

 domainex

 v0.1.0

 Table of contents

 	Domainex

 	Modules

 	Domainex

 	Domainex.Aggregate

 	Domainex.Aggregate.Structure

 	Domainex.Common

 	Domainex.Event

 	Domainex.Event.Processor

 	Domainex.Event.Structure

Domainex

DomainEx is an Elixir library which provides a set of common typespec and domain models and also provides
a set of function helpers for basic function and domain building
About Domainex
Why TypeSpces
Elixir is not a static typing language, it's dynamic typing, which mean when we doesn't need to define any variable
or function type parameters. But Elixir provides their TypeSpecs that really useful to:
	Documentation. I'm one of believer that good (and beautiful) code documentation is important
	Code analysis using Dialyzer

When I begin to learn Elixir's typespec , I'm starting to learn the mental model, and I really like it. The typespec
actually is just a typehint , but somehow I've felt that the type specification mechanism still able to help us to provide rich modeling domain business and in the same time can help us to building a great domain business documentation
from our codes.
The Domainex provides common types such as:
 @type error :: {:error, {error_type(), error_payload()}}
 @type success :: {:ok, any()}
 @type result :: success() | error()
Domain Driven Design
Although Elixir is not a static type language, we are still possible to modeling business needs by take a leverage of typespec.
Domainex also build with purpose to provide a helpers and also specs to define some common DDD concepts.
Aggregate
 @type aggregate_name :: String.t() | atom()
 @type aggregate_payload :: struct() | map()
 @type aggregate :: {:aggregate, Aggregate.Structure.t()}
The main aggregate's structure will be like this:
 @enforce_keys [:name, :contains, :events, :processors]
 defstruct [:name, :contains, :events, :processors]

 @type t :: %__MODULE__{
 name: BaseType.aggregate_name(),
 contains: BaseType.aggregate_payload() | %{atom() => BaseType.aggregate_payload()},
 events: list(BaseType.event()),
 processors: list(module())
 }
Initiate new aggregate:
 fake_entity = %FakeEntityStruct{name: "fake_entity"}
 aggregate = Aggregate.new(:fake_entity, fake_entity, [FakeEventProcessor])
Initiate new aggregate with multiple entities:
 fake_entity_1 = %FakeEntityStruct{name: "fake_entity_1"}
 fake_entity_2 = %FakeEntityStruct{name: "fake_entity_2"}
 aggregate = Aggregate.new(:fake_agg, %{:fake1 => fake_entity_1, :fake2 => fake_entity_2}, [FakeEventProcessor])
Aggregate and Functional Programming
We should treat an aggregate as a single unit of business domain, which mean, we should put our business logic inside an aggregate. It is a common to create an object which in OOP will be a class that hold refences to its internal states and behaviors based on business needs. There is a chance that some of aggregates need some common states,properties or even activities, maybe something like emitting domain event. All of these common properties and behaviors can be grouped into some base aggregate which will be inherited by other child aggregates.
The problem is, I rarely see such a thing in functional languages, including in Elixir. There is no way to extend from some defined structure or a struct().
In functional, actually it help us to made all things becomes more simpler. There are no internal states, no inheritance. There are just an input parameters and a functions. An input parameter is just a value , and a function used to do some computation, transform a value to other value.
-------		-----------		---------
input	--------->	function	------->	output
-------		-----------		---------
Even better, each of value is also immutable , so there is no chance that we can update the value directly, what we can do is create another new value based on some given values.
If we can't extend this aggregate() type and structure, then how do we use it in our real application, real business needs ?
There is no chance to extend, but, we can use this DomainEx.Aggregate.Structure as a value, and use all of available functions form Domainex.Aggregate as a helper functions, as long as the input value following spec:
 @type aggregate :: {:aggregate, Aggregate.Structure.t()}
You are still free to create your own aggregate based on your business needs, Domainex will not limiting the solution or force you to follow some rules.
Example of possible solutions :
 defmodule My.Aggregate do
 defmodule Structure do
 # The `:base` property defined here used to store our `aggregate()` type
 defstruct [:base, :field1, :field2]
 end

 @spec new(base :: Domainex.aggregate())
 def new(base) do
 %Structure{
 base: base
 }
 end

 @spec your_business_activity(structure :: Structure.t()) :: {:ok, term()} | {:error, term()}
 def your_business_activity(structure) do
 # do whatever you needs
 end
 end
So, the logic flow become like this:
flowchart TD;
 Start-->CreateBaseAggregate
 CreateBaseAggregate-->|inject| CreateYourAggregate
 CreateYourAggregate-->|result| YourOwnAggregate
Please remember, that since the Domainex.Aggregate which act as base aggregate used as a value, it needs to always be passed as a function parameters.

Domain Event
 @type event_name :: atom()
 @type event_payload :: struct() | map()
 @type event :: {:event, Event.Structure.t()}
The main event's structure will be like this:
 @enforce_keys [:name, :payload, :timestamp]
 defstruct [:name, :payload, :timestamp]

 @type t :: %__MODULE__{
 name: BaseType.event_name(),
 payload: BaseType.event_payload(),
 timestamp: DateTime.t()
 }
By default you almost doesn't need to do anything with these domain event structure and even its specs. When you
initiate a new aggregate, it will also initiate an empty events.
Aggregate and domain events will follow Observer design pattern. When you initiate an aggregate, you need to register
some event's processor, like an example above. An Event.Processor is a Elixir's behaviour, or an interface called in other languages.
Each time you emit_events/1 from an aggregate, it will send all available aggregate's event to its event's processor. Its up to the module which implement Event.Processor to do anything with given event list, maybe doing some computation using Elixir's GenStage.
The power of Tuple
When I learning Elixir, I've seen a lot of tuple used to grouping some context. Let just take our previous sample for return values :
 @type error :: {:error, {error_type(), error_payload()}}
 @type success :: {:ok, any()}
 @type result :: success() | error()
In the first time, it just look weird, but after learn more, I just think that it actually a reall simple and powerfull concept. We can use tuple to build a set of context from some value, not just its type but also the context, what kind of information do we get from some value. From the example above, when we got the information that the value is a succes or an error, we know how to handling it.
It's same with previous aggregate. By just defining an aggregate as a tuple , when we got a value which is a tuple and the first element is :aggregate, what we need to do next is extract the following elements like for aggregate_name and it's payload.
And thanks to Elixir's pattern matching its really simple to match and extract tuple values
iex(1)> {typed, value} = {:ok, "hello world"}
{:ok, "hello world"}
iex(2)> typed
:ok
iex(3)> value
"hello world"
iex(4)>
Installation
If available in Hex, the package can be installed
by adding domainex to your list of dependencies in mix.exs:
def deps do
 [
 {:domainex, "~> 0.1.0"}
]
end

Domainex

A domainex is an Elixir library which provides:
	common elixir typespec models
	common domain typespec models
	a helper for functional dependencies
	a helper for common domain value objects
	a helper for common domain needs

 Summary

 Types

 aggregate()

 An aggregate in DDD actually is a cluster of objects, it possible to be a single entity, or a group
of entities. The definition of object here is just a simple struct().

 aggregate_name()

 An aggregate_name used to define the business needs behind an aggregate.

 aggregate_payload()

 An aggregate_payload() should be a

 error()

 Common elixir error type spec actually looks like

 event()

 An event() will used at aggregate. An aggregate will trigger / emit
an event for each domain activity already processed.

 event_name()

 An event_name() used to give a name to some event

 event_payload()

 An event_payload() used for payload for some event, it can
be a struct() or map().

 result()

 A result() actually follow Rust's convention from their Result<T, E>. A result()
is a return value which only has two possibilities a success() or error() values.

 success()

 success() actually is a common Elixir's convention result for the success return values. It just
follow common convention

Types

 Link to this type

 aggregate()

 View Source

 @type aggregate() :: {:aggregate, Domainex.Aggregate.Structure.t()}

An aggregate in DDD actually is a cluster of objects, it possible to be a single entity, or a group
of entities. The definition of object here is just a simple struct().
This type of aggregate(), already set the aggregate_payload() to using DomainEx.Aggregate.Structure
as main data structure.

 Link to this type

 aggregate_name()

 View Source

 @type aggregate_name() :: String.t() | atom()

An aggregate_name used to define the business needs behind an aggregate.

 Link to this type

 aggregate_payload()

 View Source

 @type aggregate_payload() :: struct() | map()

An aggregate_payload() should be a

 Link to this type

 error()

 View Source

 @type error() :: {:error, {error_type(), error_payload()}}

Common elixir error type spec actually looks like:
 {:error, "error message"}
I'm agree with the structure, but I think we need more detail and explicit
for the error type. What kind of errors? Is it internal? Is it from core domain?
Is it from application's level? Or is it an exception?
The error_type() has two possible types:
	String.t()
	atom()

By providing the error_type() we can provides more explicit information about
an error, and help us to provide better error handling based on the error's types
For the error_payload() , it has three possible types
	String.t()
	struct()
	map()

It is possible to just using a simple string for our error message, but I think sometimes
we also need to provide rich error informations, maybe by providing some structs or a map,
which contains specific application or business error handling, such as for application status
codes with their definition/message.

 Link to this type

 event()

 View Source

 @type event() :: {:event, Domainex.Event.Structure.t()}

An event() will used at aggregate. An aggregate will trigger / emit
an event for each domain activity already processed.

 Link to this type

 event_name()

 View Source

 @type event_name() :: atom()

An event_name() used to give a name to some event

 Link to this type

 event_payload()

 View Source

 @type event_payload() :: struct() | map()

An event_payload() used for payload for some event, it can
be a struct() or map().

 Link to this type

 result()

 View Source

 @type result() :: success() | error()

A result() actually follow Rust's convention from their Result<T, E>. A result()
is a return value which only has two possibilities a success() or error() values.
It's common in Elixir's function which provides two possible return values and looks like this
@spec do_something(a :: atom()) :: {:ok, any()} | {:error, any()}
def do_something(a) do
end
To simplify the function's signature, I make it to:
@spec do_something(a :: atom()) :: Domainex.result()
def do_something(a) do
end

 Link to this type

 success()

 View Source

 @type success() :: {:ok, any()}

success() actually is a common Elixir's convention result for the success return values. It just
follow common convention
 {:ok, any()}

Domainex.Aggregate

Aggregate is a module provide base Aggregate module functions.
It provide base structure for the aggregate. An aggregate itself
means, a cluster of objects that treat as a single unit of domain business
logic, although it's possible too to contain only a single object.
This module should not provide any functions that possible to limiting
scope of some domain business, or it should be designed to be generic,
and only provide some helpers

 Summary

 Functions

 add_event(data, event)

 add_event/2 used to adding an event to current available events in some aggregate

 aggregate(data)

 aggregate/1 used to extract a main aggregate data structure from the tuple of

 emit_events(data)

 emit_events/1 used to emit all current available events from an aggregate. All of available
event will send to all registered processors, and after emitting events, we need to reset current
events to empty list.

 entities(data)

 entities/1 used to load multiple entities. It just using entity/1 under the hood.
If your current aggregate contains multiple entities, then it will all of that entities
in map() format.

 entity(data)

 entity/1 used to load current aggregate's :contains property, which expected result
is a single entity.

 error_invalid_aggregate_type()

 error_invalid_data_type()

 is_aggregate?(given)

 is_aggregate?/1 used to check if given tuple is an :aggregate or not. For any types
which not a tuple, it will return false

 new(name, entity, processors)

 A new/2 has two possibilities depends on given parameter.
If it give a single entity which is a struct() it will generate a
BaseType.aggregate() that contains a main aggregate object with single entity,
or people common said as aggregate root.

 update_entity(data, entity)

 update_entity/2 used to update internal aggregate's entity. This function used
only for an aggregate with a single entity.

 update_entity(data, key, entity)

 update_entity/3 used to update one of available entities. This function used for an aggregate
with multiple entities.

Functions

 Link to this function

 add_event(data, event)

 View Source

 @spec add_event(data :: Domainex.aggregate(), event :: Domainex.event()) ::
 Domainex.result()

add_event/2 used to adding an event to current available events in some aggregate

 Link to this function

 aggregate(data)

 View Source

 @spec aggregate(data :: Domainex.aggregate()) :: Domainex.result()

aggregate/1 used to extract a main aggregate data structure from the tuple of:
 # used to extract structure
 {:aggregate, {name, structure}}
It will return an error of :aggregate if given parameter is not tuple

 Link to this function

 emit_events(data)

 View Source

 @spec emit_events(data :: Domainex.aggregate()) :: Domainex.result()

emit_events/1 used to emit all current available events from an aggregate. All of available
event will send to all registered processors, and after emitting events, we need to reset current
events to empty list.

 Link to this function

 entities(data)

 View Source

 @spec entities(data :: Domainex.aggregate()) :: Domainex.result()

entities/1 used to load multiple entities. It just using entity/1 under the hood.
If your current aggregate contains multiple entities, then it will all of that entities
in map() format.

 Link to this function

 entity(data)

 View Source

 @spec entity(data :: Domainex.aggregate()) :: Domainex.result()

entity/1 used to load current aggregate's :contains property, which expected result
is a single entity.

 Link to this function

 error_invalid_aggregate_type()

 View Source

 @spec error_invalid_aggregate_type() :: binary()

 Link to this function

 error_invalid_data_type()

 View Source

 @spec error_invalid_data_type() :: binary()

 Link to this function

 is_aggregate?(given)

 View Source

 @spec is_aggregate?(given :: Domainex.aggregate()) :: boolean()

is_aggregate?/1 used to check if given tuple is an :aggregate or not. For any types
which not a tuple, it will return false

 Link to this function

 new(name, entity, processors)

 View Source

 @spec new(
 name :: Domainex.aggregate_name(),
 entity :: Domainex.aggregate_payload(),
 processors :: [module()]
) :: Domainex.aggregate()

 @spec new(
 name :: Domainex.aggregate_name(),
 entities :: %{required(atom()) => Domainex.aggregate_payload()},
 processors :: [module()]
) :: Domainex.aggregate()

A new/2 has two possibilities depends on given parameter.
If it give a single entity which is a struct() it will generate a
BaseType.aggregate() that contains a main aggregate object with single entity,
or people common said as aggregate root.
If it give a list of entities, it will generate a BaseType.aggregate() that
contains a list of entities.
All generated structure will always generated with an empty :events

 Link to this function

 update_entity(data, entity)

 View Source

 @spec update_entity(data :: Domainex.aggregate(), entity :: struct()) ::
 Domainex.result()

update_entity/2 used to update internal aggregate's entity. This function used
only for an aggregate with a single entity.
Usage:
 aggregate2 = aggregate |> Aggregate.update_entity(fake_entity_updated)

 Link to this function

 update_entity(data, key, entity)

 View Source

 @spec update_entity(data :: Domainex.aggregate(), key :: atom(), entity :: struct()) ::
 Domainex.result()

update_entity/3 used to update one of available entities. This function used for an aggregate
with multiple entities.
Usage:
 {:ok, aggregate2} = aggregate |> Aggregate.update_entity(:fake1, fake_entity_1_updated)
The update_entity/3 need a key to update some entity, since an aggregate that contains multiple
entities will be mapped based on some unique key

Domainex.Aggregate.Structure

An aggregate objects may using this structure as their
base data structure, although the function implementation it
will always depends to some specific requirements and logics.
This structure provides only four possible keys, which are:
	:name
	:contains
	:events
	:processors

An aggregate may contains a single entity object or a group of entities.
An aggregate also should responsible to emit an event for each domain activities
Specific for :processor, it must be a module which implement behaviour Event.Processor

 Summary

 Types

 t()

Types

 Link to this type

 t()

 View Source

 @type t() :: %Domainex.Aggregate.Structure{
 contains:
 Domainex.aggregate_payload()
 | %{required(atom()) => Domainex.aggregate_payload()},
 events: [Domainex.event()],
 name: Domainex.aggregate_name(),
 processors: [module()]
}

Domainex.Common

 Summary

 Functions

 extract_element_from_tuple(given, index)

 extract_element_from_tuple/2 used for extract some element from a tuple. This function already
cover some exceptions using try/rescue mechanism. If some exceptions was raised it will be catched
and return an error. It use elem/2 under the hood.

 is_tuple_has_context?(given, key)

 is_tuple_has_context?/2 is a function to check the first element of some tuple. The context
definition here is like an :ok or an :error or anything that define the tuple's value itself,
such for a success return value, the first element should be an :ok.

 is_tuple_length_valid?(given, expected_length)

 is_tuple_length_valid?/2 is a function to check tuple's length

Functions

 Link to this function

 extract_element_from_tuple(given, index)

 View Source

 @spec extract_element_from_tuple(given :: tuple(), index :: integer()) ::
 Domainex.result()

extract_element_from_tuple/2 used for extract some element from a tuple. This function already
cover some exceptions using try/rescue mechanism. If some exceptions was raised it will be catched
and return an error. It use elem/2 under the hood.

 Link to this function

 is_tuple_has_context?(given, key)

 View Source

 @spec is_tuple_has_context?(given :: tuple(), key :: atom()) :: boolean()

is_tuple_has_context?/2 is a function to check the first element of some tuple. The context
definition here is like an :ok or an :error or anything that define the tuple's value itself,
such for a success return value, the first element should be an :ok.

 Link to this function

 is_tuple_length_valid?(given, expected_length)

 View Source

 @spec is_tuple_length_valid?(given :: tuple(), expected_length :: integer()) ::
 boolean()

is_tuple_length_valid?/2 is a function to check tuple's length

Domainex.Event

Event described on this module is specified for domain's event.
It provides a base event's structure and also a behaviour to handle
all available events.

 Summary

 Functions

 error_invalid_event_type()

 is_event?(given)

 is_event?/1 used to check if given tuple is an event or not

 new(name, payload)

 new/2 used to generate new Event structure with given name and payload. The payload itself
may be a struct() or map() depends on business logic needs.

 payload(event)

 payload/1 used to extract event's payload from given event's tuple

 structure(event)

 structure/1 used to extract base event's structure

Functions

 Link to this function

 error_invalid_event_type()

 View Source

 @spec error_invalid_event_type() :: binary()

 Link to this function

 is_event?(given)

 View Source

 @spec is_event?(given :: tuple()) :: boolean()

is_event?/1 used to check if given tuple is an event or not

 Link to this function

 new(name, payload)

 View Source

 @spec new(name :: Domainex.event_name(), payload :: Domainex.event_payload()) ::
 Domainex.event()

new/2 used to generate new Event structure with given name and payload. The payload itself
may be a struct() or map() depends on business logic needs.

 Link to this function

 payload(event)

 View Source

 @spec payload(event :: Domainex.event()) :: Domainex.result()

payload/1 used to extract event's payload from given event's tuple

 Link to this function

 structure(event)

 View Source

 @spec structure(event :: Domainex.event()) :: Domainex.result()

structure/1 used to extract base event's structure

Domainex.Event.Processor behaviour

A Event.Processor is an abstraction interface to process all emitted events from an aggregate.
I think it should be better to provide just a behaviour with a simple callback function and give
the freedom back to the caller for the detail how to manage all available events from an aggregate,
maybe using something like GenStage or others, depends on their business needs.
Each of module implement this behaviour should be registered on aggregate, following pattern Observer.
Each time aggregate emit all of available events, it will use registered event's processor and send all
events to its callback function, which is process. The module may process all of events async or sync
and give the result back to the aggregate.

 Summary

 Callbacks

 process(events)

 process/1 will got a list of available events from an aggregate, and will return none(). It's
free for each module implementer how to manage all of these events. The :aggregate will not care
if it will be an :ok or an :error, this function should not return anything, or in other languages
it called as void, in Elixir I'm choosing none().

Callbacks

 Link to this callback

 process(events)

 View Source

 @callback process(events :: [Domainex.event()]) :: none()

process/1 will got a list of available events from an aggregate, and will return none(). It's
free for each module implementer how to manage all of these events. The :aggregate will not care
if it will be an :ok or an :error, this function should not return anything, or in other languages
it called as void, in Elixir I'm choosing none().

Domainex.Event.Structure

Event.Structure used to grouping all necessary properties for the
domain event, which including:
	name
	payload
	timestamp

By using this structure we can simplify our base type spec for event, it
will become like this:
 {:event, Event.Structure.t()}
Compare with previous implementation
 {:event, {event_name(), event_payload()}}
It become more simpler

 Summary

 Types

 t()

Types

 Link to this type

 t()

 View Source

 @type t() :: %Domainex.Event.Structure{
 name: Domainex.event_name(),
 payload: Domainex.event_payload(),
 timestamp: DateTime.t()
}

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

