

 DurableObject

 v0.2.1

 Table of contents

 	DurableObject

 	Changelog

 	LICENSE

 	Guides

 	Durable Object Lifecycle

 	Testing Durable Objects

 	
 Modules

 	DurableObject

 	DurableObject.Behaviour

 	DurableObject.Cluster

 	DurableObject.Dsl

 	DurableObject.Migration

 	DurableObject.ObjectSupervisor

 	DurableObject.Scheduler

 	DurableObject.Server

 	DurableObject.Storage

 	DurableObject.Telemetry

 	DurableObject.Testing

 	DurableObject.Cluster.Backend

 	DurableObject.Cluster.Local

 	DurableObject.Dsl.Extension

 	DurableObject.Dsl.Field

 	DurableObject.Dsl.Handler

 	DurableObject.Dsl.Transformers.BuildIntrospection

 	DurableObject.Dsl.Transformers.GenerateClient

 	DurableObject.Dsl.Verifiers.ValidateHandlers

 	DurableObject.Scheduler.Oban

 	DurableObject.Scheduler.Polling

 	DurableObject.Storage.Schemas.Alarm

 	DurableObject.Storage.Schemas.Object

 	
 Mix Tasks

 	mix durable_object.gen.migration

 	mix durable_object.gen.object

 	mix durable_object.install

DurableObject

Durable Objects for Elixir.
A library that provides persistent, single-instance objects that are
accessed by ID. Each object is backed by a GenServer that:
	Has global uniqueness per (module, object_id) pair
	Automatically hibernates after inactivity
	Optionally shuts down after extended inactivity
	Dispatches calls to handle_<name>/N functions on the module

Using the DSL
The recommended way to define Durable Objects is with the Spark DSL:
defmodule MyApp.Counter do
 use DurableObject

 state do
 field :count, :integer, default: 0
 end

 handlers do
 handler :increment, args: [:amount]
 handler :get
 end

 options do
 hibernate_after 300_000
 end

 def handle_increment(amount, state) do
 new_count = state.count + amount
 {:reply, new_count, %{state | count: new_count}}
 end

 def handle_get(state) do
 {:reply, state.count, state}
 end
end
The DSL generates client API functions automatically:
{:ok, count} = MyApp.Counter.increment("user-123", 5)
{:ok, count} = MyApp.Counter.get("user-123")
Manual Usage (without DSL)
You can also call Durable Objects directly without the DSL:
defmodule Counter do
 def handle_increment(n \\ 1, state) do
 new_count = Map.get(state, :count, 0) + n
 {:reply, new_count, Map.put(state, :count, new_count)}
 end

 def handle_get(state) do
 {:reply, Map.get(state, :count, 0), state}
 end
end

{:ok, 1} = DurableObject.call(Counter, "test", :increment)
{:ok, 2} = DurableObject.call(Counter, "test", :increment)
{:ok, 2} = DurableObject.call(Counter, "test", :get)

 Summary

 Functions

 __using__(opts)

 Use DurableObject to define a Durable Object with the Spark DSL.

 call(module, object_id, handler, args \\ [], opts \\ [])

 Calls a handler on a Durable Object, starting it if necessary.

 cancel_alarm(module, object_id, alarm_name, opts \\ [])

 Cancels a pending alarm.

 cancel_all_alarms(module, object_id, opts \\ [])

 Cancels all pending alarms for an object.

 default_repo()

 Returns the configured default repo, or nil if not configured.

 ensure_started(module, object_id, opts \\ [])

 Ensures a Durable Object is started, starting it if necessary.

 get_state(module, object_id)

 Gets the current state of a Durable Object.

 list_alarms(module, object_id, opts \\ [])

 Lists all pending alarms for an object.

 schedule_alarm(module, object_id, alarm_name, delay_ms, opts \\ [])

 Schedules an alarm to fire after delay_ms milliseconds.

 stop(module, object_id, reason \\ :normal)

 Stops a running Durable Object.

 whereis(module, object_id)

 Returns the pid of a running Durable Object, or nil if not running.

 Functions

 __using__(opts)

 (macro)

Use DurableObject to define a Durable Object with the Spark DSL.
This enables the declarative DSL for defining state fields, handlers,
and lifecycle options.
Example
defmodule MyApp.Counter do
 use DurableObject

 state do
 field :count, :integer, default: 0
 end

 handlers do
 handler :increment, args: [:amount]
 handler :get
 end

 def handle_increment(amount, state) do
 new_count = state.count + amount
 {:reply, new_count, %{state | count: new_count}}
 end

 def handle_get(state) do
 {:reply, state.count, state}
 end
end

 call(module, object_id, handler, args \\ [], opts \\ [])

Calls a handler on a Durable Object, starting it if necessary.
Dispatches to handle_<name>/N function on the module, where N is
the number of args plus one (for state).
Options
	:repo - Ecto repo for persistence (default: configured or nil)
	:prefix - Table prefix for multi-tenancy (default: nil)
	:hibernate_after - Hibernate after this many ms of inactivity (default: 5 minutes)
	:shutdown_after - Stop process after this many ms of inactivity (default: nil)
	:timeout - Call timeout in ms (default: 5000)

Returns
	{:ok, result} - Handler returned {:reply, result, new_state}
	{:ok, :noreply} - Handler returned {:noreply, new_state}
	{:error, reason} - Handler returned {:error, reason} or error occurred

Examples
{:ok, 1} = DurableObject.call(Counter, "test", :increment)
{:ok, 5} = DurableObject.call(Counter, "test", :increment, [5])

With persistence
{:ok, 1} = DurableObject.call(Counter, "test", :increment, [], repo: MyApp.Repo)

 cancel_alarm(module, object_id, alarm_name, opts \\ [])

Cancels a pending alarm.
Returns :ok even if the alarm doesn't exist.
Options
	:repo - Ecto repo for persistence (default: configured or nil)
	:prefix - Table prefix for multi-tenancy (default: nil)

Examples
:ok = DurableObject.cancel_alarm(Counter, "user-123", :cleanup)

 cancel_all_alarms(module, object_id, opts \\ [])

Cancels all pending alarms for an object.
Options
	:repo - Ecto repo for persistence (default: configured or nil)
	:prefix - Table prefix for multi-tenancy (default: nil)

Examples
:ok = DurableObject.cancel_all_alarms(Counter, "user-123")

 default_repo()

Returns the configured default repo, or nil if not configured.
Configure in your application config:
config :durable_object, repo: MyApp.Repo

 ensure_started(module, object_id, opts \\ [])

Ensures a Durable Object is started, starting it if necessary.
Returns {:ok, pid} if the object is running or was started successfully.
Returns {:error, reason} if the object could not be started.
Options
	:repo - Ecto repo for persistence (default: configured or nil)
	:prefix - Table prefix for multi-tenancy (default: nil)
	:hibernate_after - Hibernate after this many ms of inactivity (default: 5 minutes)
	:shutdown_after - Stop process after this many ms of inactivity (default: nil)

Examples
{:ok, pid} = DurableObject.ensure_started(Counter, "test")
{:ok, ^pid} = DurableObject.ensure_started(Counter, "test")

 get_state(module, object_id)

Gets the current state of a Durable Object.
Returns the state if the object is running, or raises if not.
To check if an object is running, use whereis/2.
Examples
state = DurableObject.get_state(Counter, "test")

 list_alarms(module, object_id, opts \\ [])

Lists all pending alarms for an object.
Returns a list of {alarm_name, scheduled_at} tuples, ordered by scheduled time.
Options
	:repo - Ecto repo for persistence (default: configured or nil)
	:prefix - Table prefix for multi-tenancy (default: nil)

Examples
{:ok, alarms} = DurableObject.list_alarms(Counter, "user-123")
=> [{:cleanup, ~U[2024-01-15 10:30:00Z]}, {:daily_reset, ~U[2024-01-16 00:00:00Z]}]

 schedule_alarm(module, object_id, alarm_name, delay_ms, opts \\ [])

Schedules an alarm to fire after delay_ms milliseconds.
When the alarm fires, handle_alarm(alarm_name, state) will be called on
the object's module. If no handle_alarm/2 is defined, the alarm is
silently acknowledged.
Options
	:repo - Ecto repo for persistence (default: configured or nil)
	:prefix - Table prefix for multi-tenancy (default: nil)

Examples
Schedule an alarm to fire in 1 hour
:ok = DurableObject.schedule_alarm(Counter, "user-123", :cleanup, :timer.hours(1))
Handler
Define handle_alarm/2 in your module:
def handle_alarm(:cleanup, state) do
 # Do cleanup
 {:noreply, state}
end

def handle_alarm(:daily_reset, state) do
 # Reset and reschedule
 {:noreply, %{state | count: 0}, {:schedule_alarm, :daily_reset, :timer.hours(24)}}
end

 stop(module, object_id, reason \\ :normal)

Stops a running Durable Object.
Examples
:ok = DurableObject.stop(Counter, "test")

 whereis(module, object_id)

Returns the pid of a running Durable Object, or nil if not running.
Examples
nil = DurableObject.whereis(Counter, "not-started")
{:ok, _} = DurableObject.ensure_started(Counter, "test")
pid = DurableObject.whereis(Counter, "test")

DurableObject.Behaviour behaviour

Behaviour for Durable Object alarm handling.
Defines the optional handle_alarm/2 callback for processing scheduled alarms.
Handler Callbacks
For each handler declared in the DSL:
handlers do
 handler :increment, args: [:amount]
 handler :get
end
You must implement a corresponding handle_<name>/N function where N is
the number of args plus 1 (for state):
def handle_increment(amount, state) do
 new_count = state.count + amount
 {:reply, new_count, %{state | count: new_count}}
end

def handle_get(state) do
 {:reply, state.count, state}
end
Handler Return Values
Handlers can return:
	{:reply, result, new_state} - Reply with result
	{:reply, result, new_state, {:schedule_alarm, name, delay_ms}} - Reply and schedule alarm
	{:noreply, new_state} - No reply (for async operations)
	{:noreply, new_state, {:schedule_alarm, name, delay_ms}} - No reply and schedule alarm
	{:error, reason} - Return an error

Alarm Callback
To handle scheduled alarms, implement handle_alarm/2:
def handle_alarm(:daily_reset, state) do
 # Reschedule for tomorrow
 {:noreply, %{state | count: 0}, {:schedule_alarm, :daily_reset, :timer.hours(24)}}
end
This is optional - if not defined, alarms are silently acknowledged.

 Summary

 Types

 after_load_result()

 alarm_result()

 handler_result()

 Callbacks

 after_load(state)

 Called after object state is loaded (or initialized with defaults for new objects).

 handle_alarm(alarm_name, state)

 Called when a scheduled alarm fires.

 Types

 after_load_result()

 @type after_load_result() ::
 {:ok, new_state :: map()}
 | {:ok, new_state :: map(),
 {:schedule_alarm, name :: atom(), delay_ms :: pos_integer()}}

 alarm_result()

 @type alarm_result() ::
 {:noreply, new_state :: map()}
 | {:noreply, new_state :: map(),
 {:schedule_alarm, name :: atom(), delay_ms :: pos_integer()}}
 | {:error, reason :: term()}

 handler_result()

 @type handler_result() ::
 {:reply, result :: term(), new_state :: map()}
 | {:reply, result :: term(), new_state :: map(),
 {:schedule_alarm, name :: atom(), delay_ms :: pos_integer()}}
 | {:noreply, new_state :: map()}
 | {:noreply, new_state :: map(),
 {:schedule_alarm, name :: atom(), delay_ms :: pos_integer()}}
 | {:error, reason :: term()}

 Callbacks

 after_load(state)

 (optional)

 @callback after_load(state :: map()) :: after_load_result()

Called after object state is loaded (or initialized with defaults for new objects).
Use this to schedule initial alarms or perform one-time setup.
This callback is optional. If not defined, no action is taken after load.
Example
def after_load(state) do
 if is_nil(state.window_start) do
 {:ok, %{state | window_start: DateTime.utc_now()},
 {:schedule_alarm, :reset_window, :timer.minutes(1)}}
 else
 {:ok, state}
 end
end

 handle_alarm(alarm_name, state)

 (optional)

 @callback handle_alarm(alarm_name :: atom(), state :: map()) :: alarm_result()

Called when a scheduled alarm fires.
This callback is optional. If not defined, alarms are silently acknowledged.

DurableObject.Cluster

Facade module for registry and supervisor operations.
This module provides a unified interface for process registration and
supervision, abstracting over the underlying backend (local or Horde).
Configuration
By default, DurableObject uses local mode which runs on a single node:
No configuration needed for local mode
To enable Horde distribution across a cluster:
config :durable_object,
 registry_mode: :horde,
 cluster_opts: [
 members: :auto # or explicit list of node names
]
Backend Selection
	:local (default) - Uses Elixir's built-in Registry and DynamicSupervisor
	:horde - Uses Horde for distributed operation (requires :horde dependency)

 Summary

 Types

 mode()

 Functions

 child_specs(opts \\ [])

 Returns child specs for the registry and supervisor.

 count_children()

 Returns the count of active children in the dynamic supervisor.

 impl()

 Returns the backend module for the current mode.

 mode()

 Returns the current cluster mode.

 start_child(spec)

 Starts a child under the dynamic supervisor.

 via_tuple(module, object_id)

 Returns a via tuple for process registration.

 Types

 mode()

 @type mode() :: :local | :horde

 Functions

 child_specs(opts \\ [])

 @spec child_specs(keyword()) :: [Supervisor.child_spec()]

Returns child specs for the registry and supervisor.
These specs are used by the DurableObject application supervisor.

 count_children()

 @spec count_children() :: non_neg_integer()

Returns the count of active children in the dynamic supervisor.

 impl()

 @spec impl() :: module()

Returns the backend module for the current mode.

 mode()

 @spec mode() :: mode()

Returns the current cluster mode.
Defaults to :local if not configured.

 start_child(spec)

 @spec start_child(Supervisor.child_spec()) ::
 {:ok, pid()} | {:ok, pid(), term()} | {:error, term()}

Starts a child under the dynamic supervisor.

 via_tuple(module, object_id)

 @spec via_tuple(module(), String.t()) :: GenServer.name()

Returns a via tuple for process registration.
Used for naming GenServer processes and looking them up.

DurableObject.Dsl

Spark DSL for defining Durable Objects.
This is the base module for defining Durable Object DSLs. Use this when defining
a Durable Object module:
defmodule MyApp.Counter do
 use DurableObject.Dsl

 state do
 field :count, :integer, default: 0
 end

 handlers do
 handler :increment, args: [:amount]
 handler :get
 end

 options do
 hibernate_after 300_000
 end
end
Sections
state
Define the state fields for the Durable Object:
state do
 field :count, :integer, default: 0
 field :name, :string
end
handlers
Define the handlers (RPC methods) for the Durable Object:
handlers do
 handler :increment, args: [:amount]
 handler :get
end
options
Configure lifecycle options:
options do
 hibernate_after 300_000
 shutdown_after :timer.hours(1)
end
Options
	:extensions (list of module that adopts Spark.Dsl.Extension) - A list of DSL extensions to add to the Spark.Dsl

	:otp_app (atom/0) - The otp_app to use for any application configurable options

	:fragments (list of module/0) - Fragments to include in the Spark.Dsl. See the fragments guide for more.

DurableObject.Migration

Versioned migrations for DurableObject tables.
Usage
Generate a migration:
mix ecto.gen.migration add_durable_objects
Then call the versioned migration functions:
defmodule MyApp.Repo.Migrations.AddDurableObjects do
 use Ecto.Migration

 def up, do: DurableObject.Migration.up(version: 1)
 def down, do: DurableObject.Migration.down(version: 1)
end
Upgrading
When upgrading to a new version of DurableObject that requires schema changes,
generate a new migration and specify both the base version (already applied)
and the target version:
mix ecto.gen.migration upgrade_durable_objects_v3

defmodule MyApp.Repo.Migrations.UpgradeDurableObjectsV3 do
 use Ecto.Migration

 def up, do: DurableObject.Migration.up(base: 2, version: 3)
 def down, do: DurableObject.Migration.down(base: 2, version: 3)
end
This runs only version 3's changes, not versions 1-2 which are already applied.

 Summary

 Functions

 current_version()

 Returns the current migration version.

 down(opts \\ [])

 Runs migrations down from the specified version.

 up(opts \\ [])

 Runs migrations up to the specified version.

 Functions

 current_version()

Returns the current migration version.

 down(opts \\ [])

Runs migrations down from the specified version.
Options
	:version - Version to roll back from (default: current version)
	:base - Base version to roll back to (default: 0). Migrations will run from version down to base + 1.
	:prefix - Table prefix for multi-tenancy (default: nil)

 up(opts \\ [])

Runs migrations up to the specified version.
Options
	:version - Target version (default: current version)
	:base - Base version already applied (default: 0). Migrations will run from base + 1 to version.
	:prefix - Table prefix for multi-tenancy (default: nil)

DurableObject.ObjectSupervisor

Interface for Durable Object supervision.
Objects are started with :temporary restart strategy since they
will be re-created on demand when accessed.
This module delegates to the configured cluster backend (local or Horde).

 Summary

 Functions

 count_objects(opts \\ [])

 Returns the count of currently running objects.

 start_object(opts)

 Starts a new Durable Object under supervision.

 Functions

 count_objects(opts \\ [])

Returns the count of currently running objects.
Options
	:supervisor - optional supervisor to count from instead of the default

 start_object(opts)

Starts a new Durable Object under supervision.
Options
Same options as DurableObject.Server.start_link/1, plus:
	:supervisor - optional supervisor to use instead of the default cluster supervisor

DurableObject.Scheduler behaviour

Behaviour for alarm scheduling backends.
Implementations must handle:
	Scheduling alarms for future execution
	Cancelling pending alarms
	Resurrecting alarms after process/node crashes

Built-in Implementations
	DurableObject.Scheduler.Polling - Database-backed polling scheduler (default)
	DurableObject.Scheduler.Oban - Oban-based scheduler (requires oban dependency)

Configuration
Polling Scheduler (default)
config :durable_object,
 scheduler: DurableObject.Scheduler.Polling,
 scheduler_opts: [
 repo: MyApp.Repo,
 polling_interval: :timer.seconds(30)
]
Oban Scheduler
For applications already using Oban, the Oban scheduler leverages your existing
Oban infrastructure for alarm delivery.
config :durable_object,
 scheduler: DurableObject.Scheduler.Oban,
 scheduler_opts: [oban_queue: :durable_object_alarms]
You must also add the queue to your Oban configuration:
config :my_app, Oban,
 repo: MyApp.Repo,
 queues: [durable_object_alarms: 5]
If your app uses a custom Oban instance name, specify it with oban_instance:
scheduler_opts: [oban_instance: MyApp.Oban, oban_queue: :durable_object_alarms]

 Summary

 Types

 alarm_name()

 delay_ms()

 object_ref()

 Callbacks

 cancel(object_ref, alarm_name, opts)

 Cancel a pending alarm.
Returns :ok even if the alarm doesn't exist.

 cancel_all(object_ref, opts)

 Cancel all alarms for an object.

 child_spec(opts)

 Child spec for the scheduler's supervision tree (poller, etc).
Return an empty list if no children are needed.

 list(object_ref, opts)

 List all pending alarms for an object.
Returns a list of {alarm_name, scheduled_at} tuples.

 schedule(object_ref, alarm_name, delay_ms, opts)

 Schedule an alarm to fire after delay_ms milliseconds.
If an alarm with the same name already exists, it should be replaced.

 Types

 alarm_name()

 @type alarm_name() :: atom()

 delay_ms()

 @type delay_ms() :: non_neg_integer()

 object_ref()

 @type object_ref() :: {module :: module(), object_id :: String.t()}

 Callbacks

 cancel(object_ref, alarm_name, opts)

 @callback cancel(object_ref(), alarm_name(), opts :: keyword()) :: :ok | {:error, term()}

Cancel a pending alarm.
Returns :ok even if the alarm doesn't exist.

 cancel_all(object_ref, opts)

 @callback cancel_all(object_ref(), opts :: keyword()) :: :ok | {:error, term()}

Cancel all alarms for an object.

 child_spec(opts)

 @callback child_spec(opts :: keyword()) :: [Supervisor.child_spec()]

Child spec for the scheduler's supervision tree (poller, etc).
Return an empty list if no children are needed.

 list(object_ref, opts)

 @callback list(object_ref(), opts :: keyword()) ::
 {:ok, [{alarm_name(), DateTime.t()}]} | {:error, term()}

List all pending alarms for an object.
Returns a list of {alarm_name, scheduled_at} tuples.

 schedule(object_ref, alarm_name, delay_ms, opts)

 @callback schedule(object_ref(), alarm_name(), delay_ms(), opts :: keyword()) ::
 :ok | {:error, term()}

Schedule an alarm to fire after delay_ms milliseconds.
If an alarm with the same name already exists, it should be replaced.

DurableObject.Server

GenServer that backs each Durable Object instance.

 Summary

 Functions

 call(module, object_id, handler, args \\ [], timeout \\ 5000)

 Calls a handler on a Durable Object.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 default_hibernate_after()

 Returns the default hibernate_after value in milliseconds.

 ensure_started(module, object_id, opts \\ [])

 Ensures a Durable Object is started, starting it if necessary.

 get_state(module, object_id)

 Gets the current state of a Durable Object.

 put_state(module, object_id, new_state)

 Puts a new state for a Durable Object.

 start_link(opts)

 Starts a Server process for the given module and object_id.

 via_tuple(module, object_id)

 Returns the via tuple for Registry lookup.

 whereis(module, object_id)

 Returns the pid of a running Durable Object, or nil if not running.

 Functions

 call(module, object_id, handler, args \\ [], timeout \\ 5000)

Calls a handler on a Durable Object.
Dispatches to handle_<name>/N function on the module, where N is
the number of args plus one (for state).
Returns
	{:ok, result} - Handler returned {:reply, result, new_state}
	{:ok, :noreply} - Handler returned {:noreply, new_state}
	{:error, reason} - Handler returned {:error, reason} or handler not found
	{:error, {:persistence_failed, reason}} - State change could not be persisted

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 default_hibernate_after()

Returns the default hibernate_after value in milliseconds.

 ensure_started(module, object_id, opts \\ [])

Ensures a Durable Object is started, starting it if necessary.
Returns {:ok, pid} if the object is running or was started successfully.
Returns {:error, reason} if the object could not be started.
Options
Options are passed to start_link/1 when starting a new object.

 get_state(module, object_id)

Gets the current state of a Durable Object.

 put_state(module, object_id, new_state)

Puts a new state for a Durable Object.

 start_link(opts)

Starts a Server process for the given module and object_id.
Options
	:module - The handler module (required)
	:object_id - The unique identifier for this object (required)
	:hibernate_after - Hibernate after this many ms of inactivity (default: 5 minutes)
	:shutdown_after - Stop process after this many ms of inactivity (default: nil, no shutdown)
	:repo - Ecto repo for persistence (default: nil, no persistence)
	:prefix - Table prefix for multi-tenancy (default: nil)

 via_tuple(module, object_id)

Returns the via tuple for Registry lookup.

 whereis(module, object_id)

Returns the pid of a running Durable Object, or nil if not running.

DurableObject.Storage

Handles persistence of Durable Object state to the database.
State is stored as a JSON blob, accessed by (object_type, object_id) pair.
All operations emit telemetry events and log errors on failure.
See DurableObject.Telemetry for event details.

 Summary

 Functions

 delete(repo, object_type, object_id, opts \\ [])

 Deletes a Durable Object from the database.

 load(repo, object_type, object_id, opts \\ [])

 Loads a Durable Object from the database.

 save(repo, object_type, object_id, state, opts \\ [])

 Saves a Durable Object to the database.

 Functions

 delete(repo, object_type, object_id, opts \\ [])

Deletes a Durable Object from the database.
Returns :ok on success or {:error, {:delete_failed, exception}} on failure.
Options
	:prefix - Table prefix for multi-tenancy (default: nil)

 load(repo, object_type, object_id, opts \\ [])

Loads a Durable Object from the database.
Returns {:ok, object} if found, {:ok, nil} if not found,
or {:error, {:load_failed, exception}} on database error.
Options
	:prefix - Table prefix for multi-tenancy (default: nil)

 save(repo, object_type, object_id, state, opts \\ [])

Saves a Durable Object to the database.
Uses upsert to insert or update based on (object_type, object_id).
Returns {:ok, object} on success, {:error, changeset} on validation error,
or {:error, {:save_failed, exception}} on database error.
Options
	:prefix - Table prefix for multi-tenancy (default: nil)

DurableObject.Telemetry

Telemetry instrumentation for DurableObject.
This module provides helpers for emitting telemetry events during storage operations.
Events
All events are prefixed with [:durable_object, :storage, <operation>] where operation
is one of: :save, :load, :delete.
Each operation emits three events:
	[:durable_object, :storage, <operation>, :start] - Emitted when the operation begins
	[:durable_object, :storage, <operation>, :stop] - Emitted when the operation completes successfully
	[:durable_object, :storage, <operation>, :exception] - Emitted when the operation raises an exception

Start Event Measurements
	:system_time - The system time when the operation started (in native units)

Stop Event Measurements
	:duration - The duration of the operation (in native units)

Exception Event Measurements
	:duration - The duration until the exception occurred (in native units)

Metadata (all events)
	:object_type - The type of the durable object
	:object_id - The ID of the durable object
	:repo - The Ecto repo module

Additional Exception Metadata
	:kind - The kind of exception (:error, :exit, :throw)
	:reason - The exception or error reason
	:stacktrace - The stacktrace at the time of the exception

Example
To attach a handler:
:telemetry.attach_many(
 "my-handler",
 [
 [:durable_object, :storage, :save, :start],
 [:durable_object, :storage, :save, :stop],
 [:durable_object, :storage, :save, :exception]
],
 &MyModule.handle_event/4,
 nil
)

 Summary

 Functions

 span(event_prefix, metadata, fun)

 Executes a function within a telemetry span.

 Functions

 span(event_prefix, metadata, fun)

 @spec span([atom()], map(), (-> term())) ::
 {:ok, term()} | {:error, {atom(), Exception.t()}}

Executes a function within a telemetry span.
Emits :start, :stop, and :exception events with the given event prefix.
Returns {:ok, result} on success or {:error, {:operation_failed, exception}} on failure.
Parameters
	event_prefix - List of atoms for the event prefix, e.g., [:durable_object, :storage, :save]
	metadata - Map of metadata to include in all events
	fun - Zero-arity function to execute

Returns
	{:ok, result} - The function completed successfully with result
	{:error, {failure_type, exception}} - The function raised an exception

DurableObject.Testing

Test helpers for DurableObject applications.
Provides ergonomic helpers for testing Durable Objects. See the
Testing Guide for detailed examples and patterns.
Usage
defmodule MyApp.CounterTest do
 use ExUnit.Case
 use DurableObject.Testing, repo: MyApp.Repo

 test "increment works" do
 {:ok, 1} = Counter.increment("test-counter", 1)
 assert_persisted Counter, "test-counter", count: 1
 end
end
Important: You must use ExUnit.Case before use DurableObject.Testing.
Options
	:repo - The Ecto repo (required, or set via application config)
	:prefix - Table prefix for multi-tenancy (optional)

Helpers
	perform_handler/4 - Unit test handler logic without GenServer/DB
	perform_alarm_handler/3 - Unit test alarm handler logic
	assert_persisted/4 - Assert object state in database
	get_persisted_state/3 - Fetch persisted state for custom assertions
	assert_alarm_scheduled/4 - Assert alarm exists
	refute_alarm_scheduled/4 - Assert alarm does not exist
	all_scheduled_alarms/3 - List all alarms for an object
	fire_alarm/4 - Execute alarm immediately (bypasses scheduler)
	drain_alarms/3 - Execute all pending alarms
	assert_eventually/2 - Poll until condition is true

Limitations
	Tests cannot be async: true (sandbox runs in shared mode)
	fire_alarm/4 starts the object if not running
	drain_alarms/3 can hang on infinite alarm loops (use :max_iterations)

 Summary

 Functions

 __using__(opts)

 Sets up DurableObject test helpers.

 all_scheduled_alarms(module, object_id, opts \\ [])

 Returns all scheduled alarms for the given object.

 assert_alarm_scheduled(module, object_id, alarm_name, opts \\ [])

 Asserts that an alarm is scheduled for the given object.

 assert_eventually(condition_fn, opts \\ [])

 Polls a condition until it returns truthy or times out.

 assert_persisted(module, object_id, expected \\ nil, opts \\ [])

 Asserts that an object's state was persisted to the database.

 drain_alarms(module, object_id, opts \\ [])

 Fires all scheduled alarms for an object, regardless of scheduled time.

 fire_alarm(module, object_id, alarm_name, opts \\ [])

 Fires a specific scheduled alarm immediately, bypassing scheduler timing.

 get_persisted_state(module, object_id, opts \\ [])

 Returns the persisted state for an object, or nil if not found.

 perform_alarm_handler(module, alarm_name, state)

 Executes an alarm handler directly, bypassing GenServer and persistence.

 perform_handler(module, handler_name, args, state)

 Executes a handler function directly, bypassing GenServer and persistence.

 refute_alarm_scheduled(module, object_id, alarm_name, opts \\ [])

 Asserts that no alarm with the given name is scheduled.

 Functions

 __using__(opts)

 (macro)

Sets up DurableObject test helpers.
Injects a setup callback that:
	Checks out an Ecto sandbox connection
	Sets sandbox mode to {:shared, self()} for cross-process access
	Stores repo and prefix in process dictionary for helper functions

Important: You must use ExUnit.Case before use DurableObject.Testing
because this macro injects a setup callback.
Options
	:repo - The Ecto repo (required, or set via application config)
	:prefix - Table prefix for multi-tenancy (optional)

Example
defmodule MyApp.CounterTest do
 use ExUnit.Case # Must come first!
 use DurableObject.Testing, repo: MyApp.Repo

 test "increment works" do
 {:ok, 1} = Counter.increment("test-1", 1)
 assert_persisted Counter, "test-1", count: 1
 end
end

 all_scheduled_alarms(module, object_id, opts \\ [])

 @spec all_scheduled_alarms(module(), String.t(), keyword()) :: [
 %{name: atom(), scheduled_at: DateTime.t()}
]

Returns all scheduled alarms for the given object.
Useful for detailed assertions on alarm state when assert_alarm_scheduled
is not sufficient.
Options
	:repo - Ecto repo (defaults to test case repo from process dictionary)
	:prefix - Table prefix for multi-tenancy

Examples
alarms = all_scheduled_alarms(Counter, "user-123")
assert length(alarms) == 2
assert Enum.any?(alarms, & &1.name == :cleanup)
Returns
A list of maps with :name (atom) and :scheduled_at (DateTime), sorted
by scheduled_at ascending (earliest first).

 assert_alarm_scheduled(module, object_id, alarm_name, opts \\ [])

Asserts that an alarm is scheduled for the given object.
Queries the durable_object_alarms table directly to check if an alarm
with the given name exists for the object.
Options
	:within - Assert alarm is scheduled within this duration from now (milliseconds).
If the alarm's scheduled_at is further in the future, the assertion fails.
	:repo - Ecto repo (defaults to test case repo from process dictionary)
	:prefix - Table prefix for multi-tenancy

Examples
assert_alarm_scheduled Counter, "user-123", :cleanup
assert_alarm_scheduled Counter, "user-123", :cleanup, within: :timer.hours(1)
Raises
Raises ExUnit.AssertionError if:
	No alarm with the given name is scheduled
	:within is specified and the alarm is scheduled beyond that window

 assert_eventually(condition_fn, opts \\ [])

Polls a condition until it returns truthy or times out.
Use sparingly - prefer deterministic assertions when possible. This is
intended for testing truly asynchronous behavior where you can't control
timing (e.g., waiting for a process to terminate).
Options
	:timeout - Maximum wait in milliseconds (default: 5000)
	:interval - Polling interval in milliseconds (default: 50)

Examples
Wait for object to shut down
assert_eventually fn ->
 DurableObject.whereis(Counter, id) == nil
end, timeout: 1000

With custom interval for expensive checks
assert_eventually fn ->
 get_persisted_state(Counter, id) != nil
end, timeout: 2000, interval: 100
Returns
	:ok - Condition became truthy

Raises
Raises ExUnit.AssertionError if the condition doesn't become truthy
within the timeout. The error message is generic ("Condition did not
become true within timeout") - consider wrapping in a more descriptive
assertion if needed.
Implementation Note
Uses System.monotonic_time/1 for timeout tracking, which is not affected
by system clock changes. The condition function is called once immediately,
then after each interval until timeout.

 assert_persisted(module, object_id, expected \\ nil, opts \\ [])

Asserts that an object's state was persisted to the database.
Can optionally assert on specific field values.
Options
	:repo - Ecto repo (defaults to test case repo from process dictionary)
	:prefix - Table prefix for multi-tenancy

Examples
Assert object exists in DB (any state)
assert_persisted Counter, "user-123"

Assert specific fields (keyword list)
assert_persisted Counter, "user-123", count: 5

Assert specific fields (map)
assert_persisted Counter, "user-123", %{count: 5, name: "test"}

With explicit options
assert_persisted Counter, "user-123", [count: 5], repo: MyRepo
Raises
Raises ExUnit.AssertionError if:
	No state is persisted for the object
	Any expected field value doesn't match the persisted value

 drain_alarms(module, object_id, opts \\ [])

Fires all scheduled alarms for an object, regardless of scheduled time.
Useful for testing alarm chains or ensuring all cleanup alarms run.
Alarms are fired in scheduled order (earliest first). If firing an alarm
schedules a new alarm, it will also be fired (recursively).
Warning: This can hang or raise if alarms reschedule indefinitely.
Use the :max_iterations option to protect against infinite loops.
Options
	:repo - Ecto repo (defaults to test case repo from process dictionary)
	:prefix - Table prefix for multi-tenancy
	:max_iterations - Maximum number of alarms to fire (default: 100).
Raises if exceeded.

Examples
Fire all alarms including any that get scheduled during execution
{:ok, 2} = drain_alarms(Counter, "user-123")

With custom iteration limit for alarm chains
{:ok, _count} = drain_alarms(Counter, "user-123", max_iterations: 10)
Returns
	{:ok, count} - All alarms were drained, returns number of alarms fired

Raises
Raises if :max_iterations is exceeded (possible infinite alarm loop).

 fire_alarm(module, object_id, alarm_name, opts \\ [])

Fires a specific scheduled alarm immediately, bypassing scheduler timing.
Runs the alarm handler deterministically without waiting for scheduler polling.
The alarm is deleted after successful execution (unless the handler reschedules
the same alarm).
Important: This function starts the DurableObject if it's not running.
If your test depends on the object NOT being started, use perform_alarm_handler/3
for unit testing instead.
How It Works
	Verifies the alarm exists in the database
	Calls DurableObject.call(module, object_id, :__fire_alarm__, [alarm_name])
	If successful, checks if the alarm was rescheduled (by comparing scheduled_at)
	Deletes the alarm only if it wasn't rescheduled

Options
	:repo - Ecto repo (defaults to test case repo from process dictionary)
	:prefix - Table prefix for multi-tenancy

Examples
:ok = Counter.schedule_alarm("user-123", :cleanup, :timer.hours(1))
fire_alarm(Counter, "user-123", :cleanup)
refute_alarm_scheduled Counter, "user-123", :cleanup
Returns
	:ok - Alarm was fired successfully
	{:error, reason} - The alarm handler returned an error

Raises
Raises ArgumentError if no alarm with the given name is scheduled.

 get_persisted_state(module, object_id, opts \\ [])

 @spec get_persisted_state(module(), String.t(), keyword()) :: map() | nil

Returns the persisted state for an object, or nil if not found.
Useful for custom assertions beyond what assert_persisted/4 provides.
Top-level field keys are returned as atoms. Keys within field values
remain as strings (the raw DB form), regardless of the object_keys setting.
Options
	:repo - Ecto repo (defaults to test case repo from process dictionary)
	:prefix - Table prefix for multi-tenancy

Examples
state = get_persisted_state(Counter, "user-123")
assert state.count > 0
assert state.name =~ ~r/test/

Nested keys are always strings, even with object_keys: :atoms!
assert state.metadata == %{"foo" => "bar"}

Returns nil if not persisted
assert nil == get_persisted_state(Counter, "nonexistent")

 perform_alarm_handler(module, alarm_name, state)

 @spec perform_alarm_handler(module(), atom(), map()) ::
 {:noreply, map()}
 | {:noreply, map(), {:schedule_alarm, atom(), pos_integer()}}
 | {:error, term()}

Executes an alarm handler directly, bypassing GenServer and persistence.
This is useful for unit testing alarm handler logic in isolation. The
handle_alarm/2 callback is called directly with the alarm name and state.
Note: Unlike regular handlers, alarm handlers are dispatched through a single
handle_alarm(alarm_name, state) function that pattern matches on the alarm name.
Examples
assert {:noreply, %{count: 0}} =
 perform_alarm_handler(Counter, :daily_reset, %{count: 42})

Alarm that reschedules itself
assert {:noreply, %{count: 0}, {:schedule_alarm, :daily_reset, 86400000}} =
 perform_alarm_handler(Counter, :daily_reset, %{count: 42})
Parameters
	module - The DurableObject module
	alarm_name - The alarm name (atom)
	state - The state map

Returns
Returns whatever the handler returns (not wrapped):
	{:noreply, new_state} - Alarm handler completed
	{:noreply, new_state, {:schedule_alarm, name, delay}} - Completed with reschedule
	{:error, reason} - Handler returned an error
	{:error, :no_alarm_handler} - Module has no handle_alarm/2 function

Note: If handle_alarm/2 exists but doesn't have a clause for the given
alarm name, this will raise a FunctionClauseError (not return an error tuple).

 perform_handler(module, handler_name, args, state)

 @spec perform_handler(module(), atom(), list(), map()) ::
 {:reply, term(), map()}
 | {:reply, term(), map(), {:schedule_alarm, atom(), pos_integer()}}
 | {:reply, term()}
 | {:noreply, map()}
 | {:noreply, map(), {:schedule_alarm, atom(), pos_integer()}}
 | {:error, term()}

Executes a handler function directly, bypassing GenServer and persistence.
This is useful for unit testing handler logic in isolation. The handler
function handle_<name>/N is called directly with the provided args and state.
Note: This does NOT validate that the handler is declared in the DSL's
handlers block - it only checks if the function exists. This means you
can test private helper handlers that aren't exposed via the DSL.
Examples
Handler that takes no args - calls handle_increment(state)
assert {:reply, 1, %{count: 1}} =
 perform_handler(Counter, :increment, [], %{count: 0})

Handler that takes args - calls handle_increment_by(5, state)
assert {:reply, 5, %{count: 5}} =
 perform_handler(Counter, :increment_by, [5], %{count: 0})

Handler that returns error
assert {:error, :invalid_amount} =
 perform_handler(Counter, :increment_by, [-1], %{count: 0})
Parameters
	module - The DurableObject module
	handler_name - The handler name (atom), will call handle_<name>/N
	args - List of arguments to pass before state
	state - The state map to pass as the last argument

Returns
Returns whatever the handler returns (not wrapped):
	{:reply, result, new_state} - Handler returned a reply with state change
	{:reply, result, new_state, {:schedule_alarm, name, delay}} - Reply with alarm
	{:reply, result} - Read-only handler (no state change)
	{:noreply, new_state} - Handler returned no reply
	{:noreply, new_state, {:schedule_alarm, name, delay}} - No reply with alarm
	{:error, reason} - Handler returned an error
	{:error, {:unknown_handler, name}} - Handler function doesn't exist

 refute_alarm_scheduled(module, object_id, alarm_name, opts \\ [])

Asserts that no alarm with the given name is scheduled.
Options
	:repo - Ecto repo (defaults to test case repo from process dictionary)
	:prefix - Table prefix for multi-tenancy

Examples
refute_alarm_scheduled Counter, "user-123", :cleanup
Raises
Raises ExUnit.AssertionError if an alarm with the given name exists.

DurableObject.Cluster.Backend behaviour

Behaviour definition for cluster backend implementations.
A backend provides the registry and supervisor infrastructure for
DurableObject processes. Two implementations are provided:
	DurableObject.Cluster.Local - Uses Elixir's built-in Registry and DynamicSupervisor
	DurableObject.Cluster.Horde - Uses Horde for distributed operation across a cluster

 Summary

 Callbacks

 child_specs(opts)

 Returns the child specs for the registry and supervisor.

 count_children()

 Returns the count of active children in the dynamic supervisor.

 start_child(spec)

 Starts a child under the dynamic supervisor.

 via_tuple(module, object_id)

 Returns a via tuple for process registration.

 Callbacks

 child_specs(opts)

 @callback child_specs(opts :: keyword()) :: [Supervisor.child_spec()]

Returns the child specs for the registry and supervisor.
These specs are added to the DurableObject application supervisor.

 count_children()

 @callback count_children() :: non_neg_integer()

Returns the count of active children in the dynamic supervisor.

 start_child(spec)

 @callback start_child(spec :: Supervisor.child_spec()) ::
 {:ok, pid()} | {:ok, pid(), term()} | {:error, term()}

Starts a child under the dynamic supervisor.
Returns {:ok, pid} on success or {:error, reason} on failure.

 via_tuple(module, object_id)

 @callback via_tuple(module :: module(), object_id :: String.t()) :: GenServer.name()

Returns a via tuple for process registration.
The tuple is used with GenServer.start_link's :name option and
can be used to look up processes by module and object_id.

DurableObject.Cluster.Local

Local-mode cluster backend using Elixir's built-in Registry and DynamicSupervisor.
This is the default backend and runs on a single node. It does not require
any additional dependencies.

DurableObject.Dsl.Extension

Spark DSL extension defining the structure for Durable Objects.
This extension provides three sections:
	state - Define state fields
	handlers - Define RPC handlers
	options - Configure lifecycle options

 Summary

 Functions

 handlers(body)

 options(body)

 state(body)

 Functions

 handlers(body)

 (macro)

 options(body)

 (macro)

 state(body)

 (macro)

DurableObject.Dsl.Field

Struct representing a state field in a Durable Object.
Fields define the structure of the object's state, including:
	name - The field name (atom)
	type - The field type (atom, for documentation purposes)
	default - The default value for the field

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %DurableObject.Dsl.Field{
 __spark_metadata__: any(),
 default: any(),
 name: atom(),
 type: atom()
}

DurableObject.Dsl.Handler

Struct representing a handler (RPC method) in a Durable Object.
Handlers define the operations that can be performed on the object:
	name - The handler name (atom)
	args - List of argument names (atoms)

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %DurableObject.Dsl.Handler{
 __spark_metadata__: any(),
 args: [atom()],
 name: atom()
}

DurableObject.Dsl.Transformers.BuildIntrospection

Transformer that generates __durable_object__/1 introspection functions.
This transformer runs at compile time and generates functions that allow
runtime introspection of the Durable Object's DSL configuration:
	__durable_object__(:fields) - Returns list of Field structs
	__durable_object__(:handlers) - Returns list of Handler structs
	__durable_object__(:hibernate_after) - Returns hibernate_after value
	__durable_object__(:shutdown_after) - Returns shutdown_after value
	__durable_object__(:default_state) - Returns map with field defaults

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

Callback implementation for Spark.Dsl.Transformer.before?/1.

DurableObject.Dsl.Transformers.GenerateClient

Transformer that generates client API functions for each declared handler.
For each handler declared in the DSL, this generates a client function
that calls DurableObject.call/5 with the appropriate arguments.
For example, given:
handlers do
 handler :increment, args: [:amount]
 handler :get
end
This generates:
def increment(object_id, amount, opts \\ []) do
 DurableObject.call(__MODULE__, object_id, :increment, [amount], opts)
end

def get(object_id, opts \\ []) do
 DurableObject.call(__MODULE__, object_id, :get, [], opts)
end

 Summary

 Functions

 after_compile?()

 Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

 Callback implementation for Spark.Dsl.Transformer.before?/1.

 Functions

 after_compile?()

Callback implementation for Spark.Dsl.Transformer.after_compile?/0.

 before?(_)

Callback implementation for Spark.Dsl.Transformer.before?/1.

DurableObject.Dsl.Verifiers.ValidateHandlers

Verifier that validates handler callbacks are properly defined.
This verifier checks that:
	Each declared handler has a corresponding handle_<name>/N function defined
	The function arity matches: number of declared args + 1 (for state)
	Reserved names like :alarm are not used (conflicts with behaviour callback)

For example, a handler declared as:
handler :increment, args: [:amount]
Must have a corresponding function:
def handle_increment(amount, state) do
 ...
end

DurableObject.Scheduler.Oban

Oban-based alarm scheduler.
This scheduler uses Oban's job processing infrastructure to deliver alarms.
It's ideal for applications that already use Oban, as it leverages the existing
setup and provides Oban's robust features (retries, observability, etc.).
Configuration
config :durable_object,
 scheduler: DurableObject.Scheduler.Oban,
 scheduler_opts: [oban_queue: :durable_object_alarms]
You must also add the queue to your Oban configuration:
config :my_app, Oban,
 repo: MyApp.Repo,
 queues: [durable_object_alarms: 5]
If your app uses a custom Oban instance name (not the default Oban), specify it:
scheduler_opts: [oban_instance: MyApp.Oban, oban_queue: :durable_object_alarms]
How It Works
	Alarms are scheduled as Oban jobs with schedule_in
	When the job executes, it fires the alarm via DurableObject.call/5
	Jobs use Oban's uniqueness to prevent duplicate alarms
	Failed alarms are retried according to Oban's retry policy (max 3 attempts)

Supervision
Unlike the polling scheduler, the Oban scheduler does not add any children
to the supervision tree. Oban manages its own supervision and the worker
jobs run within Oban's infrastructure.

DurableObject.Scheduler.Polling

Polling-based scheduler that persists alarms to the database
and periodically checks for overdue alarms.
This is the default scheduler implementation. It stores alarms in the
durable_object_alarms table and fires them by starting the target
object and calling handle_alarm/2.
Configuration
config :durable_object,
 repo: MyApp.Repo,
 scheduler: DurableObject.Scheduler.Polling,
 scheduler_opts: [
 polling_interval: :timer.seconds(30),
 claim_ttl: :timer.seconds(60)
]
Options
	:polling_interval - How often to check for overdue alarms (default: 30 seconds)
	:claim_ttl - How long a claimed alarm waits before being retried (default: 60 seconds)

Crash Recovery
The polling scheduler uses claim-based execution for crash recovery:
	Claim: Before firing, the scheduler atomically sets claimed_at on the alarm
	Fire: The object's handle_alarm/2 callback is invoked
	Delete: On success, the alarm is deleted only if still claimed

If a handler reschedules the same alarm, the upsert clears claimed_at, so the
delete becomes a no-op and the new alarm persists. If the handler fails or the
server crashes, the alarm remains claimed and will be retried after claim_ttl
expires.
This provides at-least-once delivery semantics. Handlers should be idempotent.

DurableObject.Storage.Schemas.Alarm

Ecto schema for durable_object_alarms table.
Stores scheduled alarms for Durable Objects, separate from object state.

 Summary

 Functions

 changeset(alarm, attrs)

 Creates a changeset for an Alarm.

 Functions

 changeset(alarm, attrs)

Creates a changeset for an Alarm.

DurableObject.Storage.Schemas.Object

Ecto schema for durable_objects table.
Stores the state of Durable Objects as JSON blobs, indexed by
(object_type, object_id) pair.

 Summary

 Functions

 changeset(object, attrs)

 Creates a changeset for an Object.

 Functions

 changeset(object, attrs)

Creates a changeset for an Object.

mix durable_object.gen.migration

Generates an upgrade migration for DurableObject.
This task scans your existing migrations to find the highest DurableObject
migration version already applied, then generates a new migration to upgrade
to the latest version.
Usage
mix durable_object.gen.migration
Options
	--repo - The Ecto repo to use (defaults to auto-detected repo)

Example
If your project has a migration with DurableObject.Migration.up(version: 2),
running this task will generate:
defmodule MyApp.Repo.Migrations.UpgradeDurableObjectsV3 do
 use Ecto.Migration

 def up, do: DurableObject.Migration.up(base: 2, version: 3)
 def down, do: DurableObject.Migration.down(base: 2, version: 3)
end

mix durable_object.gen.object

Generates a new Durable Object module.
Usage
mix durable_object.gen.object MyApp.Counter --fields count:integer
mix durable_object.gen.object MyApp.RateLimiter --fields requests:integer,window_start:utc_datetime
Options
	--fields - Comma-separated list of field:type pairs
	--repo - The Ecto repo to use (defaults to auto-detected repo)

Supported Field Types
	Type	Default
	integer	0
	float	0.0
	string	""
	boolean	false
	map	%{}
	list	[]
	utc_datetime	nil
	naive_datetime	nil

Any unrecognized type defaults to nil.
Examples
mix durable_object.gen.object MyApp.Counter --fields count:integer
mix durable_object.gen.object MyApp.ChatRoom --fields messages:list,participants:list

mix durable_object.install

Installs DurableObject into your project.
Options
	--repo - The Ecto repo to use (defaults to auto-detected repo)
	--scheduler - Alarm scheduler: polling (default) or oban
	--oban-instance - Oban instance name (default: Oban)
	--oban-queue - Oban queue name (default: durable_object_alarms)
	--distributed - Enable Horde for distributed mode

Example
mix igniter.install durable_object
mix igniter.install durable_object --scheduler oban
mix igniter.install durable_object --scheduler oban --oban-instance MyApp.Oban
mix igniter.install durable_object --distributed

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

