

 ebson

 v0.2.0

 Table of contents

 	Overview

 	Changelog

 	License

 	
 Modules

 	ebson

 	ebson_iter

 ebson

[image: CI]
[image: Hex.pm]
High-performance BSON encoder/decoder for Erlang.
Features
	Zero-copy traversal - Navigate BSON documents without decoding values
	Efficient skipping - Skip entire subtrees using BSON length prefixes
	Memory safe - All decoded values are copied to avoid retaining source binaries
	Full type support - All common BSON types including decimal128

Installation
Add to your rebar.config:
{deps, [
 {ebson, "0.1.0"}
]}.
Quick Start
Encode a map to BSON
Map = #{
 <<"_id">> => {objectid, <<1,2,3,4,5,6,7,8,9,10,11,12>>},
 <<"name">> => <<"Alice">>,
 <<"age">> => 30,
 <<"tags">> => [<<"developer">>, <<"erlang">>]
},
{ok, Bson} = ebson:encode_map(Map).
Decode BSON to a map
{ok, Map} = ebson:decode_map(Bson).
Zero-copy traversal
%% Create iterator
{ok, Iter} = ebson_iter:new(Bson),

%% Iterate elements
{ok, Key, Type, ValueRef, Iter2} = ebson_iter:next(Iter),

%% Decode only when needed
{ok, Value} = ebson_iter:decode_value(Type, ValueRef).
Direct field lookup
%% Find a top-level key
{ok, Type, ValueRef} = ebson_iter:peek(Bson, <<"name">>),
{ok, <<"Alice">>} = ebson_iter:decode_value(Type, ValueRef).

%% Navigate nested paths
{ok, Type, ValueRef} = ebson_iter:find_path(Bson, [<<"address">>, <<"city">>]).
Modules
ebson_iter
Zero-copy BSON binary iterator for hot paths. Use this when you need to:
	Filter documents without full decode
	Access specific fields efficiently
	Skip large nested structures

ebson
Convenience encode/decode for Erlang maps. Use this when you need to:
	Fully decode documents for processing
	Encode Erlang maps for storage
	Work with documents in admin tools or tests

Type Mappings
	Erlang Value	BSON Type
	integer (32-bit range)	int32
	integer (64-bit range)	int64
	float	double
	binary	string (UTF-8)
	true / false	boolean
	null	null
	map	document
	list	array
	{objectid, <<12 bytes>>}	objectid
	{datetime_ms, Integer}	datetime
	{binary, Subtype, Data}	binary
	{timestamp, Increment, Time}	timestamp
	{decimal128, Coeff, Exp}	decimal128
	{regex, Pattern, Options}	regex
	minkey / maxkey	minkey / maxkey

Memory Safety
ValueRefs from ebson_iter point into the original binary without copying. This is efficient but means the source binary stays in memory.
To release the source binary:
	Call ebson_iter:decode_value/2 which uses binary:copy/1
	Use ebson:decode_map/1 for full document decode

License
Apache-2.0

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[0.2.0] - 2026-01-03
Changed
	Renamed application from erlang_bson to ebson
	Renamed bson_codec module to ebson
	Renamed bson_iter module to ebson_iter

Added
	GitHub Actions CI for OTP 25, 26, 27

Fixed
	Binary copy test compatibility across OTP versions

[0.1.0] - 2026-01-03
Added
	ebson_iter module for zero-copy BSON binary traversal
	new/1 - Create iterator from BSON binary with validation
	next/1 - Iterate elements without decoding values
	peek/2 - Find key at top level without iteration state
	find_path/2 - Navigate nested documents via path
	decode_value/2 - Decode value refs to Erlang terms

	ebson module for map encode/decode
	encode_map/1 - Encode Erlang map to BSON binary
	decode_map/1 - Decode BSON binary to Erlang map

	bson_types.hrl header with BSON type constants

	Supported BSON types:
	double (float)
	string (binary)
	document (map)
	array (list)
	binary with subtypes
	objectid
	boolean
	datetime
	null
	int32
	int64
	timestamp
	decimal128
	regex
	javascript
	minkey/maxkey

	Memory safety via binary:copy/1 to prevent retention of large source binaries

	Comprehensive test suite (101 tests)

 License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to the Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 Copyright 2026 Benoit Chesneau

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

ebson

BSON map encoder/decoder.
This module provides convenience functions for encoding Erlang maps to BSON and decoding BSON to Erlang maps. It is built on top of bson_iter for parsing.
This is NOT the hot path module - it fully decodes/encodes documents and is suitable for ingest, admin tools, and testing. For query hot paths, use bson_iter directly for zero-copy traversal.
[bookmark: Type_Mappings]Type Mappings
Erlang Value	BSON Type
 integer (fits in 32 bits) | int32
 integer (requires 64 bits) | int64
 float | double
 binary | string (UTF-8)
 true | false | boolean
 null | null
 map | document
 list | array
 {objectid, <<12 bytes>>} | objectid
 {datetime_ms, MillisInt} | datetime
 {binary, Subtype, Data} | binary
 {timestamp, Increment, Time} | timestamp
 {decimal128, Coeff, Exp} | decimal128
 {decimal128, infinity, _} | decimal128 +Inf
 {decimal128, neg_infinity, _} | decimal128 -Inf
 {decimal128, nan, _} | decimal128 NaN
 {regex, Pattern, Options} | regex
 minkey | minkey
 maxkey | maxkey
[bookmark: Requirements]Requirements
	Map keys must be binaries
	Integers must fit in 64-bit signed range
	ObjectId must be exactly 12 bytes

[bookmark: Memory_Safety]Memory Safety
All decoded values are copied using binary:copy/1 to break references to the source binary. This ensures decoded maps don't retain large source documents in memory.
[bookmark: Example_Usage]Example Usage
 %% Encode a map to BSON
 Map = #{
 <<"_id">> => {objectid, <<1,2,3,4,5,6,7,8,9,10,11,12>>},
 <<"name">> => <<"Test">>,
 <<"count">> => 42,
 <<"tags">> => [<<"a">>, <<"b">>]
 },
 {ok, BsonBin} = ebson:encode_map(Map).

 %% Decode BSON to a map
 {ok, DecodedMap} = ebson:decode_map(BsonBin).

 Summary

 Functions

 decode_map(Bin)

 Decode a BSON binary document to an Erlang map. All values are fully decoded and binaries are copied to break reference chains.

 encode_map(Map)

 Encode an Erlang map to a BSON binary document.

 Functions

 decode_map(Bin)

 -spec decode_map(binary()) -> {ok, map()} | {error, term()}.

Decode a BSON binary document to an Erlang map. All values are fully decoded and binaries are copied to break reference chains.

 encode_map(Map)

 -spec encode_map(map()) -> {ok, binary()} | {error, term()}.

Encode an Erlang map to a BSON binary document.

ebson_iter

BSON binary iterator for zero-copy traversal.
This module provides efficient traversal over BSON documents without decoding values eagerly. It uses offset-based ValueRefs to defer decoding until explicitly requested.
[bookmark: Design]Design
The iterator operates directly on the raw BSON binary using offsets, allowing traversal without memory allocation for values. This is ideal for hot paths like query filtering where only specific fields need to be accessed.
[bookmark: API_Overview]API Overview
	new/1 - Create an iterator from a BSON binary
	next/1 - Get next element (key, type, value ref)
	peek/2 - Find a key at top level without iteration state
	find_path/2 - Navigate nested documents via path
	decode_value/2 - Decode a value ref to Erlang term

[bookmark: ValueRef_and_Memory_Safety]ValueRef and Memory Safety
ValueRefs are maps containing #{bin, off, len} that point into the original binary without copying data. This is efficient but means the original binary is retained in memory as long as any ValueRef derived from it exists.
To break this reference chain, call decode_value/2 which uses binary:copy/1 internally. For full document decoding, use ebson:decode_map/1 which ensures all data is copied.
[bookmark: Example_Usage]Example Usage
 %% Traverse and find a field
 {ok, Iter} = ebson_iter:new(BsonBin),
 case ebson_iter:next(Iter) of
 {ok, Key, Type, ValueRef, Iter2} ->
 {ok, Value} = ebson_iter:decode_value(Type, ValueRef),
 ...;
 done -> ...
 end.

 %% Quick lookup without full iteration
 {ok, Type, ValueRef} = ebson_iter:peek(BsonBin, <<"fieldname">>),
 {ok, Value} = ebson_iter:decode_value(Type, ValueRef).

 %% Nested path lookup
 {ok, Type, ValueRef} = ebson_iter:find_path(BsonBin, [<<"a">>, <<"b">>, <<"c">>]).

 Summary

 Types

 bson_type/0

 iter/0

 value_ref/0

 Functions

 decode_value(Type, ValueRef)

 Decode a value from a ValueRef into an Erlang term. All binary data is copied using binary:copy/1 to break reference chains. Embedded documents/arrays are NOT recursively decoded - use decode_map/1 for that.

 find_path(Bin, RestPath)

 Find a value by navigating a path through nested documents. Path is a list of binary keys. Skips entire subdocuments efficiently using length prefixes.

 new(Bin)

 Create a new iterator from a BSON binary. Validates document structure: length prefix and terminator.

 next(Bson_iter)

 Advance to the next element in the document. Returns {ok, Key, Type, ValueRef, NewIter} for each element, 'done' when iteration is complete, or {error, Reason} on malformed input.

 peek(Bin, KeyBin)

 Look up a key at the top level of a BSON document without decoding. Returns {ok, Type, ValueRef} if found, not_found if key doesn't exist, or {error, Reason} on malformed input.

 Types

 bson_type/0

 -type bson_type() ::
 double | string | document | array | binary | objectid | boolean | datetime | null | int32 |
 int64 | timestamp | decimal128 | regex | javascript | minkey | maxkey.

 iter/0

 -opaque iter()

 value_ref/0

 -type value_ref() :: #{bin := binary(), off := non_neg_integer(), len := non_neg_integer()}.

 Functions

 decode_value(Type, ValueRef)

 -spec decode_value(bson_type(), value_ref()) -> {ok, term()} | {error, term()}.

Decode a value from a ValueRef into an Erlang term. All binary data is copied using binary:copy/1 to break reference chains. Embedded documents/arrays are NOT recursively decoded - use decode_map/1 for that.

 find_path(Bin, RestPath)

 -spec find_path(binary(), [binary()]) -> {ok, bson_type(), value_ref()} | not_found | {error, term()}.

Find a value by navigating a path through nested documents. Path is a list of binary keys. Skips entire subdocuments efficiently using length prefixes.

 new(Bin)

 -spec new(binary()) -> {ok, iter()} | {error, term()}.

Create a new iterator from a BSON binary. Validates document structure: length prefix and terminator.

 next(Bson_iter)

 -spec next(iter()) -> {ok, binary(), bson_type(), value_ref(), iter()} | done | {error, term()}.

Advance to the next element in the document. Returns {ok, Key, Type, ValueRef, NewIter} for each element, 'done' when iteration is complete, or {error, Reason} on malformed input.

 peek(Bin, KeyBin)

 -spec peek(binary(), binary()) -> {ok, bson_type(), value_ref()} | not_found | {error, term()}.

Look up a key at the top level of a BSON document without decoding. Returns {ok, Type, ValueRef} if found, not_found if key doesn't exist, or {error, Reason} on malformed input.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

