

 ECSpanse

 v0.7.2

 [image: Logo]

 Table of contents

 	Getting Started

 	Tutorial

 	Changelog

 	Modules

 	Ecspanse

 	Ecspanse.Data

 	Ecspanse.Frame

 	Ecspanse.Server

 	Ecspanse.Server.State

 	Ecspanse.TestServer

 	Ecspanse.Entity

 	Ecspanse.Component

 	Ecspanse.Component.Children

 	Ecspanse.Component.Parents

 	Ecspanse.System

 	Ecspanse.System.CreateDefaultResources

 	Ecspanse.System.Debug

 	Ecspanse.System.Timer

 	Ecspanse.System.TrackFPS

 	Ecspanse.System.WithEventSubscriptions

 	Ecspanse.System.WithoutEventSubscriptions

 	Ecspanse.Resource

 	Ecspanse.Resource.FPS

 	Ecspanse.Resource.State

 	Ecspanse.Event

 	Ecspanse.Query

 	Ecspanse.Command

 	Ecspanse.Template.Component

 	Ecspanse.Template.Component.Timer

 	Ecspanse.Template.Event

 	Ecspanse.Template.Event.Timer

 	Ecspanse.Projection

Getting Started

There are a few steps needed to get started with the Ecspanse ECS framework. This guide covers the process of setting up the environment and creating a working application.
Create a new Elixir/Phoenix project
This guide we will use a simple supervised Elixir application:
mix new demo --sup

Installation
The first step is adding the :ecspanse library to the project dependencies. This is done by adding the following line to the mix.exs file:
def deps do
 [
 {:ecspanse, "~> 0.3.0"}
]
end
Setup
The subsequent stage involves configuring Ecspanse via use Ecspanse. In this guide, the primary Demo module will accommodate the Ecspanse setup:
defmodule Demo do
 use Ecspanse

 @impl Ecspanse
 def setup(data) do
 data
 end
end
The Ecspanse.setup/1 callback is mandatory. It will be used later on to schedule the application systems.
Starting the Ecspanse server
The module implementing Ecspanse needs to be added to the supervision tree.
The Ecspanse server loop will start together with the application:
iex -S mix

Tutorial

The objective of this tutorial is to develop a basic game utilizing the Ecspanse framework. The game is the initial stage of an RPG game with minimal features. The implementation focuses on the on the game logic and it does not have a UI. All the user interactions and minimal display will be done via Livebook integration.
Story
The story of the game is simple:
	the game features a single character (Hero).
	the hero has energy. It starts with 50 energy points and it can have a maximum of 100 energy points. The energy points are used to perform actions. Every 3 seconds the hero restores 1 energy point.
	the hero can move in four directions in a tiles-like manner, without actually implementing a tile system. For example, if the hero moves right it will transition from (0,0) to (1,0) and so on. Each move costs 1 energy point.
	on each move the hero has a chance to find resources: gold or gems. Resources are not inventory items, but tradeable items. The hero can trade resources for inventory items.
	the hero starts with some items in their inventory: 2 potions and one pair of boots.
	the hero can purchase a map with 2 gold and a compass with 3 gold and 2 gems.

This setup enables us to delve into fundamental concepts of ECS in general and Ecspanse in particular:
	creating new entities from components
	querying for components
	interacting with the system via events
	scheduling systems to perform actions
	managing entities relationships
	different ways to approach collections of entities or components
	using time-based systems and events

Spawning the Hero
The goal of this chapter is to spawn the hero entity with its components on game startup.
Ecspanse Concepts 1
	creating components
	using commands to spawn entities
	creating and scheduling systems
	querying components

Adding the Components
The hero entity will have for now the following components:
defmodule Demo.Components.Hero do
 use Ecspanse.Component, state: [name: "Hero"]
end

defmodule Demo.Components.Energy do
 use Ecspanse.Component, state: [current: 50, max: 100]
end

defmodule Demo.Components.Position do
 use Ecspanse.Component, state: [x: 0, y: 0]
end

The Hero component holds generic information about the hero. The Energy holds the current and maximum energy points. The Position component holds the current position of the hero as horizontal and vertical coordinates.
Under the hood, the components are structs, with some metadata added by the library.
The following options are available when defining a component:
	:state - the fields and the initial state of the component. It should be a list or a keyword list.
	:tags - a list of atoms that can be used to tag the component. Tags are an alternate way of querying components.

The Hero Entity Spec
While this is not mandatory, we extracted the hero entity spec composition in the Demo.Entities.Hero module.
defmodule Demo.Entities.Hero do
 alias Demo.Components

 @spec new() :: Ecspanse.Entity.entity_spec()
 def new do
 {Ecspanse.Entity,
 components: [
 Components.Hero,
 Components.Energy,
 Components.Position
]}
 end
end
The new/0 function does not have any effect. It just prepares the entity spec (of type Ecspanse.Entity.entity_spec/0) to be spawned.
The Spawn Hero System
The system that spawns the hero is a simple one. It is scheduled to run once, when the game starts.
defmodule Demo.Systems.SpawnHero do
 use Ecspanse.System

 @impl true
 def run(_frame) do
 %Ecspanse.Entity{} = Ecspanse.Command.spawn_entity!(Demo.Entities.Hero.new())
 end
end
The system must implement the Ecspanse.System.WithoutEventSubscriptions.run/1 or Ecspanse.System.WithEventSubscriptions.run/2 callback. In this case, it is a generic system, not subscribing to any events, so we will use run/1. The callback receives the Ecspanse.Frame.t/0 as argument.
Operations that involve the creation of entities or components are done via the functions in the Ecspanse.Command module. The commands cannot be executed outside of a system.
Scheduling the Spawn Hero System
It is now time to schedule the newly created system as a startup system. This is done by updating the Ecspanse.setup/1 function in the Demo module. We already created this function in the Getting Started guide.
defmodule Demo do
 use Ecspanse

 alias Demo.Systems

 @impl Ecspanse
 def setup(data) do
 data
 |> Ecspanse.add_startup_system(Systems.SpawnHero)
 end
end
If we start the application now, the hero entity will be spawned.
Querying for the Hero
Next, we will incorporate some helper functions that will prove useful in the next chapters.
defmodule Demo.Entities.Hero do
 alias Demo.Components

 #...

 def fetch do
 Ecspanse.Query.select({Ecspanse.Entity}, with: [Components.Hero])
 |> Ecspanse.Query.one()
 |> case do
 {%Ecspanse.Entity{} = entity} -> {:ok, entity}
 _ -> {:error, :not_found}
 end
 end
end
In the Demo.Entities.Hero module we added the fetch/0 function. This function uses the Ecspanse.Query module to select the hero entity. The Ecspanse.Query.select/2 function is the most flexible way to query for entities and components and it will be used many times in this tutorial. In the current context, the query can be interpreted as:
	select tuples with a single element, Entity -> this queries the %Ecspanse.Entity{} struct itself. When we want to return the entity as part of a more complex select query, it needs to be in the first position of the tuple.
	that has the Demo.Components.Hero component attached to it.
	return just one record -> this would return the selected entity tuple if found, or otherwise nil. It is important to note that, if many records match the query, it will raise an error. For such cases, the Ecspanse.Query.stream/1 should be used and it will return a stream of results.

We can actually test the function in the iex console after starting the server:
iex(1)> Demo.Entities.Hero.fetch()
{:ok, %Ecspanse.Entity{id: "e950bf44-16d5-46b5-bd21-85aabae50ce8"}}
For the other helper function, we will create an API module. Again, this is not part of the library, but it provides an easy way to interact with the game, no matter what front end we will use.
defmodule Demo.API do
 @spec fetch_hero_details() :: {:ok, map()} | {:error, :not_found}
 def fetch_hero_details do
 Ecspanse.Query.select(
 {Demo.Components.Hero, Demo.Components.Energy, Demo.Components.Position}
)
 |> Ecspanse.Query.one()
 |> case do
 {hero, energy, position} ->
 %{name: hero.name, energy: energy.current, max_energy: energy.max, pos_x: position.x, pos_y: position.y}
 _ ->
 {:error, :not_found}
 end
 end
end
This function, returns a map with the hero details we have implemented so far. This time, the select/2 function is used to select multiple components. The query can be interpreted as:
	select tuples with three elements, Demo.Components.Hero, Demo.Components.Energy, Demo.Components.Position only from entities that have all three components attached to them.
	return just one record -> this will return a tuple with the three components structs if found, or nil otherwise.

We can test the function in the iex console after starting the server:
iex(2)> Demo.API.fetch_hero_details()
%{name: "Hero", energy: 50, max_energy: 100, pos_x: 0, pos_y: 0}

Hero Movement
The goal of this chapter is to implement the hero movement. The hero will be able to move in the four directions: up, down, left and right.
Ecspanse Concepts 2
	receiving external input through events
	implementing and scheduling async systems
	locking components for parallel operations
	implementing systems that subscribe to events
	updating components with commands

The Move Event
Ecspanse receives external input through events. Let's implement the move event.
defmodule Demo.Events.MoveHero do
 use Ecspanse.Event, fields: [:direction]
end
Similar to the components, the events are structs under the hood. The fields and their default values are defined with the :fields option.
We can also expose the event in the API module:
defmodule Demo.API do
 #...
 @spec move_hero(direction :: :up | :down | :left | :right) :: :ok
 def move_hero(direction) do
 Ecspanse.event({Demo.Events.MoveHero, direction: direction})
 end
end
We create another event that will be emitted when the hero actually moved to handle various side effects.
defmodule Demo.Events.HeroMoved do
 use Ecspanse.Event
end
The Move System
The role of the move system is to listen to move events, then check if the hero has enough energy to move and if so, update the hero position and adjust the energy. We want this system to run asynchronously.
defmodule Demo.Systems.MoveHero do
 use Ecspanse.System,
 lock_components: [Demo.Components.Position, Demo.Components.Energy],
 event_subscriptions: [Demo.Events.MoveHero]

 alias Demo.Components

 @impl true
 def run(%Demo.Events.MoveHero{direction: direction}, _frame) do
 components =
 Ecspanse.Query.select({Components.Position, Components.Energy}, with: [Components.Hero])
 |> Ecspanse.Query.one()

 with {position, energy} <- components,
 :ok <- validate_enough_energy_to_move(energy) do
 Ecspanse.Command.update_components!([
 {energy, current: energy.current - 1},
 {position, update_coordinates(position, direction)}
])
 Ecspanse.event(Demo.Events.HeroMoved)
 end
 end

 defp validate_enough_energy_to_move(%Components.Energy{current: current_energy}) do
 if current_energy >= 1 do
 :ok
 else
 {:error, :not_enough_energy}
 end
 end

 defp update_coordinates(%Components.Position{x: x, y: y}, direction) do
 case direction do
 :up -> [x: x, y: y + 1]
 :down -> [x: x, y: y - 1]
 :left -> [x: x - 1, y: y]
 :right -> [x: x + 1, y: y]
 _ -> [x: x, y: y]
 end
 end
end
Component Locking
We said that the move system will run asynchronously. This means that it will run in parallel with the other systems. The lock_components option is used to specify the components that will be locked by the system. That means that no other systems that lock at least one of the locked components will run in the same parallel batch as the MoveHero system. In our case, we want to lock the Demo.Components.Position and Demo.Components.Energy components. This is because we want to update the hero position and energy, and we need to avoid race conditions.
The commands will check if the system is async and will raise an error if we try to update, insert or delete components that are not locked. For extra safety we can also lock components for which we don't update the state, but we read and depend on it.
Event Subscriptions
Not all systems are required to run every single frame. The MoveHero system is useful only when a MoveHero event is received. The event_subscriptions option is used to specify the events that the system is interested in. The system will run only when at least one of the subscribed events is received.
The systems that have events subscriptions need to implement the run/2 callback. The first argument is the event that triggered the system. The second argument is the current frame.
Updating the Components
It is a good practice to make sure that actions can be performed before committing any updates. Reverting the changes would be more difficult and inefficient.
In our case, we want to make sure that the hero has enough energy before updating the Energy and Position components state.
Scheduling the Move System
We use add_system/2 to schedule the MoveHero system to run asynchronously.
defmodule Demo do
 #...
 def setup(data) do
 data
 #...
 |> Ecspanse.add_system(Systems.MoveHero)
 end
end
We can try the hero movement in the iex console:
iex(1)> Demo.API.fetch_hero_details()
%{name: "Hero", energy: 50, max_energy: 100, pos_x: 0, pos_y: 0}
iex(2)> Demo.API.move_hero(:up)
:ok
iex(3)> Demo.API.move_hero(:right)
:ok
iex(4)> Demo.API.fetch_hero_details()
%{name: "Hero", energy: 48, max_energy: 100, pos_x: 1, pos_y: 1}

Energy Regeneration
The goal of this chapter is to implement the energy regeneration. The hero will restore 1 point of energy every 3 seconds.
Ecspanse Concepts 3
	using the timer to schedule events at precise intervals
	using built-in component and event templates
	ordering async systems
	conditionally running systems
	new ways of querying entities and components

The Energy Timer Component
Timer-based components use the provided Ecspanse.Template.Component.Timer component template. The timer component is a special component that is used to schedule events at precise intervals. The timer component template exposes the following fields:
	:duration - the countdown duration in milliseconds
	:time - the current countdown time in milliseconds
	:event - the event that will be triggered when the countdown reaches 0
	:mode - :repeat | :once | :temporary - decides the timer behavior after the countdown reaches 0.

	:paused - boolean - can be used to pause the timer

We will discuss more about template components in the next chapter.
defmodule Demo.Components.EnergyTimer do
 use Ecspanse.Template.Component.Timer,
 state: [duration: 3000, time: 3000, event: Demo.Events.EnergyTimerFinished, mode: :repeat]
end
We add the new component to the Hero entity:
defmodule Demo.Entities.Hero do
 #...
 @spec new() :: Ecspanse.Entity.entity_spec()
 def new do
 {Ecspanse.Entity,
 components: [
 Components.Hero,
 Components.Energy,
 Components.Position,
 Components.EnergyTimer
]}
 end
 #...
end
The Energy Timer Finished Event
Timer-based events use the provided Ecspanse.Template.Event.Timer event template. The timer event template exposes the following fields:
	entity_id - the id of the entity that owns the timer component

defmodule Demo.Events.EnergyTimerFinished do
 use Ecspanse.Template.Event.Timer
end
This event will be automatically triggered when the EnergyTimer component duration reaches 0.
The Energy Restore System
defmodule Demo.Systems.RestoreEnergy do
 use Ecspanse.System,
 lock_components: [Demo.Components.Energy],
 event_subscriptions: [Demo.Events.EnergyTimerFinished]

 @impl true
 def run(%Demo.Events.EnergyTimerFinished{entity_id: entity_id}, _frame) do
 with {:ok, entity} <- Ecspanse.Query.fetch_entity(entity_id),
 {:ok, energy} <- Ecspanse.Query.fetch_component(entity, Demo.Components.Energy) do
 Ecspanse.Command.update_component!(energy, current: energy.current + 1)
 end
 end
end
The system locks the Energy component to update its state. And subscribes to the EnergyTimerFinished event because it is interested only in that timer event.
The system adds 1 point to the current energy. You are right to wonder why don't we first check the max energy cap. We will clarify this in the next section.
This system also introduces new ways of querying entities and components: Ecspanse.Query.fetch_entity/1 and Ecspanse.Query.fetch_component/2.
TIP
The following functions would produce the same results:
Ecspanse.Query.fetch_component(entity, Demo.Components.Energy)
#and
Demo.Components.Energy.fetch(entity)
Rescheduling the Systems Execution
It is time to re-write the Demo module:
defmodule Demo do
 use Ecspanse

 alias Demo.Systems

 @impl Ecspanse
 def setup(data) do
 data
 |> Ecspanse.add_startup_system(Systems.SpawnHero)
 |> Ecspanse.add_system(Systems.RestoreEnergy, run_if: [{__MODULE__, :energy_not_max}])
 |> Ecspanse.add_system(Systems.MoveHero, run_after: [Systems.RestoreEnergy])
 |> Ecspanse.add_frame_end_system(Ecspanse.System.Timer)
 end

 def energy_not_max do
 Ecspanse.Query.select({Demo.Components.Energy}, with: [Demo.Components.Hero])
 |> Ecspanse.Query.one()
 |> case do
 {%Demo.Components.Energy{current: current, max: max}} ->
 current < max

 _ ->
 false
 end
 end
end

The Conditional System Execution
By using the :run_if option, the RestoreEnergy system will run only if the current energy is below the max energy. The energy_not_max/0 function must always return a boolean value. Please note, this is not an efficient implementation. The energy_not_max/0 function will be called every frame. If the check would happen in the RestoreEnergy system, it would run only once every 3 seconds. But we took the opportunity to exemplify conditionally running systems.
The System Execution Order
By using the :run_after option, the MoveHero system will run after the RestoreEnergy system. Both are async systems, but even the async systems run in batches, not all at once. The batches are scheduled depending on the locked components and the specified order of execution of the systems.
Note
It does not matter if the RestoreEnergy system actually runs this turn.
The MoveHero will still run if receiving the MoveHero event.
The :run_after option just guarantees that if both systems are running,
the MoveHero will run after the RestoreEnergy.

Scheduling the Built-in Timer System
Once we start using timer-based components, the built-in Ecspanse.System.Timer system must be scheduled to run synchronously at the beginning or at the end of every frame. It will update all the timer-based components and trigger the timer events.

Finding Resources
The goal of this chapter is to implement the resource gathering. With each move, the hero has a chance to find gold or gems.
Ecspanse Concepts 4
	using tags to manage collections of components
	using advanced component specs
	using component templates
	using the auto-emitted component updated events

Creating the Resource Template Component
Template components are used to define the structure for related components. It is a guarantee that certain components will have certain fields in their state.
Together with tags, this is a powerful way to achieve polymorphism in components.
defmodule Demo.Components.Resource do
 use Ecspanse.Template.Component, state: [:id, :name, amount: 0], tags: [:resource]

 @impl true
 def validate(state) do
 with :ok <- validate_integer_amount(state[:amount]),
 :ok <- validate_positive_amount(state[:amount]) do
 :ok
 end
 end

 defp validate_integer_amount(amount) do
 if is_integer(amount) do
 :ok
 else
 {:error, "#{inspect(amount)} must be an integer"}
 end
 end

 defp validate_positive_amount(amount) do
 if amount >= 0 do
 :ok
 else
 {:error, "#{inspect(amount)} must be positive"}
 end
 end
end
Please note that the template Ecspanse.Template.Component.validate/1 callback is optional. It runs only at compile time and it takes the list of state fields as argument.
Creating the Resource Components
defmodule Demo.Components.Gems do
 use Demo.Components.Resource,
 state: [id: :gems, name: "Gems", amount: 0], tags: [:resource]
end

defmodule Demo.Components.Gold do
 use Demo.Components.Resource,
 state: [id: :gems, name: "Gold", amount: 0], tags: [:resource]
end
As you can observe, the two components are invoking the newly defined template with use Demo.Components.Resource instead of use Ecspanse.Component.
Another new concept introduced both here and in the template definition is the :tags option. It is a list of atoms that can be used to group and query components. The resource components can now be used as a resource store for the user, but they can also be used to represent the cost of various items. We will handle the second use case in the next chapters.
For such cases, it is important to use a standardized approach, a perfect use-case for templates. E.g., all the resource components should have the same state fields.
Adding the Resources Components to the Hero Entity
defmodule Demo.Entities.Hero do
 #...

 def new do
 {Ecspanse.Entity,
 components: [
 #...
 {Components.Gold, [], [:available]},
 {Components.Gems, [], [:available]}
]}
 end
 #...
end
We use the Ecspanse.Component.component_spec/0 type to specify the component spec. The first element of the tuple is the component module, the second element is the initial state of the component, and the third element is a list of tags.
The initial state of the component can be changed at runtime like {Components.Gold, [amount: 5], [:available]}. Also, new tags can be added at the time of the component creation. They will be appended to the list defined in the component module.
Runtime tag setting enables the reusability of components in various scenarios. It's important to note that changing a component's tags after it has been created is not supported.
Storing Found Resources
Our new MaybeFindResources system subscribes to Demo.Events.HeroMoved emitted by the MoveHero system. Then it randomly decides if the current position contains resources, and the type of resource.
defmodule Demo.Systems.MaybeFindResources do
 use Ecspanse.System,
 lock_components: [Demo.Components.Gems, Demo.Components.Gold],
 event_subscriptions: [Demo.Events.HeroMoved]

 alias Demo.Components

 @impl true
 def run(%Ecspanse.Event.HeroMoved{}, _frame) do
 with true <- found_resource?(),
 resource_module <- pick_resource(),
 {:ok, hero_entity} <- Demo.Entities.Hero.fetch(),
 {:ok, resource} <- Ecspanse.Query.fetch_component(hero_entity, resource_module) do
 Ecspanse.Command.update_component!(resource, amount: resource.amount + 1)
 end
 end

 def run(_event, _frame), do: :ok

 defp found_resource?, do: Enum.random([true, false])
 defp pick_resource, do: Enum.random([Components.Gems, Components.Gold])
end
Here we take advantage of the standardized resource approach, so the system would update the resource amount without caring about the actual resource type.
Then we add the new system to the setup:
defmodule Demo do
 use Ecspanse
 # ...
 def setup(data) do
 data
 # ...
 |> Ecspanse.add_system(Systems.MoveHero, run_after: [Systems.RestoreEnergy])
 |> Ecspanse.add_system(Systems.MaybeFindResources)
 |> Ecspanse.add_frame_end_system(Ecspanse.System.Timer)
 end
end
The last step of the current section is to expose the resources in the fetch_hero_details/0 function in the Demo.API module.
 defp list_hero_resources(hero_entity) do
 hero_entity
 |> Ecspanse.Query.list_tagged_components_for_entity([:resource, :available])
 |> Enum.map(&%{name: &1.name, amount: &1.amount})
 end
Here we use the Ecspanse.Query.list_tagged_components_for_entity/2 function to get all the components tagged with :resource and :available for the hero entity.
Starting the application and moving the hero around will now start to accumulate resources:
iex(14)> Demo.API.fetch_hero_details
%{
 name: "Hero",
 resources: [%{name: "Gems", amount: 2}, %{name: "Gold", amount: 5}],
 energy: 56,
 max_energy: 100,
 pos_x: -3,
 pos_y: -5
}
--
Market and Inventory Items
The goal of this chapter is to implement inventory items and a market. The hero can buy items from the market with resources and store them in the inventory.
Ecspanse Concepts 5
	using relationships to manage collections of entities
	querying components within entities relationships

Inventory Items Components and Entities Specs
We start by defining the inventory items and the market components:
defmodule Demo.Components.Market do
 use Ecspanse.Component
end

defmodule Demo.Components.Boots do
 use Ecspanse.Component, state: [name: "Boots"], tags: [:inventory]
end

defmodule Demo.Components.Compass do
 use Ecspanse.Component, state: [name: "Compass"], tags: [:inventory]
end

defmodule Demo.Components.Map do
 use Ecspanse.Component, state: [name: "Map"], tags: [:inventory]
end

defmodule Demo.Components.Potion do
 use Ecspanse.Component, state: [name: "Potion"], tags: [:inventory]
end
The inventory items, however are more complex than this. They cost resources, and in the future they may have various attributes impacting the hero's abilities. So the items will be entities of their own. We will create a new Entities.Inventory module to manage the inventory items specs.
defmodule Demo.Entities.Inventory do
 alias Demo.Components

 @spec new_boots() :: Ecspanse.Entity.entity_spec()
 def new_boots do
 {Ecspanse.Entity, components: [Components.Boots, {Components.Gold, [amount: 3], [:cost]}]}
 end

 @spec new_compass() :: Ecspanse.Entity.entity_spec()
 def new_compass do
 {Ecspanse.Entity,
 components: [
 Components.Compass,
 {Components.Gold, [amount: 3], [:cost]},
 {Components.Gems, [amount: 2], [:cost]}
]}
 end

 @spec new_map() :: Ecspanse.Entity.entity_spec()
 def new_map do
 {Ecspanse.Entity, components: [Components.Map, {Components.Gold, [amount: 2], [:cost]}]}
 end

 @spec new_potion() :: Ecspanse.Entity.entity_spec()
 def new_potion do
 {Ecspanse.Entity, components: [Components.Potion, {Components.Gold, [amount: 1], [:cost]}]}
 end

 @spec list_inventory_components(Ecspanse.Entity.t()) :: [component :: struct()]
 def list_inventory_components(parent) do
 Ecspanse.Query.list_tagged_components_for_children(parent, [:inventory])
 end
end
Each item is defined together with their cost in resources. Please note that now we are using the :cost tag to mark the cost resource components.
The list_inventory_components/1 function is used to list all the inventory items for a given parent entity. We will see what this means in the next section.
Inventory Items as Children Entities
Let's start by updating the existing SpawnHero system.
defmodule Demo.Systems.SpawnHero do
 use Ecspanse.System

 @impl true
 def run(_frame) do
 hero_entity = %Ecspanse.Entity{} = Ecspanse.Command.spawn_entity!(Demo.Entities.Hero.new())
 potion_entity_1 = %Ecspanse.Entity{} = Ecspanse.Command.spawn_entity!(Demo.Entities.Inventory.new_potion())
 potion_entity_2 = %Ecspanse.Entity{} = Ecspanse.Command.spawn_entity!(Demo.Entities.Inventory.new_potion())
 boots_entity = %Ecspanse.Entity{} = Ecspanse.Command.spawn_entity!(Demo.Entities.Inventory.new_boots())

 Ecspanse.Command.add_children!([{hero_entity, [potion_entity_1, potion_entity_2, boots_entity]}])
 end
end
The hero starts the journey with two potions and a pair of boots. We use the Ecspanse.Command.add_children!/1 function to add the inventory items as children of the hero entity. This way we can build complex entities by composing smaller entities.
The Ecspanse library provides many helper functions to query and change entities relations.
The next step is to create a new system that spawns a market entity that holds more items.
defmodule Demo.Systems.SpawnMarket do
 use Ecspanse.System

 @impl true
 def run(_frame) do
 compass_entity = %Ecspanse.Entity{} = Ecspanse.Command.spawn_entity!(Demo.Entities.Inventory.new_compass())
 map_entity = %Ecspanse.Entity{} = Ecspanse.Command.spawn_entity!(Demo.Entities.Inventory.new_map())

 Ecspanse.Command.spawn_entity!({ Ecspanse.Entity,
 components: [Demo.Components.Market], children: [compass_entity, map_entity]
 })
 end
end
This shows another way to spawn an entity with children already attached. The new system needs to be added to the setup/1 as startup system:
#...
|> Ecspanse.add_startup_system(Systems.SpawnMarket)
#...
One last thing we can do in this chapter is to add new functions to our API:
defmodule Demo.API do
 #...
 defp list_hero_inventory(hero_entity) do
 hero_entity
 |> Demo.Entities.Inventory.list_inventory_components()
 |> Enum.map(&%{name: &1.name})
 end

 @spec fetch_market_items() :: {:ok, list(map())} | {:error, :not_found}
 def fetch_market_items do
 Ecspanse.Query.select({Ecspanse.Entity}, with: [Demo.Components.Market])
 |> Ecspanse.Query.one()
 |> case do
 {market_entity} -> list_market_items(market_entity)
 _ -> {:error, :not_found}
 end
 end

 defp list_market_items(market_entity) do
 market_entity
 |> Demo.Entities.Inventory.list_inventory_components()
 |> Enum.map(fn item_component ->
 item_entity = Ecspanse.Query.get_component_entity(item_component)

 %{entity_id: item_entity.id, name: item_component.name, cost: item_cost(item_entity)}
 end)
 end

 defp item_cost(item_entity) do
 item_entity
 |> Ecspanse.Query.list_tagged_components_for_entity([:resource, :cost])
 |> Enum.map(&%{name: &1.name, amount: &1.amount})
 end
end
We will now display the hero's inventory and the market items with their respective prices.
We can test the new functions in the iex console:
iex(1)> Demo.API.fetch_hero_details()
%{
 name: "Hero",
 resources: [%{name: "Gems", amount: 0}, %{name: "Gold", amount: 0}],
 inventory: [%{name: "Boots"}, %{name: "Potion"}, %{name: "Potion"}],
 energy: 60,
 max_energy: 100,
 pos_x: 0,
 pos_y: 0
}

iex(1)> Demo.API.fetch_market_items()
[
 %{
 name: "Map",
 entity_id: "361c00ba-4dd3-4be8-b171-00e99c0b8ef7",
 cost: [%{name: "Gold", amount: 2}]
 },
 %{
 name: "Compass",
 entity_id: "b027fd01-d4fe-4ac1-9736-6b6f8c58fbd1",
 cost: [%{name: "Gold", amount: 3}, %{name: "Gems", amount: 2}]
 }
]

Purchasing Items from the Market
The goal of this chapter is to allow the hero to purchase items from the market using resources.
Ecspanse Concepts 6
	in-depth entity relationships

Purchasing Items Event
The event that triggers an item purchase is very simple:
defmodule Demo.Events.PurchaseMarketItem do
 use Ecspanse.Event, fields: [:item_entity_id]
end
It stores only the ID of the entity of the item being purchased.
On the other hand, the system is a bit more complex.
Purchasing Items System
Let's start with the code:
defmodule Demo.Systems.PurchaseMarketItem do
 use Ecspanse.System, event_subscriptions: [Demo.Events.PurchaseMarketItem]

 @impl true
 def run(%Demo.Events.PurchaseMarketItem{item_entity_id: item_entity_id}, _frame) do
 with {:ok, item_entity} <- Ecspanse.Query.fetch_entity(item_entity_id),
 {:ok, market_entity} <- fetch_market_entity(),
 {:ok, hero_entity} <- Demo.Entities.Hero.fetch(),
 true <- Ecspanse.Query.is_child_of?(parent: market_entity, child: item_entity),
 hero_available_resources_components =
 Ecspanse.Query.list_tagged_components_for_entity(hero_entity, [:resource, :available]),
 item_cost_components =
 Ecspanse.Query.list_tagged_components_for_entity(item_entity, [:resource, :cost]),
 true <- has_enough_resources?(hero_available_resources_components, item_cost_components) do
 spend_resources(hero_available_resources_components, item_cost_components)
 Ecspanse.Command.remove_child!(market_entity, item_entity)
 Ecspanse.Command.add_child!(hero_entity, item_entity)
 end
 end

 defp fetch_market_entity do
 Ecspanse.Query.select({Ecspanse.Entity}, with: [Demo.Components.Market])
 |> Ecspanse.Query.one()
 |> case do
 {market_entity} -> {:ok, market_entity}
 _ -> {:error, :not_found}
 end
 end

 defp has_enough_resources?(available_resources, cost_resources) do
 Enum.all?(cost_resources, fn cost_resource ->
 Enum.any?(available_resources, fn available_resource ->
 available_resource.id == cost_resource.id &&
 available_resource.amount >= cost_resource.amount
 end)
 end)
 end

 defp spend_resources(available_resources, cost_resources) do
 Enum.each(cost_resources, fn cost_resource ->
 available_resource =
 Enum.find(available_resources, fn available_resource ->
 available_resource.id == cost_resource.id
 end)

 Ecspanse.Command.update_component!(available_resource,
 amount: available_resource.amount - cost_resource.amount
)
 end)
 end
end
This system modifies many components, so one option is to make it synchronous. This way we don't have to individually lock each modified component. Later on it can be refactored into async if needed.
Before committing any component state changes it is important to perform all the required validations.
Validate Entities Exist
First of all, we want to make sure that the affected entities still exist. We use the Ecspanse.Query.fetch_entity/1 function to validate that the item entity exists. For the market entity we implement a custom query, while for the hero, we use the helper function we created earlier.
Validate Relationships
We need to make sure that the item we want to purchase is still available in the market. In a multiplayer game scenario this would avoid race conditions where two players purchase the same item in the same time. We use the Ecspanse.Query.is_child_of?/1 function to validate that the item is still a child of the market.
Validate Resources
Before the purchase is made, we need to make sure that the hero has enough resources to buy the item. Again, the tags prove useful. They allow us to query the same components from different entities and compare them.
Spending the Resources
Once all the validations are done, the resources can be spent. We iterate through the costs, then reduce the amount of the corresponding available resource.
Changing the Item Entity Parent
Finally, we remove the item from the market and add it to the hero's inventory. For this, we use the Ecspanse.Command.remove_child!/2 and Ecspanse.Command.add_child!/2 functions.
The Purchase API
We first need to add the PurchaseMarketItem event to setup as sync system:
#...
|> Ecspanse.add_frame_end_system(Systems.PurchaseMarketItem)
#...
Then expose the event in the API:
@spec purchase_market_item(item_entity_id :: Ecspanse.Entity.id()) :: :ok
def purchase_market_item(item_entity_id) do
 Ecspanse.event({Demo.Events.PurchaseMarketItem, item_entity_id: item_entity_id})
end
Now we can test it in the console. First make sure that the hero has enough resources by walking around and using the exposed fetch_hero_details/0 function. Then check the market items with fetch_market_items/0 and note down the desired item entity ID. Purchase the item with purchase_market_item/1. Finally, check the hero details again to see the item in the inventory.

Testing the Systems
The goal of this chapter is to learn how to test the systems. We will use the MoveHero system as an example.
Ecspanse Concepts 7
	testing systems in isolation
	using a custom Ecspanse setup
	using the system debugger to run systems manually

The game story is now ready. Time to see how we can test it.
Before we start, it is important to note that in test mode, the Ecspanse.Server is not automatically started. This allows us to decide the moment when the server should start, and what systems to run.
There are many ways to test systems. We will choose the most straightforward for this tutorial: testing the systems in isolation. That means that the systems scheduled under Demo.setup/1 are not running. We will create a new setup function for testing, and call the systems manually.
defmodule Demo.Systems.MoveHeroTest do
 use ExUnit.Case, async: false

 defmodule DemoTest do
 use Ecspanse
 @impl true
 def setup(data) do
 data
 end
 end

 setup do
 {:ok, _pid} = start_supervised({DemoTest, :test})
 Ecspanse.System.debug()

 hero_entity = %Ecspanse.Entity{} = Ecspanse.Command.spawn_entity!(Demo.Entities.Hero.new())
 {:ok, position_component} = Demo.Components.Position.fetch(hero_entity)

 assert position_component.x == 0
 assert position_component.y == 0

 {:ok, energy_component} = Demo.Components.Energy.fetch(hero_entity)
 assert energy_component.current == 50

 {:ok, hero_entity: hero_entity, energy_component: energy_component}
 end

 test "hero moves if enough energy", %{hero_entity: hero_entity} do
 event = move(:up)
 frame = frame(event)
 Demo.Systems.MoveHero.run(event, frame)

 {:ok, position_component} = Demo.Components.Position.fetch(hero_entity)
 assert position_component.x == 0
 assert position_component.y == 1

 {:ok, energy_component} = Demo.Components.Energy.fetch(hero_entity)
 assert energy_component.current == 49

 #...
 end

 test "hero doesn not move if not enough energy", %{
 hero_entity: hero_entity,
 energy_component: energy_component
 } do
 Ecspanse.Command.update_component!(energy_component, current: 0)

 event = move(:up)
 frame = frame(event)
 Demo.Systems.MoveHero.run(event, frame)

 {:ok, position_component} = Demo.Components.Position.fetch(hero_entity)
 assert position_component.x == 0
 assert position_component.y == 0

 {:ok, energy_component} = Demo.Components.Energy.fetch(hero_entity)
 assert energy_component.current == 0
 end

 defp move(direction) do
 %Demo.Events.MoveHero{direction: direction, inserted_at: System.os_time()}
 end

 defp frame(event) do
 %Ecspanse.Frame{event_batches: [[event]], delta: 1}
 end
end
Test Dependencies
We start by creating a DemoTest module and implement a setup/1 function that does not schedule any systems.
Test Setup
There are 2 things happening at the top of the setup block:
	we manually start the server by passing the {DemoTest, :test} tuple to the start_supervised/1 function. Compared to the normal setup where we add Demo to the supervision tree, the {MODULE, :test} tuple allows us to start the server in test mode.
	we run the Ecspanse.System.debug/0 function. This function "upgrades" the current test PID to a system, which allows us to run systems manually. As mentioned previously, commands can be run only from inside a system. Making the test PID a system allows us to run commands directly in our tests.

For the rest of the setup block we setup the test data. We spawn a hero entity and fetch its position and energy components. We assert that the hero is at the starting position and has the starting energy.
Test the Hero Can Move
We create two helper functions that would create a MoveHero event and a Ecspanse.Frame.t/0 with the event in it.
Then we can run the MoveHero system manually by simply calling Demo.Systems.MoveHero.run(event, frame).
From there on, we can query any component and do any relevant assertion. In this case, we assert that the hero has moved and that the energy has been reduced.

Running the Demo
The code for this tutorial, together with instructions on how to run it in Livebook is available on GitHub.
Also, you can find a more complex example of a multiplayer game built with Ecspanse on GitHub.

Changelog

v0.7.2 (2023-11-05)
Improvements
	Ecspanse.Projection.on_change/3 is called on Projection server initialization.

v0.7.1 (2023-10-07)
Improvements
	Ecspanse.Command.clone_entity!/2 and Ecspanse.Command.deep_clone_entity!/2 now accept an :id option to set the id of the cloned entity.

v0.7.0 (2023-10-05)
Breaking
	Ecspanse.Projection.on_change/3 replaces the on_change/2 and now takes both the new projection as well as the previous projection as arguments.

Improvements
	updating projections after all frame systems have run to return a consistent state.

v0.6.0 (2023-10-02)
Features
	introduces Ecspanse.Projection to build state projections across entities and components.

v0.5.0 (2023-09-28)
Features
	introduces ancestors queries to query for parents of an entity, the parents of parents, and so on:	Ecspanse.Query.select/2 new option: :for_ancestors_of
	Ecspanse.Query.list_ancestors/1
	Ecspanse.Query.list_tagged_components_for_ancestors/2

v0.4.0 (2023-09-17)
Breaking
	removed the automatically generated events: Ecspanse.Event.{ComponentCreated, ComponentUpdated, ComponentDeleted, ResourceCreated, ResourceUpdated, ResourceDeleted}. Use custom emitted events or short-lived components instead.

Improvements
	improves performance for tagged components. The system loop now runs faster when dealing with tagged components.

v0.3.1 (2023-08-30)
Fixes
	fixes a bug where events could be scheduled after they were batched for the current frame, and before the current events are cleared. Causing some events to be lost. Thanks to @andzdroid for identifying and documenting the issue.
	fixes a bug where temporary timers would crash. Thanks to @holykol for finding and fixing the issue.

Features
	imports Ecspanse.Query and Ecspanse.Command in all systems, so all the queries and commands are available without needing the respective module prefix.
	imports Ecspanse in the setup module that use Ecspanse so the system scheduling functions are available without needing the module prefix.

v0.3.0 (2023-08-21)
Features
	adds a new query Ecspanse.Query.list_tags/1 to list a component's tags.
	adds a new query Ecspanse.Query.list_components/1 to list all components of an entity.
	adds a new command Ecspanse.Command.clone_entity!/1 to clone an entity without its relationships.
	adds a new command Ecspanse.Command.deep_clone_entity!/1 to clone an entity with its descendants.

v0.2.1 (2023-08-20)
Fixes
	batch all events only by batch_key to avoid race conditions for different events processed by the same system.

v0.2.0 (2023-08-18)
Breaking
	use Ecspanse.Component.Timer and use Ecspanse.Event.Timer are now deprecated.
Use use Ecspanse.Template.Component.Timer and use Ecspanse.Template.Event.Timer instead.

Features
	introducing Ecspanse.Template.Component and Ecspanse.Template.Event to simplify the creation of related components and events.
	adds a new query Ecspanse.Query.fetch_component/2 to fetch a system's component by a list of tags.

v0.1.2 (2023-08-14)
Fixes
	removes unneeded dependency plug_crypto
	upgrades dependencies: credo, ex_doc, jason

v0.1.1 (2023-08-12)
Fixes
	adds the missing project :package

Ecspanse behaviour

Ecspanse is an Entity Component System (ECS) framework for Elixir.
note
Ecspanse is not a game engine, but a flexible foundation
for managing state and building logic, offering features like:
	flexible queries with multiple filters
	dynamic bidirectional relationships
	versatile tagging capabilities
	system event subscriptions
	asynchronous system execution

The core structure of the Ecspanse library is:
	Ecspanse: The main module used to configure and interact with the library.
	Ecspanse.Server: The server orchestrates the execution of systems and the storage of components, resources, and events.
	Ecspanse.Entity: A simple struct with an ID, serving as a holder for components.
	Ecspanse.Component: A struct that may hold state information or act as a simple label for an entity.
	Ecspanse.System: Holds the application core logic. Systems run every frame, either synchronously or asynchronously.
	Ecspanse.Resource: Global state storage, similar to components but not tied to a specific entity. Resources can only be created, updated, and deleted by synchronously executed systems.
	Ecspanse.Query: A tool for retrieving entities, components, or resources.
	Ecspanse.Command: A mechanism for changing components and resources state. They can only be triggered from a system.
	Ecspanse.Event: A mechanism for triggering events, which can be listened to by systems. It is the way to communicate externally with the systems.

Usage
To use Ecspanse, a module needs to be created, invoking use Ecspanse. This implements the Ecspanse behaviour, so the setup/1 callback must be defined. All the systems and their execution order are defined in the setup/1 callback.
Examples
defmodule TestServer1 do
 use Ecspanse, fps_limit: 60

 def setup(data) do
 data
 |> add_startup_system(Demo.Systems.SpawnHero)
 |> add_frame_start_system(Demo.Systems.PurchaseItem)
 |> add_system(Demo.Systems.MoveHero)
 |> add_frame_end_system(Ecspanse.System.Timer)
 |> add_shutdown_system(Demo.Systems.Cleanup)
 end
end
Info
The Ecspanse system scheduling functions are imported by default
for the setup module that use Ecspanse

Configuration
The following configuration options are available:
	:fps_limit (optional) - the maximum number of frames per second. Defaults to :unlimited.

Special Resources
Some special resources, such as State or FPS, are created by default by the framework.

 Summary

 Callbacks

 setup t

 The setup/1 callback is called on Ecspanse startup and is the place to define the running systems.
It takes an Ecspanse.Data struct as an argument and returns an updated struct.

 Functions

 add_frame_end_system(data, system_module, opts \\ [])

 Schedules a frame end system to be executed each frame during the game loop.

 add_frame_start_system(data, system_module, opts \\ [])

 Schedules a frame start system to be executed each frame during the game loop.

 add_shutdown_system(data, system_module)

 Schedules a shutdown system.

 add_startup_system(data, system_module)

 Schedules a startup system.

 add_system(data, system_module, opts \\ [])

 Schedules an async system to be executed each frame during the game loop.

 add_system_set(data, arg, opts \\ [])

 Convenient way to group together related systems.

 event(event_spec, opts \\ [])

 Queues an event to be processed in the next frame.

 fetch_pid()

 Retrieves the Ecspanse Server process PID.
If the data process is not found, it returns an error.

Callbacks

 Link to this callback

 setup t

 View Source

 @callback setup(Ecspanse.Data.Ecspanse.Data.t()) :: Ecspanse.Data.Ecspanse.Data.t()

The setup/1 callback is called on Ecspanse startup and is the place to define the running systems.
It takes an Ecspanse.Data struct as an argument and returns an updated struct.

 Examples

defmodule MyProject do
 use Ecspanse

 @impl Ecspanse
 def setup(%Ecspanse.Data{} = data) do
 data
 |> Ecspanse.Server.add_system(Demo.Systems.MoveHero)
 end
end

Functions

 Link to this function

 add_frame_end_system(data, system_module, opts \\ [])

 View Source

 @spec add_frame_end_system(
 Ecspanse.Data.t(),
 system_module :: module(),
 opts :: keyword()
) ::
 Ecspanse.Data.t()

Schedules a frame end system to be executed each frame during the game loop.
A frame end system is executed synchronously at the end of each frame.
Sync systems are executed in the order they were added.

 Options

	See the add_system/3 function for more information about the options.

 Examples

 Ecspanse.add_frame_end_system(ecspanse_data, Ecspanse.Systems.Timer)

 Link to this function

 add_frame_start_system(data, system_module, opts \\ [])

 View Source

 @spec add_frame_start_system(
 Ecspanse.Data.t(),
 system_module :: module(),
 opts :: keyword()
) ::
 Ecspanse.Data.t()

Schedules a frame start system to be executed each frame during the game loop.
A frame start system is executed synchronously at the beginning of each frame.
Sync systems are executed in the order they were added.

 Options

	See the add_system/3 function for more information about the options.

 Examples

 Ecspanse.add_frame_start_system(ecspanse_data, Demo.Systems.PurchaseItem)

 Link to this function

 add_shutdown_system(data, system_module)

 View Source

 @spec add_shutdown_system(Ecspanse.Data.t(), system_module :: module()) ::
 Ecspanse.Data.t()

Schedules a shutdown system.
A shutdown system runs only once when the Ecspanse.Server terminates. Shutdown systems do not take any options.
This is useful for cleaning up or saving the game state.

 Examples

 Ecspanse.add_shutdown_system(ecspanse_data, Demo.Systems.Cleanup)

 Link to this function

 add_startup_system(data, system_module)

 View Source

 @spec add_startup_system(Ecspanse.Data.t(), system_module :: module()) ::
 Ecspanse.Data.t()

Schedules a startup system.
A startup system runs only once during the Ecspanse startup process. Startup systems do not take any options.

 Examples

 Ecspanse.add_startup_system(ecspanse_data, Demo.Systems.SpawnHero)

 Link to this function

 add_system(data, system_module, opts \\ [])

 View Source

 @spec add_system(Ecspanse.Data.t(), system_module :: module(), opts :: keyword()) ::
 Ecspanse.Data.t()

Schedules an async system to be executed each frame during the game loop.

 Options

	:run_in_state - a list of states in which the system should run.
	:run_not_in_state - a list of states in which the system should not run.
	:run_if - a list of tuples containing the module and function that define a condition for running the system. Eg. [{MyModule, :my_function}]. The function must return a boolean.
	:run_after - only for async systems - a system or list of systems that must run before this system.

 Order of execution

Systems are executed each frame during the game loop. Sync systems run in the order they were added to the data's operations list.
Async systems are grouped in batches depending on the componets they are locking.
See the Ecspanse.System module for more information about component locking.
The order in which async systems run can pe specified using the run_after option.
This option takes a system or list of systems that must be run before the current system.
When using the run_after: SystemModule1 or run_after: [SystemModule1, SystemModule2] option, the following rules apply:
	The system(s) specified in run_after must be already scheduled. This prevents circular dependencies.
	There is a deliberate choice to allow only the run_after ordering option. While a run_before option would simplify some relations, it can also introduce circular dependencies.

Example of circular dependency:
	System A
	System B, run_before: System A
	System C, run_after: System A, run_before: System B

Info
The 'run_after' option does not depend on the "before" system being executed or not
(eg. when the "before" system subscribes to an event that is not triggered this frame).
The system will be executed anyway, even if the "before" system is not executed this frame.
The :run_after option is evaluated only once, at server start-up,
when the async systems are grouped together into batches.
Then the scheduler tries to execute every system in every batch.

 Examples

 Ecspanse.add_system(
 ecspanse_data,
 Demo.Systems.MoveHero,
 run_in_state: [:play],
 run_after: [Demo.Systems.RestoreEnergy]
)

 Link to this function

 add_system_set(data, arg, opts \\ [])

 View Source

 @spec add_system_set(
 Ecspanse.Data.t(),
 {module(), function :: atom()},
 opts :: keyword()
) ::
 Ecspanse.Data.t()

Convenient way to group together related systems.
New systems can be added to the set using the add_system_* functions.
System sets can also be nested.

 Options

The set options that applied on top of each system options in the set.
	See the add_system/3 function for more information about the options.

 Examples

defmodule Demo do
 use Ecspanse

 @impl Ecspanse
 def setup(data) do
 data
 |> Ecspanse.add_system_set({Demo.HeroSystemSet, :setup}, [run_in_state: :play])
 end

 defmodule HeroSystemSet do
 def setup(data) do
 data
 |> Ecspanse.add_system(Demo.Systems.MoveHero, [run_after: Demo.Systems.RestoreEnergy])
 |> Ecspanse.add_system_set({Demo.ItemsSystemSet, :setup})
 end
 end

 defmodule ItemsSystemSet do
 def setup(data) do
 data
 |> Ecspanse.add_system(Demo.Systems.PickupItem)
 end
 end
end

 Link to this function

 event(event_spec, opts \\ [])

 View Source

 @spec event(
 Ecspanse.Event.event_spec(),
 opts :: keyword()
) :: :ok

Queues an event to be processed in the next frame.

 Options

	:batch_key - A key for grouping multiple similar events in different batches within the same frame.
The event scheduler groups the events into batches by unique {EventModule, batch_key} combinations.
In most cases, the key may be an entity ID that either triggers or is impacted by the event.
Defaults to default, meaning that similar events will be placed in separate batches.

 Examples

 Ecspanse.event({Demo.Events.MoveHero, direction: :up}, batch_key: hero_entity.id)

 Link to this function

 fetch_pid()

 View Source

 @spec fetch_pid() :: {:ok, pid()} | {:error, :not_found}

Retrieves the Ecspanse Server process PID.
If the data process is not found, it returns an error.

 Examples

 Ecspanse.fetch_pid()
 {:ok, %{name: data_name, pid: data_pid}}

Ecspanse.Data

The Data module defines a struct that holds the state of the Ecspanse initialization process.
This struct is passed to the setup/1 callback, which is used to define the running systems.
After the initialization process the Data struct is not relevant anymore.

 Summary

 Types

 operation()

 operations()

 t()

 The data used for the Ecspanse initialization process.

Types

 Link to this type

 operation()

 View Source

 @type operation() ::
 {:add_system, Ecspanse.System.system_queue(), Ecspanse.System.t()}
 | {:add_system, :batch_systems, Ecspanse.System.t(), opts :: keyword()}

 Link to this type

 operations()

 View Source

 @type operations() :: [operation()]

 Link to this type

 t()

 View Source

 @type t() :: %Ecspanse.Data{operations: operations(), system_set_options: map()}

The data used for the Ecspanse initialization process.

Ecspanse.Frame

The frame is a struct that encapsulates the state of the current frame.
It holds information such as the time elapsed since the last frame and any batches of events that have been inserted during the previous frame.
This frame struct is available to all systems during the frame.
Fields
	:event_batches - a collection of event batches queued for execution within this frame.
	:delta - the time elapsed since the last frame in milliseconds.

 Summary

 Types

 t()

 The frame struct.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Ecspanse.Frame{
 delta: non_neg_integer(),
 event_batches: [[event :: struct()]]
}

The frame struct.

 Example

 %Ecspanse.Frame{
 event_batches: [[%Demo.Events.MoveHero{direction: :left}, %Demo.Events.FindResource{type: :gold}], [%Demo.Events.MoveHero{direction: :down}]],
 delta: 18,
 }

Ecspanse.Server

The server is responsible for managing the internal state of the framework,
scheduling and running the Systems, and batching the Events.
The server is started by adding the module that invokes use Ecspanse to the supervision tree.
Info
There is only one server instance running per otp app.
Trying to create another setup module that use Ecspanse and
adding it to the supervision tree will result in an error.

 Summary

 Types

 debug_next_frame()

 Debug server state

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 debug()

 Utility function. Returns all the internal state of the framework: Ecspanse.Server.State.t/0.

 test_server(test_pid)

 Utility function. The server switches to test mode.

Types

 Link to this type

 debug_next_frame()

 View Source

 @type debug_next_frame() :: {:next_frame, Ecspanse.Server.State.t()}

Debug server state

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 debug()

 View Source

 @spec debug() :: Ecspanse.Server.State.t()

Utility function. Returns all the internal state of the framework: Ecspanse.Server.State.t/0.
This can be useful for debugging systems scheduling and events batching.
This function is intended for use only in testing and development environments.

 Link to this function

 test_server(test_pid)

 View Source

 @spec test_server(pid()) :: :ok

Utility function. The server switches to test mode.
At the beginning of each frame, a debug_next_frame/0 tupple message will be sent
to the process passed as function argument.
This function is intended for use only in testing and development environments.

Ecspanse.Server.State

The internal state of the framework.

 Summary

 Types

 t()

 The internal state of the framework.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Ecspanse.Server.State{
 await_systems: [reference()],
 batch_systems: [[Ecspanse.System.t()]],
 delta: non_neg_integer(),
 ecspanse_module: module(),
 events_ets_table: atom(),
 fps_limit: non_neg_integer(),
 frame_data: Ecspanse.Frame.t(),
 frame_end_systems: [Ecspanse.System.t()],
 frame_start_systems: [Ecspanse.System.t()],
 frame_timer: :running | :finished,
 last_frame_monotonic_time: integer(),
 scheduled_systems: [Ecspanse.System.t()],
 shutdown_systems: [Ecspanse.System.t()],
 startup_systems: [Ecspanse.System.t()],
 status:
 :startup_systems
 | :frame_start_systems
 | :batch_systems
 | :frame_end_systems
 | :all_systems_run
 | :frame_ended,
 system_modules: MapSet.t(module()),
 system_run_conditions_map: map(),
 test: boolean(),
 test_pid: pid() | nil
}

The internal state of the framework.

Ecspanse.TestServer

This server is initiated upon application launch when operating in the test environment.
This is done to allow tests to start their own custom servers and schedule custom systems.
A basic test system setup may look like this:
 defmodule Demo.Systems.MoveHeroTest do
 use ExUnit.Case

 defmodule DemoTest do
 @moduledoc "A setup that does not schedule any system"
 use Ecspanse

 @impl true
 def setup(data) do
 data
 end
 end

 setup do
 {:ok, _pid} = start_supervised({DemoTest, :test})
 Ecspanse.System.debug()
 end
 end
 In the test setup block, the server is started with the tuple {DemoTest, :test}.
 This is needed to point Ecspanse to start the Ecspanse.Server with the DemoTest setup.
 The Ecspanse.System.debug/0 call grants the test pid Ecspanse.System powers.
 Meaning that it can runt commands without being in the context of a system.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Ecspanse.Entity

Entities are only identifiers. An entity exists only if it holds at least one component.
The entities per se are not persisted.
Entities are represented as a struct with id as the only field.
Examples
 %Ecspanse.Entity{id: "cfa1ad89-44b6-4d1f-8590-186354be9158"}

 Summary

 Types

 entity_spec()

 An entity_spec is the definition required to create an entity.

 id()

 t()

 The entity struct.

 Functions

 fetch(id)

 See Ecspanse.Query.fetch_entity/1.

Types

 Link to this type

 entity_spec()

 View Source

 @type entity_spec() :: {Ecspanse.Entity, opts :: keyword()}

An entity_spec is the definition required to create an entity.

 Options

	:id - a custom unique ID for the entity (binary). If not provided, a random UUID will be generated.
	:components - a list of Ecspanse.Component.component_spec/0 to be added to the entity.
	:children A list of Ecspanse.Entity.t/0 to be added as children to the entity. Children entities should already exist.
	:parents A list of Ecspanse.Entity.t/0 to be added as parents to the entity. Parent entities should already exist.

Note
At least one of the :components, :children or :parents options must be provided,
otherwise the entity cannot be persisted.

Entity ID
The entity IDs must be unique. Attention when providing the :id option as part of the entity_spec.
If the provided ID is not unique, spwaning entities will raise an error.

 Link to this type

 id()

 View Source

 @type id() :: binary()

 Link to this type

 t()

 View Source

 @type t() :: %Ecspanse.Entity{id: id()}

The entity struct.

Functions

 Link to this function

 fetch(id)

 View Source

 @spec fetch(id()) :: {:ok, t()} | {:error, :not_found}

See Ecspanse.Query.fetch_entity/1.

Ecspanse.Component behaviour

The Ecspanse.Component is the basic building block of the ECS architecture, holding the entity state.
The components are defined by invoking use Ecspanse.Component in their module definition.
An entity cannot exist without at least a component.
And the other way around, a component cannot exitst without being allocated to an entity.
The components hold their own state, and can also be tagged for easy grouping.
There are two ways of providing the components with their initial state and tags:
	At compile time, when invoking the use Ecspanse.Component, by providing the :state and :tags options.
 defmodule Demo.Components.Position do
 use Ecspanse.Component, state: [x: 3, y: 5], tags: [:map]
 end

	At runtime when creating the components from specs: t:Ecspanse.Component.component_spec():
 Ecspanse.Command.spawn_entity!({Ecspanse.Entity,
 components: [
 Hero,
 {Demo.Components.Position, [x: 7, y: 2], [:map]},
]
)

 # or

 Ecspanse.Command.add_component!(hero_entity, {Demo.Components.Position, [x: 7, y: 2], [:map]})

After their creation, the components become structs with the fields defined in the state option of the spec, plus some metadata added by the framework. Components can also be used
as an Entity lable, without state.
After being created, components become structs with the provided fields, along with some metadata added by the framework.
Components can also be used as an entity label, without state.
There are some special components that are created automatically by the framework:
	Ecspanse.Component.Children - holds the list of child entities.
	Ecspanse.Component.Parents - holds the parent entities.

Options
	:state - a list with all the component state struct keys and their initial values (if any).
For example: [:amount, max_amount: 100]
	:tags - list of atoms that act as tags for the current component. Defaults to [].

Tags
Tags can be added at compile time, and at runtime only when creating a new component.
They cannot be eddited or removed later on for the existing component.
The List of tags added at compile time is merged with the one provided at run time.

 Summary

 Types

 component_spec()

 A component_spec is the definition required to create a component.

 Implemented Callbacks

 fetch(entity)

 Fetches the component for an entity. It has the same functionality as Ecspanse.Query.fetch_component/2,
but it may be more convenient to use in some cases.

 list()

 Lists all components of the current type for all entities.

 Callbacks

 validate(component)

 Optional callback to validate the component state.
It takes the component state struct as the only argument and returns :ok or an error tuple.

 Functions

 debug()

 Utility function. Returns all the components and their state, together with their entity association and tags.

Types

 Link to this type

 component_spec()

 View Source

 @type component_spec() ::
 (component_module :: module())
 | {component_module :: module(), initial_state :: keyword()}
 | {component_module :: module(), initial_state :: keyword(), tags :: [atom()]}

A component_spec is the definition required to create a component.

 Examples

 Demo.Components.Gold
 {Demo.Components.Gold, [amount: 5]}
 {Demo.Components.Gold, [amount: 5], [:resource, :available]}
 {Demo.Components.Gold, [], [:resource, :available]}

Implemented Callbacks

 Link to this callback

 fetch(entity)

 View Source

 @callback fetch(entity :: Ecspanse.Entity.t()) ::
 {:ok, component :: struct()} | {:error, :not_found}

Fetches the component for an entity. It has the same functionality as Ecspanse.Query.fetch_component/2,
but it may be more convenient to use in some cases.
Implemented Callback
This callback is implemented by the library and can be used as such.

 Examples:

 {:ok, %Demo.Components.Position{} = position_comopnent} = Demo.Components.Position.fetch(hero_entity)

 # it's the same as:

 {:ok, %Demo.Components.Position{} = position_comopnent} = Ecspanse.Query.fetch_component(hero_entity, Demo.Components.Position)

 Link to this callback

 list()

 View Source

 @callback list() :: [component :: struct()]

Lists all components of the current type for all entities.
Implemented Callback
This callback is implemented by the library and can be used as such.

 Examples:

 enemy_components = Demo.Components.Enemy.list()

Callbacks

 Link to this callback

 validate(component)

 View Source

 (optional)

 @callback validate(component :: struct()) :: :ok | {:error, any()}

Optional callback to validate the component state.
It takes the component state struct as the only argument and returns :ok or an error tuple.
Info
When an error tuple is returned, it raises an exception with the provided error message.

Note
For more complex validations, Ecto schemaless changesets may be useful.
	docs
	article

 Examples

 defmodule Demo.Components.Gold do
 use Ecspanse.Component, state: [amount: 0]

 def validate(%__MODULE__{amount: amount}) do
 if amount >= 0 do
 :ok
 else
 {:error, "Gold amount cannot be negative"}
 end
 end
 end

Functions

 Link to this function

 debug()

 View Source

 @spec debug() :: [
 {{Ecspanse.Entity.id(), component_module :: module()}, tags :: [atom()],
 component_state :: struct()}
]

Utility function. Returns all the components and their state, together with their entity association and tags.
This function is intended for use only in testing and development environments.

Ecspanse.Component.Children

The Children component is a special component provided by the framework
to maintain references to an entity's child entities.
Dedicated queries and commands are provided to interact with this component.
An empty Children component is automatically added upon entity creation,
even if no child entities are defined at the time of creation.
Ecspanse parent-child relationships are bidirectional associations

 Summary

 Types

 t()

 Entity's children list.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Ecspanse.Component.Children{
 __meta__: term(),
 entities: [Ecspanse.Entity.t()]
}

Entity's children list.

Ecspanse.Component.Parents

The Parents component is a special component provided by the framework
to maintain references to an entity's parent entities.
Dedicated queries and commands are provided to interact with this component.
An empty Parents component is automatically added upon entity creation,
even if no parent entities are defined at the time of creation.
Ecspanse parent-child relationships are bidirectional associations

 Summary

 Types

 t()

 Entity's parents list.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Ecspanse.Component.Parents{
 __meta__: term(),
 entities: [Ecspanse.Entity.t()]
}

Entity's parents list.

Ecspanse.System

The system implements the logic and behaviors of the application
by manipulating the state of the components.
The systems are defined by invoking use Ecspanse.System in their module definition.
The system modules must implement the
Ecspanse.System.WithoutEventSubscriptions.run/1 or
Ecspanse.System.WithEventSubscriptions.run/2 callbacks,
depending if the system subscribes to certain events or not.
The return value of the run function is ignored.
The Ecspanse systems run either synchronously or asynchronously,
as scheduled in the Ecspanse.setup/1 callback.
Systems are the sole mechanism through which the state of components can be altered.
Running commands outside of a system is not allowed.
Resources can be created, updated, and deleted only by systems that are executed synchronously.
There are some special systems that are created automatically by the framework:
	Ecspanse.System.CreateDefaultResources - startup system that creates the default framework resources.
	Ecspanse.System.Debug - used by the debug/0 function.
	Ecspanse.System.Timer - tracks and updates all components using the Ecspanse.Template.Component.Timer template.
	Ecspanse.System.TrackFPS - tracks and updates the Ecspanse.Resource.FPS resource.

Info
The Ecspanse.Query and Ecspanse.Command functions are imported by default
for all modules that use Ecspanse.System

Options
	:lock_components - a list of component modules
that will be locked for the duration of the system execution.
	:event_subscriptions - a list of event modules that the system subscribes to.

Component locking
Component locking is required only for async systems to avoid race conditions.
For async systems, any components that are to be modified, created, or deleted,
must be locked in the lock_components option. Otherwise, the operation will fail.
Wherever it makes sense, it is recommended to lock also components that are queried but not modified,
as they could be modified by other systems.
Not all async systems run concurrently. The systems are grouped in batches,
based on the components they lock.
Event subscriptions
The event subscriptions enables a system to execute solely in response to certain specified events.
The Ecspanse.System.WithEventSubscriptions.run/2 callback is triggered
for every occurrence of an event type to which the system has subscribed.
These callbacks execute concurrently to enhance performance.
However, they are grouped based on their batch keys (see Ecspanse.event/2 options)
as a safeguard against potential race conditions.
Examples
 defmodule Demo.Systems.Move do
 @moduledoc "An async system locking components, that subscribes to an event"
 use Ecspanse.System,
 lock_components: [Demo.Components.Position],
 event_subscriptions: [Demo.Events.Move]

 def run(%Demo.Events.Move{entity_id: entity_id, direction: direction}, frame) do
 # move logic
 end
 end

 defmodule Demo.Systems.SpawnEnemy do
 @moduledoc "A sync system that does not need to lock components, and it is not subscribed to any events"
 use Ecspanse.System

 def run(frame) do
 # spawn logic
 end
 end

 Summary

 Types

 system_queue()

 t()

 Functions

 debug()

 Utility function. Gives the current process Ecspanse.System abilities to execute commands.

 execute_async(enumerable, fun, opts \\ [])

 Allows running async code inside a system.

Types

 Link to this type

 system_queue()

 View Source

 @type system_queue() ::
 :startup_systems
 | :frame_start_systems
 | :batch_systems
 | :frame_end_systems
 | :shutdown_systems

 Link to this type

 t()

 View Source

 @type t() :: %Ecspanse.System{
 execution: :sync | :async,
 module: module(),
 queue: system_queue(),
 run_after: [system_module :: module()],
 run_conditions: [{module(), atom()}]
}

Functions

 Link to this function

 debug()

 View Source

 @spec debug() :: :ok

Utility function. Gives the current process Ecspanse.System abilities to execute commands.
This is a powerful tool for testing and debugging,
as the promoted process can change the components and resources state
without having to be scheduled like a regular system.
See Ecspanse.TestServer for more details.
This function is intended for use only in testing and development environments.

 Link to this function

 execute_async(enumerable, fun, opts \\ [])

 View Source

 @spec execute_async(Enumerable.t(), (term() -> term()), keyword()) :: :ok

Allows running async code inside a system.
Because commands can run only from inside a system,
running commands in a Task, for example, is not possible.
The execute_async/3 is a wrapper around Elixir.Task.async_stream/3
and is built exactly for this purpose. It allows running commands in parallel.
The result of the processing is ignored. So the function is suitable for cases
when the result is not important. For example, updating components for a list of entities.
Info
This function is already imported for all modules that use Ecspanse.System

 Options

	:concurrent - the number of concurrent tasks to run.
Defaults to the number of schedulers online.
See Elixir.Task.async_stream/5 options for more details.

use with care
While the locked components ensure that no other system is modifying
the same components at the same time, the execute_async/3 does not offer
any such guarantees inside the same system.
For example, the same component can be modified concurrently, leading to
race conditions and inconsistent state.

 Examples

 Ecspanse.System.execute_async(
 enemy_entities,
 fn enemy_entity ->
 # update the enemy components
 end,
 concurrent: length(enemy_entities) + 1
)

Ecspanse.System.CreateDefaultResources

Special framework system that creates default resources.
Automatically runs only once on startup.

Ecspanse.System.Debug

Generic system to be used by the Ecspanse.System.debug/0
in dev and test environments.

Ecspanse.System.Timer

A special system provided by the framework that
counts down the time for all the custom timer components.
If the timer functionality is used, this system
needs to be manually added in the Ecspanse.setup/1
callback as a sync system.
See Ecspanse.Template.Component.Timer for details.

Ecspanse.System.TrackFPS

A special system provided by the framework to track the FPS.
The value is stored in the Ecspanse.Resource.FPS resource.

Ecspanse.System.WithEventSubscriptions behaviour

Systems that run only if specific events are triggered.

 Summary

 Callbacks

 run(event, t)

 Runs only if the system is subscribed to the triggering event.
The return value is ignored.

Callbacks

 Link to this callback

 run(event, t)

 View Source

 @callback run(event :: struct(), Ecspanse.Frame.t()) :: any()

Runs only if the system is subscribed to the triggering event.
The return value is ignored.
It recives the triggering event struct as the first argument
and the current Ecspanse.Frame.t/0 struct as the second argument.

Ecspanse.System.WithoutEventSubscriptions behaviour

Systems that run every frame and do not depend on any event.

 Summary

 Callbacks

 run(t)

 Runs every frame for the current system.
The return value is ignored.

Callbacks

 Link to this callback

 run(t)

 View Source

 @callback run(Ecspanse.Frame.t()) :: any()

Runs every frame for the current system.
The return value is ignored.
It recives the current Ecspanse.Frame.t/0 struct as the only argument.

Ecspanse.Resource behaviour

Resources are global components that don't belong to any entity.
They are best used for configuration, global state, statistics, etc.
Resources are defined by invoking use Ecspanse.Resource in their module definition.
Options
	:state - a list with all the resource state struct keys and their initial values (if any).
For example: [:player_count, max_players: 100]

There are two ways of providing the resources with their initial state:
	At compile time, when invoking the use Ecspanse.Resource, by providing the :state option.
 defmodule Demo.Resources.PlayerCount do
 use Ecspanse.Resource, state: [player_count: 0, max_players: 100]
 end

	At runtime when creating the resources from specs: t:Ecspanse.Resource.resource_spec()
 Ecspanse.Command.insert_resource!({Demo.Resources.Lobby, [max_players: 50]})

There are some special resources that are created automatically by the framework:
	Ecspanse.Resource.FPS - tracks the frames per second.
	Ecspanse.Resource.State - a high level state implementation.

Note
Resources can be created, updated or deleted only from sysnchronous systems.

 Summary

 Types

 resource_spec()

 A resource_spec is the definition required to create a resource.

 Callbacks

 validate(resource)

 Optional callback to validate the resource state.

 Functions

 debug()

 Utility function. Returns all the resources and their state.

Types

 Link to this type

 resource_spec()

 View Source

 @type resource_spec() ::
 (resource_module :: module())
 | {resource_module :: module(), initial_state :: keyword()}

A resource_spec is the definition required to create a resource.

 Examples

 Demo.Resources.Lobby
 {Demo.Resources.Lobby, [max_players: 50]}

Callbacks

 Link to this callback

 validate(resource)

 View Source

 (optional)

 @callback validate(resource :: struct()) :: :ok | {:error, any()}

Optional callback to validate the resource state.
See Ecspanse.Component.validate/1 for more details.

Functions

 Link to this function

 debug()

 View Source

 @spec debug() :: [{resource_module :: module(), resource_state :: struct()}]

Utility function. Returns all the resources and their state.
This function is intended for use only in testing and development environments.

Ecspanse.Resource.FPS

A special resource provided by the framework to check the FPS in real-time.
The framework also provides a special system that updates the FPS resource.
The TrackFPS system needs to be added to the Server, in order to calculate the FPS.
	value: the last second FPS value
	current: the current frames accumulated this second
	millisecond: the current millisecond of the second

A special resource provided by the framework for real-time FPS monitoring.
The framework also includes a dedicated system that updates this FPS resource.
To enable FPS calculation, the Ecspanse.System.TrackFPS system must be added
to the Ecspanse.setup/1 as a sync system.
The FPS state fields are:
	:value - the previous second's FPS value.
	:current - the number of frames within the current second.
	:millisecond - the current millisecond within the second.

 Summary

 Types

 t()

 Functions

 validate(fps)

 Callback implementation for Ecspanse.Resource.validate/1.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Ecspanse.Resource.FPS{
 __meta__: term(),
 current: non_neg_integer(),
 millisecond: non_neg_integer(),
 value: non_neg_integer()
}

Functions

 Link to this function

 validate(fps)

 View Source

Callback implementation for Ecspanse.Resource.validate/1.

Ecspanse.Resource.State

A special resource provided by the framework to store a generic state.
This is a high level state, with an atom type value.
It is useful in controlling the systems execution. But its use
is not mandatory.
The initial state can be set, for example, in a startup system.

 Summary

 Types

 t()

 Functions

 validate(state)

 Callback implementation for Ecspanse.Resource.validate/1.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Ecspanse.Resource.State{__meta__: term(), value: atom()}

Functions

 Link to this function

 validate(state)

 View Source

Callback implementation for Ecspanse.Resource.validate/1.

Ecspanse.Event

Events act as a one-way communication channel to Ecspanse,
enabling elements outside of the framework to dispatch data asynchronously into Ecspanse Systems.
Events are also used internally to communicate between Systems.
The events are defined by invoking use Ecspanse.Event in their module definition.
Events are scheduled using the Ecspanse.event/2 function.
Any events scheduled within the current frame will be batched and
then made accessible to the systems in the following Ecspanse.Frame.t/0.
The batched events from the current frame are cleared once that frame ends.
This implies each system has a single opportunity to process an event that has been scheduled.
Options
	:fields - a list with all the event struct keys and their initial values (if any)
For example: [:direction, type: :hero]

An inserted_at field with the Elixir.System time of the creation is added to all events automatically.
There are two ways of providing the events with their field values:
	At compile time, when invoking the use Ecspanse.Event, by providing the :fields option.
 defmodule Demo.Events.HeroMoved do
 use Ecspanse.Event, fields: [:direction, type: :hero]
 end

	At runtime when creating the events from specs: t:Ecspanse.Event.event_spec()
 Ecspanse.event({Demo.Events.HeroMoved, [direction: :left]})

Note
There are many ways to filter events in the Systems by their struct like:
 Enum.filter(events, &match?(%Demo.Events.MoveHero{direction: :right}, &1)) # this allows further pattern matching in the event struct
 # or
 Enum.filter(events, & &1.__struct__ == Demo.Events.MoveHero)
 # or
 Enum.filter(events, & fn %event_module{} -> event_module == Demo.Events.MoveHero end)

 Summary

 Types

 event_spec()

 An event_spec is the definition required to create an event.

Types

 Link to this type

 event_spec()

 View Source

 @type event_spec() ::
 (event_module :: module())
 | {event_module :: module(), event_fields :: keyword()}

An event_spec is the definition required to create an event.

 Examples

 Demo.Events.MoveHero
 {Demo.Events.MoveHero, [direction: :left]}

Ecspanse.Query

The Ecspanse.Query module provides a set of functions for querying entities, components and resources.
The queries are read-only operations they do not modify the state of the components or resources.
Queries can be run both from within the Ecspanse systems and from outside of the framework.

 Summary

 Types

 t()

 The query preparation struct.

 Generic

 one(query)

 Returns a single tuple wiht components for a t/0 query. Returns nil if no result was found. Raises if more than one entry.

 select(component_modules_tuple, filters \\ [])

 select/2 is the most versatile function for querying entities and components.
On its own, it will return an Ecspanse.Query struct that holds the query details.
The struct needs to be passed to Ecspanse.Query.stream/1 or Ecspanse.Query.one/1 to get the results.

 stream(query)

 Returns a stream of components tuples for a t/0 query.

 Entities

 fetch_entity(entity_id)

 Fetches an Ecspanse.Entity.t/0 by its ID.

 get_component_entity(component)

 Returns a component's entity.

 Relationships

 has_children_with_component?(entity, component_module)

 Returns true if the entity has at least a child with the given component module.

 has_children_with_components?(entity, component_module_list)

 Returns true if the entity has at least a child with all the given component modules.

 has_parents_with_component?(entity, component_module)

 Returns true if the entity has at least a parent with the given component module.

 has_parents_with_components?(entity, component_module_list)

 Returns true if the entity has at least a parent with all the given component modules.

 is_child_of?(list)

 Reurns true if a given entity is a child of another entity.

 is_parent_of?(list)

 Reurns true if a given entity is a parent of another entity.

 list_ancestors(entity)

 Returns the list of ancestor entities for the given entity.
That means the parents of the entity and their parents and so on.

 list_children(entity)

 Returns the list of child entities for the given entity.

 list_descendants(entity)

 Returns the list of descendant entities for the given entity.
That means the children of the entity and their children and so on.

 list_parents(entity)

 Returns the list of parent entities for the given entity.

 Components

 fetch_component(entity, component_module)

 Fetches the component by its module for a given entity.

 fetch_components(entity, component_modules_tuple)

 Fetches a tuple of components by their modules for a given entity.
The entity must have all the components for the query to succeed.

 has_component?(entity, component_module)

 Returns true if the entity has a component with the given module.

 has_components?(entity, component_module_list)

 Returns true if the entity has all the components with the given modules.

 list_components(entity)

 Lists all the components for a given entity.

 Resources

 fetch_resource(resource_module)

 Fetches a resource by its module.

 Tags

 fetch_tagged_component(entity, tags)

 Fetches an entity's component by a list of tags.
Raises if more than one entry is found.

 list_tagged_components(tags)

 Returns a list of components tagged with a list of tags for all entities.

 list_tagged_components_for_ancestors(entity, tags)

 Returns a list of components tagged with a list of tags for the ancestors of a given entity.

 list_tagged_components_for_children(entity, tags)

 Returns a list of components tagged with a list of tags for the children of a given entity.

 list_tagged_components_for_descendants(entity, tags)

 Returns a list of components tagged with a list of tags for the descendants of a given entity.

 list_tagged_components_for_entities(entities, tags)

 Returns a list of components tagged with a list of tags for a given list of entities.
The components are not grouped by entity, but returned as a flat list.

 list_tagged_components_for_entity(entity, tags)

 Returns a list of components tagged with a list of tags for a given entity.

 list_tagged_components_for_parents(entity, tags)

 Returns a list of components tagged with a list of tags for the parents of a given entity.

 list_tags(component)

 Lists a component's tags.

Types

 Link to this type

 t()

 View Source

 @type t() :: %Ecspanse.Query{
 for_ancestors_of: [Ecspanse.Entity.t()],
 for_children_of: [Ecspanse.Entity.t()],
 for_descendants_of: [Ecspanse.Entity.t()],
 for_entities: [Ecspanse.Entity.t()],
 for_parents_of: [Ecspanse.Entity.t()],
 not_for_entities: [Ecspanse.Entity.t()],
 or: [
 [
 with_components: [component_module :: module()],
 without_components: [component_module :: module()]
]
],
 return_entity: boolean(),
 select: [component_module :: module()],
 select_optional: [component_module :: module()]
}

The query preparation struct.

Generic

 Link to this function

 one(query)

 View Source

 @spec one(t()) :: components_state :: tuple() | nil

Returns a single tuple wiht components for a t/0 query. Returns nil if no result was found. Raises if more than one entry.
See the select/2 function for more info.

 Link to this function

 select(component_modules_tuple, filters \\ [])

 View Source

 @spec select(
 component_modules :: tuple(),
 keyword()
) :: t()

select/2 is the most versatile function for querying entities and components.
On its own, it will return an Ecspanse.Query struct that holds the query details.
The struct needs to be passed to Ecspanse.Query.stream/1 or Ecspanse.Query.one/1 to get the results.

 Arguments

 1. component_modules

The first argument is a tuple of components to be selected. The query will return the components
only for the entities that have all the components in the tuple.
The entity can be queried as well by adding Ecspanse.Entity as the first element in the tuple.
Also, optional components can be queries, by adding the :opt key.
The optional components should be placed at the end of the tuple.
The restults will be returned in the same order as the components in the tuple. This makes it easy to use pattern matching on the result.

 2. filters

The filters are optional. They can be used to further narrow down the results.
	:with - a list of components that the entity must have in addition to the ones specified in the component_modules tuple.
But those components will not be returned in the result. :with filter has one option: :without - a list of components that the entity must not have.
	:or_with - similar to :with. It allows to specify multiple filters for the same query. Multiple or_with filters can be used in the same query.
The results will be returned if the entity components match any of the filters.
	:for - a list of Ecspanse.Entity.t/0 that the query should be run for. The components will be returned only for those entities.
	:not_for - a list of Ecspanse.Entity.t/0 that the query should not be run for. The components will be returned for all entities except those.
	:for_children_of - a list of Ecspanse.Entity.t/0. The components will be returned only for the children of those entities.
	:for_descendants_of - a list of Ecspanse.Entity.t/0. The components will be returned only for all descendants of those entities.
	:for_parents_of - a list of Ecspanse.Entity.t/0. The components will be returned only for the parents of those entities.
	:for_ancestors_of - a list of Ecspanse.Entity.t/0. The components will be returned only for all ancestors of those entities.

Info
Combining the following filters is not supported: :for, :not_for, :for_children_of, :for_descendants_of, :for_parents_of, :for_ancestors_of.
Only one of them can be used in a query. Otherwise it will rise an error.

 Examples

 Ecspanse.Query.select({Ecspanse.Entity, Demo.Components.Health, opt: Demo.Components.Mana},
 with: [Demo.Components.Orc],
 or_with: [[Demo.Components.Wizard], without: [Demo.Components.WhiteMagic]],
 for_descendants_of: [enemy_clan_entity]
)
 |> Ecspanse.Query.stream()
 |> Enum.to_list()
 a potential result may be:
 [
 {orc_entity, %Demo.Components.Health{value: 100}, nil},
 {wizard_entity, %Demo.Components.Health{value: 60}, %Demo.Components.Mana{value: 200}}
]

 Link to this function

 stream(query)

 View Source

 @spec stream(t()) :: Enumerable.t()

Returns a stream of components tuples for a t/0 query.
See the select/2 function for more info.

Entities

 Link to this function

 fetch_entity(entity_id)

 View Source

 @spec fetch_entity(Ecspanse.Entity.id()) ::
 {:ok, Ecspanse.Entity.t()} | {:error, :not_found}

Fetches an Ecspanse.Entity.t/0 by its ID.
An entity exists only if it has at least one component.

 Examples

 {:ok, %Ecspanse.Entity{}} = Ecspanse.Query.fetch_entity(hero_entity_id)

 Link to this function

 get_component_entity(component)

 View Source

 @spec get_component_entity(component_state :: struct()) :: Ecspanse.Entity.t()

Returns a component's entity.

 Examples

 {:ok, %Ecspanse.Entity{}} = Ecspanse.Query.get_component_entity(hero_component)

Relationships

 Link to this function

 has_children_with_component?(entity, component_module)

 View Source

 @spec has_children_with_component?(Ecspanse.Entity.t(), module()) :: boolean()

Returns true if the entity has at least a child with the given component module.

 Examples

 true = Ecspanse.Query.has_children_with_component?(hero_entity, Demo.Components.Boots)

 Link to this function

 has_children_with_components?(entity, component_module_list)

 View Source

 @spec has_children_with_components?(Ecspanse.Entity.t(), [module()]) :: boolean()

Returns true if the entity has at least a child with all the given component modules.

 Examples

 true = Ecspanse.Query.has_children_with_components?(hero_entity, [Demo.Components.Boots, Demo.Components.Sword])

 Link to this function

 has_parents_with_component?(entity, component_module)

 View Source

 @spec has_parents_with_component?(Ecspanse.Entity.t(), module()) :: boolean()

Returns true if the entity has at least a parent with the given component module.

 Examples

 true = Ecspanse.Query.has_parents_with_component?(boots_entity, Demo.Components.Hero)

 Link to this function

 has_parents_with_components?(entity, component_module_list)

 View Source

 @spec has_parents_with_components?(Ecspanse.Entity.t(), [module()]) :: boolean()

Returns true if the entity has at least a parent with all the given component modules.

 Examples

 true = Ecspanse.Query.has_parents_with_components?(boots_entity, [Demo.Components.Hero, Demo.Components.Gold])

 Link to this function

 is_child_of?(list)

 View Source

 @spec is_child_of?(parent: Ecspanse.Entity.t(), child: Ecspanse.Entity.t()) ::
 boolean()

Reurns true if a given entity is a child of another entity.

 Examples

 true = Ecspanse.Query.is_child_of?(parent: hero_entity, child: boots_entity)

 Link to this function

 is_parent_of?(list)

 View Source

 @spec is_parent_of?(parent: Ecspanse.Entity.t(), child: Ecspanse.Entity.t()) ::
 boolean()

Reurns true if a given entity is a parent of another entity.

 Examples

 true = Ecspanse.Query.is_parent_of?(parent: hero_entity, child: boots_entity)

 Link to this function

 list_ancestors(entity)

 View Source

 @spec list_ancestors(Ecspanse.Entity.t()) :: [Ecspanse.Entity.t()]

Returns the list of ancestor entities for the given entity.
That means the parents of the entity and their parents and so on.

 Examples

 [hero_entity, level_entity] = Ecspanse.Query.list_ancestors(compass_entity)

 Link to this function

 list_children(entity)

 View Source

 @spec list_children(Ecspanse.Entity.t()) :: [Ecspanse.Entity.t()]

Returns the list of child entities for the given entity.

 Examples

 [sword_item_entity, magic_potion_entity] = Ecspanse.Query.list_children(hero_entity)

 Link to this function

 list_descendants(entity)

 View Source

 @spec list_descendants(Ecspanse.Entity.t()) :: [Ecspanse.Entity.t()]

Returns the list of descendant entities for the given entity.
That means the children of the entity and their children and so on.

 Examples

 [inventory_entity, map_entity] = Ecspanse.Query.list_descendants(hero_entity)

 Link to this function

 list_parents(entity)

 View Source

 @spec list_parents(Ecspanse.Entity.t()) :: [Ecspanse.Entity.t()]

Returns the list of parent entities for the given entity.

 Examples

 [hero_entity] = Ecspanse.Query.list_parents(inventory_entity)

Components

 Link to this function

 fetch_component(entity, component_module)

 View Source

 @spec fetch_component(Ecspanse.Entity.t(), module()) ::
 {:ok, component_state :: struct()} | {:error, :not_found}

Fetches the component by its module for a given entity.

 Examples

 {:ok, gold_component} = Ecspanse.Query.fetch_component(hero_entity, Demo.Components.Gold)

 Link to this function

 fetch_components(entity, component_modules_tuple)

 View Source

 @spec fetch_components(Ecspanse.Entity.t(), component_modules :: tuple()) ::
 {:ok, components_state :: tuple()} | {:error, :not_found}

Fetches a tuple of components by their modules for a given entity.
The entity must have all the components for the query to succeed.

 Examples

 {:ok, {gold_component, gems_component}} = Ecspanse.Query.fetch_components(hero_entity, {Demo.Components.Gold, Demo.Components.Gems})

 Link to this function

 has_component?(entity, component_module)

 View Source

 @spec has_component?(Ecspanse.Entity.t(), module()) :: boolean()

Returns true if the entity has a component with the given module.

 Examples

 true = Ecspanse.Query.has_component?(hero_entity, Demo.Components.Gold)

 Link to this function

 has_components?(entity, component_module_list)

 View Source

 @spec has_components?(Ecspanse.Entity.t(), [module()]) :: boolean()

Returns true if the entity has all the components with the given modules.

 Examples

 true = Ecspanse.Query.has_components?(hero_entity, [Demo.Components.Gold, Demo.Components.Gems])

 Link to this function

 list_components(entity)

 View Source

 @spec list_components(Ecspanse.Entity.t()) :: [components_state :: struct()]

Lists all the components for a given entity.
The output is an unordered list of all the entity's components.
Note
The Ecspanse.Component.Children and Ecspanse.Component.Parents
components are excluded from the output.
Use the provided list_children/1 and list_parents/1 functions to
query the entity's relations.

 Examples

 [gold_component, gems_component, position_component, energy_component] =
 Ecspanse.Query.list_components(hero_entity)

Resources

 Link to this function

 fetch_resource(resource_module)

 View Source

 @spec fetch_resource(resource_module :: module()) ::
 {:ok, resource_state :: struct()} | {:error, :not_found}

Fetches a resource by its module.

 Examples

 {:ok, lobby_resource} = Ecspanse.Query.fetch_resource(Demo.Resources.Lobby)

Tags

 Link to this function

 fetch_tagged_component(entity, tags)

 View Source

 @spec fetch_tagged_component(Ecspanse.Entity.t(), [tag :: atom()]) ::
 {:ok, components_state :: struct()} | {:error, :not_found}

Fetches an entity's component by a list of tags.
Raises if more than one entry is found.
Note
The project logic must ensure that only one component per entity is tagged with the given tags.

 Examples

 {:ok, %Demo.Components.Paladin{} = hero_class_component} =
 Ecspanse.Query.fetch_tagged_component(hero_entity, [:class])

 Link to this function

 list_tagged_components(tags)

 View Source

 @spec list_tagged_components([tag :: atom()]) :: [components_state :: struct()]

Returns a list of components tagged with a list of tags for all entities.
The components need to be tagged with all the given tags to return.

 Examples

 [gold_component, gems_component] = Ecspanse.Query.list_tagged_components([:resource, :available])

 Link to this function

 list_tagged_components_for_ancestors(entity, tags)

 View Source

 @spec list_tagged_components_for_ancestors(Ecspanse.Entity.t(), [tag :: atom()]) :: [
 components_state :: struct()
]

Returns a list of components tagged with a list of tags for the ancestors of a given entity.
The components need to be tagged with all the given tags to return.

 Examples

 [dungeon_component] = Ecspanse.Query.list_tagged_components_for_ancestors(hero_entity, [:dungeon])

 Link to this function

 list_tagged_components_for_children(entity, tags)

 View Source

 @spec list_tagged_components_for_children(Ecspanse.Entity.t(), [tag :: atom()]) :: [
 components_state :: struct()
]

Returns a list of components tagged with a list of tags for the children of a given entity.
The components need to be tagged with all the given tags to return.

 Examples

 [boots_component, compass_component] = Ecspanse.Query.list_tagged_components_for_children(hero_entity, [:inventory])

 Link to this function

 list_tagged_components_for_descendants(entity, tags)

 View Source

 @spec list_tagged_components_for_descendants(Ecspanse.Entity.t(), [tag :: atom()]) ::
 [
 components_state :: struct()
]

Returns a list of components tagged with a list of tags for the descendants of a given entity.
The components need to be tagged with all the given tags to return.

 Examples

 [orc_component, orc_component, wizard_component] = Ecspanse.Query.list_tagged_components_for_descendants(dungeon_entity, [:enemy])

 Link to this function

 list_tagged_components_for_entities(entities, tags)

 View Source

 @spec list_tagged_components_for_entities([Ecspanse.Entity.t()], [tag :: atom()]) :: [
 components_state :: struct()
]

Returns a list of components tagged with a list of tags for a given list of entities.
The components are not grouped by entity, but returned as a flat list.
The components need to be tagged with all the given tags to return.

 Examples

 [gold_component, gems_component, gems_component] = Ecspanse.Query.list_tagged_components_for_entities([hero_entity, enemy_entity], [:resource, :available])

 Link to this function

 list_tagged_components_for_entity(entity, tags)

 View Source

 @spec list_tagged_components_for_entity(Ecspanse.Entity.t(), [tag :: atom()]) :: [
 components_state :: struct()
]

Returns a list of components tagged with a list of tags for a given entity.
The components need to be tagged with all the given tags to return.

 Examples

 [gold_component, gems_component] = Ecspanse.Query.list_tagged_components_for_entity(hero_entity, [:resource, :available])

 Link to this function

 list_tagged_components_for_parents(entity, tags)

 View Source

 @spec list_tagged_components_for_parents(Ecspanse.Entity.t(), [tag :: atom()]) :: [
 components_state :: struct()
]

Returns a list of components tagged with a list of tags for the parents of a given entity.
The components need to be tagged with all the given tags to return.

 Examples

 [hero_component] = Ecspanse.Query.list_tagged_components_for_parents(boots_entity, [:hero])

 Link to this function

 list_tags(component)

 View Source

 @spec list_tags(components_state :: struct()) :: [tag :: atom()]

Lists a component's tags.

 Examples

 [:resource, :available] = Ecspanse.Query.list_tags(gold_component)

Ecspanse.Command

The Ecspanse.Command module provides a set of functions for managing entities, components and resources in the Ecspanse engine.
Commands are the only way to change the state of components and resources in Ecspanse. These commands can only be run from systems, otherwise an error will be thrown.
The Ecspanse.Command module includes functions for managing relationships between entities, such as adding and removing children and parents.
All entity and component related commands can run for batches (lists) for performance reasons.
All commands raise an error if the command fails.
Entity Relationships
The Ecspanse.Command module provides functions for managing relationships between entities.
This is aslo a powerful tool to manage different kind of collections.
Ecspanse entities relationships are bidirectional associations
When adding or removing children or parents, they are automatically added or removed from the corresponding parent or children entities.
The same applies when despawning entities.

 Summary

 Entities

 clone_entity!(entity, opts \\ [])

 Clones the specified entity and returns a new entity with the same components.

 deep_clone_entity!(entity, opts \\ [])

 Clones the specified entity and all of its descendants and returns the newly cloned entity.

 despawn_entities!(list)

 The same as despawn_entity!/1 but despawns multiple entities at once.
It takes a list of entities as argument and returns :ok. See despawn_entity!/1 for more details.

 despawn_entities_and_descendants!(entities_list)

 The same as despawn_entity_and_descendants!/1 but despawns multiple entities and their descendants at once.
It takes a list of entities as argument and returns :ok.

 despawn_entity!(entity)

 Despawns the specified entity and removes all of its components.
It also removes the despawned entity from its parent and child entities, if any.

 despawn_entity_and_descendants!(entity)

 The same as despawn_entity!/1 but recursively despawns also all descendant tree of the entity.

 spawn_entities!(list)

 The same as spawn_entity!/1 but spawns multiple entities at once.
It takes a list of entity specs as argument and returns a list of Ecspanse.Entity structs.

 spawn_entity!(spec)

 Spawns a new entity with the given components and relations provided by the Ecspanse.Entity.entity_spec() type.
When creating a new entity, at least one of the components:, children: or parents:
must be provided in the entity spec, otherwise the entity cannot be persisted.

 Relationships

 add_child!(entity, child)

 Adds an entity as child to a parent entity.

 add_children!(list)

 The same as add_child!/2 but can perform multiple operations at once.
For example, adding multiple children to multiple parents.

 add_parent!(entity, parent)

 Adds a parent entity to a child entity.

 add_parents!(list)

 The same as add_parent!/2 but can perform multiple operations at once.
For example, adding multiple parents to multiple children.

 remove_child!(entity, child)

 Removes a child entity from a parent entity.

 remove_children!(list)

 The same as remove_child!/2 but can perform multiple operations at once.
For example, removing multiple children from multiple parents.

 remove_parent!(entity, parent)

 Removes a parent entity from a child entity.

 remove_parents!(list)

 The same as remove_parent!/2 but can perform multiple operations at once.
For example, removing multiple parents from multiple children.

 Components

 add_component!(entity, component_spec)

 Adds a new component to the specified entity.

 add_components!(list)

 The same as add_component!/2 but adds multiple components to multiple entities at once.

 remove_component!(component)

 Removes an existing component from its entity. The components is destroyed.

 remove_components!(components)

 The same as remove_component!/1 but removes multiple components at once.

 update_component!(component, changes_keyword)

 Updates the state of an existing component.

 update_components!(list)

 The same as update_component!/2 but updates multiple components at once.

 Resources

 delete_resource!(resource)

 Deletes an existing global resource.

 insert_resource!(resource_spec)

 Inserts a new global resource.

 update_resource!(resource, state_changes)

 Updates an existing global resource.

Entities

 Link to this function

 clone_entity!(entity, opts \\ [])

 View Source

 @spec clone_entity!(Ecspanse.Entity.t(), opts :: keyword()) :: Ecspanse.Entity.t()

Clones the specified entity and returns a new entity with the same components.
Due to the potentially large number of components that may be affected by this operation,
it is recommended to run this function in a synchronous system (such as a frame_start or frame_end system)
to avoid the need to lock all involved components.
Note
The entity's Ecspanse.Component.Children and Ecspanse.Component.Parents components are not cloned.
Use deep_clone_entity!/2 to clone the entity and all of its descendants.

 Options

	:id - a custom unique ID for the entity (binary). If not provided, a random UUID will be generated.

Entity ID
The entity IDs must be unique. Attention when providing the :id option.
If the provided ID is not unique, clonning the entity will raise an error.

 Examples

 %Ecspanse.Entity{} = entity = Ecspanse.Command.clone_entity!(compass_entity)

 Link to this function

 deep_clone_entity!(entity, opts \\ [])

 View Source

 @spec deep_clone_entity!(Ecspanse.Entity.t(), [{:opts, keyword()}]) ::
 Ecspanse.Entity.t()

Clones the specified entity and all of its descendants and returns the newly cloned entity.
Due to the potentially large number of components that may be affected by this operation,
it is recommended to run this function in a synchronous system (such as a frame_start or frame_end system)
to avoid the need to lock all involved components.

 Options

	:id - a custom unique ID for the entity (binary). If not provided, a random UUID will be generated.

Entity ID
The entity IDs must be unique. Attention when providing the :id option.
If the provided ID is not unique, clonning the entity will raise an error.

The cloned descendants entities will receive a random UUID as ID by default.

 Cloning descendants

The deep clonning operates only for the descendants of the entity.
If any of the descendants has a parent that is not a descendant of the entity,
the parent will not be cloned or referenced.
If this is a desired behaviour, the parents should be added manually after the deep clonning.

 Examples

 %Ecspanse.Entity{} = entity = Ecspanse.Command.deep_clone_entity!(enemy_entity)

 Link to this function

 despawn_entities!(list)

 View Source

 @spec despawn_entities!([Ecspanse.Entity.t()]) :: :ok

The same as despawn_entity!/1 but despawns multiple entities at once.
It takes a list of entities as argument and returns :ok. See despawn_entity!/1 for more details.

 Link to this function

 despawn_entities_and_descendants!(entities_list)

 View Source

 @spec despawn_entities_and_descendants!([Ecspanse.Entity.t()]) :: :ok

The same as despawn_entity_and_descendants!/1 but despawns multiple entities and their descendants at once.
It takes a list of entities as argument and returns :ok.

 Link to this function

 despawn_entity!(entity)

 View Source

 @spec despawn_entity!(Ecspanse.Entity.t()) :: :ok

Despawns the specified entity and removes all of its components.
It also removes the despawned entity from its parent and child entities, if any.
Due to the potentially large number of components that may be affected by this operation,
it is recommended to run this function in a synchronous system (such as a frame_start or frame_end system)
to avoid the need to lock all involved components.

 Examples

 :ok = Ecspanse.Command.despawn_entity!(hero_entity)

 Link to this function

 despawn_entity_and_descendants!(entity)

 View Source

 @spec despawn_entity_and_descendants!(Ecspanse.Entity.t()) :: :ok

The same as despawn_entity!/1 but recursively despawns also all descendant tree of the entity.
This means that it will despawn the children of the entity, and their children, and so on.
It is an efficient way to remove an entire entity tree with just one operation.
Extra attention required for entities with shared children.
See despawn_entity!/1 for more details.

 Link to this function

 spawn_entities!(list)

 View Source

 @spec spawn_entities!([Ecspanse.Entity.entity_spec()]) :: [Ecspanse.Entity.t()]

The same as spawn_entity!/1 but spawns multiple entities at once.
It takes a list of entity specs as argument and returns a list of Ecspanse.Entity structs.
See spawn_entity!/1 for more details.

 Link to this function

 spawn_entity!(spec)

 View Source

 @spec spawn_entity!(Ecspanse.Entity.entity_spec()) :: Ecspanse.Entity.t()

Spawns a new entity with the given components and relations provided by the Ecspanse.Entity.entity_spec() type.
When creating a new entity, at least one of the components:, children: or parents:
must be provided in the entity spec, otherwise the entity cannot be persisted.
Due to the potentially large number of components that may be affected by this operation,
it is recommended to run this function in a synchronous system (such as a frame_start or frame_end system)
to avoid the need to lock all involved components.

 Examples

 %Ecspanse.Entity{} = Ecspanse.Command.spawn_entity!(
 {
 Ecspanse.Entity,
 id: "my_custom_id",
 components: [Demo.Components.Hero, {Demo.Components.Position, [x: 5, y: 3], [:hero, :map]}],
 children: [potion_entity, sword_entity],
 parents: [map_entity]
 }
)

Relationships

 Link to this function

 add_child!(entity, child)

 View Source

 @spec add_child!(Ecspanse.Entity.t(), child :: Ecspanse.Entity.t()) :: :ok

Adds an entity as child to a parent entity.

 Examples

 :ok = Ecspanse.Command.add_child!(hero_entity, sword_entity)

 Link to this function

 add_children!(list)

 View Source

 @spec add_children!([{Ecspanse.Entity.t(), children :: [Ecspanse.Entity.t()]}]) :: :ok

The same as add_child!/2 but can perform multiple operations at once.
For example, adding multiple children to multiple parents.
It takes a list of two element tuples as argument, where the first element of the tuple is the parent entity
and the second element is a list of children entities.

 Examples

 :ok = Ecspanse.Command.add_children!([
 {hero_entity, [sword_entity]},
 {market_entity, [map_entity, potion_entity]}
])

 Link to this function

 add_parent!(entity, parent)

 View Source

 @spec add_parent!(Ecspanse.Entity.t(), parent :: Ecspanse.Entity.t()) :: :ok

Adds a parent entity to a child entity.

 Examples

 :ok = Ecspanse.Command.add_parent!(sowrd_entity, hero_entity)

 Link to this function

 add_parents!(list)

 View Source

 @spec add_parents!([{Ecspanse.Entity.t(), parents :: [Ecspanse.Entity.t()]}]) :: :ok

The same as add_parent!/2 but can perform multiple operations at once.
For example, adding multiple parents to multiple children.
It takes a list of two element tuples as argument, where the first element of the tuple is the child entity
and the second element is a list of parent entities.

 Examples

 :ok = Ecspanse.Command.add_parents!([
 {sword_entity, [hero_entity]},
 {map_entity, [market_entity, vendor_entity]}
])

 Link to this function

 remove_child!(entity, child)

 View Source

 @spec remove_child!(Ecspanse.Entity.t(), child :: Ecspanse.Entity.t()) :: :ok

Removes a child entity from a parent entity.

 Examples

 :ok = Ecspanse.Command.remove_child!(hero_entity, sword_entity)

 Link to this function

 remove_children!(list)

 View Source

 @spec remove_children!([{Ecspanse.Entity.t(), children :: [Ecspanse.Entity.t()]}]) ::
 :ok

The same as remove_child!/2 but can perform multiple operations at once.
For example, removing multiple children from multiple parents.
It takes a list of two element tuples as argument, where the first element of the tuple is the parent entity
and the second element is a list of children entities.

 Examples

 :ok = Ecspanse.Command.remove_children!([
 {hero_entity, [sword_entity]},
 {market_entity, [map_entity, potion_entity]}
])

 Link to this function

 remove_parent!(entity, parent)

 View Source

 @spec remove_parent!(Ecspanse.Entity.t(), parent :: Ecspanse.Entity.t()) :: :ok

Removes a parent entity from a child entity.

 Examples

 :ok = Ecspanse.Command.remove_parent!(sword_entity, hero_entity)

 Link to this function

 remove_parents!(list)

 View Source

 @spec remove_parents!([{Ecspanse.Entity.t(), parents :: [Ecspanse.Entity.t()]}]) ::
 :ok

The same as remove_parent!/2 but can perform multiple operations at once.
For example, removing multiple parents from multiple children.
It takes a list of two element tuples as argument, where the first element of the tuple is the child entity
and the second element is a list of parent entities.

 Examples

 :ok = Ecspanse.Command.remove_parents!([
 {sword_entity, [hero_entity]},
 {map_entity, [market_entity, vendor_entity]}
])

Components

 Link to this function

 add_component!(entity, component_spec)

 View Source

 @spec add_component!(Ecspanse.Entity.t(), Ecspanse.Component.component_spec()) :: :ok

Adds a new component to the specified entity.
Info
An entity cannot have multiple components of the same type.
If an attempt is made to insert a component that already exists for the entity, an error will be raised.

 Examples

 :ok = Ecspanse.Command.add_component!(hero_entity, Demo.Components.Gold)
 :ok = Ecspanse.Command.add_component!(hero_entity, {Demo.Components.Gold, [amount: 5], [:resource, :available]})

 Link to this function

 add_components!(list)

 View Source

 @spec add_components!([{Ecspanse.Entity.t(), [Ecspanse.Component.component_spec()]}]) ::
 :ok

The same as add_component!/2 but adds multiple components to multiple entities at once.
It takes a list of two element tuples as argument, where the first element of the tuple is the entity
and the second element is a list of component specs.

 Examples

 :ok = Ecspanse.Command.add_components!([
 {inventory_item_entity, [Demo.Components.Sword]},
 {hero_entity, [Demo.Components.Position, Demo.Components.Hero]}
])

 Link to this function

 remove_component!(component)

 View Source

 @spec remove_component!(component :: struct()) :: :ok

Removes an existing component from its entity. The components is destroyed.

 Examples

 :ok = Ecspanse.Command.remove_component!(invisibility_component)

 Link to this function

 remove_components!(components)

 View Source

 @spec remove_components!([component :: struct()]) :: :ok

The same as remove_component!/1 but removes multiple components at once.

 Link to this function

 update_component!(component, changes_keyword)

 View Source

 @spec update_component!(current_component :: struct(), state_changes :: keyword()) ::
 :ok

Updates the state of an existing component.
The function takes two arguments: the component struct to update and a keyword list of changes to apply.

 Examples

 :ok = Ecspanse.Command.update_component!(position_component, x: :12)

 Link to this function

 update_components!(list)

 View Source

 @spec update_components!([{current_component :: struct(), state_changes :: keyword()}]) ::
 :ok

The same as update_component!/2 but updates multiple components at once.
It takes a list of two element tuples as argument, where the first element of the tuple is the component struct
and the second element is a keyword list of changes to apply.

 Examples

 :ok = Ecspanse.Command.update_components!([
 {position_component, x: 7, y: 9},
 {gold_component, amount: 12}
])

Resources

 Link to this function

 delete_resource!(resource)

 View Source

 @spec delete_resource!(resource :: struct()) :: deleted_resource :: struct()

Deletes an existing global resource.

 Examples

 :ok = Ecspanse.Command.delete_resource!(lobby_resource)

 Link to this function

 insert_resource!(resource_spec)

 View Source

 @spec insert_resource!(resource_spec :: Ecspanse.Resource.resource_spec()) ::
 resource :: struct()

Inserts a new global resource.
Info
An Ecspanse instance can only hold one resource of each type at a time.
If an attempt is made to insert a resource that already exists, an error will be raised.

 Examples

 :ok = Ecspanse.Command.insert_resource!({Demo.Resources.Lobby, player_count: 0})

 Link to this function

 update_resource!(resource, state_changes)

 View Source

 @spec update_resource!(resource :: struct(), state_changes :: keyword()) ::
 updated_resource :: struct()

Updates an existing global resource.

 Examples

 :ok = Ecspanse.Command.update_resource!(lobby_resource, player_count: 1)

Ecspanse.Template.Component behaviour

A template component is a generic way of defining the structure for related components.
They share the same state fields and tags.
The template component, coupled with tags allow a flexible way to manage collections of related components.
See Ecspanse.Component for more details.
The template component guarantees that the component that uses it will have certain fields in its state and certain tags.
The component itself can define additional fields or tags, specific to its implementation.
It can also override the initial values of the template fields.
The framework embeds some predefined component templates:
	Ecspanse.Template.Component.Timer - a component template that is used to create timer components.

Options
See Ecspanse.Component for the list of options.
Examples
 defmodule Demo.Componenets.Resource do
 use Ecspanse.Template.Component, state: [amount: 0], tags: [:resource]
 end

 defmodule Demo.Componenets.Gold do
 use Demo.Components.Resource, state: [amount: 5, exchange_rate: 2], tags: [:available]
 end

 Summary

 Callbacks

 validate(state)

 Optional callback to validate the template and component state fields.

Callbacks

 Link to this callback

 validate(state)

 View Source

 (optional)

 @callback validate(state :: keyword()) :: :ok | {:error, any()}

Optional callback to validate the template and component state fields.
It runs only at compile time, and it takes the list of fields as the only argument and returns :ok or an error tuple.
Info
When an error tuple is returned, it raises an exception with the provided error message.

For runtime component state validation see Ecspanse.Component.validate/1.

 Examples

 defmodule Demo.Components.Resources do
 use Ecspanse.Template.Component, state: [amount: 0]

 def validate(state_fields) do
 amount = Keyword.get(state_fields, :amount, 0)
 if is_integer(amount) and amount >= 0 do
 :ok
 else
 {:error, "Invalid amount value"}
 end
 end
 end

Ecspanse.Template.Component.Timer

The Timer is a Template Component designed to facilitate the creation
of custom timer (countdown) components.
It serves as a foundation for building custom timer components with use Ecspanse.Template.Component.Timer.
The framework automatically decrements the Timer's time each frame,
eliminating the need for manual updates.
However, manual resetting may be necessary under certain circumstances such as:
	When game logic requires custom resetting.
	When the timer mode is set to :once, necessitating manual reset after reaching 0.

A dedicated Ecspanse.System.Timer system is provided by the framework.
This system auto-decrements the Timer component's time
and dispatches an event when time reaches 0.
To ensure functionality, this System must be manually included in the Ecspanse.setup/1.
Note that it should be added as a sync system, either at frame start or end.
This design choice allows developers control over timer operation
based on specific states or conditions.
For instance, pausing the timers when the game is in a pause state or other game states.
Pause control at a granular level can be achieved by setting the paused field to true.
The Timer component template comes with a predefined state comprising of:
	:duration - the timer's duration in milliseconds which also serves
as the reset value.
	:time - the current time of the timer in milliseconds,
auto-decremented by the framework each frame.
	:event - the event module dispatched when timer reaches 0.	create special timer events using Ecspanse.Template.Event.Timer.
	these events require no options.
	their state is predefined to %CustomEventModule{entity_id: entity_id},
where entity refers to owner of the custom timer component.
	event batch key corresponds to the component's owner entity's id.

	:mode - defines how timer operates and can be one of:	:repeat (default) - timer resets to original duration
after reaching 0 and repeats indefinitely.
	:once - timer runs once and pauses after reaching 0.
Time value needs manual reset.
	:temporary: Timer runs once and removes itself from entity after reaching 0.

	paused: A boolean indicating if timer is paused (defaults to false).

Example:
 defmodule Demo.Components.RestoreEnergyTimer do
 use Ecspanse.Template.Component.Timer,
 state: [duration: 3000, time: 3000, event: Demo.Events.RestoreEnergy, mode: :repeat, paused: false]
 end

 defmodule Demo.Events.RestoreEnergy do
 use Ecspanse.Template.Template.Event.Timer
 end
end
See a working example in the tutorial

Ecspanse.Template.Event

A template event is a generic way of defining the structure for related events that share the same fields.
The template event guarantees that the event that uses it will have certain fields.
The event itself can define additional fields, specific to its implementation.
The framework embeds some predefined event templates:
	Ecspanse.Template.Event.Timer - an event template that is used to create timer events

Options
See Ecspanse.Event for the list of options.
Examples
 defmodule Demo.Events.ConsumerResource do
 use Ecspanse.Template.Event, fields: [:amount]
 end

 defmodule Demo.Events.ConsumerGold do
 use Demo.Events.ConsumeResource, fields: [:amount, :hero_entity_id]
 end

Ecspanse.Template.Event.Timer

The Timer is a Template Event designed to facilitate the creation
of custom timer (countdown) events.
It serves as a foundation for building custom timer events with use Ecspanse.Template.Event.Timer.
It takes no options.
The event that will be dispatched by Event.System.Timer system when
the timer component reaches 0.
Their state is predefined to %CustomEventModule{entity_id: entity_id},
where entity refers to owner of the custom timer component.
Example:
 defmodule EnergyRestoreTimer do
 use Ecspanse.Template.Event.Timer
 end
See Ecspanse.Template.Component.Timer for more details.

Ecspanse.Projection behaviour

The Ecspanse.Projection behaviour is used to build state projections.
The projections are defined by invoking use Ecspanse.Projection in their module definition.
Projections are used to build models and query the state of application across multiple
entities and their components.
They are designed to be created and used by external clients (such as UI libraries, for example Phoenix LiveView),
The Projections are GenServers and the client that creates them is responsible for
storing their pid and using it to communicate with them.
The module invoking use Ecspanse.Projection must implement the mandatory
Ecspanse.Projection.project/1 callback. This is responsible for
querying the state and building the projection struct.
Info
On server initialization, the on_change/3 callback is called with the initial calculated projection as the new_projection,
and the default projection struct as the previous_projection.
This is executed even if the calculated projection is the same as the default one.
As the on_change/3 callback is generally used to send the projection to the client,
this ensures that the client receives the initial projection.

Note
The project/2 callback runs every frame, after executing all systems.
Many projections with complex queries may have a negative impact on performance.

Options
	:fields - a list with all the event struct keys and their initial values (if any)
For example: [:pos_x, :pos_y, resources_gold: 0, resources_gems: 0]

Examples
The Projection
 defmodule Demo.Projections.Hero do
 use Ecspanse.Projection, fields: [:pos_x, :pos_y, :resources_gold, :resources_gems]

 @impl true
 def project(%{entity_id: entity_id} = _attrs) do
 {:ok, entity} = fetch_entity(entity_id)
 {:ok, pos} = Demo.Components.Position.fetch(entity)
 {:ok, gold} = Demo.Components.Gold.fetch(entity)
 {:ok, gems} = Demo.Components.Gems.fetch(entity)

 struct!(__MODULE__, pos_x: pos.x, pos_y: pos.y, resources_gold: gold.amount, resources_gems: gems.amount)
 end

 @impl true
 def on_change(%{client_pid: pid} = _attrs, new_projection, _previous_projection) do
 # when the projection changes, send it to the client
 send(pid, {:projection_updated, new_projection})
 end
 end
The Client
 #...
 projection_pid = Demo.Projections.Hero.start!(%{entity_id: entity.id, client_pid: self()})

 projection = Demo.Projections.Hero.get!(projection_pid)

 # ...
 def handle_info({:projection_updated, projection}, state) do
 # received every time the projection changes
 # ...
 end

 # ...
 Demo.Projections.Hero.stop(projection_pid)

 Summary

 Implemented Callbacks

 get!(projection_pid)

 Gets the projection struct by providing the server pid.

 start!(attrs)

 Starts a new projection server and returns its pid.

 stop(projection_pid)

 Stops the projection server by its pid.

 Callbacks

 on_change(attrs, new_projection, previous_projection)

 Optional callback that is executed every time the projection changes.

 project(attrs)

 The project/1 callback is responsible for querying the state and building the projection struct.

Implemented Callbacks

 Link to this callback

 get!(projection_pid)

 View Source

 @callback get!(projection_pid :: pid()) :: projection :: struct()

Gets the projection struct by providing the server pid.
Implemented Callback
This callback is implemented by the library and can be used as such.

 Examples

 %Demo.Projection.Hero{} = Demo.Projections.Hero.get!(projection_pid)

 Link to this callback

 start!(attrs)

 View Source

 @callback start!(attrs :: map()) :: projection_pid :: pid()

Starts a new projection server and returns its pid.
It takes a single attrs map argument.
Info
The attrs map is passed to the Ecspanse.Projection.project/1
and Ecspanse.Projection.on_change/3 callbacks.

The caller is responsible for storing the returned pid.
Implemented Callback
This callback is implemented by the library and can be used as such.

 Examples

 projection_pid = Demo.Projections.Hero.start!(%{entity_id: entity.id, client_pid: self()})

 Link to this callback

 stop(projection_pid)

 View Source

 @callback stop(projection_pid :: pid()) :: :ok

Stops the projection server by its pid.
Implemented Callback
This callback is implemented by the library and can be used as such.

 Examples

 Demo.Projections.Hero.stop(projection_pid)

Callbacks

 Link to this callback

 on_change(attrs, new_projection, previous_projection)

 View Source

 (optional)

 @callback on_change(
 attrs :: map(),
 new_projection :: struct(),
 previous_projection :: struct()
) :: any()

Optional callback that is executed every time the projection changes.
It takes the attrs map argument passed to Ecspanse.Projection.start!/1,
the new projection and the previous projection structs as arguments. The return value is ignored.

 Examples

 @impl true
 def on_change(%{client_pid: pid} = _attrs, new_projection, _previous_projection) do
 send(pid, {:projection_updated, new_projection})
 end

 Link to this callback

 project(attrs)

 View Source

 @callback project(attrs :: map()) :: projection :: struct()

The project/1 callback is responsible for querying the state and building the projection struct.
It takes the attrs map argument passed to Ecspanse.Projection.start!/1.
It must return the projection struct.

 Examples

 @impl true
 def project(%{entity_id: entity_id} = _attrs) do
 {:ok, entity} = fetch_entity(entity_id)
 {:ok, pos} = Demo.Components.Position.fetch(entity)
 {:ok, gold} = Demo.Components.Gold.fetch(entity)
 {:ok, gems} = Demo.Components.Gems.fetch(entity)

 struct!(__MODULE__, pos_x: pos.x, pos_y: pos.y, resources_gold: gold.amount, resources_gems: gems.amount)
 end

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

