx-e04a714f8e2d", "parentFolderUri": "/folders/12882f2f-xxxx-xxxx-xxxx-e04a714f8e2d" }] }] }, { "name": "Deleted Items", "type": "recyclebin", "itemCount": "0", "hasSubFolders": "false" }, { "name": "Sent Items", "type": "sentitems", "itemCount": "1", "hasSubFolders": "false" }] } </div></ds-step> </ds-column> ### Related topics - Searching for envelopes - Sharing templates

 folders_put_folder_by_id(connection, account_id, folder_id, opts \\ [])

 Moves a set of envelopes from their current folder to another folder.
Moves a set of envelopes from their current folder to another folder. The folderId path parameter is the destination folder. The request body has an array of envelope IDs and the ID of the source folder. <ds-inlinemessage kind="warning" markdown="1"> Do not use the <code>folders</code> property in the request body. </ds-inlinemessage> If folderId is the special value recyclebin the envelopes are moved to the Deleted folder. Moving an in-process envelope (envelope status of sent or delivered) to the recyclebin voids the envelope. ### Related topics - Searching for envelopes - Sharing templates

 search_folders_get_search_folder_contents(connection, account_id, search_folder_id, opts \\ [])

 Deprecated. Use Envelopes: listStatusChanges.

 Functions

 folders_get_folder_items(connection, account_id, folder_id, opts \\ [])

 @spec folders_get_folder_items(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.FolderItemsResponse.t()} | {:error, Req.Response.t()}

Gets information about items in a specified folder.
Gets information about items in the specified folder. To include a list of the items in the folder, set the include_items query parameter to true. ### Related topics - Searching for envelopes - Sharing templates
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	folder_id (String.t): The ID of the folder.
	opts (keyword): Optional parameters	:from_date (String.t): Reserved for Docusign.
	:include_items (String.t): Indicates whether folder items are included in the response. If this parameter is omitted, the default is false.
	:owner_email (String.t): Reserved for Docusign.
	:owner_name (String.t): Reserved for Docusign.
	:search_text (String.t): Reserved for Docusign.
	:start_position (String.t): Reserved for Docusign.
	:status (String.t): Reserved for Docusign.
	:to_date (String.t): Reserved for Docusign.

Returns
	{:ok, DocuSign.Model.FolderItemsResponse.t} on success
	{:error, Req.Response.t} on failure

 folders_get_folders(connection, account_id, opts \\ [])

 @spec folders_get_folders(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.FoldersResponse.t()} | {:error, Req.Response.t()}

Returns a list of the account's folders.
Returns a list of the account's folders. Use the include query parameter to specify the kinds of folders to return. By default, only the first level of subfolders is shown. Set the sub_folder_depth query parameter to -1 to return the entire folder hierarchy. <ds-column> <ds-step open="false" hideIcon="true"> Default returns only top-level folders. Click to show. <div> GET 'https://demo.docusign.net/restapi/v2.1/accounts/624e3e00-xxxx-xxxx-xxxx-43918c520dab/folders' json { "resultSetSize": "5", "startPosition": "0", "endPosition": "4", "totalSetSize": "5", "folders": [{ "name": "Draft", "type": "draft", "itemCount": "1", "subFolderCount": "0", "hasSubFolders": "false" }, { "name": "Inbox", "type": "inbox", "itemCount": "0", "subFolderCount": "1", "hasSubFolders": "true", "folders": [{ "name": "Project Fair", "type": "normal", "hasSubFolders": "false", "parentFolderId": "3ed02ee3-xxxx-xxxx-xxxx-e6795f96a840", "parentFolderUri": "/folders/3ed02ee3-xxxx-xxxx-xxxx-e6795f96a840" }] }, { "name": "Deleted Items", "type": "recyclebin", "itemCount": "0", "subFolderCount": "0", "hasSubFolders": "false" }, { "name": "Sent Items", "type": "sentitems", "itemCount": "3", "subFolderCount": "0", "hasSubFolders": "false" }] } </div></ds-step> <ds-step open="false" hideIcon="true"> Setting sub_folder_depth to -1 returns the entire folder hierarchy. Click to show. <div> GET 'https://demo.docusign.net/restapi/v2.1/accounts/624e3e00-xxxx-xxxx-xxxx-43918c520dab/folders?sub_folder_depth=-1' One envelope has been moved from the Inbox folder to the Project Fair/Phase 1 folder, and the endpoint is invoked with sub_folder_depth=-1. json { "resultSetSize": "5", "startPosition": "0", "endPosition": "4", "totalSetSize": "4", "folders": [{ "name": "Draft", "type": "draft", "itemCount": "1", "hasSubFolders": "false" }, { "name": "Inbox", "type": "inbox", "itemCount": "0", "hasSubFolders": "true", "folders": [{ "name": "Project Fair", "type": "normal", "itemCount": "0", "hasSubFolders": "true", "parentFolderId": "3ed02ee3-xxxx-xxxx-xxxx-e6795f96a840", "parentFolderUri": "/folders/3ed02ee3-xxxx-xxxx-xxxx-e6795f96a840", "folders": [{ "name": "NDAs", "type": "normal", "itemCount": "0", "hasSubFolders": "false", "parentFolderId": "12882f2f-xxxx-xxxx-xxxx-e04a714f8e2d", "parentFolderUri": "/folders/12882f2f-xxxx-xxxx-xxxx-e04a714f8e2d" }, { "name": "Phase 1", "type": "normal", "itemCount": "1", "hasSubFolders": "false", "parentFolderId": "12882f2f-xxxx-xxxx-xxxx-e04a714f8e2d", "parentFolderUri": "/folders/12882f2f-xxxx-xxxx-xxxx-e04a714f8e2d" }] }] }, { "name": "Deleted Items", "type": "recyclebin", "itemCount": "0", "hasSubFolders": "false" }, { "name": "Sent Items", "type": "sentitems", "itemCount": "1", "hasSubFolders": "false" }] } </div></ds-step> </ds-column> ### Related topics - Searching for envelopes - Sharing templates
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return.
	:include (String.t): A comma-separated list of folder types to include in the response. Valid values are: - envelope_folders: Returns a list of envelope folders. (Default) - template_folders: Returns a list of template folders. - shared_template_folders: Returns a list of shared template folders.
	:include_items (String.t): Indicates whether folder items are included in the response. If this parameter is omitted, the default is false.
	:start_position (String.t): The zero-based index of the result from which to start returning results. The default value is 0.
	:sub_folder_depth (String.t): If missing or any value other than -1, the returned list contains only the top-level folders. A value of -1 returns the complete folder hierarchy.
	:template (String.t): This parameter is deprecated as of version 2.1. Use include instead.
	:user_filter (String.t): Narrows down the resulting folder list by the following values: - all: Returns all templates owned or shared with the user. (default) - owned_by_me: Returns only templates the user owns. - shared_with_me: Returns only templates that are shared with the user.

Returns
	{:ok, DocuSign.Model.FoldersResponse.t} on success
	{:error, Req.Response.t} on failure

 folders_put_folder_by_id(connection, account_id, folder_id, opts \\ [])

 @spec folders_put_folder_by_id(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.FoldersResponse.t()} | {:error, Req.Response.t()}

Moves a set of envelopes from their current folder to another folder.
Moves a set of envelopes from their current folder to another folder. The folderId path parameter is the destination folder. The request body has an array of envelope IDs and the ID of the source folder. <ds-inlinemessage kind="warning" markdown="1"> Do not use the <code>folders</code> property in the request body. </ds-inlinemessage> If folderId is the special value recyclebin the envelopes are moved to the Deleted folder. Moving an in-process envelope (envelope status of sent or delivered) to the recyclebin voids the envelope. ### Related topics - Searching for envelopes - Sharing templates
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	folder_id (String.t): The ID of the folder.
	opts (keyword): Optional parameters	:body (FoldersRequest):

Returns
	{:ok, DocuSign.Model.FoldersResponse.t} on success
	{:error, Req.Response.t} on failure

 search_folders_get_search_folder_contents(connection, account_id, search_folder_id, opts \\ [])

 @spec search_folders_get_search_folder_contents(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.FolderItemResponse.t()} | {:error, Req.Response.t()}

Deprecated. Use Envelopes: listStatusChanges.
This method is deprecated in API v2.1 Use [Envelopes: listStatusChanges](/docs/esign-rest-api/reference/envelopes/envelopes/liststatuschanges/) instead.Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	search_folder_id (String.t): Specifies the envelope group that is searched by the request. These are logical groupings, not actual folder names. Valid values are: drafts, awaiting_my_signature, completed, out_for_signature.
	opts (keyword): Optional parameters	:all (String.t): Specifies that all envelopes that match the criteria are returned.
	:count (String.t): The maximum number of results to return. Use start_position to specify the number of results to skip. Valid values: 1 to 100
	:from_date (String.t): Specifies the start of the date range to return. If no value is provided, the default search is the previous 30 days.
	:include_recipients (String.t): When true, the recipient information is returned in the response.
	:order (String.t): Specifies the order in which the list is returned. Valid values are: asc for ascending order, and desc for descending order.
	:order_by (String.t): Specifies the property used to sort the list. Valid values are: action_required, created, completed, sent, signer_list, status, or subject.
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.
	:to_date (String.t): Specifies the end of the date range to return.

Returns
	{:ok, DocuSign.Model.FolderItemResponse.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.GroupBrands - DocuSign v3.1.0

DocuSign.Api.GroupBrands

API calls for all endpoints tagged GroupBrands.

 Summary

 Functions

 brands_delete_group_brands(connection, account_id, group_id, opts \\ [])

 Deletes brand information from a group.
This method deletes one or more brands from a group.

 brands_get_group_brands(connection, account_id, group_id, opts \\ [])

 Gets the brand information for a group.
This method returns information about the brands associated with a group.

 brands_put_group_brands(connection, account_id, group_id, opts \\ [])

 Adds an existing brand to a group.
This method adds one or more existing brands to a group based on the groupId.

 Functions

 brands_delete_group_brands(connection, account_id, group_id, opts \\ [])

 @spec brands_delete_group_brands(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.GroupBrands.t()} | {:error, Req.Response.t()}

Deletes brand information from a group.
This method deletes one or more brands from a group.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	group_id (String.t): The ID of the group.
	opts (keyword): Optional parameters	:body (BrandsRequest):

Returns
	{:ok, DocuSign.Model.GroupBrands.t} on success
	{:error, Req.Response.t} on failure

 brands_get_group_brands(connection, account_id, group_id, opts \\ [])

 @spec brands_get_group_brands(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.GroupBrands.t()} | {:error, Req.Response.t()}

Gets the brand information for a group.
This method returns information about the brands associated with a group.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	group_id (String.t): The ID of the group.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.GroupBrands.t} on success
	{:error, Req.Response.t} on failure

 brands_put_group_brands(connection, account_id, group_id, opts \\ [])

 @spec brands_put_group_brands(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.GroupBrands.t()} | {:error, Req.Response.t()}

Adds an existing brand to a group.
This method adds one or more existing brands to a group based on the groupId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	group_id (String.t): The ID of the group being accessed.
	opts (keyword): Optional parameters	:body (BrandsRequest):

Returns
	{:ok, DocuSign.Model.GroupBrands.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.GroupUsers - DocuSign v3.1.0

DocuSign.Api.GroupUsers

API calls for all endpoints tagged GroupUsers.

 Summary

 Functions

 groups_delete_group_users(connection, account_id, group_id, opts \\ [])

 Deletes one or more users from a group
Deletes one or more users from a group. This request takes a userInfoList that contains the users that you want to delete.

 groups_get_group_users(connection, account_id, group_id, opts \\ [])

 Gets a list of users in a group.
Retrieves a list of users in a group.

 groups_put_group_users(connection, account_id, group_id, opts \\ [])

 Adds one or more users to an existing group.
Adds one or more existing Docusign users to an existing group.

 Functions

 groups_delete_group_users(connection, account_id, group_id, opts \\ [])

 @spec groups_delete_group_users(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.UsersResponse.t()} | {:error, Req.Response.t()}

Deletes one or more users from a group
Deletes one or more users from a group. This request takes a userInfoList that contains the users that you want to delete.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	group_id (String.t): The ID of the group being accessed.
	opts (keyword): Optional parameters	:body (UserInfoList):

Returns
	{:ok, DocuSign.Model.UsersResponse.t} on success
	{:error, Req.Response.t} on failure

 groups_get_group_users(connection, account_id, group_id, opts \\ [])

 @spec groups_get_group_users(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.UsersResponse.t()} | {:error, Req.Response.t()}

Gets a list of users in a group.
Retrieves a list of users in a group.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	group_id (String.t): The ID of the group being accessed.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return. Use start_position to specify the number of results to skip. Valid values: 1 to 100
 Default: 50
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.

Returns
	{:ok, DocuSign.Model.UsersResponse.t} on success
	{:error, Req.Response.t} on failure

 groups_put_group_users(connection, account_id, group_id, opts \\ [])

 @spec groups_put_group_users(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.UsersResponse.t()} | {:error, Req.Response.t()}

Adds one or more users to an existing group.
Adds one or more existing Docusign users to an existing group.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	group_id (String.t): The ID of the group being accessed.
	opts (keyword): Optional parameters	:body (UserInfoList):

Returns
	{:ok, DocuSign.Model.UsersResponse.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.Groups - DocuSign v3.1.0

DocuSign.Api.Groups

API calls for all endpoints tagged Groups.

 Summary

 Functions

 groups_delete_groups(connection, account_id, opts \\ [])

 Deletes an existing user group.
Deletes an existing user group. When you delete a group, you include only the groupId in the request body. Example: { "groups": [{ "groupId": "12345" } }

 groups_get_groups(connection, account_id, opts \\ [])

 Gets information about groups associated with the account.
Gets information about groups associated with the account. <ds-inlinemessage kind="information" markdown="1"> To get the users in a group: 1. Use this endpoint to get the group ID. 2. Use listGroupUsers to get the list of users. </ds-inlinemessage> ### Related topics - How to set a permission profile

 groups_post_groups(connection, account_id, opts \\ [])

 Creates one or more groups for the account.
Creates one or more groups for the account. Groups help you manage users. For example, you can use groups to limit user access to templates. You can associate a group with a permission profile, which sets the user permissions for users in that group without having to set the userSettings property for each user. You are not required to set permission profiles for a group, but it makes it easier to manage user permissions for a large number of users. <ds-inlinemessage kind="warning" markdown="1"> This endpoint uses only the <code>groupName</code> and <code>permissionProfileId</code> properties in the request body. All other properties are ignored. </ds-inlinemessage> Example request: json { "groups": [{ "groupName": "montagues" }, { "groupName": "capulets" }, { "groupName": "nobles", "permissionProfileId": 1597 }] } Use AccountPermissionProfiles: list to get a list of permission profiles and their IDs. It is an error if the permissionProfileId does not exist. ### Related topics - How-To Set Up a Permission Profile

 groups_put_groups(connection, account_id, opts \\ [])

 Updates the group information for a group.
Updates the group name and modifies, or sets, the permission profile for the group. ### Related topics - How-To Set Up a Permission Profile

 Functions

 groups_delete_groups(connection, account_id, opts \\ [])

 @spec groups_delete_groups(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.GroupInformation.t()} | {:error, Req.Response.t()}

Deletes an existing user group.
Deletes an existing user group. When you delete a group, you include only the groupId in the request body. Example: { "groups": [{ "groupId": "12345" } }
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (GroupInformation):

Returns
	{:ok, DocuSign.Model.GroupInformation.t} on success
	{:error, Req.Response.t} on failure

 groups_get_groups(connection, account_id, opts \\ [])

 @spec groups_get_groups(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.GroupInformation.t()} | {:error, Req.Response.t()}

Gets information about groups associated with the account.
Gets information about groups associated with the account. <ds-inlinemessage kind="information" markdown="1"> To get the users in a group: 1. Use this endpoint to get the group ID. 2. Use listGroupUsers to get the list of users. </ds-inlinemessage> ### Related topics - How to set a permission profile
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return. Use start_position to specify the number of results to skip. Valid values: 1 to 100
	:group_type (String.t): The type of group to return. Valid values: AdminGroup CustomGroup * EveryoneGroup
	:include_usercount (String.t): When true, every group returned in the response includes a userCount property that contains the total number of users in the group. The default is true.
	:search_text (String.t): Filters the results of a GET request based on the text that you specify.
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.

Returns
	{:ok, DocuSign.Model.GroupInformation.t} on success
	{:error, Req.Response.t} on failure

 groups_post_groups(connection, account_id, opts \\ [])

 @spec groups_post_groups(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.GroupInformation.t()} | {:error, Req.Response.t()}

Creates one or more groups for the account.
Creates one or more groups for the account. Groups help you manage users. For example, you can use groups to limit user access to templates. You can associate a group with a permission profile, which sets the user permissions for users in that group without having to set the userSettings property for each user. You are not required to set permission profiles for a group, but it makes it easier to manage user permissions for a large number of users. <ds-inlinemessage kind="warning" markdown="1"> This endpoint uses only the <code>groupName</code> and <code>permissionProfileId</code> properties in the request body. All other properties are ignored. </ds-inlinemessage> Example request: json { "groups": [{ "groupName": "montagues" }, { "groupName": "capulets" }, { "groupName": "nobles", "permissionProfileId": 1597 }] } Use AccountPermissionProfiles: list to get a list of permission profiles and their IDs. It is an error if the permissionProfileId does not exist. ### Related topics - How-To Set Up a Permission Profile
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (GroupInformation):

Returns
	{:ok, DocuSign.Model.GroupInformation.t} on success
	{:error, Req.Response.t} on failure

 groups_put_groups(connection, account_id, opts \\ [])

 @spec groups_put_groups(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.GroupInformation.t()} | {:error, Req.Response.t()}

Updates the group information for a group.
Updates the group name and modifies, or sets, the permission profile for the group. ### Related topics - How-To Set Up a Permission Profile
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (GroupInformation):

Returns
	{:ok, DocuSign.Model.GroupInformation.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.IdentityVerifications - DocuSign v3.1.0

DocuSign.Api.IdentityVerifications

API calls for all endpoints tagged IdentityVerifications.

 Summary

 Functions

 account_identity_verification_get_account_identity_verification(connection, account_id, opts \\ [])

 Retrieves the Identity Verification workflows available to an account.
This method returns a list of Identity Verification workflows that are available to an account. Note: To use this method, you must either be an account administrator or a sender. ### Related topics - How to require ID Verification (IDV) for a recipient

 Functions

 account_identity_verification_get_account_identity_verification(connection, account_id, opts \\ [])

 @spec account_identity_verification_get_account_identity_verification(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.AccountIdentityVerificationResponse.t()}
 | {:error, Req.Response.t()}

Retrieves the Identity Verification workflows available to an account.
This method returns a list of Identity Verification workflows that are available to an account. Note: To use this method, you must either be an account administrator or a sender. ### Related topics - How to require ID Verification (IDV) for a recipient
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:identity_verification_workflow_status (String.t): Filters the workflows returned according to status. Valid values: - active: Only active workflows are returned. This is the default. - deactivated: Only deactivated workflows are returned. - all: All workflows are returned.

Returns
	{:ok, DocuSign.Model.AccountIdentityVerificationResponse.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.Invoices - DocuSign v3.1.0

DocuSign.Api.Invoices

API calls for all endpoints tagged Invoices.

 Summary

 Functions

 billing_invoices_get_billing_invoice(connection, account_id, invoice_id, opts \\ [])

 Retrieves a billing invoice.
Retrieves the specified invoice. Note: If the pdfAvailable property in the response is set to true, you can download a PDF version of the invoice. To download the PDF, make the call again and change the value of the Accept property in the header to Accept: application/pdf. Privileges required: account administrator The response returns a list of charges and information about the charges. Quantities are usually shown as 'unlimited' or an integer. Amounts are shown in the currency set for the account. Response The following table provides a description of the different chargeName property values. The information will grow as more chargeable items are added to the system. | chargeName | Description | | --- | --- | | id_check | ID Check Charge | | in_person_signing | In Person Signing charge | | envelopes Included | Sent Envelopes for the account | | age_verify | Age verification check | | ofac | OFAC Check | | id_confirm | ID confirmation check | | student_authentication | STAN PIN authentication check | | wet_sign_fax | Pages for returning signed documents by fax | | attachment_fax | Pages for returning attachments by fax | | phone_authentication | Phone authentication charge | | powerforms | PowerForm envelopes sent | | signer_payments | Payment processing charge | | outbound_fax | Send by fax charge | | bulk_recipient_envelopes | Bulk Recipient Envelopes sent | | sms_authentications | SMS authentication charge | | saml_authentications | SAML authentication charge | | express_signer_certificate | Docusign Express Certificate charge | | personal_signer_certificate | Personal Signer Certificate charge | | safe_certificate | SAFE BioPharma Signer Certificate charge | | seats | Included active seats charge | | open_trust_certificate | OpenTrust Signer Certificate charge |

 billing_invoices_get_billing_invoices(connection, account_id, opts \\ [])

 Get a List of Billing Invoices
Retrieves a list of invoices for the account. If the from date or to date queries are not specified, the response returns invoices for the last 365 days. Privileges required: account administrator

 billing_invoices_get_billing_invoices_past_due(connection, account_id, opts \\ [])

 Get a list of past due invoices.
Returns a list past due invoices for the account and notes if payment can be made through the REST API. Privileges Required: account administrator

 Functions

 billing_invoices_get_billing_invoice(connection, account_id, invoice_id, opts \\ [])

 @spec billing_invoices_get_billing_invoice(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BillingInvoice.t()} | {:error, Req.Response.t()}

Retrieves a billing invoice.
Retrieves the specified invoice. Note: If the pdfAvailable property in the response is set to true, you can download a PDF version of the invoice. To download the PDF, make the call again and change the value of the Accept property in the header to Accept: application/pdf. Privileges required: account administrator The response returns a list of charges and information about the charges. Quantities are usually shown as 'unlimited' or an integer. Amounts are shown in the currency set for the account. Response The following table provides a description of the different chargeName property values. The information will grow as more chargeable items are added to the system. | chargeName | Description | | --- | --- | | id_check | ID Check Charge | | in_person_signing | In Person Signing charge | | envelopes Included | Sent Envelopes for the account | | age_verify | Age verification check | | ofac | OFAC Check | | id_confirm | ID confirmation check | | student_authentication | STAN PIN authentication check | | wet_sign_fax | Pages for returning signed documents by fax | | attachment_fax | Pages for returning attachments by fax | | phone_authentication | Phone authentication charge | | powerforms | PowerForm envelopes sent | | signer_payments | Payment processing charge | | outbound_fax | Send by fax charge | | bulk_recipient_envelopes | Bulk Recipient Envelopes sent | | sms_authentications | SMS authentication charge | | saml_authentications | SAML authentication charge | | express_signer_certificate | Docusign Express Certificate charge | | personal_signer_certificate | Personal Signer Certificate charge | | safe_certificate | SAFE BioPharma Signer Certificate charge | | seats | Included active seats charge | | open_trust_certificate | OpenTrust Signer Certificate charge |
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	invoice_id (String.t): The ID of the invoice.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.BillingInvoice.t} on success
	{:error, Req.Response.t} on failure

 billing_invoices_get_billing_invoices(connection, account_id, opts \\ [])

 @spec billing_invoices_get_billing_invoices(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BillingInvoicesResponse.t()} | {:error, Req.Response.t()}

Get a List of Billing Invoices
Retrieves a list of invoices for the account. If the from date or to date queries are not specified, the response returns invoices for the last 365 days. Privileges required: account administrator
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:from_date (String.t): Specifies the date/time of the earliest invoice in the account to retrieve.
	:to_date (String.t): Specifies the date/time of the latest invoice in the account to retrieve.

Returns
	{:ok, DocuSign.Model.BillingInvoicesResponse.t} on success
	{:error, Req.Response.t} on failure

 billing_invoices_get_billing_invoices_past_due(connection, account_id, opts \\ [])

 @spec billing_invoices_get_billing_invoices_past_due(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BillingInvoicesSummary.t()} | {:error, Req.Response.t()}

Get a list of past due invoices.
Returns a list past due invoices for the account and notes if payment can be made through the REST API. Privileges Required: account administrator
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.BillingInvoicesSummary.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.Notary - DocuSign v3.1.0

DocuSign.Api.Notary

API calls for all endpoints tagged Notary.

 Summary

 Functions

 notary_get_notary(connection, opts \\ [])

 Gets settings for a notary user.
Gets settings for a notary user. The current user must be a notary.

 notary_post_notary(connection, opts \\ [])

 Registers the current user as a notary.
Registers the current user as a notary.

 notary_put_notary(connection, opts \\ [])

 Updates notary information for the current user.
Updates notary information for the current user.

 Functions

 notary_get_notary(connection, opts \\ [])

 @spec notary_get_notary(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, DocuSign.Model.NotaryResult.t()} | {:error, Req.Response.t()}

Gets settings for a notary user.
Gets settings for a notary user. The current user must be a notary.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters	:include_jurisdictions (String.t): When true, the response will include a jurisdiction property that contains an array of all supported jurisdictions for the current user.

Returns
	{:ok, DocuSign.Model.NotaryResult.t} on success
	{:error, Req.Response.t} on failure

 notary_post_notary(connection, opts \\ [])

 @spec notary_post_notary(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, DocuSign.Model.Notary.t()} | {:error, Req.Response.t()}

Registers the current user as a notary.
Registers the current user as a notary.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters	:body (Notary):

Returns
	{:ok, DocuSign.Model.Notary.t} on success
	{:error, Req.Response.t} on failure

 notary_put_notary(connection, opts \\ [])

 @spec notary_put_notary(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, DocuSign.Model.Notary.t()} | {:error, Req.Response.t()}

Updates notary information for the current user.
Updates notary information for the current user.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters	:body (Notary):

Returns
	{:ok, DocuSign.Model.Notary.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.NotaryJournals - DocuSign v3.1.0

DocuSign.Api.NotaryJournals

API calls for all endpoints tagged NotaryJournals.

 Summary

 Functions

 notary_journals_get_notary_journals(connection, opts \\ [])

 Gets notary jurisdictions for a user.

 Functions

 notary_journals_get_notary_journals(connection, opts \\ [])

 @spec notary_journals_get_notary_journals(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, DocuSign.Model.NotaryJournalList.t()} | {:error, Req.Response.t()}

Gets notary jurisdictions for a user.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return.
	:search_text (String.t): Use this parameter to search for specific text.
	:start_position (String.t): The position within the total result set from which to start returning values. The value thumbnail may be used to return the page image.

Returns
	{:ok, DocuSign.Model.NotaryJournalList.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.NotaryJurisdiction - DocuSign v3.1.0

DocuSign.Api.NotaryJurisdiction

API calls for all endpoints tagged NotaryJurisdiction.

 Summary

 Functions

 notary_jurisdictions_delete_notary_jurisdiction(connection, jurisdiction_id, opts \\ [])

 Deletes the specified jurisdiction.
Deletes the specified jurisdiction.

 notary_jurisdictions_get_notary_jurisdiction(connection, jurisdiction_id, opts \\ [])

 Gets a jurisdiction object for the current user. The user must be a notary.
Gets a jurisdiction object for the current user. The following restrictions apply: - The current user must be a notary. - The jurisdictionId must be a jurisdiction that the notary is registered for.

 notary_jurisdictions_get_notary_jurisdictions(connection, opts \\ [])

 Returns a list of jurisdictions that the notary is registered in.
Returns a list of jurisdictions that the notary is registered in. The current user must be a notary.

 notary_jurisdictions_post_notary_jurisdictions(connection, opts \\ [])

 Creates a jurisdiction object.
Creates a jurisdiction object.

 notary_jurisdictions_put_notary_jurisdiction(connection, jurisdiction_id, opts \\ [])

 Updates the jurisdiction information about a notary.
Updates the jurisdiction information about a notary. The following restrictions apply: - The current user must be a notary. - The jurisdictionId path parameter must be a jurisdiction that the notary is registered for. - The jurisdictionId path parameter must match the request body's jurisdiction.jurisdictionId. The request body must have a full jurisdiction object for the jurisdiction property. The best way to do this is to use getNotaryJurisdiction to obtain the current values and update the properties you want to change. For example, assume getNotaryJurisdiction returns this: { "jurisdiction": { "jurisdictionId": "15", "name": "Iowa", "county": "", "enabled": "true", "countyInSeal": "false", "commissionIdInSeal": "true", "stateNameInSeal": "true", "notaryPublicInSeal": "true", "allowSystemCreatedSeal": "true", "allowUserUploadedSeal": "false" }, "commissionId": "123456", "commissionExpiration": "2020-08-31T07:00:00.0000000Z", "registeredName": "Bob Notary", "county": "Adams", "sealType": "system_created" } If you want to change the name of the notary from "Bob Notary" to "Robert Notary", your request body would be: { "jurisdiction": { "jurisdictionId": "15", "name": "Iowa", "county": "", "enabled": "true", "countyInSeal": "false", "commissionIdInSeal": "true", "stateNameInSeal": "true", "notaryPublicInSeal": "true", "allowSystemCreatedSeal": "true", "allowUserUploadedSeal": "false" }, "commissionId": "123456", "commissionExpiration": "2020-08-31T07:00:00.0000000Z", "registeredName": "Robert Notary", "county": "Adams", "sealType": "system_created" }

 Functions

 notary_jurisdictions_delete_notary_jurisdiction(connection, jurisdiction_id, opts \\ [])

 @spec notary_jurisdictions_delete_notary_jurisdiction(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Deletes the specified jurisdiction.
Deletes the specified jurisdiction.
Parameters
	connection (DocuSign.Connection): Connection to server
	jurisdiction_id (String.t): The ID of the jurisdiction. The following jurisdictions are supported: - 5 - California - 6 - Colorado - 9 - Florida - 10 - Georgia - 12 - Idaho - 13 - Illinois - 14 - Indiana - 15 - Iowa - 17 - Kentucky - 23 - Minnesota - 25 - Missouri - 30 - New Jersey - 32 - New York - 33 - North Carolina - 35 - Ohio - 37 - Oregon - 38 - Pennsylvania - 40 - South Carolina - 43 - Texas - 44 - Utah - 47 - Washington - 48 - West Virginia - 49 - Wisconsin - 62 - Florida Commissioner of Deeds
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 notary_jurisdictions_get_notary_jurisdiction(connection, jurisdiction_id, opts \\ [])

 @spec notary_jurisdictions_get_notary_jurisdiction(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.NotaryJurisdiction.t()} | {:error, Req.Response.t()}

Gets a jurisdiction object for the current user. The user must be a notary.
Gets a jurisdiction object for the current user. The following restrictions apply: - The current user must be a notary. - The jurisdictionId must be a jurisdiction that the notary is registered for.
Parameters
	connection (DocuSign.Connection): Connection to server
	jurisdiction_id (String.t): The ID of the jurisdiction. The following jurisdictions are supported: - 5 - California - 6 - Colorado - 9 - Florida - 10 - Georgia - 12 - Idaho - 13 - Illinois - 14 - Indiana - 15 - Iowa - 17 - Kentucky - 23 - Minnesota - 25 - Missouri - 30 - New Jersey - 32 - New York - 33 - North Carolina - 35 - Ohio - 37 - Oregon - 38 - Pennsylvania - 40 - South Carolina - 43 - Texas - 44 - Utah - 47 - Washington - 48 - West Virginia - 49 - Wisconsin - 62 - Florida Commissioner of Deeds
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.NotaryJurisdiction.t} on success
	{:error, Req.Response.t} on failure

 notary_jurisdictions_get_notary_jurisdictions(connection, opts \\ [])

 @spec notary_jurisdictions_get_notary_jurisdictions(
 DocuSign.Connection.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.NotaryJurisdictionList.t()} | {:error, Req.Response.t()}

Returns a list of jurisdictions that the notary is registered in.
Returns a list of jurisdictions that the notary is registered in. The current user must be a notary.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.NotaryJurisdictionList.t} on success
	{:error, Req.Response.t} on failure

 notary_jurisdictions_post_notary_jurisdictions(connection, opts \\ [])

 @spec notary_jurisdictions_post_notary_jurisdictions(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, DocuSign.Model.NotaryJurisdiction.t()} | {:error, Req.Response.t()}

Creates a jurisdiction object.
Creates a jurisdiction object.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters	:body (NotaryJurisdiction):

Returns
	{:ok, DocuSign.Model.NotaryJurisdiction.t} on success
	{:error, Req.Response.t} on failure

 notary_jurisdictions_put_notary_jurisdiction(connection, jurisdiction_id, opts \\ [])

 @spec notary_jurisdictions_put_notary_jurisdiction(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.NotaryJurisdiction.t()} | {:error, Req.Response.t()}

Updates the jurisdiction information about a notary.
Updates the jurisdiction information about a notary. The following restrictions apply: - The current user must be a notary. - The jurisdictionId path parameter must be a jurisdiction that the notary is registered for. - The jurisdictionId path parameter must match the request body's jurisdiction.jurisdictionId. The request body must have a full jurisdiction object for the jurisdiction property. The best way to do this is to use getNotaryJurisdiction to obtain the current values and update the properties you want to change. For example, assume getNotaryJurisdiction returns this: { "jurisdiction": { "jurisdictionId": "15", "name": "Iowa", "county": "", "enabled": "true", "countyInSeal": "false", "commissionIdInSeal": "true", "stateNameInSeal": "true", "notaryPublicInSeal": "true", "allowSystemCreatedSeal": "true", "allowUserUploadedSeal": "false" }, "commissionId": "123456", "commissionExpiration": "2020-08-31T07:00:00.0000000Z", "registeredName": "Bob Notary", "county": "Adams", "sealType": "system_created" } If you want to change the name of the notary from "Bob Notary" to "Robert Notary", your request body would be: { "jurisdiction": { "jurisdictionId": "15", "name": "Iowa", "county": "", "enabled": "true", "countyInSeal": "false", "commissionIdInSeal": "true", "stateNameInSeal": "true", "notaryPublicInSeal": "true", "allowSystemCreatedSeal": "true", "allowUserUploadedSeal": "false" }, "commissionId": "123456", "commissionExpiration": "2020-08-31T07:00:00.0000000Z", "registeredName": "Robert Notary", "county": "Adams", "sealType": "system_created" }
Parameters
	connection (DocuSign.Connection): Connection to server
	jurisdiction_id (String.t): The ID of the jurisdiction. The following jurisdictions are supported: - 5 - California - 6 - Colorado - 9 - Florida - 10 - Georgia - 12 - Idaho - 13 - Illinois - 14 - Indiana - 15 - Iowa - 17 - Kentucky - 23 - Minnesota - 25 - Missouri - 30 - New Jersey - 32 - New York - 33 - North Carolina - 35 - Ohio - 37 - Oregon - 38 - Pennsylvania - 40 - South Carolina - 43 - Texas - 44 - Utah - 47 - Washington - 48 - West Virginia - 49 - Wisconsin - 62 - Florida Commissioner of Deeds
	opts (keyword): Optional parameters	:body (NotaryJurisdiction):

Returns
	{:ok, DocuSign.Model.NotaryJurisdiction.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.PaymentGatewayAccounts - DocuSign v3.1.0

DocuSign.Api.PaymentGatewayAccounts

API calls for all endpoints tagged PaymentGatewayAccounts.

 Summary

 Functions

 payment_gateway_accounts_get_all_payment_gateway_accounts(connection, account_id, opts \\ [])

 List payment gateway accounts
This method returns a list of payment gateway accounts and basic information about them.

 Functions

 payment_gateway_accounts_get_all_payment_gateway_accounts(connection, account_id, opts \\ [])

 @spec payment_gateway_accounts_get_all_payment_gateway_accounts(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.PaymentGatewayAccountsInfo.t()}
 | {:error, Req.Response.t()}

List payment gateway accounts
This method returns a list of payment gateway accounts and basic information about them.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.PaymentGatewayAccountsInfo.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.Payments - DocuSign v3.1.0

DocuSign.Api.Payments

API calls for all endpoints tagged Payments.

 Summary

 Functions

 billing_payments_get_payment(connection, account_id, payment_id, opts \\ [])

 Gets billing payment information for a specific payment.
Retrieves the information for a specified payment. Privileges required: account administrator

 billing_payments_get_payment_list(connection, account_id, opts \\ [])

 Gets payment information for one or more payments.
Retrieves a list containing information about one or more payments. If the from date or to date queries are not used, the response returns payment information for the last 365 days. Privileges required: account administrator

 billing_payments_post_payment(connection, account_id, opts \\ [])

 Posts a payment to a past due invoice.
Posts a payment to a past due invoice. This method can only be used if the paymentAllowed value for a past due invoice is true. This can be determined calling Billing::listInvoicesPastDue. The response returns information for a single payment if a payment ID was used in the endpoint, or a list of payments. If the from date or to date queries or payment ID are not used, the response returns payment information for the last 365 days. If the request was for a single payment ID, the nextUri and previousUri properties are not returned. Privileges required: account administrator

 Functions

 billing_payments_get_payment(connection, account_id, payment_id, opts \\ [])

 @spec billing_payments_get_payment(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BillingPaymentItem.t()} | {:error, Req.Response.t()}

Gets billing payment information for a specific payment.
Retrieves the information for a specified payment. Privileges required: account administrator
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	payment_id (String.t): The ID of the payment.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.BillingPaymentItem.t} on success
	{:error, Req.Response.t} on failure

 billing_payments_get_payment_list(connection, account_id, opts \\ [])

 @spec billing_payments_get_payment_list(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.BillingPaymentsResponse.t()} | {:error, Req.Response.t()}

Gets payment information for one or more payments.
Retrieves a list containing information about one or more payments. If the from date or to date queries are not used, the response returns payment information for the last 365 days. Privileges required: account administrator
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:from_date (String.t): Specifies the date/time of the earliest payment in the account to retrieve.
	:to_date (String.t): Specifies the date/time of the latest payment in the account to retrieve.

Returns
	{:ok, DocuSign.Model.BillingPaymentsResponse.t} on success
	{:error, Req.Response.t} on failure

 billing_payments_post_payment(connection, account_id, opts \\ [])

 @spec billing_payments_post_payment(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.BillingPaymentResponse.t()} | {:error, Req.Response.t()}

Posts a payment to a past due invoice.
Posts a payment to a past due invoice. This method can only be used if the paymentAllowed value for a past due invoice is true. This can be determined calling Billing::listInvoicesPastDue. The response returns information for a single payment if a payment ID was used in the endpoint, or a list of payments. If the from date or to date queries or payment ID are not used, the response returns payment information for the last 365 days. If the request was for a single payment ID, the nextUri and previousUri properties are not returned. Privileges required: account administrator
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (BillingPaymentRequest):

Returns
	{:ok, DocuSign.Model.BillingPaymentResponse.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.PowerFormData - DocuSign v3.1.0

DocuSign.Api.PowerFormData

API calls for all endpoints tagged PowerFormData.

 Summary

 Functions

 power_forms_get_power_form_form_data(connection, account_id, power_form_id, opts \\ [])

 Returns the data that users entered in a PowerForm.
This method enables Powerform Administrators or the sender of a PowerForm to download the data that recipients have entered into a PowerForm. You specify the format in which you want to retrieve the data in the Accept header. This header accepts the following values: - application/json: JSON format - application/xml: XML format - text/csv: Comma-separated value (CSV) format You can further specify the type of CSV format in the data_layout query parameter. Note: Only PowerForm Administrators or the PowerForm Sender can download the data associated with a PowerForm.

 Functions

 power_forms_get_power_form_form_data(connection, account_id, power_form_id, opts \\ [])

 @spec power_forms_get_power_form_form_data(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.PowerFormsFormDataResponse.t()}
 | {:error, Req.Response.t()}

Returns the data that users entered in a PowerForm.
This method enables Powerform Administrators or the sender of a PowerForm to download the data that recipients have entered into a PowerForm. You specify the format in which you want to retrieve the data in the Accept header. This header accepts the following values: - application/json: JSON format - application/xml: XML format - text/csv: Comma-separated value (CSV) format You can further specify the type of CSV format in the data_layout query parameter. Note: Only PowerForm Administrators or the PowerForm Sender can download the data associated with a PowerForm.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	power_form_id (String.t): The ID of the PowerForm.
	opts (keyword): Optional parameters	:data_layout (String.t): The layout in which to return the PowerForm data. For each of the following layouts, set the Accept header to the corresponding value. Valid values are: - Native (Set Accept header to application/json) - Csv_Classic (Set Accept header to application/csv) - Csv_One_Envelope_Per_Line (Set Accept header to text/csv) - Xml_Classic (Set Accept header to application/xml)
	:from_date (String.t): The start date for a date range in UTC DateTime format. Note: If this property is null, no date filtering is applied.
	:to_date (String.t): The end date of a date range in UTC DateTime format. The default value is UtcNow.

Returns
	{:ok, DocuSign.Model.PowerFormsFormDataResponse.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.PowerForms - DocuSign v3.1.0

DocuSign.Api.PowerForms

API calls for all endpoints tagged PowerForms.

 Summary

 Functions

 power_forms_delete_power_form(connection, account_id, power_form_id, opts \\ [])

 Deletes a PowerForm.
This method deletes a PowerForm.

 power_forms_delete_power_forms_list(connection, account_id, opts \\ [])

 Deletes one or more PowerForms.
This method deletes one or more PowerForms. The request body takes an array of PowerForm objects that are deleted based on the powerFormId.

 power_forms_get_power_form(connection, account_id, power_form_id, opts \\ [])

 Returns a single PowerForm.
This method returns detailed information about a specific PowerForm.

 power_forms_get_power_forms_list(connection, account_id, opts \\ [])

 Returns a list of PowerForms.
This method returns a list of PowerForms that are available to the user.

 power_forms_get_power_forms_senders(connection, account_id, opts \\ [])

 Gets PowerForm senders.
This method returns a list of users who have sent PowerForms.

 power_forms_post_power_form(connection, account_id, opts \\ [])

 Creates a new PowerForm
This method creates a new PowerForm. You create a PowerForm from an existing Docusign template, based on the templateId in the request body. PowerForms that you create from a template are referred to as web PowerForms. Note: The Docusign Admin console also supports creating a PowerForm by uploading a PDF file that has active form fields (referred to as a PDF PowerForm). However, PDF PowerForms are deprecated and are not supported in the API. Note: A PowerForm can have only one sender. (Because PowerForms are not necessarily sent by email, this user is also referred to as the PowerForm initiator.) If you need to associate multiple senders with a PowerForm, create multiple copies of the PowerForm by using the same template (one copy for each sender). By default, the sender is the PowerForm Administrator who creates the PowerForm. ### Signing modes You can use one of the following signing modes for a PowerForm: email This mode verifies the recipient's identity by using email authentication before the recipient can sign a document. The recipient enters their email address on the landing page and then clicks Begin Signing to begin the signing process. The system then sends an email message with a validation code to the recipient. If the recipient does not provide a valid email address, they do not receive the email message containing the access code and are not able to open and sign the document. Alternatively, you can make the process easier for signers by using email authentication only and omitting the access code. To do this, you append the activateonly flag to the PowerForm URL and set it to true by passing in the value 1. When the flag is active, the first recipient receives an email with a link that initiates the signing session without having to enter access code. Example: activateonly=1 direct This mode does not require any verification. After a recipient enters their email address on the landing page and clicks Begin Signing, a new browser tab opens and the recipient can immediately begin the signing process. Because the direct signing mode does not verify the recipient's identity by using email authentication, we strongly recommend that you use this mode only when the PowerForm is accessible behind a secure portal where the recipient's identity is already authenticated, or where another form of authentication is specified for the recipient in the Docusign template (for example, an access code, phone authentication, or ID check). Note: In the account settings, enablePowerFormDirect must be true to use direct as the signingMode. ### Redirect URLs You can control the URL to which signers are redirected after signing your PowerForm. However, the URL is specified elsewhere, outside of the PowerForm creation process. For details, see How do I specify a URL to redirect to when a PowerForm is completed?. ### More information For more information about creating PowerForms, see Create a PowerForm.

 power_forms_put_power_form(connection, account_id, power_form_id, opts \\ [])

 Updates an existing PowerForm.
This method updates an existing PowerForm.

 Functions

 power_forms_delete_power_form(connection, account_id, power_form_id, opts \\ [])

 @spec power_forms_delete_power_form(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Deletes a PowerForm.
This method deletes a PowerForm.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	power_form_id (String.t): The ID of the PowerForm.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 power_forms_delete_power_forms_list(connection, account_id, opts \\ [])

 @spec power_forms_delete_power_forms_list(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.PowerFormsResponse.t()} | {:error, Req.Response.t()}

Deletes one or more PowerForms.
This method deletes one or more PowerForms. The request body takes an array of PowerForm objects that are deleted based on the powerFormId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (PowerFormsRequest):

Returns
	{:ok, DocuSign.Model.PowerFormsResponse.t} on success
	{:error, Req.Response.t} on failure

 power_forms_get_power_form(connection, account_id, power_form_id, opts \\ [])

 @spec power_forms_get_power_form(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.PowerForm.t()} | {:error, Req.Response.t()}

Returns a single PowerForm.
This method returns detailed information about a specific PowerForm.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	power_form_id (String.t): The ID of the PowerForm.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.PowerForm.t} on success
	{:error, Req.Response.t} on failure

 power_forms_get_power_forms_list(connection, account_id, opts \\ [])

 @spec power_forms_get_power_forms_list(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.PowerFormsResponse.t()} | {:error, Req.Response.t()}

Returns a list of PowerForms.
This method returns a list of PowerForms that are available to the user.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return.
	:from_date (String.t): The start date for a date range. Note: If no value is provided, no date filtering is applied.
	:order (String.t): The order in which to sort the results. Valid values are: asc: Ascending order. desc: Descending order.
	:order_by (String.t): The file attribute to use to sort the results. Valid values are: - sender - auth - used - remaining - lastused - status - type - templatename - created
	:search_fields (String.t): A comma-separated list of additional properties to include in a search. - sender: Include sender name and email in the search. - recipients: Include recipient names and emails in the search. - envelope: Include envelope information in the search.
	:search_text (String.t): Use this parameter to search for specific text.
	:start_position (String.t): The position within the total result set from which to start returning values. The value thumbnail may be used to return the page image.
	:to_date (String.t): The end date for a date range. Note: If no value is provided, this property defaults to the current date.

Returns
	{:ok, DocuSign.Model.PowerFormsResponse.t} on success
	{:error, Req.Response.t} on failure

 power_forms_get_power_forms_senders(connection, account_id, opts \\ [])

 @spec power_forms_get_power_forms_senders(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.PowerFormSendersResponse.t()}
 | {:error, Req.Response.t()}

Gets PowerForm senders.
This method returns a list of users who have sent PowerForms.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:start_position (String.t): The position within the total result set from which to start returning values. The value thumbnail may be used to return the page image.

Returns
	{:ok, DocuSign.Model.PowerFormSendersResponse.t} on success
	{:error, Req.Response.t} on failure

 power_forms_post_power_form(connection, account_id, opts \\ [])

 @spec power_forms_post_power_form(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.PowerForm.t()} | {:error, Req.Response.t()}

Creates a new PowerForm
This method creates a new PowerForm. You create a PowerForm from an existing Docusign template, based on the templateId in the request body. PowerForms that you create from a template are referred to as web PowerForms. Note: The Docusign Admin console also supports creating a PowerForm by uploading a PDF file that has active form fields (referred to as a PDF PowerForm). However, PDF PowerForms are deprecated and are not supported in the API. Note: A PowerForm can have only one sender. (Because PowerForms are not necessarily sent by email, this user is also referred to as the PowerForm initiator.) If you need to associate multiple senders with a PowerForm, create multiple copies of the PowerForm by using the same template (one copy for each sender). By default, the sender is the PowerForm Administrator who creates the PowerForm. ### Signing modes You can use one of the following signing modes for a PowerForm: email This mode verifies the recipient's identity by using email authentication before the recipient can sign a document. The recipient enters their email address on the landing page and then clicks Begin Signing to begin the signing process. The system then sends an email message with a validation code to the recipient. If the recipient does not provide a valid email address, they do not receive the email message containing the access code and are not able to open and sign the document. Alternatively, you can make the process easier for signers by using email authentication only and omitting the access code. To do this, you append the activateonly flag to the PowerForm URL and set it to true by passing in the value 1. When the flag is active, the first recipient receives an email with a link that initiates the signing session without having to enter access code. Example: activateonly=1 direct This mode does not require any verification. After a recipient enters their email address on the landing page and clicks Begin Signing, a new browser tab opens and the recipient can immediately begin the signing process. Because the direct signing mode does not verify the recipient's identity by using email authentication, we strongly recommend that you use this mode only when the PowerForm is accessible behind a secure portal where the recipient's identity is already authenticated, or where another form of authentication is specified for the recipient in the Docusign template (for example, an access code, phone authentication, or ID check). Note: In the account settings, enablePowerFormDirect must be true to use direct as the signingMode. ### Redirect URLs You can control the URL to which signers are redirected after signing your PowerForm. However, the URL is specified elsewhere, outside of the PowerForm creation process. For details, see How do I specify a URL to redirect to when a PowerForm is completed?. ### More information For more information about creating PowerForms, see Create a PowerForm.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (PowerForm): Information about any PowerForms that are included in the envelope.

Returns
	{:ok, DocuSign.Model.PowerForm.t} on success
	{:error, Req.Response.t} on failure

 power_forms_put_power_form(connection, account_id, power_form_id, opts \\ [])

 @spec power_forms_put_power_form(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.PowerForm.t()} | {:error, Req.Response.t()}

Updates an existing PowerForm.
This method updates an existing PowerForm.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	power_form_id (String.t): The ID of the PowerForm.
	opts (keyword): Optional parameters	:body (PowerForm): Information about any PowerForms that are included in the envelope.

Returns
	{:ok, DocuSign.Model.PowerForm.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.RequestLogs - DocuSign v3.1.0

DocuSign.Api.RequestLogs

API calls for all endpoints tagged RequestLogs.

 Summary

 Functions

 a_pi_request_log_delete_request_logs(connection, opts \\ [])

 Deletes the request log files.
Deletes the request log files.

 a_pi_request_log_get_request_log(connection, request_log_id, opts \\ [])

 Gets a request logging log file.
Retrieves information for a single log entry. Request The requestLogId property can be retrieved by getting the list of log entries. The Content-Transfer-Encoding header can be set to base64 to retrieve the API request/response as base 64 string. Otherwise the bytes of the request/response are returned. Response If the Content-Transfer-Encoding header was set to base64, the log is returned as a base64 string.

 a_pi_request_log_get_request_log_settings(connection, opts \\ [])

 Gets the API request logging settings.
Retrieves the current API request logging setting for the user and remaining log entries. Response The response includes the current API request logging setting for the user, along with the maximum log entries and remaining log entries.

 a_pi_request_log_get_request_logs(connection, opts \\ [])

 Gets the API request logging log files.
Retrieves a list of log entries as a JSON or XML object or as a zip file containing the entries. If the Accept header is set to application/zip, the response is a zip file containing individual text files, each representing an API request. If the Accept header is set to application/json or application/xml, the response returns list of log entries in either JSON or XML. An example JSON response body is shown below.

 a_pi_request_log_put_request_log_settings(connection, opts \\ [])

 Enables or disables API request logging for troubleshooting.
Enables or disables API request logging for troubleshooting. When enabled (apiRequestLogging is true), REST API requests and responses for the user are added to a log. A log can have up to 50 requests/responses and the current number of log entries can be determined by getting the settings. Logging is automatically disabled when the log limit of 50 is reached. You can call Diagnostics: getRequestLog or Diagnostics: listRequestLogs to download the log files (individually or as a zip file). Call Diagnostics: deleteRequestLogs to clear the log by deleting current entries. Private information, such as passwords and integration key information, which is normally located in the call header is omitted from the request/response log. API request logging only captures requests from the authenticated user. Any call that does not authenticate the user and resolve a userId is not logged.

 Functions

 a_pi_request_log_delete_request_logs(connection, opts \\ [])

 @spec a_pi_request_log_delete_request_logs(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes the request log files.
Deletes the request log files.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 a_pi_request_log_get_request_log(connection, request_log_id, opts \\ [])

 @spec a_pi_request_log_get_request_log(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, String.t()} | {:error, Req.Response.t()}

Gets a request logging log file.
Retrieves information for a single log entry. Request The requestLogId property can be retrieved by getting the list of log entries. The Content-Transfer-Encoding header can be set to base64 to retrieve the API request/response as base 64 string. Otherwise the bytes of the request/response are returned. Response If the Content-Transfer-Encoding header was set to base64, the log is returned as a base64 string.
Parameters
	connection (DocuSign.Connection): Connection to server
	request_log_id (String.t): The ID of the log entry.
	opts (keyword): Optional parameters

Returns
	{:ok, String.t} on success
	{:error, Req.Response.t} on failure

 a_pi_request_log_get_request_log_settings(connection, opts \\ [])

 @spec a_pi_request_log_get_request_log_settings(
 DocuSign.Connection.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DiagnosticsSettingsInformation.t()}
 | {:error, Req.Response.t()}

Gets the API request logging settings.
Retrieves the current API request logging setting for the user and remaining log entries. Response The response includes the current API request logging setting for the user, along with the maximum log entries and remaining log entries.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DiagnosticsSettingsInformation.t} on success
	{:error, Req.Response.t} on failure

 a_pi_request_log_get_request_logs(connection, opts \\ [])

 @spec a_pi_request_log_get_request_logs(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, DocuSign.Model.ApiRequestLogsResult.t()} | {:error, Req.Response.t()}

Gets the API request logging log files.
Retrieves a list of log entries as a JSON or XML object or as a zip file containing the entries. If the Accept header is set to application/zip, the response is a zip file containing individual text files, each representing an API request. If the Accept header is set to application/json or application/xml, the response returns list of log entries in either JSON or XML. An example JSON response body is shown below.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters	:encoding (String.t): Reserved for Docusign.

Returns
	{:ok, DocuSign.Model.ApiRequestLogsResult.t} on success
	{:error, Req.Response.t} on failure

 a_pi_request_log_put_request_log_settings(connection, opts \\ [])

 @spec a_pi_request_log_put_request_log_settings(
 DocuSign.Connection.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DiagnosticsSettingsInformation.t()}
 | {:error, Req.Response.t()}

Enables or disables API request logging for troubleshooting.
Enables or disables API request logging for troubleshooting. When enabled (apiRequestLogging is true), REST API requests and responses for the user are added to a log. A log can have up to 50 requests/responses and the current number of log entries can be determined by getting the settings. Logging is automatically disabled when the log limit of 50 is reached. You can call Diagnostics: getRequestLog or Diagnostics: listRequestLogs to download the log files (individually or as a zip file). Call Diagnostics: deleteRequestLogs to clear the log by deleting current entries. Private information, such as passwords and integration key information, which is normally located in the call header is omitted from the request/response log. API request logging only captures requests from the authenticated user. Any call that does not authenticate the user and resolve a userId is not logged.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters	:body (DiagnosticsSettingsInformation):

Returns
	{:ok, DocuSign.Model.DiagnosticsSettingsInformation.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.Resources - DocuSign v3.1.0

DocuSign.Api.Resources

API calls for all endpoints tagged Resources.

 Summary

 Functions

 service_information_get_resource_information(connection, opts \\ [])

 Lists resources for REST version specified
Retrieves the base resources available for the eSignature REST API. You do not need an integrator key to view the REST API versions and resources.

 Functions

 service_information_get_resource_information(connection, opts \\ [])

 @spec service_information_get_resource_information(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, DocuSign.Model.ResourceInformation.t()} | {:error, Req.Response.t()}

Lists resources for REST version specified
Retrieves the base resources available for the eSignature REST API. You do not need an integrator key to view the REST API versions and resources.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ResourceInformation.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.ResponsiveHtmlPreview - DocuSign v3.1.0

DocuSign.Api.ResponsiveHtmlPreview

API calls for all endpoints tagged ResponsiveHtmlPreview.

 Summary

 Functions

 responsive_html_post_responsive_html_preview(connection, account_id, envelope_id, opts \\ [])

 Creates a preview of the responsive versions of all of the documents in an envelope.
Creates a preview of the responsive, HTML versions of all of the documents in an envelope. This method enables you to preview the PDF document conversions to responsive HTML across device types prior to sending. The request body is a documentHtmlDefinition object, which holds the responsive signing parameters that define how to generate the HTML version of the documents.

 Functions

 responsive_html_post_responsive_html_preview(connection, account_id, envelope_id, opts \\ [])

 @spec responsive_html_post_responsive_html_preview(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentHtmlDefinitions.t()} | {:error, Req.Response.t()}

Creates a preview of the responsive versions of all of the documents in an envelope.
Creates a preview of the responsive, HTML versions of all of the documents in an envelope. This method enables you to preview the PDF document conversions to responsive HTML across device types prior to sending. The request body is a documentHtmlDefinition object, which holds the responsive signing parameters that define how to generate the HTML version of the documents.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters	:body (DocumentHtmlDefinition):

Returns
	{:ok, DocuSign.Model.DocumentHtmlDefinitions.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.Services - DocuSign v3.1.0

DocuSign.Api.Services

API calls for all endpoints tagged Services.

 Summary

 Functions

 service_information_get_service_information(connection, opts \\ [])

 Retrieves the available REST API versions.
Retrieves the available REST API versions. Docusign Production system: https://www.docusign.net/restapi/service_information Docusign Demo system: https://demo.docusign.net/restapi/service_information You do not need an integration key to view the REST API versions and resources.

 Functions

 service_information_get_service_information(connection, opts \\ [])

 @spec service_information_get_service_information(
 DocuSign.Connection.t(),
 keyword()
) :: {:ok, DocuSign.Model.ServiceInformation.t()} | {:error, Req.Response.t()}

Retrieves the available REST API versions.
Retrieves the available REST API versions. Docusign Production system: https://www.docusign.net/restapi/service_information Docusign Demo system: https://demo.docusign.net/restapi/service_information You do not need an integration key to view the REST API versions and resources.
Parameters
	connection (DocuSign.Connection): Connection to server
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.ServiceInformation.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.SigningGroupUsers - DocuSign v3.1.0

DocuSign.Api.SigningGroupUsers

API calls for all endpoints tagged SigningGroupUsers.

 Summary

 Functions

 signing_groups_delete_signing_group_users(connection, account_id, signing_group_id, opts \\ [])

 Deletes one or more members from a signing group.
Deletes one or more members from the specified signing group.

 signing_groups_get_signing_group_users(connection, account_id, signing_group_id, opts \\ [])

 Gets a list of members in a Signing Group.
Retrieves the list of members in the specified Signing Group.

 signing_groups_put_signing_group_users(connection, account_id, signing_group_id, opts \\ [])

 Adds members to a signing group.
Adds one or more new members to a signing group. A signing group can have a maximum of 50 members.

 Functions

 signing_groups_delete_signing_group_users(connection, account_id, signing_group_id, opts \\ [])

 @spec signing_groups_delete_signing_group_users(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.SigningGroupUsers.t()} | {:error, Req.Response.t()}

Deletes one or more members from a signing group.
Deletes one or more members from the specified signing group.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	signing_group_id (String.t): The ID of the

 DocuSign.Api.SigningGroups - DocuSign v3.1.0

DocuSign.Api.SigningGroups

API calls for all endpoints tagged SigningGroups.

 Summary

 Functions

 signing_groups_delete_signing_groups(connection, account_id, opts \\ [])

 Deletes one or more signing groups.
Deletes one or more signing groups in the specified account.

 signing_groups_get_signing_group(connection, account_id, signing_group_id, opts \\ [])

 Gets information about a signing group.
Retrieves information, including group member information, for the specified signing group.

 signing_groups_get_signing_groups(connection, account_id, opts \\ [])

 Gets a list of the Signing Groups in an account.
Retrieves a list of all signing groups in the specified account.

 signing_groups_post_signing_groups(connection, account_id, opts \\ [])

 Creates a signing group.
Creates one or more signing groups. Multiple signing groups can be created in one call. Only users with account administrator privileges can create signing groups. An account can have a maximum of 50 signing groups. Each signing group can have a maximum of 50 group members. Signing groups can be used by any account user.

 signing_groups_put_signing_group(connection, account_id, signing_group_id, opts \\ [])

 Updates a signing group.
Updates signing group name and member information. You can also add new members to the signing group. A signing group can have a maximum of 50 members.

 signing_groups_put_signing_groups(connection, account_id, opts \\ [])

 Updates signing group names.
Updates the name of one or more existing signing groups.

 Functions

 signing_groups_delete_signing_groups(connection, account_id, opts \\ [])

 @spec signing_groups_delete_signing_groups(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.SigningGroupInformation.t()} | {:error, Req.Response.t()}

Deletes one or more signing groups.
Deletes one or more signing groups in the specified account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (SigningGroupInformation):

Returns
	{:ok, DocuSign.Model.SigningGroupInformation.t} on success
	{:error, Req.Response.t} on failure

 signing_groups_get_signing_group(connection, account_id, signing_group_id, opts \\ [])

 @spec signing_groups_get_signing_group(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.SigningGroup.t()} | {:error, Req.Response.t()}

Gets information about a signing group.
Retrieves information, including group member information, for the specified signing group.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	signing_group_id (String.t): The ID of the

 DocuSign.Api.TabsBlob - DocuSign v3.1.0

DocuSign.Api.TabsBlob

API calls for all endpoints tagged TabsBlob.

 Summary

 Functions

 tabs_blob_get_tabs_blob(connection, account_id, envelope_id, opts \\ [])

 Reserved for Docusign.
This endpoint has been deprecated.

 tabs_blob_put_tabs_blob(connection, account_id, envelope_id, opts \\ [])

 Reserved for Docusign.
This endpoint has been deprecated.

 Functions

 tabs_blob_get_tabs_blob(connection, account_id, envelope_id, opts \\ [])

 @spec tabs_blob_get_tabs_blob(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Reserved for Docusign.
This endpoint has been deprecated.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 tabs_blob_put_tabs_blob(connection, account_id, envelope_id, opts \\ [])

 @spec tabs_blob_put_tabs_blob(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Reserved for Docusign.
This endpoint has been deprecated.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	envelope_id (String.t): The envelope's GUID. Example: 93be49ab-xxxx-xxxx-xxxx-f752070d71ec
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateCustomFields - DocuSign v3.1.0

DocuSign.Api.TemplateCustomFields

API calls for all endpoints tagged TemplateCustomFields.

 Summary

 Functions

 custom_fields_delete_template_custom_fields(connection, account_id, template_id, opts \\ [])

 Deletes envelope custom fields in a template.
Deletes envelope custom fields in a template.

 custom_fields_get_template_custom_fields(connection, account_id, template_id, opts \\ [])

 Gets the custom document fields from a template.
Retrieves the custom document field information from an existing template.

 custom_fields_post_template_custom_fields(connection, account_id, template_id, opts \\ [])

 Creates custom document fields in an existing template document.
Creates custom document fields in an existing template document.

 custom_fields_put_template_custom_fields(connection, account_id, template_id, opts \\ [])

 Updates envelope custom fields in a template.
Updates the custom fields in a template. Each custom field used in a template must have a unique name.

 Functions

 custom_fields_delete_template_custom_fields(connection, account_id, template_id, opts \\ [])

 @spec custom_fields_delete_template_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.CustomFields.t()} | {:error, Req.Response.t()}

Deletes envelope custom fields in a template.
Deletes envelope custom fields in a template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateCustomFields):

Returns
	{:ok, DocuSign.Model.CustomFields.t} on success
	{:error, Req.Response.t} on failure

 custom_fields_get_template_custom_fields(connection, account_id, template_id, opts \\ [])

 @spec custom_fields_get_template_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.CustomFields.t()} | {:error, Req.Response.t()}

Gets the custom document fields from a template.
Retrieves the custom document field information from an existing template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.CustomFields.t} on success
	{:error, Req.Response.t} on failure

 custom_fields_post_template_custom_fields(connection, account_id, template_id, opts \\ [])

 @spec custom_fields_post_template_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.CustomFields.t()} | {:error, Req.Response.t()}

Creates custom document fields in an existing template document.
Creates custom document fields in an existing template document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateCustomFields):

Returns
	{:ok, DocuSign.Model.CustomFields.t} on success
	{:error, Req.Response.t} on failure

 custom_fields_put_template_custom_fields(connection, account_id, template_id, opts \\ [])

 @spec custom_fields_put_template_custom_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.CustomFields.t()} | {:error, Req.Response.t()}

Updates envelope custom fields in a template.
Updates the custom fields in a template. Each custom field used in a template must have a unique name.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateCustomFields):

Returns
	{:ok, DocuSign.Model.CustomFields.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateDocumentFields - DocuSign v3.1.0

DocuSign.Api.TemplateDocumentFields

API calls for all endpoints tagged TemplateDocumentFields.

 Summary

 Functions

 document_fields_delete_template_document_fields(connection, account_id, document_id, template_id, opts \\ [])

 Deletes custom document fields from an existing template document.
Deletes custom document fields from an existing template document.

 document_fields_get_template_document_fields(connection, account_id, document_id, template_id, opts \\ [])

 Gets the custom document fields for a an existing template document.
This method retrieves the custom document fields for an existing template document.

 document_fields_post_template_document_fields(connection, account_id, document_id, template_id, opts \\ [])

 Creates custom document fields in an existing template document.
Creates custom document fields in an existing template document.

 document_fields_put_template_document_fields(connection, account_id, document_id, template_id, opts \\ [])

 Updates existing custom document fields in an existing template document.
Updates existing custom document fields in an existing template document.

 Functions

 document_fields_delete_template_document_fields(connection, account_id, document_id, template_id, opts \\ [])

 @spec document_fields_delete_template_document_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentFieldsInformation.t()}
 | {:error, Req.Response.t()}

Deletes custom document fields from an existing template document.
Deletes custom document fields from an existing template document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (DocumentFieldsInformation):

Returns
	{:ok, DocuSign.Model.DocumentFieldsInformation.t} on success
	{:error, Req.Response.t} on failure

 document_fields_get_template_document_fields(connection, account_id, document_id, template_id, opts \\ [])

 @spec document_fields_get_template_document_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentFieldsInformation.t()}
 | {:error, Req.Response.t()}

Gets the custom document fields for a an existing template document.
This method retrieves the custom document fields for an existing template document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DocumentFieldsInformation.t} on success
	{:error, Req.Response.t} on failure

 document_fields_post_template_document_fields(connection, account_id, document_id, template_id, opts \\ [])

 @spec document_fields_post_template_document_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentFieldsInformation.t()}
 | {:error, Req.Response.t()}

Creates custom document fields in an existing template document.
Creates custom document fields in an existing template document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (DocumentFieldsInformation):

Returns
	{:ok, DocuSign.Model.DocumentFieldsInformation.t} on success
	{:error, Req.Response.t} on failure

 document_fields_put_template_document_fields(connection, account_id, document_id, template_id, opts \\ [])

 @spec document_fields_put_template_document_fields(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentFieldsInformation.t()}
 | {:error, Req.Response.t()}

Updates existing custom document fields in an existing template document.
Updates existing custom document fields in an existing template document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (DocumentFieldsInformation):

Returns
	{:ok, DocuSign.Model.DocumentFieldsInformation.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateDocumentHtmlDefinitions - DocuSign v3.1.0

DocuSign.Api.TemplateDocumentHtmlDefinitions

API calls for all endpoints tagged TemplateDocumentHtmlDefinitions.

 Summary

 Functions

 responsive_html_get_template_document_html_definitions(connection, account_id, document_id, template_id, opts \\ [])

 Gets the Original HTML Definition used to generate the Responsive HTML for a given document in a template.

 Functions

 responsive_html_get_template_document_html_definitions(connection, account_id, document_id, template_id, opts \\ [])

 @spec responsive_html_get_template_document_html_definitions(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentHtmlDefinitionOriginals.t()}
 | {:error, Req.Response.t()}

Gets the Original HTML Definition used to generate the Responsive HTML for a given document in a template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DocumentHtmlDefinitionOriginals.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateDocumentResponsiveHtmlPreview - DocuSign v3.1.0

DocuSign.Api.TemplateDocumentResponsiveHtmlPreview

API calls for all endpoints tagged TemplateDocumentResponsiveHtmlPreview.

 Summary

 Functions

 responsive_html_post_template_document_responsive_html_preview(connection, account_id, document_id, template_id, opts \\ [])

 Creates a preview of the responsive version of a template document.
Creates a preview of the responsive, HTML version of a specific template document. This method enables you to preview a PDF document conversion to responsive HTML across device types prior to sending. The request body is a documentHtmlDefinition object, which holds the responsive signing parameters that define how to generate the HTML version of the signing document.

 Functions

 responsive_html_post_template_document_responsive_html_preview(connection, account_id, document_id, template_id, opts \\ [])

 @spec responsive_html_post_template_document_responsive_html_preview(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentHtmlDefinitions.t()} | {:error, Req.Response.t()}

Creates a preview of the responsive version of a template document.
Creates a preview of the responsive, HTML version of a specific template document. This method enables you to preview a PDF document conversion to responsive HTML across device types prior to sending. The request body is a documentHtmlDefinition object, which holds the responsive signing parameters that define how to generate the HTML version of the signing document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (DocumentHtmlDefinition):

Returns
	{:ok, DocuSign.Model.DocumentHtmlDefinitions.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateDocumentTabs - DocuSign v3.1.0

DocuSign.Api.TemplateDocumentTabs

API calls for all endpoints tagged TemplateDocumentTabs.

 Summary

 Functions

 tabs_delete_template_document_tabs(connection, account_id, document_id, template_id, opts \\ [])

 Deletes tabs from a template.
Deletes tabs from the document specified by documentId in the template specified by templateId.

 tabs_get_template_document_tabs(connection, account_id, document_id, template_id, opts \\ [])

 Returns tabs on a template.
Returns the tabs on the document specified by documentId in the template specified by templateId.

 tabs_get_template_page_tabs(connection, account_id, document_id, page_number, template_id, opts \\ [])

 Returns tabs on the specified page.
Returns the tabs from the page specified by pageNumber of the document specified by documentId in the template specified by templateId.

 tabs_post_template_document_tabs(connection, account_id, document_id, template_id, opts \\ [])

 Adds tabs to a document in a template.
Adds tabs to the document specified by documentId in the template specified by templateId. In the request body, you only need to specify the tabs that your are adding. For example, to add a text prefill tab, your request body might look like this: { "prefillTabs": { "textTabs": [{ "value": "a prefill text tab", "pageNumber": "1", "documentId": "1", "xPosition": 316, "yPosition": 97 }] } }

 tabs_put_template_document_tabs(connection, account_id, document_id, template_id, opts \\ [])

 Updates the tabs for a template.
Updates tabs in the document specified by documentId in the template specified by templateId.

 Functions

 tabs_delete_template_document_tabs(connection, account_id, document_id, template_id, opts \\ [])

 @spec tabs_delete_template_document_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Tabs.t()} | {:error, Req.Response.t()}

Deletes tabs from a template.
Deletes tabs from the document specified by documentId in the template specified by templateId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateTabs):

Returns
	{:ok, DocuSign.Model.Tabs.t} on success
	{:error, Req.Response.t} on failure

 tabs_get_template_document_tabs(connection, account_id, document_id, template_id, opts \\ [])

 @spec tabs_get_template_document_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.TemplateDocumentTabs.t()} | {:error, Req.Response.t()}

Returns tabs on a template.
Returns the tabs on the document specified by documentId in the template specified by templateId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:page_numbers (String.t): Filters for tabs that occur on the pages that you specify. Enter as a comma-separated list of page Guids. Example: page_numbers=2,6

Returns
	{:ok, DocuSign.Model.TemplateDocumentTabs.t} on success
	{:error, Req.Response.t} on failure

 tabs_get_template_page_tabs(connection, account_id, document_id, page_number, template_id, opts \\ [])

 @spec tabs_get_template_page_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.TemplateDocumentTabs.t()} | {:error, Req.Response.t()}

Returns tabs on the specified page.
Returns the tabs from the page specified by pageNumber of the document specified by documentId in the template specified by templateId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	page_number (String.t): The page number being accessed.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.TemplateDocumentTabs.t} on success
	{:error, Req.Response.t} on failure

 tabs_post_template_document_tabs(connection, account_id, document_id, template_id, opts \\ [])

 @spec tabs_post_template_document_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Tabs.t()} | {:error, Req.Response.t()}

Adds tabs to a document in a template.
Adds tabs to the document specified by documentId in the template specified by templateId. In the request body, you only need to specify the tabs that your are adding. For example, to add a text prefill tab, your request body might look like this: { "prefillTabs": { "textTabs": [{ "value": "a prefill text tab", "pageNumber": "1", "documentId": "1", "xPosition": 316, "yPosition": 97 }] } }
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateTabs):

Returns
	{:ok, DocuSign.Model.Tabs.t} on success
	{:error, Req.Response.t} on failure

 tabs_put_template_document_tabs(connection, account_id, document_id, template_id, opts \\ [])

 @spec tabs_put_template_document_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Tabs.t()} | {:error, Req.Response.t()}

Updates the tabs for a template.
Updates tabs in the document specified by documentId in the template specified by templateId.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateTabs):

Returns
	{:ok, DocuSign.Model.Tabs.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateDocumentVisibility - DocuSign v3.1.0

DocuSign.Api.TemplateDocumentVisibility

API calls for all endpoints tagged TemplateDocumentVisibility.

 Summary

 Functions

 recipients_get_template_recipient_document_visibility(connection, account_id, recipient_id, template_id, opts \\ [])

 Returns document visibility for a template recipient
This method returns information about document visibility for a template recipient.

 recipients_put_template_recipient_document_visibility(connection, account_id, recipient_id, template_id, opts \\ [])

 Updates document visibility for a template recipient
This method updates the document visibility for a template recipient. Note: A document cannot be hidden from a recipient if the recipient has tabs assigned to them on the document. Carbon Copy, Certified Delivery (Needs to Sign), Editor, and Agent recipients can always see all documents.

 recipients_put_template_recipients_document_visibility(connection, account_id, template_id, opts \\ [])

 Updates document visibility for template recipients
This method updates document visibility for one or more template recipients based on the recipientId and visible values that you include in the request body. Note: A document cannot be hidden from a recipient if the recipient has tabs assigned to them on the document. Carbon Copy, Certified Delivery (Needs to Sign), Editor, and Agent recipients can always see all documents.

 Functions

 recipients_get_template_recipient_document_visibility(connection, account_id, recipient_id, template_id, opts \\ [])

 @spec recipients_get_template_recipient_document_visibility(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentVisibilityList.t()} | {:error, Req.Response.t()}

Returns document visibility for a template recipient
This method returns information about document visibility for a template recipient.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DocumentVisibilityList.t} on success
	{:error, Req.Response.t} on failure

 recipients_put_template_recipient_document_visibility(connection, account_id, recipient_id, template_id, opts \\ [])

 @spec recipients_put_template_recipient_document_visibility(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.TemplateDocumentVisibilityList.t()}
 | {:error, Req.Response.t()}

Updates document visibility for a template recipient
This method updates the document visibility for a template recipient. Note: A document cannot be hidden from a recipient if the recipient has tabs assigned to them on the document. Carbon Copy, Certified Delivery (Needs to Sign), Editor, and Agent recipients can always see all documents.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateDocumentVisibilityList):

Returns
	{:ok, DocuSign.Model.TemplateDocumentVisibilityList.t} on success
	{:error, Req.Response.t} on failure

 recipients_put_template_recipients_document_visibility(connection, account_id, template_id, opts \\ [])

 @spec recipients_put_template_recipients_document_visibility(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.TemplateDocumentVisibilityList.t()}
 | {:error, Req.Response.t()}

Updates document visibility for template recipients
This method updates document visibility for one or more template recipients based on the recipientId and visible values that you include in the request body. Note: A document cannot be hidden from a recipient if the recipient has tabs assigned to them on the document. Carbon Copy, Certified Delivery (Needs to Sign), Editor, and Agent recipients can always see all documents.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateDocumentVisibilityList):

Returns
	{:ok, DocuSign.Model.TemplateDocumentVisibilityList.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateDocuments - DocuSign v3.1.0

DocuSign.Api.TemplateDocuments

API calls for all endpoints tagged TemplateDocuments.

 Summary

 Functions

 documents_delete_template_documents(connection, account_id, template_id, opts \\ [])

 Deletes documents from a template.
This method deletes one or more documents from an existing template. To delete a document, use only the relevant parts of the envelopeDefinition. For example, this request body specifies that you want to delete the document whose documentId is "1". text { "documents": [{ "documentId": "1" }] }

 documents_get_template_document(connection, account_id, document_id, template_id, opts \\ [])

 Gets PDF documents from a template.
This method retrieves one or more PDF documents from the template that you specify. You can specify the ID of the document to retrieve, or pass in the value combined to retrieve all documents in the template as a single PDF file.

 documents_get_template_documents(connection, account_id, template_id, opts \\ [])

 Gets a list of documents associated with a template.
Retrieves a list of documents associated with the specified template.

 documents_put_template_document(connection, account_id, document_id, template_id, opts \\ [])

 Updates a template document.
This methods updates an existing template document.

 documents_put_template_documents(connection, account_id, template_id, opts \\ [])

 Adds documents to a template document.
Adds one or more documents to an existing template document.

 Functions

 documents_delete_template_documents(connection, account_id, template_id, opts \\ [])

 @spec documents_delete_template_documents(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.TemplateDocumentsResult.t()} | {:error, Req.Response.t()}

Deletes documents from a template.
This method deletes one or more documents from an existing template. To delete a document, use only the relevant parts of the envelopeDefinition. For example, this request body specifies that you want to delete the document whose documentId is "1". text { "documents": [{ "documentId": "1" }] }
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (EnvelopeDefinition):

Returns
	{:ok, DocuSign.Model.TemplateDocumentsResult.t} on success
	{:error, Req.Response.t} on failure

 documents_get_template_document(connection, account_id, document_id, template_id, opts \\ [])

 @spec documents_get_template_document(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Req.Response.t()}

Gets PDF documents from a template.
This method retrieves one or more PDF documents from the template that you specify. You can specify the ID of the document to retrieve, or pass in the value combined to retrieve all documents in the template as a single PDF file.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:encrypt (String.t): When true, the PDF bytes returned in the response are encrypted for all the key managers configured on your Docusign account. You can decrypt the documents by using the Key Manager DecryptDocument API method. For more information about Key Manager, see the Docusign Security Appliance Installation Guide that your organization received from Docusign.
	:file_type (String.t):
	:show_changes (String.t): When true, any document fields that a recipient changed are highlighted in yellow in the returned PDF document, and optional signatures or initials are outlined in red.

Returns
	{:ok, String.t} on success
	{:error, Req.Response.t} on failure

 documents_get_template_documents(connection, account_id, template_id, opts \\ [])

 @spec documents_get_template_documents(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.TemplateDocumentsResult.t()} | {:error, Req.Response.t()}

Gets a list of documents associated with a template.
Retrieves a list of documents associated with the specified template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:include_agreement_type (String.t):
	:include_tabs (String.t): Reserved for Docusign.

Returns
	{:ok, DocuSign.Model.TemplateDocumentsResult.t} on success
	{:error, Req.Response.t} on failure

 documents_put_template_document(connection, account_id, document_id, template_id, opts \\ [])

 @spec documents_put_template_document(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.EnvelopeDocument.t()} | {:error, Req.Response.t()}

Updates a template document.
This methods updates an existing template document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:is_envelope_definition (String.t):
	:body (EnvelopeDefinition):

Returns
	{:ok, DocuSign.Model.EnvelopeDocument.t} on success
	{:error, Req.Response.t} on failure

 documents_put_template_documents(connection, account_id, template_id, opts \\ [])

 @spec documents_put_template_documents(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.TemplateDocumentsResult.t()} | {:error, Req.Response.t()}

Adds documents to a template document.
Adds one or more documents to an existing template document.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (EnvelopeDefinition):

Returns
	{:ok, DocuSign.Model.TemplateDocumentsResult.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateHtmlDefinitions - DocuSign v3.1.0

DocuSign.Api.TemplateHtmlDefinitions

API calls for all endpoints tagged TemplateHtmlDefinitions.

 Summary

 Functions

 responsive_html_get_template_html_definitions(connection, account_id, template_id, opts \\ [])

 Gets the Original HTML Definition used to generate the Responsive HTML for the template.

 Functions

 responsive_html_get_template_html_definitions(connection, account_id, template_id, opts \\ [])

 @spec responsive_html_get_template_html_definitions(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentHtmlDefinitionOriginals.t()}
 | {:error, Req.Response.t()}

Gets the Original HTML Definition used to generate the Responsive HTML for the template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.DocumentHtmlDefinitionOriginals.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateLocks - DocuSign v3.1.0

DocuSign.Api.TemplateLocks

API calls for all endpoints tagged TemplateLocks.

 Summary

 Functions

 lock_delete_template_lock(connection, account_id, template_id, opts \\ [])

 Deletes a template lock.
Deletes the lock from the specified template. The user deleting the lock must be the same user who locked the template. You must include the X-DocuSign-Edit header as described in TemplateLocks: create. This method takes an optional query parameter that lets you specify whether changes made while the template was locked are kept or discarded. | Query Parameter | Description | | :-------------- | :-- | | save_changes | When true (the default), any changes made while the lock was active are saved. When false, any changes made while the template was locked are discarded. | ### Related topics - Common API Tasks: Locking and unlocking envelopes

 lock_get_template_lock(connection, account_id, template_id, opts \\ [])

 Gets template lock information.
Retrieves general information about a template lock. The user requesting the information must be the same user who locked the template. You can use this method to recover the lock information, including the lockToken, for a locked template. The X-DocuSign-Edit header is included in the response. See TemplateLocks: create for a description of the X-DocuSign-Edit header. ### Related topics - Common API Tasks: Locking and unlocking envelopes

 lock_post_template_lock(connection, account_id, template_id, opts \\ [])

 Locks a template.
This method locks the specified template and sets the time until the lock expires to prevent other users or recipients from changing the template. The response to this request includes a lockToken parameter that you must use in the X-DocuSign-Edit header for every PUT method (typically a method that updates a template) while the template is locked. If you do not provide the lockToken when accessing a locked template, you will get the following error: { "errorCode": "EDIT_LOCK_NOT_LOCK_OWNER", "message": "The user is not the owner of the lock. The template is locked by another user or in another application" } ### The X-DocuSign-Edit header The X-DocuSign-Edit header looks like this and can be specified in either JSON or XML. JSON { "LockToken": "token-from-response", "LockDurationInSeconds": "600" } XML <DocuSignEdit> <LockToken>token-from-response</LockToken> <LockDurationInSeconds>600</LockDurationInSeconds> </DocuSignEdit> In the actual HTTP header, you would remove the linebreaks: X-DocuSign-Edit: {"LockToken": "token-from-response", "LockDurationInSeconds": "600" } or X-DocuSign-Edit:<DocuSignEdit><LockToken>token-from-response</LockToken><LockDurationInSeconds>600</LockDurationInSeconds></DocuSignEdit> ### Related topics - Common API Tasks: Locking and unlocking envelopes

 lock_put_template_lock(connection, account_id, template_id, opts \\ [])

 Updates a template lock.
Updates the lock information for a locked template. You must include the X-DocuSign-Edit header as described in TemplateLocks: create. Use this method to change the duration of the lock (lockDurationInSeconds) or the lockedByApp string. The request body is a full lockRequest object, but you only need to specify the properties that you are updating. For example: { "lockDurationInSeconds": "3600", "lockedByApp": "My Application" }

 Functions

 lock_delete_template_lock(connection, account_id, template_id, opts \\ [])

 @spec lock_delete_template_lock(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.LockInformation.t()} | {:error, Req.Response.t()}

Deletes a template lock.
Deletes the lock from the specified template. The user deleting the lock must be the same user who locked the template. You must include the X-DocuSign-Edit header as described in TemplateLocks: create. This method takes an optional query parameter that lets you specify whether changes made while the template was locked are kept or discarded. | Query Parameter | Description | | :-------------- | :-- | | save_changes | When true (the default), any changes made while the lock was active are saved. When false, any changes made while the template was locked are discarded. | ### Related topics - Common API Tasks: Locking and unlocking envelopes
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (LockRequest):

Returns
	{:ok, DocuSign.Model.LockInformation.t} on success
	{:error, Req.Response.t} on failure

 lock_get_template_lock(connection, account_id, template_id, opts \\ [])

 @spec lock_get_template_lock(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.LockInformation.t()} | {:error, Req.Response.t()}

Gets template lock information.
Retrieves general information about a template lock. The user requesting the information must be the same user who locked the template. You can use this method to recover the lock information, including the lockToken, for a locked template. The X-DocuSign-Edit header is included in the response. See TemplateLocks: create for a description of the X-DocuSign-Edit header. ### Related topics - Common API Tasks: Locking and unlocking envelopes
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.LockInformation.t} on success
	{:error, Req.Response.t} on failure

 lock_post_template_lock(connection, account_id, template_id, opts \\ [])

 @spec lock_post_template_lock(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.LockInformation.t()} | {:error, Req.Response.t()}

Locks a template.
This method locks the specified template and sets the time until the lock expires to prevent other users or recipients from changing the template. The response to this request includes a lockToken parameter that you must use in the X-DocuSign-Edit header for every PUT method (typically a method that updates a template) while the template is locked. If you do not provide the lockToken when accessing a locked template, you will get the following error: { "errorCode": "EDIT_LOCK_NOT_LOCK_OWNER", "message": "The user is not the owner of the lock. The template is locked by another user or in another application" } ### The X-DocuSign-Edit header The X-DocuSign-Edit header looks like this and can be specified in either JSON or XML. JSON { "LockToken": "token-from-response", "LockDurationInSeconds": "600" } XML <DocuSignEdit> <LockToken>token-from-response</LockToken> <LockDurationInSeconds>600</LockDurationInSeconds> </DocuSignEdit> In the actual HTTP header, you would remove the linebreaks: X-DocuSign-Edit: {"LockToken": "token-from-response", "LockDurationInSeconds": "600" } or X-DocuSign-Edit:<DocuSignEdit><LockToken>token-from-response</LockToken><LockDurationInSeconds>600</LockDurationInSeconds></DocuSignEdit> ### Related topics - Common API Tasks: Locking and unlocking envelopes
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (LockRequest):

Returns
	{:ok, DocuSign.Model.LockInformation.t} on success
	{:error, Req.Response.t} on failure

 lock_put_template_lock(connection, account_id, template_id, opts \\ [])

 @spec lock_put_template_lock(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.LockInformation.t()} | {:error, Req.Response.t()}

Updates a template lock.
Updates the lock information for a locked template. You must include the X-DocuSign-Edit header as described in TemplateLocks: create. Use this method to change the duration of the lock (lockDurationInSeconds) or the lockedByApp string. The request body is a full lockRequest object, but you only need to specify the properties that you are updating. For example: { "lockDurationInSeconds": "3600", "lockedByApp": "My Application" }
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (LockRequest):

Returns
	{:ok, DocuSign.Model.LockInformation.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateRecipientTabs - DocuSign v3.1.0

DocuSign.Api.TemplateRecipientTabs

API calls for all endpoints tagged TemplateRecipientTabs.

 Summary

 Functions

 recipients_delete_template_recipient_tabs(connection, account_id, recipient_id, template_id, opts \\ [])

 Deletes the tabs associated with a recipient in a template.
Deletes one or more tabs associated with a recipient in a template.

 recipients_get_template_recipient_tabs(connection, account_id, recipient_id, template_id, opts \\ [])

 Gets the tabs information for a signer or sign-in-person recipient in a template.
Gets the tabs information for a signer or sign-in-person recipient in a template.

 recipients_post_template_recipient_tabs(connection, account_id, recipient_id, template_id, opts \\ [])

 Adds tabs for a recipient.
Adds one or more tabs for a recipient.

 recipients_put_template_recipient_tabs(connection, account_id, recipient_id, template_id, opts \\ [])

 Updates the tabs for a recipient.
Updates one or more tabs for a recipient in a template.

 Functions

 recipients_delete_template_recipient_tabs(connection, account_id, recipient_id, template_id, opts \\ [])

 @spec recipients_delete_template_recipient_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Tabs.t()} | {:error, Req.Response.t()}

Deletes the tabs associated with a recipient in a template.
Deletes one or more tabs associated with a recipient in a template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateTabs):

Returns
	{:ok, DocuSign.Model.Tabs.t} on success
	{:error, Req.Response.t} on failure

 recipients_get_template_recipient_tabs(connection, account_id, recipient_id, template_id, opts \\ [])

 @spec recipients_get_template_recipient_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Tabs.t()} | {:error, Req.Response.t()}

Gets the tabs information for a signer or sign-in-person recipient in a template.
Gets the tabs information for a signer or sign-in-person recipient in a template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:include_anchor_tab_locations (String.t): When true, all tabs with anchor tab properties are included in the response. The default value is false.
	:include_metadata (String.t): When true, the response includes metadata indicating which properties are editable.

Returns
	{:ok, DocuSign.Model.Tabs.t} on success
	{:error, Req.Response.t} on failure

 recipients_post_template_recipient_tabs(connection, account_id, recipient_id, template_id, opts \\ [])

 @spec recipients_post_template_recipient_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Tabs.t()} | {:error, Req.Response.t()}

Adds tabs for a recipient.
Adds one or more tabs for a recipient.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateTabs):

Returns
	{:ok, DocuSign.Model.Tabs.t} on success
	{:error, Req.Response.t} on failure

 recipients_put_template_recipient_tabs(connection, account_id, recipient_id, template_id, opts \\ [])

 @spec recipients_put_template_recipient_tabs(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Tabs.t()} | {:error, Req.Response.t()}

Updates the tabs for a recipient.
Updates one or more tabs for a recipient in a template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateTabs):

Returns
	{:ok, DocuSign.Model.Tabs.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateRecipients - DocuSign v3.1.0

DocuSign.Api.TemplateRecipients

API calls for all endpoints tagged TemplateRecipients.

 Summary

 Functions

 recipients_delete_template_recipient(connection, account_id, recipient_id, template_id, opts \\ [])

 Deletes the specified recipient file from a template.
Deletes the specified recipient file from the specified template.

 recipients_delete_template_recipients(connection, account_id, template_id, opts \\ [])

 Deletes recipients from a template.
Deletes one or more recipients from a template. Recipients to be deleted are listed in the request, with the recipientId being used as the key for deleting recipients.

 recipients_get_template_recipients(connection, account_id, template_id, opts \\ [])

 Gets recipient information from a template.
Retrieves the information for all recipients in the specified template.

 recipients_post_template_recipients(connection, account_id, template_id, opts \\ [])

 Adds tabs for a recipient.
Adds one or more recipients to a template.

 recipients_put_template_recipients(connection, account_id, template_id, opts \\ [])

 Updates recipients in a template.
Updates recipients in a template. You can edit the following properties: email, userName, routingOrder, faxNumber, deliveryMethod, accessCode, and requireIdLookup.

 views_post_template_recipient_preview(connection, account_id, template_id, opts \\ [])

 Creates a template recipient preview.
This method returns a URL for a template recipient preview in the Docusign UI that you can embed in your application. You use this method to enable the sender to preview the recipients' experience. For more information, see Preview and Send.

 Functions

 recipients_delete_template_recipient(connection, account_id, recipient_id, template_id, opts \\ [])

 @spec recipients_delete_template_recipient(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Recipients.t()} | {:error, Req.Response.t()}

Deletes the specified recipient file from a template.
Deletes the specified recipient file from the specified template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	recipient_id (String.t): A local reference used to map recipients to other objects, such as specific document tabs. A recipientId must be either an integer or a GUID, and the recipientId must be unique within an envelope. For example, many envelopes assign the first recipient a recipientId of 1.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateRecipients):

Returns
	{:ok, DocuSign.Model.Recipients.t} on success
	{:error, Req.Response.t} on failure

 recipients_delete_template_recipients(connection, account_id, template_id, opts \\ [])

 @spec recipients_delete_template_recipients(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.Recipients.t()} | {:error, Req.Response.t()}

Deletes recipients from a template.
Deletes one or more recipients from a template. Recipients to be deleted are listed in the request, with the recipientId being used as the key for deleting recipients.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateRecipients):

Returns
	{:ok, DocuSign.Model.Recipients.t} on success
	{:error, Req.Response.t} on failure

 recipients_get_template_recipients(connection, account_id, template_id, opts \\ [])

 @spec recipients_get_template_recipients(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.Recipients.t()} | {:error, Req.Response.t()}

Gets recipient information from a template.
Retrieves the information for all recipients in the specified template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:include_anchor_tab_locations (String.t): When true and include_tabs is set to true, all tabs with anchor tab properties are included in the response.
	:include_extended (String.t): When true, the extended properties are included in the response.
	:include_tabs (String.t): When true, the tab information associated with the recipient is included in the response.

Returns
	{:ok, DocuSign.Model.Recipients.t} on success
	{:error, Req.Response.t} on failure

 recipients_post_template_recipients(connection, account_id, template_id, opts \\ [])

 @spec recipients_post_template_recipients(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.Recipients.t()} | {:error, Req.Response.t()}

Adds tabs for a recipient.
Adds one or more recipients to a template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:resend_envelope (String.t): When true, resends the envelope to the recipients that you specify in the request body. Use this parameter to resend the envelope to a recipient who deleted the original email notification. Note: Correcting an envelope is a different process. Docusign always resends an envelope when you correct it, regardless of the value that you enter here.
	:body (TemplateRecipients):

Returns
	{:ok, DocuSign.Model.Recipients.t} on success
	{:error, Req.Response.t} on failure

 recipients_put_template_recipients(connection, account_id, template_id, opts \\ [])

 @spec recipients_put_template_recipients(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.RecipientsUpdateSummary.t()} | {:error, Req.Response.t()}

Updates recipients in a template.
Updates recipients in a template. You can edit the following properties: email, userName, routingOrder, faxNumber, deliveryMethod, accessCode, and requireIdLookup.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:resend_envelope (String.t): When true, resends the envelope to the recipients that you specify in the request body. Use this parameter to resend the envelope to a recipient who deleted the original email notification. Note: Correcting an envelope is a different process. Docusign always resends an envelope when you correct it, regardless of the value that you enter here.
	:body (TemplateRecipients):

Returns
	{:ok, DocuSign.Model.RecipientsUpdateSummary.t} on success
	{:error, Req.Response.t} on failure

 views_post_template_recipient_preview(connection, account_id, template_id, opts \\ [])

 @spec views_post_template_recipient_preview(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ViewUrl.t()} | {:error, Req.Response.t()}

Creates a template recipient preview.
This method returns a URL for a template recipient preview in the Docusign UI that you can embed in your application. You use this method to enable the sender to preview the recipients' experience. For more information, see

 DocuSign.Api.TemplateResponsiveHtmlPreview - DocuSign v3.1.0

DocuSign.Api.TemplateResponsiveHtmlPreview

API calls for all endpoints tagged TemplateResponsiveHtmlPreview.

 Summary

 Functions

 responsive_html_post_template_responsive_html_preview(connection, account_id, template_id, opts \\ [])

 Creates a preview of the responsive versions of all of the documents associated with a template.
Creates a preview of the responsive, HTML versions of all of the documents associated with a template. This method enables you to preview the PDF document conversions to responsive HTML across device types prior to sending. The request body is a documentHtmlDefinition object, which holds the responsive signing parameters that define how to generate the HTML version of the documents.

 Functions

 responsive_html_post_template_responsive_html_preview(connection, account_id, template_id, opts \\ [])

 @spec responsive_html_post_template_responsive_html_preview(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.DocumentHtmlDefinitions.t()} | {:error, Req.Response.t()}

Creates a preview of the responsive versions of all of the documents associated with a template.
Creates a preview of the responsive, HTML versions of all of the documents associated with a template. This method enables you to preview the PDF document conversions to responsive HTML across device types prior to sending. The request body is a documentHtmlDefinition object, which holds the responsive signing parameters that define how to generate the HTML version of the documents.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (DocumentHtmlDefinition):

Returns
	{:ok, DocuSign.Model.DocumentHtmlDefinitions.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.TemplateViews - DocuSign v3.1.0

DocuSign.Api.TemplateViews

API calls for all endpoints tagged TemplateViews.

 Summary

 Functions

 views_post_template_edit_view(connection, account_id, template_id, opts \\ [])

 Gets a URL for a template edit view.
Returns a URL that enables you to embed the Template Edit view of Docusign eSignature. You can embed the view in an iframe. API request update The API request object for this API method was updated in June 2024. The new API request format is described below. Existing applications must update to the new version: it solves a security issue with the old version. The deprecation schedule was announced in the Docusign Core Release Notes. While backwards compatibility will be provided for a while for existing applications, all applications must be updated to be secure. See below for migration information. Best practices The returned URL expires after 10 minutes. Therefore, request the URL immediately before you redirect your user to it. Due to screen space issues, do not use an iframe for embedded operations on mobile devices. For mobile applications, use a WebView (Android) or WKWebView (iOS). ### Closing the view's iframe If you choose to embed the view in your application via an iframe, Docusign recommends this software pattern to close the iframe after the view has completed: (One time) create a standalone “return” web page that you will use as the returnUrl target for the view. The view will redirect the iframe to this URL when it has completed. Here's an example return page. In this page, use JavaScript and the postMessage method to send a message to your application with the results of the view. In your application, use window.addEventListener("message", function_name) to register a listener for incoming messages. To show the view, use this API method, then set the iframe to load the URL from the API response. In your application, receive the completion message, validate it, and then close the iframe. ### Information security This view only has write access to the specific template referenced in the API call. The edit access corresponds to the access rights of the user associated with the access token used for the API call. Recommendations: Use the access token of a service user who can access the template. Do not use the access token of a user with administrator privileges. ### Migrating to the current version of the request object This section only applies to existing applications that use the older version of the request object. Migrating from the old API request object to the new version will take under a day of developer time. Step 1. Does your application set the returnUrl attribute? Yes: continue with step 2. No: In this case, your users first edit the template, and then the Docusign eSignature home screen is shown. To accomplish this UI pattern with the new API request format: Set the returnUrl to a new endpoint for your application. You can use query parameters or session data to manage state. Remember to authenticate the incoming requests. When the endpoint is called, use the EnvelopeViews:createConsole API call to obtain and then display the Docusign eSignature home page to your application's user. Step 2. Check that these API attributes are set: "view" = "template" the returnUrl is set. Step 3. All done! Test your application.

 Functions

 views_post_template_edit_view(connection, account_id, template_id, opts \\ [])

 @spec views_post_template_edit_view(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.ViewUrl.t()} | {:error, Req.Response.t()}

Gets a URL for a template edit view.
Returns a URL that enables you to embed the Template Edit view of Docusign eSignature. You can embed the view in an iframe. API request update The API request object for this API method was updated in June 2024. The new API request format is described below. Existing applications must update to the new version: it solves a security issue with the old version. The deprecation schedule was announced in the

 DocuSign.Api.Templates - DocuSign v3.1.0

DocuSign.Api.Templates

API calls for all endpoints tagged Templates.

 Summary

 Functions

 notification_get_templates_template_id_notification(connection, account_id, template_id, opts \\ [])

 Gets template notification information.
Retrieves the envelope notification, reminders and expirations, information for an existing template.

 notification_put_templates_template_id_notification(connection, account_id, template_id, opts \\ [])

 Updates the notification structure for an existing template.
Updates the notification structure for an existing template. Use this endpoint to set reminder and expiration notifications.

 pages_delete_template_page(connection, account_id, document_id, page_number, template_id, opts \\ [])

 Deletes a page from a document in an template.
Deletes a page from a document in a template based on the page number.

 pages_get_template_page_image(connection, account_id, document_id, page_number, template_id, opts \\ [])

 Gets a page image from a template for display.
Retrieves a page image for display from the specified template.

 pages_get_template_page_images(connection, account_id, document_id, template_id, opts \\ [])

 Returns document page images based on input.
Returns images of the pages in a template document for display based on the parameters that you specify.

 pages_put_template_page_image(connection, account_id, document_id, page_number, template_id, opts \\ [])

 Rotates page image from a template for display.
Rotates page image from a template for display. The page image can be rotated to the left or right.

 templates_auto_match_put_templates(connection, account_id, opts \\ [])

 templates_delete_template_part(connection, account_id, template_id, template_part, opts \\ [])

 Removes a member group's sharing permissions for a template.
Removes a member group's sharing permissions for a specified template.

 templates_get_template(connection, account_id, template_id, opts \\ [])

 Gets a specific template associated with a specified account.
Retrieves the definition of the specified template.

 templates_get_templates(connection, account_id, opts \\ [])

 Gets the list of templates.
Retrieves the list of templates for the specified account. The request can be limited to a specific folder. ### Related topics - How to create a template

 templates_post_templates(connection, account_id, opts \\ [])

 Creates one or more templates.
Creates one or more template definitions, using a multipart request for each template. Templates help streamline the sending process when you frequently send the same or similar documents, or send different documents to the same group of people. When you create a template, you define placeholder roles. Rather than specifying a person, you specify a role that regularly participates in a transaction that uses the template. Then, when you create or send an envelope based on the template, you assign actual recipients to the template roles. The recipients automatically inherit all of the workflow that is defined for that role in the template, such as the tabs and routing information. ## Template Email Subject Merge Fields Placeholder roles have associated merge fields that personalize the email notification that Docusign sends. For example, the template automatically personalizes the email message by adding placeholders for the recipient's name and email address within the email subject line, based on the recipient's role. When the sender adds the name and email information for the recipient and sends the envelope, the recipient information is automatically merged into the appropriate fields in the email subject line. Both the sender and the recipients will see the information in the email subject line for any emails associated with the template. This provides an easy way for senders to organize their envelope emails without having to open an envelope to find out who the recipient is. Use the following placeholders to insert a recipient's name or email address in the subject line To insert a recipient's name into the subject line, use the [[<roleName>_UserName]] placeholder in the emailSubject property when you create the template: To include a recipient's name or email address in the subject line, use the following placeholders in the emailSubject property: - [[<roleName>_UserName]] - [[<roleName>_Email]] For example, if the role name is Signer 1, you might set emailSubject to one of these strings: - "[[Signer 1_UserName]], Please sign this NDA" - "[[Signer 1_Email]], Please sign this NDA" Note: The maximum length of the subject line is 100 characters, including any merged text. ## Creating multiple templates To create multiple templates, you provide a zip file of JSON files. You can also use the Templates::ListTemplates method with the is_download query parameter to download a zip file containing your existing templates and use that as a guide. The API supports both .zip and .gzip file formats as input. You also need to set the Content-Length, Content-Type, and Content-Disposition headers: Content-Length: 71068 Content-Type: application/zip Content-Disposition: file; filename="DocuSignTemplates_Nov_25_2019_20_40_21.zip"; fileExtension=.zip ### Related topics - How to create a template

 templates_put_template(connection, account_id, template_id, opts \\ [])

 Updates an existing template.
Updates an existing template.

 templates_put_template_part(connection, account_id, template_id, template_part, opts \\ [])

 Shares a template with a group.
Shares a template with the specified members group. Note: For a newer version of this functionality, see Accounts: Update Shared Access.

 templates_put_templates(connection, account_id, opts \\ [])

 Functions

 notification_get_templates_template_id_notification(connection, account_id, template_id, opts \\ [])

 @spec notification_get_templates_template_id_notification(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Notification.t()} | {:error, Req.Response.t()}

Gets template notification information.
Retrieves the envelope notification, reminders and expirations, information for an existing template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.Notification.t} on success
	{:error, Req.Response.t} on failure

 notification_put_templates_template_id_notification(connection, account_id, template_id, opts \\ [])

 @spec notification_put_templates_template_id_notification(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.Notification.t()} | {:error, Req.Response.t()}

Updates the notification structure for an existing template.
Updates the notification structure for an existing template. Use this endpoint to set reminder and expiration notifications.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (TemplateNotificationRequest):

Returns
	{:ok, DocuSign.Model.Notification.t} on success
	{:error, Req.Response.t} on failure

 pages_delete_template_page(connection, account_id, document_id, page_number, template_id, opts \\ [])

 @spec pages_delete_template_page(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes a page from a document in an template.
Deletes a page from a document in a template based on the page number.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	page_number (String.t): The page number being accessed.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (PageRequest):

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 pages_get_template_page_image(connection, account_id, document_id, page_number, template_id, opts \\ [])

 @spec pages_get_template_page_image(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Req.Response.t()}

Gets a page image from a template for display.
Retrieves a page image for display from the specified template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	page_number (String.t): The page number being accessed.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:dpi (String.t): The number of dots per inch (DPI) for the resulting images. Valid values are 1-310 DPI. The default value is 94.
	:max_height (String.t): Sets the maximum height of the returned images in pixels.
	:max_width (String.t): Sets the maximum width of the returned images in pixels.
	:show_changes (String.t):

Returns
	{:ok, String.t} on success
	{:error, Req.Response.t} on failure

 pages_get_template_page_images(connection, account_id, document_id, template_id, opts \\ [])

 @spec pages_get_template_page_images(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.PageImages.t()} | {:error, Req.Response.t()}

Returns document page images based on input.
Returns images of the pages in a template document for display based on the parameters that you specify.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): (Required) The external account number (int) or account ID GUID.
	document_id (String.t): (Required) The ID of the document.
	template_id (String.t): (Required) The ID of the template.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return.
	:dpi (String.t): The number of dots per inch (DPI) for the resulting images. Valid values are 1-310 DPI. The default value is 94.
	:max_height (String.t): Sets the maximum height of the returned images in pixels.
	:max_width (String.t): Sets the maximum width of the returned images in pixels.
	:nocache (String.t): When true, using cache is disabled and image information is retrieved from a database. True is the default value.
	:show_changes (String.t): When true, changes display in the user interface.
	:start_position (String.t): The position within the total result set from which to start returning values. The value thumbnail may be used to return the page image.

Returns
	{:ok, DocuSign.Model.PageImages.t} on success
	{:error, Req.Response.t} on failure

 pages_put_template_page_image(connection, account_id, document_id, page_number, template_id, opts \\ [])

 @spec pages_put_template_page_image(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Rotates page image from a template for display.
Rotates page image from a template for display. The page image can be rotated to the left or right.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	document_id (String.t): The unique ID of the document within the envelope. Unlike other IDs in the eSignature API, you specify the documentId yourself. Typically the first document has the ID 1, the second document 2, and so on, but you can use any numbering scheme that fits within a 32-bit signed integer (1 through 2147483647). Tab objects have a documentId property that specifies the document on which to place the tab.
	page_number (String.t): The page number being accessed.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (PageRequest):

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 templates_auto_match_put_templates(connection, account_id, opts \\ [])

 @spec templates_auto_match_put_templates(
 DocuSign.Connection.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.TemplateAutoMatchList.t()} | {:error, Req.Response.t()}

Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (TemplateAutoMatchList):

Returns
	{:ok, DocuSign.Model.TemplateAutoMatchList.t} on success
	{:error, Req.Response.t} on failure

 templates_delete_template_part(connection, account_id, template_id, template_part, opts \\ [])

 @spec templates_delete_template_part(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.GroupInformation.t()} | {:error, Req.Response.t()}

Removes a member group's sharing permissions for a template.
Removes a member group's sharing permissions for a specified template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	template_part (String.t): Currently, the only defined part is groups.
	opts (keyword): Optional parameters	:body (GroupInformation):

Returns
	{:ok, DocuSign.Model.GroupInformation.t} on success
	{:error, Req.Response.t} on failure

 templates_get_template(connection, account_id, template_id, opts \\ [])

 @spec templates_get_template(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.EnvelopeTemplate.t()} | {:error, Req.Response.t()}

Gets a specific template associated with a specified account.
Retrieves the definition of the specified template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:include (String.t): A comma-separated list of additional template attributes to include in the response. Valid values are: - powerforms: Includes information about PowerForms. - tabs: Includes information about tabs. - documents: Includes information about documents. - favorite_template_status: : Includes the template favoritedByMe property in the response. Note: You can mark a template as a favorite only in eSignature v2.1.

Returns
	{:ok, DocuSign.Model.EnvelopeTemplate.t} on success
	{:error, Req.Response.t} on failure

 templates_get_templates(connection, account_id, opts \\ [])

 @spec templates_get_templates(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.EnvelopeTemplateResults.t()} | {:error, Req.Response.t()}

Gets the list of templates.
Retrieves the list of templates for the specified account. The request can be limited to a specific folder. ### Related topics - How to create a template
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:count (String.t): The maximum number of results to return. Use start_position to specify the number of results to skip. Note: If the count parameter is not used, listTemplates has a default limit of 2,000 templates. If the account has more than 2,000 templates, listTemplates will return the first 2,000 templates. To retrieve more than 2,000 templates, repeat the API call, specifying start_position and count to control the number of templates retrieved.
	:created_from_date (String.t): Lists templates created on or after this date.
	:created_to_date (String.t): Lists templates modified before this date.
	:folder_ids (String.t): A comma-separated list of folder ID GUIDs.
	:folder_types (String.t): The type of folder to return templates for. Possible values are: - templates: Templates in the My Templates folder. Templates in the Shared Templates and All Template folders (if the request ID from and Admin) are excluded. - templates_root: Templates in the root level of the My Templates folder, but not in an actual folder. Note that the My Templates folder is not a real folder. - recylebin: Templates that have been deleted.
	:from_date (String.t): Start of the search date range. Only returns templates created on or after this date/time. If no value is specified, there is no limit on the earliest date created.
	:include (String.t): A comma-separated list of additional template attributes to include in the response. Valid values are: - powerforms: Includes details about the PowerForms associated with the templates. - documents: Includes information about template documents. - folders: Includes information about the folder that holds the template. - favorite_template_status: Includes the template favoritedByMe property. Note: You can mark a template as a favorite only in eSignature v2.1. - advanced_templates: Includes information about advanced templates. - recipients: Includes information about template recipients. - custom_fields: Includes information about template custom fields. - notifications: Includes information about the notification settings for templates.
	:is_deleted_template_only (String.t): When true, retrieves templates that have been permanently deleted. The default is false. Note: After you delete a template, you can see it in the Deleted bin in the UI for 24 hours. After 24 hours, the template is permanently deleted.
	:is_download (String.t): When true, downloads the templates listed in template_ids as a collection of JSON definitions in a single zip file. The Content-Disposition header is set in the response. The value of the header provides the filename of the file. The default is false. Note: This parameter only works when you specify a list of templates in the template_ids parameter.
	:modified_from_date (String.t): Lists templates modified on or after this date.
	:modified_to_date (String.t): Lists templates modified before this date.
	:order (String.t): Specifies the sort order of the search results. Valid values are: - asc: Ascending (A to Z) - desc: Descending (Z to A)
	:order_by (String.t): Specifies how the search results are listed. Valid values are: - name: template name - modified: date/time template was last modified - used: date/time the template was last used.
	:search_fields (String.t): A comma-separated list of additional template properties to search. - sender: Include sender name and email in the search. - recipients: Include recipient names and emails in the search. - envelope: Not used in template searches.
	:search_text (String.t): The text to use to search the names of templates. Limit: 48 characters.
	:shared_by_me (String.t): When true, the response only includes templates shared by the user. When false, the response only returns template not shared by the user. If not specified, templates are returned whether or not they have been shared by the user.
	:start_position (String.t): The zero-based index of the result from which to start returning results. Use with count to limit the number of results. The default value is 0.
	:template_ids (String.t): A comma-separated list of template IDs to download. This value is valid only when is_download is true.
	:to_date (String.t): The end of a search date range in UTC DateTime format. When you use this parameter, only templates created up to this date and time are returned. Note: If this property is null, the value defaults to the current date.
	:used_from_date (String.t): Start of the search date range. Only returns templates used or edited on or after this date/time. If no value is specified, there is no limit on the earliest date used.
	:used_to_date (String.t): End of the search date range. Only returns templates used or edited up to this date/time. If no value is provided, this defaults to the current date.
	:user_filter (String.t): Filters the templates in the response. Valid values are: - owned_by_me: Results include only templates owned by the user. - shared_with_me: Results include only templates shared with the user. - all: Results include all templates owned or shared with the user.
	:user_id (String.t): The ID of the user.

Returns
	{:ok, DocuSign.Model.EnvelopeTemplateResults.t} on success
	{:error, Req.Response.t} on failure

 templates_post_templates(connection, account_id, opts \\ [])

 @spec templates_post_templates(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.TemplateSummary.t()} | {:error, Req.Response.t()}

Creates one or more templates.
Creates one or more template definitions, using a multipart request for each template. Templates help streamline the sending process when you frequently send the same or similar documents, or send different documents to the same group of people. When you create a template, you define placeholder roles. Rather than specifying a person, you specify a role that regularly participates in a transaction that uses the template. Then, when you create or send an envelope based on the template, you assign actual recipients to the template roles. The recipients automatically inherit all of the workflow that is defined for that role in the template, such as the tabs and routing information. ## Template Email Subject Merge Fields Placeholder roles have associated merge fields that personalize the email notification that Docusign sends. For example, the template automatically personalizes the email message by adding placeholders for the recipient's name and email address within the email subject line, based on the recipient's role. When the sender adds the name and email information for the recipient and sends the envelope, the recipient information is automatically merged into the appropriate fields in the email subject line. Both the sender and the recipients will see the information in the email subject line for any emails associated with the template. This provides an easy way for senders to organize their envelope emails without having to open an envelope to find out who the recipient is. Use the following placeholders to insert a recipient's name or email address in the subject line To insert a recipient's name into the subject line, use the [[<roleName>_UserName]] placeholder in the emailSubject property when you create the template: To include a recipient's name or email address in the subject line, use the following placeholders in the emailSubject property: - [[<roleName>_UserName]] - [[<roleName>_Email]] For example, if the role name is Signer 1, you might set emailSubject to one of these strings: - "[[Signer 1_UserName]], Please sign this NDA" - "[[Signer 1_Email]], Please sign this NDA" Note: The maximum length of the subject line is 100 characters, including any merged text. ## Creating multiple templates To create multiple templates, you provide a zip file of JSON files. You can also use the Templates::ListTemplates method with the is_download query parameter to download a zip file containing your existing templates and use that as a guide. The API supports both .zip and .gzip file formats as input. You also need to set the Content-Length, Content-Type, and Content-Disposition headers: Content-Length: 71068 Content-Type: application/zip Content-Disposition: file; filename="DocuSignTemplates_Nov_25_2019_20_40_21.zip"; fileExtension=.zip ### Related topics - How to create a template
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): (Required) The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (EnvelopeTemplate):

Returns
	{:ok, DocuSign.Model.TemplateSummary.t} on success
	{:error, Req.Response.t} on failure

 templates_put_template(connection, account_id, template_id, opts \\ [])

 @spec templates_put_template(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.TemplateUpdateSummary.t()} | {:error, Req.Response.t()}

Updates an existing template.
Updates an existing template.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	opts (keyword): Optional parameters	:body (EnvelopeTemplate):

Returns
	{:ok, DocuSign.Model.TemplateUpdateSummary.t} on success
	{:error, Req.Response.t} on failure

 templates_put_template_part(connection, account_id, template_id, template_part, opts \\ [])

 @spec templates_put_template_part(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.GroupInformation.t()} | {:error, Req.Response.t()}

Shares a template with a group.
Shares a template with the specified members group. Note: For a newer version of this functionality, see Accounts: Update Shared Access.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	template_id (String.t): The ID of the template.
	template_part (String.t): Currently, the only defined part is groups.
	opts (keyword): Optional parameters	:body (GroupInformation):

Returns
	{:ok, DocuSign.Model.GroupInformation.t} on success
	{:error, Req.Response.t} on failure

 templates_put_templates(connection, account_id, opts \\ [])

 @spec templates_put_templates(DocuSign.Connection.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.TemplateAutoMatchList.t()} | {:error, Req.Response.t()}

Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	opts (keyword): Optional parameters	:body (TemplateAutoMatchList):

Returns
	{:ok, DocuSign.Model.TemplateAutoMatchList.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.UserCustomSettings - DocuSign v3.1.0

DocuSign.Api.UserCustomSettings

API calls for all endpoints tagged UserCustomSettings.

 Summary

 Functions

 user_custom_settings_delete_custom_settings(connection, account_id, user_id, opts \\ [])

 Deletes custom user settings for a specified user.
Deletes the specified custom user settings for a single user. If the custom user settings you want to delete are grouped, you must include the X-DocuSign-User-Settings-Key header in the request: X-DocuSign-User-Settings-Key:group_name Where the group_name is your designated name for the group of customer user settings. If the X-DocuSign-User-Settings-Key header is not included, only the custom user settings that were added without a group are deleted.

 user_custom_settings_get_custom_settings(connection, account_id, user_id, opts \\ [])

 Retrieves the custom user settings for a specified user.
Retrieves a list of custom user settings for a single user. Custom settings provide a flexible way to store and retrieve custom user information that can be used in your own system. Note: Custom user settings are not the same as user account settings. If the custom user settings you want to retrieve are grouped, you must include the X-DocuSign-User-Settings-Key header in the request: X-DocuSign-User-Settings-Key:group_name Where the group_name is your designated name for the group of customer user settings. If the X-DocuSign-User-Settings-Key header is not included, only the custom user settings that were added without a group are retrieved.

 user_custom_settings_put_custom_settings(connection, account_id, user_id, opts \\ [])

 Adds or updates custom user settings for the specified user.
Adds or updates custom user settings for the specified user. Note: Custom user settings are not the same as user account settings. Custom settings provide a flexible way to store and retrieve custom user information that you can use in your own system. Important: There is a limit on the size for all the custom user settings for a single user. The limit is 4,000 characters, which includes the XML and JSON structure for the settings. You can group custom user settings when adding them. Grouping allows you to retrieve settings that are in a specific group, instead of retrieving all the user custom settings. To group custom user settings, include the X-DocuSign-User-Settings-Key header in the request: X-DocuSign-User-Settings-Key:group_name Where the group_name is your designated name for the group of customer user settings. When getting or deleting grouped custom user settings, you must include the X-DocuSign-User-Settings-Key header information. Grouping custom user settings is not required and if the X-DocuSign-User-Settings-Key header information is not included, the custom user settings are added normally and can be retrieved or deleted without including the X-DocuSign-User-Settings-Key header.

 Functions

 user_custom_settings_delete_custom_settings(connection, account_id, user_id, opts \\ [])

 @spec user_custom_settings_delete_custom_settings(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.CustomSettingsInformation.t()}
 | {:error, Req.Response.t()}

Deletes custom user settings for a specified user.
Deletes the specified custom user settings for a single user. If the custom user settings you want to delete are grouped, you must include the X-DocuSign-User-Settings-Key header in the request: X-DocuSign-User-Settings-Key:group_name Where the group_name is your designated name for the group of customer user settings. If the X-DocuSign-User-Settings-Key header is not included, only the custom user settings that were added without a group are deleted.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:body (CustomSettingsInformation):

Returns
	{:ok, DocuSign.Model.CustomSettingsInformation.t} on success
	{:error, Req.Response.t} on failure

 user_custom_settings_get_custom_settings(connection, account_id, user_id, opts \\ [])

 @spec user_custom_settings_get_custom_settings(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.CustomSettingsInformation.t()}
 | {:error, Req.Response.t()}

Retrieves the custom user settings for a specified user.
Retrieves a list of custom user settings for a single user. Custom settings provide a flexible way to store and retrieve custom user information that can be used in your own system. Note: Custom user settings are not the same as user account settings. If the custom user settings you want to retrieve are grouped, you must include the X-DocuSign-User-Settings-Key header in the request: X-DocuSign-User-Settings-Key:group_name Where the group_name is your designated name for the group of customer user settings. If the X-DocuSign-User-Settings-Key header is not included, only the custom user settings that were added without a group are retrieved.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.CustomSettingsInformation.t} on success
	{:error, Req.Response.t} on failure

 user_custom_settings_put_custom_settings(connection, account_id, user_id, opts \\ [])

 @spec user_custom_settings_put_custom_settings(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.CustomSettingsInformation.t()}
 | {:error, Req.Response.t()}

Adds or updates custom user settings for the specified user.
Adds or updates custom user settings for the specified user. Note: Custom user settings are not the same as user account settings. Custom settings provide a flexible way to store and retrieve custom user information that you can use in your own system. Important: There is a limit on the size for all the custom user settings for a single user. The limit is 4,000 characters, which includes the XML and JSON structure for the settings. You can group custom user settings when adding them. Grouping allows you to retrieve settings that are in a specific group, instead of retrieving all the user custom settings. To group custom user settings, include the X-DocuSign-User-Settings-Key header in the request: X-DocuSign-User-Settings-Key:group_name Where the group_name is your designated name for the group of customer user settings. When getting or deleting grouped custom user settings, you must include the X-DocuSign-User-Settings-Key header information. Grouping custom user settings is not required and if the X-DocuSign-User-Settings-Key header information is not included, the custom user settings are added normally and can be retrieved or deleted without including the X-DocuSign-User-Settings-Key header.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:body (CustomSettingsInformation):

Returns
	{:ok, DocuSign.Model.CustomSettingsInformation.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.UserProfiles - DocuSign v3.1.0

DocuSign.Api.UserProfiles

API calls for all endpoints tagged UserProfiles.

 Summary

 Functions

 user_profile_get_profile(connection, account_id, user_id, opts \\ [])

 Retrieves the user profile for a specified user.
Retrieves the user profile information, the privacy settings and personal information (address, phone number, etc.) for the specified user. The userId parameter specified in the endpoint must match the authenticated user's user ID and the user must be a member of the specified account.

 user_profile_put_profile(connection, account_id, user_id, opts \\ [])

 Updates the user profile information for the specified user.
Updates the user's detail information, profile information, privacy settings, and personal information in the user ID card. You can also change a user's name by changing the information in the userDetails property. When changing a user's name, you can either change the information in the userName property OR change the information in firstName, middleName, lastName, suffixName, and title properties. Changes to firstName, middleName, lastName, suffixName, and title properties take precedence over changes to the userName property.

 Functions

 user_profile_get_profile(connection, account_id, user_id, opts \\ [])

 @spec user_profile_get_profile(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.UserProfile.t()} | {:error, Req.Response.t()}

Retrieves the user profile for a specified user.
Retrieves the user profile information, the privacy settings and personal information (address, phone number, etc.) for the specified user. The userId parameter specified in the endpoint must match the authenticated user's user ID and the user must be a member of the specified account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.UserProfile.t} on success
	{:error, Req.Response.t} on failure

 user_profile_put_profile(connection, account_id, user_id, opts \\ [])

 @spec user_profile_put_profile(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, nil} | {:error, Req.Response.t()}

Updates the user profile information for the specified user.
Updates the user's detail information, profile information, privacy settings, and personal information in the user ID card. You can also change a user's name by changing the information in the userDetails property. When changing a user's name, you can either change the information in the userName property OR change the information in firstName, middleName, lastName, suffixName, and title properties. Changes to firstName, middleName, lastName, suffixName, and title properties take precedence over changes to the userName property.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:body (UserProfile):

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.UserSignatures - DocuSign v3.1.0

DocuSign.Api.UserSignatures

API calls for all endpoints tagged UserSignatures.

 Summary

 Functions

 user_signatures_delete_user_signature(connection, account_id, signature_id, user_id, opts \\ [])

 Removes removes signature information for the specified user.
Removes the signature information for the user. The userId parameter specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith".

 user_signatures_delete_user_signature_image(connection, account_id, image_type, signature_id, user_id, opts \\ [])

 Deletes the user initials image or the user signature image for the specified user.
Deletes the specified initials image or signature image for the specified user. The function deletes one or the other of the image types, to delete both the initials image and signature image you must call the endpoint twice. The userId parameter specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId parameter accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith".

 user_signatures_get_user_signature(connection, account_id, signature_id, user_id, opts \\ [])

 Gets the user signature information for the specified user.
Retrieves the structure of a single signature with a known signature name. The userId specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId parameter accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith".

 user_signatures_get_user_signature_image(connection, account_id, image_type, signature_id, user_id, opts \\ [])

 Retrieves the user initials image or the user signature image for the specified user.
Retrieves the specified initials image or signature image for the specified user. The image is returned in the same format in which it was uploaded. In the request you can specify if the chrome (the added line and identifier around the initial image) is returned with the image. The userId property specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId parameter accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith". Note: Older envelopes might only have chromed images. If getting the non-chromed image fails, try getting the chromed image.

 user_signatures_get_user_signatures(connection, account_id, user_id, opts \\ [])

 Retrieves a list of signature definitions for a user.
This method retrieves the signature definitions for the user that you specify. The userId parameter specified in the endpoint must match the authenticated user's user ID, and the user must be a member of the account. The signatureId parameter accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example, encode "Bob Smith" as "Bob%20Smith".

 user_signatures_post_user_signatures(connection, account_id, user_id, opts \\ [])

 Adds user Signature and initials images to a Signature.
Adds a user signature image and/or user initials image to the specified user. The userId property specified in the endpoint must match the authenticated user's userId and the user must be a member of the account. The rules and processes associated with this are: If Content-Type is set to application/json, then the default behavior for creating a default signature image, based on the name and a Docusign font, is used. If Content-Type is set to multipart/form-data, then the request must contain a first part with the user signature information, followed by parts that contain the images. For each Image part, the Content-Disposition header has a "filename" value that is used to map to the signatureName and/or signatureInitials properties in the JSON to the image. For example: Content-Disposition: file; filename="Ron Test20121127083900" If no matching image (by filename value) is found, then the image is not set. One, both, or neither of the signature and initials images can be set with this call. The Content-Transfer-Encoding: base64 header, set in the header for the part containing the image, can be set to indicate that the images are formatted as base64 instead of as binary. If successful, 200-OK is returned, and a JSON structure containing the signature information is provided, note that the signatureId can change with each API POST, PUT, or DELETE since the changes to the signature structure cause the current signature to be closed, and a new signature record to be created.

 user_signatures_put_user_signature(connection, account_id, user_id, opts \\ [])

 Adds/updates a user signature.

 user_signatures_put_user_signature_by_id(connection, account_id, signature_id, user_id, opts \\ [])

 Updates the user signature for a specified user.
Creates, or updates, the signature font and initials for the specified user. When creating a signature, you use this resource to create the signature name and then add the signature and initials images into the signature. Note: This will also create a default signature for the user when one does not exist. The userId property specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId parameter accepts a signature ID. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith".

 user_signatures_put_user_signature_image(connection, account_id, image_type, signature_id, user_id, image_bytes, opts \\ [])

 Updates the user signature image or user initials image for the specified user.
Updates the user signature image or user initials image for the specified user. The supported image formats for this file are: gif, png, jpeg, and bmp. The file must be less than 200K. The userId property specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId parameter accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith".

 Functions

 user_signatures_delete_user_signature(connection, account_id, signature_id, user_id, opts \\ [])

 @spec user_signatures_delete_user_signature(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Removes removes signature information for the specified user.
Removes the signature information for the user. The userId parameter specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith".
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	signature_id (String.t): The ID of the account stamp.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 user_signatures_delete_user_signature_image(connection, account_id, image_type, signature_id, user_id, opts \\ [])

 @spec user_signatures_delete_user_signature_image(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.UserSignature.t()} | {:error, Req.Response.t()}

Deletes the user initials image or the user signature image for the specified user.
Deletes the specified initials image or signature image for the specified user. The function deletes one or the other of the image types, to delete both the initials image and signature image you must call the endpoint twice. The userId parameter specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId parameter accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith".
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	image_type (String.t): Specificies the type of image. Valid values: - stamp_image - signature_image - initials_image
	signature_id (String.t): The ID of the account stamp.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.UserSignature.t} on success
	{:error, Req.Response.t} on failure

 user_signatures_get_user_signature(connection, account_id, signature_id, user_id, opts \\ [])

 @spec user_signatures_get_user_signature(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.UserSignature.t()} | {:error, Req.Response.t()}

Gets the user signature information for the specified user.
Retrieves the structure of a single signature with a known signature name. The userId specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId parameter accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith".
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	signature_id (String.t): The ID of the account stamp.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.UserSignature.t} on success
	{:error, Req.Response.t} on failure

 user_signatures_get_user_signature_image(connection, account_id, image_type, signature_id, user_id, opts \\ [])

 @spec user_signatures_get_user_signature_image(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Req.Response.t()}

Retrieves the user initials image or the user signature image for the specified user.
Retrieves the specified initials image or signature image for the specified user. The image is returned in the same format in which it was uploaded. In the request you can specify if the chrome (the added line and identifier around the initial image) is returned with the image. The userId property specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId parameter accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith". Note: Older envelopes might only have chromed images. If getting the non-chromed image fails, try getting the chromed image.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	image_type (String.t): Specificies the type of image. Valid values: - stamp_image - signature_image - initials_image
	signature_id (String.t): The ID of the account stamp.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:include_chrome (String.t): When true, the chrome (or frame containing the added line and identifier) is included with the signature image.

Returns
	{:ok, String.t} on success
	{:error, Req.Response.t} on failure

 user_signatures_get_user_signatures(connection, account_id, user_id, opts \\ [])

 @spec user_signatures_get_user_signatures(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.UserSignaturesInformation.t()}
 | {:error, Req.Response.t()}

Retrieves a list of signature definitions for a user.
This method retrieves the signature definitions for the user that you specify. The userId parameter specified in the endpoint must match the authenticated user's user ID, and the user must be a member of the account. The signatureId parameter accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example, encode "Bob Smith" as "Bob%20Smith".
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:stamp_type (String.t): The type of stamps to return. Valid values are: - signature: Returns information about signature images only. This is the default value. - stamp: Returns information about eHanko and custom stamps only. - null

Returns
	{:ok, DocuSign.Model.UserSignaturesInformation.t} on success
	{:error, Req.Response.t} on failure

 user_signatures_post_user_signatures(connection, account_id, user_id, opts \\ [])

 @spec user_signatures_post_user_signatures(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.UserSignaturesInformation.t()}
 | {:error, Req.Response.t()}

Adds user Signature and initials images to a Signature.
Adds a user signature image and/or user initials image to the specified user. The userId property specified in the endpoint must match the authenticated user's userId and the user must be a member of the account. The rules and processes associated with this are: If Content-Type is set to application/json, then the default behavior for creating a default signature image, based on the name and a Docusign font, is used. If Content-Type is set to multipart/form-data, then the request must contain a first part with the user signature information, followed by parts that contain the images. For each Image part, the Content-Disposition header has a "filename" value that is used to map to the signatureName and/or signatureInitials properties in the JSON to the image. For example: Content-Disposition: file; filename="Ron Test20121127083900" If no matching image (by filename value) is found, then the image is not set. One, both, or neither of the signature and initials images can be set with this call. The Content-Transfer-Encoding: base64 header, set in the header for the part containing the image, can be set to indicate that the images are formatted as base64 instead of as binary. If successful, 200-OK is returned, and a JSON structure containing the signature information is provided, note that the signatureId can change with each API POST, PUT, or DELETE since the changes to the signature structure cause the current signature to be closed, and a new signature record to be created.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:body (UserSignaturesInformation):

Returns
	{:ok, DocuSign.Model.UserSignaturesInformation.t} on success
	{:error, Req.Response.t} on failure

 user_signatures_put_user_signature(connection, account_id, user_id, opts \\ [])

 @spec user_signatures_put_user_signature(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.UserSignaturesInformation.t()}
 | {:error, Req.Response.t()}

Adds/updates a user signature.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:body (UserSignaturesInformation):

Returns
	{:ok, DocuSign.Model.UserSignaturesInformation.t} on success
	{:error, Req.Response.t} on failure

 user_signatures_put_user_signature_by_id(connection, account_id, signature_id, user_id, opts \\ [])

 @spec user_signatures_put_user_signature_by_id(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.UserSignature.t()} | {:error, Req.Response.t()}

Updates the user signature for a specified user.
Creates, or updates, the signature font and initials for the specified user. When creating a signature, you use this resource to create the signature name and then add the signature and initials images into the signature. Note: This will also create a default signature for the user when one does not exist. The userId property specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId parameter accepts a signature ID. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith".
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	signature_id (String.t): The ID of the account stamp.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:close_existing_signature (String.t): When true, closes the current signature.
	:body (UserSignatureDefinition):

Returns
	{:ok, DocuSign.Model.UserSignature.t} on success
	{:error, Req.Response.t} on failure

 user_signatures_put_user_signature_image(connection, account_id, image_type, signature_id, user_id, image_bytes, opts \\ [])

 @spec user_signatures_put_user_signature_image(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, DocuSign.Model.UserSignature.t()} | {:error, Req.Response.t()}

Updates the user signature image or user initials image for the specified user.
Updates the user signature image or user initials image for the specified user. The supported image formats for this file are: gif, png, jpeg, and bmp. The file must be less than 200K. The userId property specified in the endpoint must match the authenticated user's user ID and the user must be a member of the account. The signatureId parameter accepts a signature ID or a signature name. Docusign recommends you use signature ID (signatureId), since some names contain characters that do not properly encode into a URL. If you use the user name, it is likely that the name includes spaces. In that case, URL encode the name before using it in the endpoint. For example encode "Bob Smith" as "Bob%20Smith".
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	image_type (String.t): Specificies the type of image. Valid values: - stamp_image - signature_image - initials_image
	signature_id (String.t): The ID of the account stamp.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	image_bytes (String.t): Updated image content.
	opts (keyword): Optional parameters	:transparent_png (String.t):

Returns
	{:ok, DocuSign.Model.UserSignature.t} on success
	{:error, Req.Response.t} on failure

 DocuSign.Api.Users - DocuSign v3.1.0

DocuSign.Api.Users

API calls for all endpoints tagged Users.

 Summary

 Functions

 user_get_user(connection, account_id, user_id, opts \\ [])

 Gets the user information for a specified user using a userId (GUID). To find a user based on their email address, use the list endpoint.
Retrieves the user information for the specified user. For example: json { "userName": "Tania Morales", "userId": "6b67a1ee-xxxx-xxxx-xxxx-385763624163", "userType": "CompanyUser", "isAdmin": "False", "isNAREnabled": "false", "userStatus": "Active", "uri": "/users/6b67a1ee-xxxx-xxxx-xxxx-385763624163", "email": "examplename42@orobia.net", "createdDateTime": "2019-04-01T22:11:56.4570000Z", "userAddedToAccountDateTime": "0001-01-01T08:00:00.0000000Z", "firstName": "Tania", "lastName": "Morales", "jobTitle": "", "company": "Company", "permissionProfileId": "12345678", "permissionProfileName": "DocuSign Viewer", "userSettings": {. . .}, "sendActivationOnInvalidLogin": "false", "enableConnectForUser": "false", "groupList": [. . .], "workAddress": {. . .}, "homeAddress": {. . .}, "signatureImageUri": "/users/6b67a1ee-xxxx-xxxx-xxxx-385763624163/signatures/0304c47b-xxxx-xxxx-xxxx-c9673963bb50/signature_image", "initialsImageUri": "/users/6b67a1ee-xxxx-xxxx-xxxx-385763624163/signatures/0304c47b-xxxx-xxxx-xxxx-c9673963bb50/initials_image", "defaultAccountId": "f636f297-xxxx-xxxx-xxxx-8e7a14715950" }

 user_profile_image_delete_user_profile_image(connection, account_id, user_id, opts \\ [])

 Deletes the user profile image for the specified user.
Deletes the user profile image from the specified user's profile. The userId parameter specified in the endpoint must match the authenticated user's user ID and the user must be a member of the specified account.

 user_profile_image_get_user_profile_image(connection, account_id, user_id, opts \\ [])

 Retrieves the user profile image for the specified user.
Retrieves the user profile picture for the specified user. The userId path parameter must match the authenticated user's user ID, and the user must be a member of the specified account. | Return value | Meaning | | :---------------- | :--- | | 200 OK | The response contains the profile image in the same format as it was uploaded. | | 404 Not found | The user does not have a profile image. | | 400 Bad request | There was an error in the request. The response has more information. |

 user_profile_image_put_user_profile_image(connection, account_id, user_id, opts \\ [])

 Updates the user profile image for a specified user.
Updates the user profile image by uploading an image to the user profile. The supported image formats are: gif, png, jpeg, and bmp. The file must be less than 200K. For best viewing results, Docusign recommends that the image is no more than 79 pixels wide and high.

 user_put_user(connection, account_id, user_id, opts \\ [])

 Updates user information for the specified user.
To update user information for a specific user, submit a Users object with updated field values in the request body of this operation.

 user_settings_get_user_settings(connection, account_id, user_id, opts \\ [])

 Gets the user account settings for a specified user.
Retrieves a list of the account settings and email notification information for the specified user. The response returns the account setting name/value information and the email notification settings for the specified user. For more information, see Users:create.

 user_settings_put_user_settings(connection, account_id, user_id, opts \\ [])

 Updates the user account settings for a specified user.
Updates the account settings list and email notification types for the specified user.

 users_delete_users(connection, account_id, opts \\ [])

 Closes one or more users in the account.
Closes one or more users in the account, preventing them from accessing account features. Users are not permanently deleted. The request body requires only the IDs of the users to close: json { "users": [{ "userId": "6b67a1ee-xxxx-xxxx-xxxx-385763624163" }, { "userId": "b6c74c52-xxxx-xxxx-xxxx-457a81d88926" }, { "userId": "464f7988-xxxx-xxxx-xxxx-781ee556ab7a" }] } You can use Users:update to re-open a closed user.

 users_get_users(connection, account_id, opts \\ [])

 Retrieves the list of users for the specified account. You can filter the users list to get specific users.
Retrieves the list of users for the specified account. The response returns the list of users for the account, with information about the result set. If the additional_info query is added to the endpoint and set to true, full user information is returned for each user.

 users_post_users(connection, account_id, opts \\ [])

 Adds new users to the specified account.
Adds new users to an account. The body of this request is an array of newUsers objects. For each new user, you must provide at least the userName and email properties. The maximum number of users you can create in one request is 500 users. The userSettings property specifies the actions users can perform. In the example below, Tal Mason will be able to send envelopes, and the activation email will be in French because the locale is set to fr. POST /restapi/v2.1/accounts/{accountId}/users Content-Type: application/json { "newUsers": [{ "userName": "Claire Horace", "email": "claire@example.com" }, { "userName": "Tal Mason", "email": "talmason@example.com", "company": "TeleSel", "userSettings": { "locale": "fr", "canSendEnvelope": true } }] } A successful response is a newUsers array with information about the newly created users. If there was a problem in creating a user, that user entry will contain an errorDetails property that describes what went wrong. json { "newUsers": [{ "userId": "18f3be12-xxxx-xxxx-xxxx-883d8f9b8ade", "uri": "/users/18f3be12-xxxx-xxxx-xxxx-883d8f9b8ade", "email": "claire@example.com", "userName": "Claire Horace", "createdDateTime": "0001-01-01T08:00:00.0000000Z", "errorDetails": { "errorCode": "USER_ALREADY_EXISTS_IN_ACCOUNT", "message": "Username and email combination already exists for this account." } }, { "userId": "be9899a3-xxxx-xxxx-xxxx-2c8dd7156e33", "uri": "/users/be9899a3-xxxx-xxxx-xxxx-2c8dd7156e33", "email": "talmason@example.com", "userName": "Tal Mason", "userStatus": "ActivationSent", "createdDateTime": "2020-05-26T23:25:30.7330000Z" }] }

 users_put_users(connection, account_id, opts \\ [])

 Changes one or more users in the specified account.
This method updates the information about one or more account users.

 Functions

 user_get_user(connection, account_id, user_id, opts \\ [])

 @spec user_get_user(DocuSign.Connection.t(), String.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.UserInformation.t()} | {:error, Req.Response.t()}

Gets the user information for a specified user using a userId (GUID). To find a user based on their email address, use the list endpoint.
Retrieves the user information for the specified user. For example: json { "userName": "Tania Morales", "userId": "6b67a1ee-xxxx-xxxx-xxxx-385763624163", "userType": "CompanyUser", "isAdmin": "False", "isNAREnabled": "false", "userStatus": "Active", "uri": "/users/6b67a1ee-xxxx-xxxx-xxxx-385763624163", "email": "examplename42@orobia.net", "createdDateTime": "2019-04-01T22:11:56.4570000Z", "userAddedToAccountDateTime": "0001-01-01T08:00:00.0000000Z", "firstName": "Tania", "lastName": "Morales", "jobTitle": "", "company": "Company", "permissionProfileId": "12345678", "permissionProfileName": "DocuSign Viewer", "userSettings": {. . .}, "sendActivationOnInvalidLogin": "false", "enableConnectForUser": "false", "groupList": [. . .], "workAddress": {. . .}, "homeAddress": {. . .}, "signatureImageUri": "/users/6b67a1ee-xxxx-xxxx-xxxx-385763624163/signatures/0304c47b-xxxx-xxxx-xxxx-c9673963bb50/signature_image", "initialsImageUri": "/users/6b67a1ee-xxxx-xxxx-xxxx-385763624163/signatures/0304c47b-xxxx-xxxx-xxxx-c9673963bb50/initials_image", "defaultAccountId": "f636f297-xxxx-xxxx-xxxx-8e7a14715950" }
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:additional_info (String.t): Setting this parameter has no effect in this operation.
	:email (String.t): Setting this parameter has no effect in this operation.
	:include_license (String.t):

Returns
	{:ok, DocuSign.Model.UserInformation.t} on success
	{:error, Req.Response.t} on failure

 user_profile_image_delete_user_profile_image(connection, account_id, user_id, opts \\ [])

 @spec user_profile_image_delete_user_profile_image(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Deletes the user profile image for the specified user.
Deletes the user profile image from the specified user's profile. The userId parameter specified in the endpoint must match the authenticated user's user ID and the user must be a member of the specified account.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 user_profile_image_get_user_profile_image(connection, account_id, user_id, opts \\ [])

 @spec user_profile_image_get_user_profile_image(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, String.t()} | {:error, Req.Response.t()}

Retrieves the user profile image for the specified user.
Retrieves the user profile picture for the specified user. The userId path parameter must match the authenticated user's user ID, and the user must be a member of the specified account. | Return value | Meaning | | :---------------- | :--- | | 200 OK | The response contains the profile image in the same format as it was uploaded. | | 404 Not found | The user does not have a profile image. | | 400 Bad request | There was an error in the request. The response has more information. |
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:encoding (String.t): Reserved for Docusign.

Returns
	{:ok, String.t} on success
	{:error, Req.Response.t} on failure

 user_profile_image_put_user_profile_image(connection, account_id, user_id, opts \\ [])

 @spec user_profile_image_put_user_profile_image(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) :: {:ok, nil} | {:error, Req.Response.t()}

Updates the user profile image for a specified user.
Updates the user profile image by uploading an image to the user profile. The supported image formats are: gif, png, jpeg, and bmp. The file must be less than 200K. For best viewing results, Docusign recommends that the image is no more than 79 pixels wide and high.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters

Returns
	{:ok, nil} on success
	{:error, Req.Response.t} on failure

 user_put_user(connection, account_id, user_id, opts \\ [])

 @spec user_put_user(DocuSign.Connection.t(), String.t(), String.t(), keyword()) ::
 {:ok, DocuSign.Model.UserInformation.t()} | {:error, Req.Response.t()}

Updates user information for the specified user.
To update user information for a specific user, submit a Users object with updated field values in the request body of this operation.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters	:allow_all_languages (String.t):
	:body (UserInformation):

Returns
	{:ok, DocuSign.Model.UserInformation.t} on success
	{:error, Req.Response.t} on failure

 user_settings_get_user_settings(connection, account_id, user_id, opts \\ [])

 @spec user_settings_get_user_settings(
 DocuSign.Connection.t(),
 String.t(),
 String.t(),
 keyword()
) ::
 {:ok, DocuSign.Model.UserSettingsInformation.t()} | {:error, Req.Response.t()}

Gets the user account settings for a specified user.
Retrieves a list of the account settings and email notification information for the specified user. The response returns the account setting name/value information and the email notification settings for the specified user. For more information, see Users:create.
Parameters
	connection (DocuSign.Connection): Connection to server
	account_id (String.t): The external account number (int) or account ID GUID.
	user_id (String.t): The ID of the user to access. Note: Users can only access their own information. A user, even one with Admin rights, cannot access another user's settings.
	opts (keyword): Optional parameters

Returns
	{:ok, DocuSign.Model.UserSettingsInformation.t} on success
	{:error, Req.Response.t} on failure

 user_settings_put_user_settings(connection, account_id, user_id, opts \\ [])

