

 Ecto

 v3.12.5

 [image: Logo]

 Table of contents

 	Changelog for v3.x

 	Introduction

 	Getting Started

 	Embedded Schemas

 	Testing with Ecto

 	Cheatsheets

 	Basic CRUD

 	Associations

 	How-To's

 	Aggregates and subqueries

 	Composable transactions with Multi

 	Constraints and Upserts

 	Data mapping and validation

 	Dynamic queries

 	Multi tenancy with query prefixes

 	Multi tenancy with foreign keys

 	Self-referencing many to many

 	Polymorphic associations with many to many

 	Replicas and dynamic repositories

 	Schemaless queries

 	Test factories

 	

 	Modules

 	Ecto

 	Ecto.Changeset

 	Ecto.Multi

 	Ecto.Query

 	Ecto.Repo

 	Ecto.Schema

 	Ecto.Schema.Metadata

 	Mix.Ecto

 	Types

 	Ecto.Enum

 	Ecto.ParameterizedType

 	Ecto.Type

 	Ecto.UUID

 	Query APIs

 	Ecto.Query.API

 	Ecto.Query.WindowAPI

 	Ecto.Queryable

 	Ecto.SubQuery

 	Adapter specification

 	Ecto.Adapter

 	Ecto.Adapter.Queryable

 	Ecto.Adapter.Schema

 	Ecto.Adapter.Storage

 	Ecto.Adapter.Transaction

 	Relation structs

 	Ecto.Association.BelongsTo

 	Ecto.Association.Has

 	Ecto.Association.HasThrough

 	Ecto.Association.ManyToMany

 	Ecto.Association.NotLoaded

 	Ecto.Embedded

 	Exceptions

 	Ecto.CastError

 	Ecto.ChangeError

 	Ecto.ConstraintError

 	Ecto.InvalidChangesetError

 	Ecto.InvalidURLError

 	Ecto.MigrationError

 	Ecto.MultiplePrimaryKeyError

 	Ecto.MultipleResultsError

 	Ecto.NoPrimaryKeyFieldError

 	Ecto.NoPrimaryKeyValueError

 	Ecto.NoResultsError

 	Ecto.Query.CastError

 	Ecto.Query.CompileError

 	Ecto.QueryError

 	Ecto.StaleEntryError

 	Ecto.SubQueryError

 	Mix Tasks

 	mix ecto

 	mix ecto.create

 	mix ecto.drop

 	mix ecto.gen.repo

Changelog for v3.x

 v3.12.5 (2024-11-28)

 Enhancements

	[Ecto.Repo] Use persistent_term for faster repository lookup
	[Ecto.Repo] Document new :pool_count option

 Bug fixes

	[Ecto.Query] Raise when empty list is given to values/2
	[Ecto.Query] Fix inspecting dynamic/2 with interpolated named bindings
	[Ecto.Query] Plan sources before creating plan_subquery closure
	[Ecto.Repo] Remove read-only changes from returned record during insert/update
	[Ecto.Repo] Cascade :allow_stale options to assocs

 v3.12.4 (2024-10-07)

 Enhancements

	[Ecto.Repo] Document new :pool_count option

 Bug fixes

	[Ecto.Repo] Make Ecto.Repo.reload respect source

 v3.12.3 (2024-09-06)

 Bug fixes

	[Ecto.Changeset] Allow associations to be cast/put inside of embedded schema changesets

 v3.12.2 (2024-08-25)

 Bug fixes

	[Ecto.Query] Allow :prefix to be set to any term
	[Ecto.Repo] Avoid overwriting ssl opts from url if already set in config

 v3.12.1 (2024-08-13)

 Enhancements

	[Ecto.Type] Add Ecto.Type.parameterized?/2

 Bug fixes

	[Ecto.Enum] Fix dialyzer specification
	[Ecto.Query] Remove incorrect subquery parameter check

 v3.12.0 (2024-08-12)

 Enhancements

	[Ecto.Changeset] Allow {message, opts} to be given as message for several validation APIs
	[Ecto.Query] Introduce is_named_binding guard
	[Ecto.Query] Subqueries are now supported in distinct, group_by, order_by and window expressions
	[Ecto.Query] Allow select_merge to be used in more insert_all and subquery operations by merging distinct fields
	[Ecto.Query] Allow literal maps inside dynamic/2
	[Ecto.Query] Support macro expansion at the root level of order_by
	[Ecto.Query] Support preloading subquery sources in from and join
	[Ecto.Query] Allow map updates with dynamic values in select
	[Ecto.Query] Allow any data structure that implements the Enumerable protocol on the right side of in
	[Ecto.Repo] Support 2-arity preload functions that receive ids and the association metadata
	[Ecto.Repo] Allow Hot Updates on upsert queries in Postgres by removing duplicate fields during replace_all
	[Ecto.Repo] insert_all supports queries with only source
	[Ecto.Repo] insert_all supports queries with the update syntax
	[Ecto.Repo] Support :allow_stale on Repo struct/changeset operations
	[Ecto.Schema] Allow schema fields to be read-only via :writable option
	[Ecto.Schema] Add :defaults_to_struct option to embeds_one
	[Ecto.Schema] Support :duration type which maps to Elixir v1.17 duration
	[Ecto.Type] Bubble up custom cast errors of the inner type for {:map, type} and {:array, type}
	[Ecto.Type] Add Ecto.Type.cast!/2

 Bug fixes

	[Ecto.Query] Ignore query prefix in CTE sources
	[Ecto.Query] Fix a bug of preload when a through association is used in a join and has a nested separate query preload. Now the association chain is no longer preloaded and we simply preload directly onto the loaded through association.
	[Ecto.Query] Fix inspection when select has map/struct modifiers
	[Ecto.Query] Disable query cache for values lists
	[Ecto.Repo] Convert fields to their sources in insert_all
	[Ecto.Repo] Raise if empty list is given to {:replace, fields}
	[Ecto.Repo] Validate :prefix is a string/binary, warn otherwise
	[Ecto.Repo] Remove compile dependency on :preload_order MFA in has_many

 Adapter changes

	distinct, group_by, order_by and window expressions use the new Ecto.Query.ByExpr
struct rather than the old Ecto.Query.QueryExpr struct

 Potential incompatibilities

	[Ecto.Changeset] Associations inside embeds have always been read-only. We now raise if you try to cast them inside a changeset (this was reverted in v3.12.3)
	[Ecto.ParameterizedType] Parameterized types are now represented internally as {:parameterized, {mod, state}}. While this representation is private, projects may have been relying on it, and therefore they need to adapt accordingly. Use Ecto.ParameterizedType.init/2 to instantiate parameterized types.
	[Ecto.Query] Drop :array_join join type. It was added for Clickhouse support but it is no longer used
	[Ecto.Query] Validate :prefix is a string/binary (this was reverted in v3.12.2)

 v3.11.2 (2024-03-07)

 Bug fixes

	[Ecto.Query] Fix compatibility with upcoming Elixir v1.17
	[Ecto.Repo] Do not hide failures when preloading if the parent process is trapping exits

 v3.11.1 (2023-12-07)

 Enhancements

	[Ecto.Query] Allow module attributes to be given to in operator

 Bug fixes

	[Ecto.Query] Fix interpolating strings and atoms as map keys
	[Ecto.Query] Plan subqueries in having
	[Ecto.Query] Fix late binding with composite types

 v3.11.0 (2023-11-14)

 Enhancements

	[Ecto.Association] Allow preload_order to take MFAs for many_to_many associations. This allows ordering by the join table
	[Ecto.Query] Add :operation option to with_cte/3. This allows CTEs to perform updates and deletes
	[Ecto.Query] Support splice(^...) in fragment
	[Ecto.Query] Add prepend_order_by/3
	[Ecto.Query] Allow selected_as/1 and selected_as/2 to take interpolated names
	[Ecto.Query] Allow map update syntax to work with nil values in select
	[Ecto.Query] Allow hints to inject SQL using unsafe_fragment
	[Ecto.Query] Support values/2 lists
	[Ecto.Repo] Add :on_preload_spawn option to preload/3
	[Ecto.Schema] Support :load_in_query option for embeds
	[Ecto.Schema] Support :returning option for delete

 Bug fixes

	[Ecto.Association] Ensure parent prefix is passed to on_delete queries
	[Ecto.Changeset] Ensure duplicate primary keys are always detected for embeds
	[Ecto.Embedded] Raise ArgumentError when specifying an autogenerated :id primary key
	[Ecto.Query] Ensure subquery selects generate unique cache keys
	[Ecto.Query] Raise on literal non-base binary/uuids in query
	[Ecto.Repo] Reset belongs_to association if foreign key update results in a mismatch

 Adapter changes

	Adapters now receive nil for encoding/decoding
	Adapters now receive type instead of {:maybe, type} as the first argument to loaders/2

 Deprecations

	[Ecto.Query] Keyword hints are no longer supported. Please use unsafe_fragment inside of hints instead

 v3.10.3 (2023-07-07)

 Enhancements

	[Ecto.Query] Allow dynamic field/2 in type/2

 Bug fixes

	[Ecto.Changesets] Limit the largest integer to less than 32 digits
	[Ecto.Type] Limit the largest integer to less than 32 digits

 v3.10.2 (2023-06-07)

 Enhancements

	[Ecto.Changeset] Support a three-arity function with position on cast_assoc and cast_embed
	[Ecto.Changeset] Add support for maps in validate_length/3
	[Ecto.Changeset] Add :nulls_distinct option to unsafe_validate_unique
	[Ecto.Query] Support array_join type for ClickHouse adapter
	[Ecto.Query.API] Support parameterized and custom map types in json path validation

 Bug fixes

	[Ecto.Repo] Respect parent prefix in Repo.aggregate
	[Ecto.Query.API] Fix late binding in json_extract_path

 Deprecations

	Deprecate MFAs on :with

 v3.10.1 (2023-04-12)

 Bug fixes

	[Ecto.Changeset] Consider sort_param even if the relation param was not given
	[Ecto.Query] Correct typespec to avoid Dialyzer warnings

 v3.10.0 (2023-04-10)

This release contains many improvements to Ecto.Changeset, functions like Ecto.Changeset.changed?/2 and field_missing?/2 will help make your code more expressive. Improvements to association and embed handling will also make it easier to manage more complex forms, especially those embedded within Phoenix.LiveView applications.
On the changeset front, note this release unifies the handling of empty values between cast/4 and validate_required/3. If you were setting :empty_values in the past and you want to preserve this new behaviour throughout, you may want to update your code from this:
Ecto.Changeset.cast(changeset, params, [:field1, :field2], empty_values: ["", []])
to:
empty_values = [[]] ++ Ecto.Changeset.empty_values()
Ecto.Changeset.cast(changeset, params, [:field1, :field2], empty_values: empty_values)
Queries have also been improved to support LIMIT WITH TIES as well as materialized CTEs.

 Enhancements

	[Ecto.Changeset] Add get_assoc/get_embed
	[Ecto.Changeset] Add field_missing?/2
	[Ecto.Changeset] Add changed?/2 and changed?/3 with predicates support
	[Ecto.Changeset] Allow Regex to be used in constraint names for exact matches
	[Ecto.Changeset] Allow :empty_values option in cast/4 to include a function which must return true if the value is empty
	[Ecto.Changeset] cast/4 will by default consider strings made only of whitespace characters to be empty
	[Ecto.Changeset] Add support for :sort_param and :drop_param on cast_assoc and cast_embed
	[Ecto.Query] Support materialized option in CTEs
	[Ecto.Query] Support dynamic field inside json_extract_path
	[Ecto.Query] Support interpolated values for from/join prefixes
	[Ecto.Query] Support ties in limit expressions through with_ties/3
	[Ecto.Schema] Add :autogenerate_fields to the schema reflection API
	[Ecto.ParameterizedType] Add optional callback format/1

 Bug fixes

	[Ecto.Changeset] Make unsafe validate unique exclude primary key only for loaded schemas
	[Ecto.Changeset] Raise when change provided to validate_format/4 is not a string
	[Ecto.Query] Fix bug in json_extract_path where maps were not allowed to be nested inside of embeds
	[Ecto.Schema] Allow inline embeds to overwrite conflicting aliases

 v3.9.6 (2023-07-07)

 Enhancements

	[Ecto.Query] Allow dynamic field/2 in type/2

 Bug fixes

	[Ecto.Changesets] Limit the largest integer to less than 32 digits
	[Ecto.Type] Limit the largest integer to less than 32 digits

 v3.9.5 (2023-03-22)

 Bug fixes

	[Ecto.Query] Rename @opaque dynamic type to @opaque dynamic_expr to avoid conflicts with Erlang/OTP 26

 v3.9.4 (2022-12-21)

 Bug fixes

	[Ecto.Query] Fix regression with interpolated preloads introduced in v3.9.3

 v3.9.3 (2022-12-20)

 Enhancements

	[Ecto] Add reset_fields/2
	[Ecto.Multi] Add exists?/4 function
	[Ecto.Repo] Keep url scheme in the repo configuration
	[Ecto.Query] Add support for cross lateral joins
	[Ecto.Query] Allow preloads to use dynamic/2
	[Ecto.Query.API] Allow the entire path to be interpolated in json_extract_path/2

 v3.9.2 (2022-11-18)

 Enhancements

	[Ecto.Query] Allow selected_as inside CTE
	[Ecto.Query] Allow selected_as to be used in subquery

 Bug fixes

	[Ecto.Repo] Fix preloading through associations on nil
	[Ecto.Query] Fix select merging a selected_as field into a source

 v3.9.1 (2022-10-06)

 Enhancements

	[Ecto.Query] Allow selected_as at the root of dynamic/2
	[Ecto.Query] Allow selected_as to be used with type/2
	[Ecto.Query] Allow selected_as to be used with select_merge

 Bug fixes

	[Ecto.Changeset] Reenable support for embedded schemas in unsafe_validate_unique/4
	[Ecto.Query] Ensure join_where conditions preload correctly in many_to_many or with queries with one or many joins

 v3.9.0 (2022-09-27)

 Enhancements

	[Ecto.Changeset] Add :force_changes option to cast/4
	[Ecto.Enum] Allow enum fields to be embed either as their values or their dumped versions
	[Ecto.Query] Support ^%{field: dynamic(...)} in select and select_merge
	[Ecto.Query] Support %{field: subquery(...)} in select and select_merge
	[Ecto.Query] Support select aliases through selected_as/1 and selected_as/2
	[Ecto.Query] Allow parent_as/1 in type/2
	[Ecto.Query] Add with_named_binding/3
	[Ecto.Query] Allow fragment sources in keyword queries
	[Ecto.Repo] Support idle_interval query parameter in connection URL
	[Ecto.Repo] Log human-readable UUIDs by using pre-dumped query parameters
	[Ecto.Schema] Support preloading associations in embedded schemas

 Bug fix

	[Ecto.Changeset] Raise when schemaless changeset or embedded schema is used in unsafe_validate_unique/4
	[Ecto.Query] Respect virtual field type in subqueries
	[Ecto.Query] Don't select struct fields overridden with nil
	[Ecto.Query] Fix select_merge not tracking load_in_query: false field
	[Ecto.Query] Fix field source when used in json_extract_path
	[Ecto.Query] Properly build CTEs at compile time
	[Ecto.Query] Properly order subqueries in dynamic
	[Ecto.Repo] Fix insert_all query parameter count when using value queries alongside placeholder
	[Ecto.Repo] Raise if combination query is used in a many preload
	[Ecto.Schema] Ignore associations that aren't loaded on insert

 v3.8.4 (2022-06-04)

 Enhancements

	[Ecto.Multi] Add one/2 and all/2 functions
	[Ecto.Query] Support literal(...) in fragment

 Bug fix

	[Ecto.Schema] Make sure fields are inspected in the correct order in Elixir v1.14+

 v3.8.3 (2022-05-11)

 Bug fix

	[Ecto.Query] Allow source aliases to be used in type/2
	[Ecto.Schema] Avoid "undefined behaviour/struct" warnings and errors during compilation

 v3.8.2 (2022-05-05)

 Bug fix

	[Ecto.Adapter] Do not require adapter metadata to be raw maps
	[Ecto.Association] Respect join_where in many to many on_replace deletes
	[Ecto.Changeset] Check if list is in empty_values before nested validations

 v3.8.1 (2022-04-27)

 Bug fix

	[Ecto.Query] Fix regression where a join's on parameter on update_all was out of order

 v3.8.0 (2022-04-26)

Ecto v3.8 requires Elixir v1.10+.

 Enhancements

	[Ecto] Add new Embedded chapter to Introductory guides
	[Ecto.Changeset] Allow custom :error_key in unique_constraint
	[Ecto.Changeset] Add :match option to all constraint functions
	[Ecto.Query] Support dynamic aliases
	[Ecto.Query] Allow using type/2 with virtual fields
	[Ecto.Query] Suggest alternatives to inexistent fields in queries
	[Ecto.Query] Support passing queries using subqueries to insert_all
	[Ecto.Repo] Allow stacktrace: true so stacktraces are included in telemetry events and logs
	[Ecto.Schema] Validate options given to schema fields

 Bug fixes

	[Ecto.Changeset] Address regression on validate_subset no longer working with custom array types
	[Ecto.Changeset] Potentially breaking change: Detect empty_values inside lists when casting. This may cause issues if you were relying on the casting of empty values (by default, only "").
	[Ecto.Query] Handle atom list sigils in select
	[Ecto.Query] Improve tracking of select_merge inside subqueries
	[Ecto.Repo] Properly handle literals in queries given to insert_all
	[Ecto.Repo] Don't surface persisted data as changes on embed updates
	[Ecto.Repo] Potentially breaking change: Raise if an association doesn't have a primary key and is preloaded in a join query. Previously, this would silently produce the wrong the result in certain circumstances.
	[Ecto.Schema] Preserve parent prefix on join tables

 v3.7.2 (2022-03-13)

 Enhancements

	[Ecto.Schema] Add option to skip validations for default values
	[Ecto.Query] Allow coalesce in type/2
	[Ecto.Query] Support parameterized types in type/2
	[Ecto.Query] Allow arbitrary parentheses in query expressions

 v3.7.1 (2021-08-27)

 Enhancements

	[Ecto.Embedded] Make Ecto.Embedded public and describe struct fields

 Bug fixes

	[Ecto.Repo] Make sure parent changeset is included in changes for insert/update/delete when there are errors processing the parent itself

 v3.7.0 (2021-08-19)

 Enhancements

	[Ecto.Changeset] Add Ecto.Changeset.traverse_validations/2
	[Ecto.Enum] Add Ecto.Enum.mappings/2 and Ecto.Enum.dump_values/2
	[Ecto.Query] Add support for dynamic as(^as) and parent_as(^as)
	[Ecto.Repo] Add stale changeset to Ecto.StaleEntryError fields
	[Ecto.Schema] Add support for @schema_context to set context metadata on schema definition

 Bug fixes

	[Ecto.Changeset] Fix changeset inspection not redacting when embedded
	[Ecto.Changeset] Use semantic comparison on validate_inclusion, validate_exclusion, and validate_subset
	[Ecto.Enum] Raise on duplicate values in Ecto.Enum
	[Ecto.Query] Make sure hints are included in the query cache
	[Ecto.Repo] Support placeholders in insert_all without schemas
	[Ecto.Repo] Wrap in a subquery when query given to Repo.aggregate has combination
	[Ecto.Repo] Fix CTE subqueries not finding parent bindings
	[Ecto.Repo] Return changeset with assocs if any of the assocs are invalid

 v3.6.2 (2021-05-28)

 Enhancements

	[Ecto.Query] Support macros in with_cte
	[Ecto.Repo] Add Ecto.Repo.all_running/0 to list all running repos

 Bug fixes

	[Ecto.Query] Do not omit nil fields in a subquery select
	[Ecto.Query] Allow parent_as to look for an alias all the way up across subqueries
	[Ecto.Query] Raise if a nil value is given to a query from a nested map parameter
	[Ecto.Query] Fix insert_all when using both :on_conflict and :placeholders
	[mix ecto.load] Do not pass --force to underlying compile task

 v3.6.1 (2021-04-12)

 Enhancements

	[Ecto.Changeset] Allow the :query option in unsafe_validate_unique

 Bug fixes

	[Ecto.Changeset] Add the relation id in apply_changes if the relation key exists (instead of hardcoding it to id)

 v3.6.0 (2021-04-03)

 Enhancements

	[Ecto.Changeset] Support :repo_opts in unsafe_validate_unique
	[Ecto.Changeset] Add a validation error if trying to cast a cardinality one embed/assoc with anything other than a map or keyword list
	[Ecto.Enum] Allow enums to map to custom values
	[Ecto.Multi] Add Ecto.Multi.put/3 for directly storing values
	[Ecto.Query] Potentially breaking change: optimize many_to_many queries so it no longer load intermediary tables in more occasions. This may cause issues if you are using Ecto.assoc/2 to load many_to_many associations and then trying to access intermediate bindings (which is discouraged but it was possible)
	[Ecto.Repo] Allow insert_all to be called with a query instead of rows
	[Ecto.Repo] Add :placeholders support to insert_all to avoid sending the same value multiple times
	[Ecto.Schema] Support :preload_order on has_many and many_to_many associations
	[Ecto.UUID] Add bang UUID conversion methods
	[Ecto.Query] The :hints option now accepts dynamic values when supplied as tuples
	[Ecto.Query] Support select: map(source, fields) where source is a fragment
	[Ecto.Query] Allow referring to the parent query in a join's subquery select via parent_as
	[mix ecto] Support file and line interpolation on ECTO_EDITOR

 Bug fixes

	[Ecto.Changeset] Change apply_changes/1 to add the relation to the struct.relation_id if relation struct is persisted
	[Ecto.Query] Remove unnecessary INNER JOIN in many to many association query
	[Ecto.Query] Allow parametric types to be interpolated in queries
	[Ecto.Schema] Raise ArgumentError when default has invalid type

 v3.5.8 (2021-02-21)

 Enhancements

	[Ecto.Query] Support map/2 on fragments and subqueries

 v3.5.7 (2021-02-07)

 Bug fixes

	[Ecto.Query] Fixes param ordering issue on dynamic queries with subqueries

 v3.5.6 (2021-01-20)

 Enhancements

	[Ecto.Schema] Support on_replace: :delete_if_exists on associations

 Bug fixes

	[Ecto.Query] Allow unary minus operator in query expressions
	[Ecto.Schema] Allow nil values on typed maps

 v3.5.5 (2020-11-12)

 Enhancements

	[Ecto.Query] Add support for subqueries operators: all, any, and exists

 Bug fixes

	[Ecto.Changeset] Use association source on put_assoc with maps/keywords
	[Ecto.Enum] Add cast clause for nil values on Ecto.Enum
	[Ecto.Schema] Allow nested type :any for non-virtual fields

 v3.5.4 (2020-10-28)

 Enhancements

	[mix ecto.drop] Provide --force-drop for databases that may support it
	[guides] Add new "Multi tenancy with foreign keys" guide

 Bug fixes

	[Ecto.Changeset] Make keys optional in specs
	[Ecto.Enum] Make sure values/2 works for virtual fields
	[Ecto.Query] Fix missing type on CTE queries that select a single field

 v3.5.3 (2020-10-21)

 Bug fixes

	[Ecto.Query] Do not reset parameter counter for nested CTEs
	[Ecto.Type] Fix regression where array type with nils could no longer be cast/load/dump
	[Ecto.Type] Fix CaseClauseError when casting a decimal with a binary remainder

 v3.5.2 (2020-10-12)

 Enhancements

	[Ecto.Repo] Add Repo.reload/2 and Repo.reload!/2

 Bug fixes

	[Ecto.Changeset] Fix "schema/1 is undefined or private" error while inspecting a schemaless changeset
	[Ecto.Repo] Invoke Ecto.Repo.default_options/1 per entry-point operation

 v3.5.1 (2020-10-08)

 Enhancements

	[Ecto.Changeset] Warn if there are duplicate IDs in the parent schema for cast_assoc/3/cast_embed/3
	[Ecto.Schema] Allow belongs_to to accept options for parameterized types

 Bug fixes

	[Ecto.Query] Keep field types when using a subquery with source

 v3.5.0 (2020-10-03)

v3.5 requires Elixir v1.8+.

 Bug fixes

	[Ecto.Changeset] Ensure :empty_values in cast/4 does not automatically propagate to following cast calls. If you want a given set of :empty_values to apply to all cast/4 calls, change the value stored in changeset.empty_values instead
	[Ecto.Changeset] Potentially breaking change: Do not force repository updates to happen when using optimistic_lock. The lock field will only be incremented if the record has other changes. If no changes, nothing happens.
	[Ecto.Changeset] Do not automatically share empty values across cast/3 calls
	[Ecto.Query] Consider query prefix in cte/combination query cache
	[Ecto.Query] Allow the entry to be marked as nil when using left join with subqueries
	[Ecto.Query] Support subqueries inside dynamic expressions
	[Ecto.Repo] Fix preloading when using dynamic repos and the sandbox in automatic mode
	[Ecto.Repo] Do not duplicate collections when associations are preloaded for repeated elements

 Enhancements

	[Ecto.Enum] Add Ecto.Enum as a custom parameterized type
	[Ecto.Query] Allow :prefix in from to be set to nil
	[Ecto.Query] Do not restrict subqueries in where to map/struct types
	[Ecto.Query] Allow atoms in query without interpolation in order to support Ecto.Enum
	[Ecto.Schema] Do not validate uniqueness if there is a prior error on the field
	[Ecto.Schema] Allow redact: true in field
	[Ecto.Schema] Support parameterized types via Ecto.ParameterizedType
	[Ecto.Schema] Rewrite embeds and assocs as parameterized types. This means __schema__(:type, assoc_or_embed) now returns a parameterized type. To check if something is an association, use __schema__(:assocs) or __schema__(:embeds) instead

 v3.4.6 (2020-08-07)

 Enhancements

	[Ecto.Query] Allow count/0 on type/2
	[Ecto.Multi] Support anonymous functions in multiple functions

 Bug fixes

	[Ecto.Query] Consider booleans as literals in unions, subqueries, ctes, etc
	[Ecto.Schema] Generate IDs for nested embeds

 v3.4.5 (2020-06-14)

 Enhancements

	[Ecto.Changeset] Allow custom error key in unsafe_validate_unique
	[Ecto.Changeset] Improve performance when casting large params maps

 Bug fixes

	[Ecto.Changeset] Improve error message for invalid cast_assoc
	[Ecto.Query] Fix inspecting query with fragment CTE
	[Ecto.Query] Fix inspecting dynamics with aliased bindings
	[Ecto.Query] Improve error message when selecting a single atom
	[Ecto.Repo] Reduce data-copying when preloading multiple associations
	[Ecto.Schema] Do not define a compile-time dependency for schema in :join_through

 v3.4.4 (2020-05-11)

 Enhancements

	[Ecto.Schema] Add join_where support to many_to_many

 v3.4.3 (2020-04-27)

 Enhancements

	[Ecto.Query] Support as/1 and parent_as/1 for lazy named bindings and to allow parent references from subqueries
	[Ecto.Query] Support x in subquery(query)

 Bug fixes

	[Ecto.Query] Do not raise for missing assocs if :force is given to preload
	[Ecto.Repo] Return error from Repo.delete on invalid changeset from prepare_changeset

 v3.4.2 (2020-04-10)

 Enhancements

	[Ecto.Changeset] Support multiple fields in unique_constraint/3

 v3.4.1 (2020-04-08)

 Enhancements

	[Ecto] Add Ecto.embedded_load/3 and Ecto.embedded_dump/2
	[Ecto.Query] Improve error message on invalid JSON expressions
	[Ecto.Repo] Emit [:ecto, :repo, :init] telemetry event upon Repo init

 Bug fixes

	[Ecto.Query] Do not support JSON selectors on type/2

 Deprecations

	[Ecto.Repo] Deprecate conflict_target: {:constraint, _}. It is a discouraged approach and {:unsafe_fragment, _} is still available if someone definitely needs it

 v3.4.0 (2020-03-24)

v3.4 requires Elixir v1.7+.

 Enhancements

	[Ecto.Query] Allow dynamic queries in CTE and improve error message
	[Ecto.Query] Add Ecto.Query.API.json_extract_path/2 and JSON path support to query syntax. For example, posts.metadata["tags"][0]["name"] will return the name of the first tag stored in the :map metadata field
	[Ecto.Repo] Add new default_options/1 callback to repository
	[Ecto.Repo] Support passing :telemetry_options to repository operations

 Bug fixes

	[Ecto.Changeset] Properly add validation annotation to validate_acceptance
	[Ecto.Query] Raise if there is loaded non-empty association data without related key when preloading. This typically means not all fields have been loaded in a query
	[Ecto.Schema] Show meaningful error in case schema is invoked twice in an Ecto.Schema

 v3.3.4 (2020-02-27)

 Bug fixes

	[mix ecto] Do not rely on map ordering when parsing repos
	[mix ecto.gen.repo] Improve error message when a repo is not given

 v3.3.3 (2020-02-14)

 Enhancements

	[Ecto.Query] Support fragments in lock
	[Ecto.Query] Handle nil in select_merge with similar semantics to SQL databases (i.e. it simply returns nil itself)

 v3.3.2 (2020-01-28)

 Enhancements

	[Ecto.Changeset] Only bump optimistic lock in case of success
	[Ecto.Query] Allow macros in Ecto window expressions
	[Ecto.Schema] Support :join_defaults on many_to_many associations
	[Ecto.Schema] Allow MFargs to be given to association :defaults
	[Ecto.Type] Add Ecto.Type.embedded_load and Ecto.Type.embedded_dump

 Bug fixes

	[Ecto.Repo] Ignore empty hostname when parsing database url (Elixir v1.10 support)
	[Ecto.Repo] Rewrite combinations on Repo.exists? queries
	[Ecto.Schema] Respect child @schema_prefix in cast_assoc
	[mix ecto.gen.repo] Use config_path when writing new config in mix ecto.gen.repo

 v3.3.1 (2019-12-27)

 Enhancements

	[Ecto.Query.WindowAPI] Support filter/2

 Bug fixes

	[Ecto.Query.API] Fix coalesce/2 usage with mixed types

 v3.3.0 (2019-12-11)

 Enhancements

	[Ecto.Adapter] Add storage_status/1 callback to Ecto.Adapters.Storage behaviour
	[Ecto.Changeset] Add Ecto.Changeset.apply_action!/2
	[Ecto.Changeset] Remove actions restriction in Ecto.Changeset.apply_action/2
	[Ecto.Repo] Introduce c:Ecto.Repo.aggregate/2
	[Ecto.Repo] Support {:replace_all_except, fields} in :on_conflict

 Bug fixes

	[Ecto.Query] Make sure the :prefix option in :from/:join also cascades to subqueries
	[Ecto.Query] Make sure the :prefix option in :join also cascades to queries
	[Ecto.Query] Use database returned values for literals. Previous Ecto versions knew literals from queries should not be discarded for combinations but, even if they were not discarded, we would ignore the values returned by the database
	[Ecto.Repo] Do not wrap schema operations in a transaction if already inside a transaction. We have also removed the private option called :skip_transaction

 Deprecations

	[Ecto.Repo] :replace_all_except_primary_keys is deprecated in favor of {:replace_all_except, fields} in :on_conflict

 v3.2.5 (2019-11-03)

 Bug fixes

	[Ecto.Query] Fix a bug where executing some queries would leak the {:maybe, ...} type

 v3.2.4 (2019-11-02)

 Bug fixes

	[Ecto.Query] Improve error message on invalid join binding
	[Ecto.Query] Make sure the :prefix option in :join also applies to through associations
	[Ecto.Query] Invoke custom type when loading aggregations from the database (but fallback to database value if it can't be cast)
	[mix ecto.gen.repo] Support Elixir v1.9 style configs

 v3.2.3 (2019-10-17)

 Bug fixes

	[Ecto.Changeset] Do not convert enums given to validate_inclusion to a list

 Enhancements

	[Ecto.Changeset] Improve error message on non-atom keys to change/put_change
	[Ecto.Changeset] Allow :with to be given as a {module, function, args} tuple on cast_association/cast_embed
	[Ecto.Changeset] Add fetch_change!/2 and fetch_field!/2

 v3.2.2 (2019-10-01)

 Bug fixes

	[Ecto.Query] Fix keyword arguments given to :on when a bind is not given to join
	[Ecto.Repo] Make sure a preload given to an already preloaded has_many :through is loaded

 v3.2.1 (2019-09-17)

 Enhancements

	[Ecto.Changeset] Add rollover logic for default incrementer in optimistic_lock
	[Ecto.Query] Also expand macros when used inside type/2

 Bug fixes

	[Ecto.Query] Ensure queries with non-cacheable queries in CTEs/combinations are also not-cacheable

 v3.2.0 (2019-09-07)

v3.2 requires Elixir v1.6+.

 Enhancements

	[Ecto.Query] Add common table expressions support with_cte/3 and recursive_ctes/2
	[Ecto.Query] Allow dynamic/3 to be used in order_by, distinct, group_by, as well as in partition_by, order_by, and frame inside windows
	[Ecto.Query] Allow filters in type/2 expressions
	[Ecto.Repo] Merge options given to the repository into the changeset repo_opts and assign it back to make it available down the chain
	[Ecto.Repo] Add prepare_query/3 callback that is invoked before query operations
	[Ecto.Repo] Support :returning option in Ecto.Repo.update/2
	[Ecto.Repo] Support passing a one arity function to Ecto.Repo.transaction/2, where the argument is the current repo
	[Ecto.Type] Add a new embed_as/1 callback to Ecto.Type that allows adapters to control embedding behaviour
	[Ecto.Type] Add use Ecto.Type for convenience that implements the new required callbacks

 Bug fixes

	[Ecto.Association] Ensure we delete an association before inserting when replacing on has_one
	[Ecto.Query] Do not allow interpolated nil in literal keyword list when building query
	[Ecto.Query] Do not remove literals from combinations, otherwise UNION/INTERSECTION queries may not match the number of values in select
	[Ecto.Query] Do not attempt to merge at compile-time non-keyword lists given to select_merge
	[Ecto.Repo] Do not override :through associations on preload unless forcing
	[Ecto.Repo] Make sure prefix option cascades to combinations and recursive queries
	[Ecto.Schema] Use OS time without drift when generating timestamps
	[Ecto.Type] Allow any datetime in datetime_add

 v3.1.7 (2019-06-27)

 Bug fixes

	[Ecto.Changeset] Make sure put_assoc with empty changeset propagates on insert

 v3.1.6 (2019-06-19)

 Enhancements

	[Ecto.Repo] Add :read_only repositories
	[Ecto.Schema] Also validate options given to :through associations

 Bug fixes

	[Ecto.Changeset] Do not mark put_assoc from [] to [] or from nil to nil as change
	[Ecto.Query] Remove named binding when excluding joins
	[mix ecto.gen.repo] Use :config_path instead of hardcoding to config/config.exs

 v3.1.5 (2019-06-06)

 Enhancements

	[Ecto.Repo] Allow :default_dynamic_repo option on use Ecto.Repo
	[Ecto.Schema] Support {:fragment, ...} in the :where option for associations

 Bug fixes

	[Ecto.Query] Fix handling of literals in combinators (union, except, intersection)

 v3.1.4 (2019-05-07)

 Bug fixes

	[Ecto.Changeset] Convert validation enums to lists before adding them as validation metadata
	[Ecto.Schema] Properly propagate prefix to join_through source in many_to_many associations

 v3.1.3 (2019-04-30)

 Enhancements

	[Ecto.Changeset] Expose the enum that was validated against in errors from enum-based validations

 v3.1.2 (2019-04-24)

 Enhancements

	[Ecto.Query] Add support for type+over
	[Ecto.Schema] Allow schema fields to be excluded from queries

 Bug fixes

	[Ecto.Changeset] Do not list a field as changed if it is updated to its original value
	[Ecto.Query] Keep literal numbers and bitstring in subqueries and unions
	[Ecto.Query] Improve error message for invalid type/2 expression
	[Ecto.Query] Properly count interpolations in select_merge/2

 v3.1.1 (2019-04-04)

 Bug fixes

	[Ecto] Do not require Jason (i.e. it should continue to be an optional dependency)
	[Ecto.Repo] Make sure many_to_many and Ecto.Multi work with dynamic repos

 v3.1.0 (2019-04-02)

v3.1 requires Elixir v1.5+.

 Enhancements

	[Ecto.Changeset] Add not_equal_to option for validate_number
	[Ecto.Query] Improve error message for missing fragment arguments
	[Ecto.Query] Improve error message on missing struct key for structs built in select
	[Ecto.Query] Allow dynamic named bindings
	[Ecto.Repo] Add dynamic repository support with Ecto.Repo.put_dynamic_repo/1 and Ecto.Repo.get_dynamic_repo/0 (experimental)
	[Ecto.Type] Cast naive_datetime/utc_datetime strings without seconds

 Bug fixes

	[Ecto.Changeset] Do not run unsafe_validate_unique query unless relevant fields were changed
	[Ecto.Changeset] Raise if an unknown field is given on Ecto.Changeset.change/2
	[Ecto.Changeset] Expose the type that was validated in errors generated by validate_length/3
	[Ecto.Query] Add support for field/2 as first element of type/2 and alias as second element of type/2
	[Ecto.Query] Do not attempt to assert types of named bindings that are not known at compile time
	[Ecto.Query] Properly cast boolean expressions in select
	[Mix.Ecto] Load applications during repo lookup so their app environment is available

 Deprecations

	[Ecto.LogEntry] Fully deprecate previously soft deprecated API

 v3.0.7 (2019-02-06)

 Bug fixes

	[Ecto.Query] reverse_order reverses by primary key if no order is given

 v3.0.6 (2018-12-31)

 Enhancements

	[Ecto.Query] Add reverse_order/1

 Bug fixes

	[Ecto.Multi] Raise better error message on accidental rollback inside Ecto.Multi
	[Ecto.Query] Properly merge deeply nested preloaded joins
	[Ecto.Query] Raise better error message on missing select on schemaless queries
	[Ecto.Schema] Fix parameter ordering in assoc :where

 v3.0.5 (2018-12-08)

 Backwards incompatible changes

	[Ecto.Schema] The :where option added in Ecto 3.0.0 had a major flaw and it has been reworked in this version. This means a tuple of three elements can no longer be passed to :where, instead a keyword list must be given. Check the "Filtering associations" section in has_many/3 docs for more information

 Bug fixes

	[Ecto.Query] Do not raise on lists of tuples that are not keywords. Instead, let custom Ecto.Type handle them
	[Ecto.Query] Allow prefix: nil to be given to subqueries
	[Ecto.Query] Use different cache keys for unions/intersections/excepts
	[Ecto.Repo] Fix support for upserts with :replace without a schema
	[Ecto.Type] Do not lose precision when casting utc_datetime_usec with a time zone different than Etc/UTC

 v3.0.4 (2018-11-29)

 Enhancements

	[Decimal] Bump decimal dependency
	[Ecto.Repo] Remove unused :pool_timeout

 v3.0.3 (2018-11-20)

 Enhancements

	[Ecto.Changeset] Add count: :bytes option in validate_length/3
	[Ecto.Query] Support passing Ecto.Query in Ecto.Repo.insert_all

 Bug fixes

	[Ecto.Type] Respect adapter types when loading/dumping arrays and maps
	[Ecto.Query] Ensure no bindings in order_by when using combinations in Ecto.Query
	[Ecto.Repo] Ensure adapter is compiled (instead of only loaded) before invoking it
	[Ecto.Repo] Support new style child spec from adapters

 v3.0.2 (2018-11-17)

 Bug fixes

	[Ecto.LogEntry] Bring old Ecto.LogEntry APIs back for compatibility
	[Ecto.Repo] Consider non-joined fields when merging preloaded assocs only at root
	[Ecto.Repo] Take field sources into account in :replace_all_fields upsert option
	[Ecto.Type] Convert :utc_datetime to DateTime when sending it to adapters

 v3.0.1 (2018-11-03)

 Bug fixes

	[Ecto.Query] Ensure parameter order is preserved when using more than 32 parameters
	[Ecto.Query] Consider query prefix when planning association joins
	[Ecto.Repo] Consider non-joined fields as unique parameters when merging preloaded query assocs

 v3.0.0 (2018-10-29)

Note this version includes changes from ecto and ecto_sql but in future releases all ecto_sql entries will be listed in their own CHANGELOG.

 Enhancements

	[Ecto.Adapters.MySQL] Add ability to specify cli_protocol for ecto.create and ecto.drop commands
	[Ecto.Adapters.PostgreSQL] Add ability to specify maintenance database name for PostgreSQL adapter for ecto.create and ecto.drop commands
	[Ecto.Changeset] Store constraint name in error metadata for constraints
	[Ecto.Changeset] Add validations/1 and constraints/1 instead of allowing direct access on the struct fields
	[Ecto.Changeset] Add :force_update option when casting relations, to force an update even if there are no changes
	[Ecto.Migration] Migrations now lock the migrations table in order to avoid concurrent migrations in a cluster. The type of lock can be configured via the :migration_lock repository configuration and defaults to "FOR UPDATE" or disabled if set to nil
	[Ecto.Migration] Add :migration_default_prefix repository configuration
	[Ecto.Migration] Add reversible version of remove/2 subcommand
	[Ecto.Migration] Add support for non-empty arrays as defaults in migrations
	[Ecto.Migration] Add support for logging notices/alerts/warnings when running migrations (only supported by Postgres currently)
	[Ecto.Migrator] Warn when migrating and there is a higher version already migrated in the database
	[Ecto.Multi] Add support for anonymous functions in insert/4, update/4, insert_or_update/4, and delete/4
	[Ecto.Query] Support tuples in where and having, allowing queries such as where: {p.foo, p.bar} > {^foo, ^bar}
	[Ecto.Query] Support arithmetic operators in queries as a thin layer around the DB functionality
	[Ecto.Query] Allow joins in queries to be named via :as and allow named bindings
	[Ecto.Query] Support excluding specific join types in exclude/2
	[Ecto.Query] Allow virtual field update in subqueries
	[Ecto.Query] Support coalesce/2 in queries, such as select: coalesce(p.title, p.old_title)
	[Ecto.Query] Support filter/2 in queries, such as select: filter(count(p.id), p.public == true)
	[Ecto.Query] The :prefix and :hints options are now supported on both from and join expressions
	[Ecto.Query] Support :asc_nulls_last, :asc_nulls_first, :desc_nulls_last, and :desc_nulls_first in order_by
	[Ecto.Query] Allow variables (sources) to be given in queries, for example, useful for invoking functions, such as fragment("some_function(?)", p)
	[Ecto.Query] Add support for union, union_all, intersection, intersection_all, except and except_all
	[Ecto.Query] Add support for windows and over
	[Ecto.Query] Raise when comparing a string with a charlist during planning
	[Ecto.Repo] Only start transactions if an association or embed has changed, this reduces the overhead during repository operations
	[Ecto.Repo] Support :replace_all_except_primary_key as :on_conflict strategy
	[Ecto.Repo] Support {:replace, fields} as :on_conflict strategy
	[Ecto.Repo] Support :unsafe_fragment as :conflict_target
	[Ecto.Repo] Support select in queries given to update_all and delete_all
	[Ecto.Repo] Add Repo.exists?/2
	[Ecto.Repo] Add Repo.checkout/2 - useful when performing multiple operations in short-time to interval, allowing the pool to be bypassed
	[Ecto.Repo] Add :stale_error_field to Repo.insert/update/delete that converts Ecto.StaleEntryError into a changeset error. The message can also be set with :stale_error_message
	[Ecto.Repo] Preloading now only sorts results by the relationship key instead of sorting by the whole struct
	[Ecto.Schema] Allow :where option to be given to has_many/has_one/belongs_to/many_to_many

 Bug fixes

	[Ecto.Inspect] Do not fail when inspecting query expressions which have a number of bindings more than bindings available
	[Ecto.Migration] Keep double underscores on autogenerated index names to be consistent with changesets
	[Ecto.Query] Fix Ecto.Query.API.map/2 for single nil column with join
	[Ecto.Migration] Ensure create_if_not_exists is properly reversible
	[Ecto.Repo] Allow many_to_many associations to be preloaded via a function (before the behaviour was erratic)
	[Ecto.Schema] Make autogen ID loading work with custom type
	[Ecto.Schema] Make updated_at have the same value as inserted_at
	[Ecto.Schema] Ensure all fields are replaced with on_conflict: :replace_all/:replace_all_except_primary_key and not only the fields sent as changes
	[Ecto.Type] Return :error when casting NaN or infinite decimals
	[mix ecto.migrate] Properly run migrations after ECTO_EDITOR changes
	[mix ecto.migrations] List migrated versions even if the migration file is deleted
	[mix ecto.load] The task now fails on SQL errors on Postgres

 Deprecations

Although Ecto 3.0 is a major bump version, the functionality below emits deprecation warnings to ease the migration process. The functionality below will be removed in future Ecto 3.1+ releases.
	[Ecto.Changeset] Passing a list of binaries to cast/3 is deprecated, please pass a list of atoms instead
	[Ecto.Multi] Ecto.Multi.run/3 now receives the repo in which the transaction is executing as the first argument to functions, and the changes so far as the second argument
	[Ecto.Query] join/5 now expects on: expr as last argument instead of simply expr. This was done in order to properly support the :as, :hints and :prefix options
	[Ecto.Repo] The :returning option for update_all and delete_all has been deprecated as those statements now support select clauses
	[Ecto.Repo] Passing :adapter via config is deprecated in favor of passing it on use Ecto.Repo
	[Ecto.Repo] The :loggers configuration is deprecated in favor of "Telemetry Events"

 Backwards incompatible changes

	[Ecto.DateTime] Ecto.Date, Ecto.Time and Ecto.DateTime were previously deprecated and have now been removed
	[Ecto.DataType] Ecto.DataType protocol has been removed
	[Ecto.Migration] Automatically inferred index names may differ in Ecto v3.0 for indexes on complex column names
	[Ecto.Multi] Ecto.Multi.run/5 now receives the repo in which the transaction is executing as the first argument to functions, and the changes so far as the second argument
	[Ecto.Query] A join no longer wraps fragment in parentheses. In some cases, such as common table expressions, you will have to explicitly wrap the fragment in parens.
	[Ecto.Repo] The on_conflict: :replace_all option now will also send fields with default values to the database. If you prefer the old behaviour that only sends the changes in the changeset, you can set it to on_conflict: {:replace, Map.keys(changeset.changes)} (this change is also listed as a bug fix)
	[Ecto.Repo] The repository operations are no longer called from association callbacks - this behaviour was not guaranteed in previous versions but we are listing as backwards incompatible changes to help with users relying on this behaviour
	[Ecto.Repo] :pool_timeout is no longer supported in favor of a new queue system described in DBConnection.start_link/2 under "Queue config". For most users, configuring :timeout is enough, as it now includes both queue and query time
	[Ecto.Schema] :time, :naive_datetime and :utc_datetime no longer keep microseconds information. If you want to keep microseconds, use :time_usec, :naive_datetime_usec, :utc_datetime_usec
	[Ecto.Schema] The @schema_prefix option now only affects the from/join of where the schema is used and no longer the whole query
	[Ecto.Schema.Metadata] The source key no longer returns a tuple of the schema_prefix and the table/collection name. It now returns just the table/collection string. You can now access the schema_prefix via the prefix key.
	[Mix.Ecto] Mix.Ecto.ensure_started/2 has been removed. However, in Ecto 2.2 the Mix.Ecto module was not considered part of the public API and should not have been used but we are listing this for guidance.

 Adapter changes

	[Ecto.Adapter] Split Ecto.Adapter into Ecto.Adapter.Queryable and Ecto.Adapter.Schema to provide more granular repository APIs
	[Ecto.Adapter] The :sources field in query_meta now contains three elements tuples with {source, schema, prefix} in order to support from/join prefixes (#2572)
	[Ecto.Adapter] The database types time, utc_datetime and naive_datetime should translate to types with seconds precision while the database types time_usec, utc_datetime_usec and naive_datetime_usec should have microseconds precision (#2291)
	[Ecto.Adapter] The on_conflict argument for insert and insert_all no longer receives a {:replace_all, list(), atom()} tuple. Instead, it receives a {fields :: [atom()], list(), atom()} where fields is a list of atoms of the fields to be replaced (#2181)
	[Ecto.Adapter] insert/update/delete now receive both :source and :prefix fields instead of a single :source field with both source and prefix in it (#2490)
	[Ecto.Adapter.Migration] A new lock_for_migration/4 callback has been added. It is implemented by default by Ecto.Adapters.SQL (#2215)
	[Ecto.Adapter.Migration] The execute_ddl should now return {:ok, []} to make space for returning notices/hints/warnings in the future (adapters leveraging Ecto.Adapters.SQL do not have to perform any change)
	[Ecto.Query] The from field in Ecto.Query now returns a Ecto.Query.FromExpr with the :source field, unifying the behaviour in from and join expressions (#2497)
	[Ecto.Query] Tuple expressions are now supported in queries. For example, where: {p.foo, p.bar} > {p.bar, p.baz} should translate to WHERE (p.foo, p.bar) > (p.bar, p.baz) in SQL databases. Adapters should be changed to handle {:{}, meta, exprs} in the query AST (#2344)
	[Ecto.Query] Adapters should support the following arithmetic operators in queries +, -, * and / (#2400)
	[Ecto.Query] Adapters should support filter/2 in queries, as in select: filter(count(p.id), p.public == true) (#2487)

 Previous versions

	See the CHANGELOG.md in the v2.2 branch

Getting Started

This guide is an introduction to Ecto,
the database wrapper and query generator for Elixir. Ecto provides a
standardized API and a set of abstractions for talking to all the different
kinds of databases, so that Elixir developers can query whatever database
they're using by employing similar constructs.
In this guide, we're going to learn some basics about Ecto, such as creating,
reading, updating and destroying records from a PostgreSQL database. If you want
to see the code from this guide, you can view it at ecto/examples/friends on GitHub.
This guide will require you to have setup PostgreSQL beforehand.

 Adding Ecto to an application

To start off with, we'll generate a new Elixir application by running this command:
mix new friends --sup
The --sup option ensures that this application has a supervision tree, which we'll need for Ecto a little later on.
To add Ecto to this application, there are a few steps that we need to take. The first step will be adding Ecto and a driver called Postgrex to our mix.exs file, which we'll do by changing the deps definition in that file to this:
defp deps do
 [
 {:ecto_sql, "~> 3.0"},
 {:postgrex, ">= 0.0.0"}
]
end
Ecto provides the common querying API, but we need the Postgrex driver installed too, as that is what Ecto uses to speak in terms a PostgreSQL database can understand. Ecto talks to its own Ecto.Adapters.Postgres module, which then in turn talks to the postgrex package to talk to PostgreSQL.
To install these dependencies, we will run this command:
mix deps.get
The Postgrex application will receive queries from Ecto and execute them
against our database. If we didn't do this step, we wouldn't be able to do any
querying at all.
That's the first two steps taken now. We have installed Ecto and Postgrex as
dependencies of our application. We now need to setup some configuration for
Ecto so that we can perform actions on a database from within the
application's code.
We can set up this configuration by running this command:
mix ecto.gen.repo -r Friends.Repo
This command will generate the configuration required to connect to a database. The first bit of configuration is in config/config.exs:
config :friends, Friends.Repo,
 database: "friends",
 username: "user",
 password: "pass",
 hostname: "localhost"
NOTE: Your PostgreSQL database may be setup to
	not require a username and password. If the above configuration doesn't work, try removing the username and password fields, or setting them both to "postgres".
	be running on a non-standard port. The default port is 5432. You can specify your specific port by adding it to the config: e.g. port: 15432.

This configures how Ecto will connect to our database, called "friends". Specifically, it configures a "repo". More information about Ecto.Repo can be found in its documentation.
The Friends.Repo module is defined in lib/friends/repo.ex by our mix ecto.gen.repo command:
defmodule Friends.Repo do
 use Ecto.Repo,
 otp_app: :friends,
 adapter: Ecto.Adapters.Postgres
end
This module is what we'll be using to query our database shortly. It uses the Ecto.Repo module, and the otp_app tells Ecto which Elixir application it can look for database configuration in. In this case, we've specified that it is the :friends application where Ecto can find that configuration and so Ecto will use the configuration that was set up in config/config.exs. Finally, we configure the database :adapter to Postgres.
Finally, the Friends.Repo must be started within the application's supervision tree, which we can do in lib/friends/application.ex, inside the start/2 function:
def start(_type, _args) do
 children = [
 Friends.Repo,
]

 ...
This piece of configuration will start the Ecto process which receives and executes our application's queries. Without it, we wouldn't be able to query the database at all!
There's one final bit of configuration that we'll need to add ourselves, since the generator does not add it. Underneath the configuration in config/config.exs, add this line:
config :friends, ecto_repos: [Friends.Repo]
This tells our application about the repo, which will allow us to run commands such as mix ecto.create very soon.
We've now configured our application so that it's able to make queries to our database. Let's now create our database, add a table to it, and then perform some queries.

 Setting up the database

To be able to query a database, it first needs to exist. We can create the database with this command:
mix ecto.create
If the database has been created successfully, then you will see this message:
The database for Friends.Repo has been created.
NOTE: If you get an error, you should try changing your configuration in config/config.exs, as it may be an authentication error.
A database by itself isn't very queryable, so we will need to create a table within that database. To do that, we'll use what's referred to as a migration. If you've come from Active Record (or similar), you will have seen these before. A migration is a single step in the process of constructing your database.
Let's create a migration now with this command:
mix ecto.gen.migration create_people
This command will generate a brand new migration file in priv/repo/migrations, which is empty by default:
defmodule Friends.Repo.Migrations.CreatePeople do
 use Ecto.Migration

 def change do

 end
end
Let's add some code to this migration to create a new table called "people", with a few columns in it:
defmodule Friends.Repo.Migrations.CreatePeople do
 use Ecto.Migration

 def change do
 create table(:people) do
 add :first_name, :string
 add :last_name, :string
 add :age, :integer
 end
 end
end
This new code will tell Ecto to create a new table called people, and add three new fields: first_name, last_name and age to that table. The types of these fields are string and integer. (The different types that Ecto supports are covered in the Ecto.Schema documentation.)
NOTE: The naming convention for tables in Ecto databases is to use a pluralized name.
To run this migration and create the people table in our database, we will run this command:
mix ecto.migrate
If we found out that we made a mistake in this migration, we could run mix ecto.rollback to undo the changes in the migration. We could then fix the changes in the migration and run mix ecto.migrate again. If we ran mix ecto.rollback now, it would delete the table that we just created.
We now have a table created in our database. The next step that we'll need to do is to create the schema.

 Creating the schema

The schema is an Elixir representation of data from our database. Schemas are commonly associated with a database table, however they can be associated with a database view as well.
Let's create the schema within our application at lib/friends/person.ex:
defmodule Friends.Person do
 use Ecto.Schema

 schema "people" do
 field :first_name, :string
 field :last_name, :string
 field :age, :integer
 end
end
This defines the schema from the database that this schema maps to. In this case, we're telling Ecto that the Friends.Person schema maps to the people table in the database, and the first_name, last_name and age fields in that table. The second argument passed to field tells Ecto how we want the information from the database to be represented in our schema.
We've called this schema Person because the naming convention in Ecto for schemas is a singularized name.
We can play around with this schema in an IEx session by starting one up with iex -S mix and then running this code in it:
person = %Friends.Person{}
This code will give us a new Friends.Person struct, which will have nil values for all the fields. We can set values on these fields by generating a new struct:
person = %Friends.Person{age: 28}
Or with syntax like this:
person = %{person | age: 28}
We can retrieve values using this syntax:
person.age # => 28
Let's take a look at how we can insert data into the database.

 Inserting data

We can insert a new record into our people table with this code:
person = %Friends.Person{}
Friends.Repo.insert(person)
To insert the data into our database, we call insert on Friends.Repo, which is the module that uses Ecto to talk to our database. This function tells Ecto that we want to insert a new Friends.Person record into the database corresponding with Friends.Repo. The person struct here represents the data that we want to insert into the database.
A successful insertion will return a tuple, like so:
{:ok,
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: nil,
 first_name: nil, id: 1, last_name: nil}}
The :ok atom can be used for pattern matching purposes to ensure that the insertion succeeds. A situation where the insertion may not succeed is if you have a constraint on the database itself. For instance, if the database had a unique constraint on a field called email so that an email can only be used for one person record, then the insertion would fail.
You may wish to pattern match on the tuple in order to refer to the record inserted into the database:
{:ok, person} = Friends.Repo.insert person

 Validating changes

In Ecto, you may wish to validate changes before they go to the database. For instance, you may wish that a person has both a first name and a last name before a record can be entered into the database. For this, Ecto has changesets.
Let's add a changeset to our Friends.Person module inside lib/friends/person.ex now:
def changeset(person, params \\ %{}) do
 person
 |> Ecto.Changeset.cast(params, [:first_name, :last_name, :age])
 |> Ecto.Changeset.validate_required([:first_name, :last_name])
end
This changeset takes a person and a set of params, which are to be the changes to apply to this person. The changeset function first casts the first_name, last_name and age keys from the parameters passed in to the changeset. Casting tells the changeset what parameters are allowed to be passed through in this changeset, and anything not in the list will be ignored.
On the next line, we call validate_required which says that, for this changeset, we expect first_name and last_name to have values specified. Let's use this changeset to attempt to create a new record without a first_name and last_name:
person = %Friends.Person{}
changeset = Friends.Person.changeset(person, %{})
Friends.Repo.insert(changeset)
On the first line here, we get a struct from the Friends.Person module. We know what that does, because we saw it not too long ago. On the second line we do something brand new: we define a changeset. This changeset says that on the specified person object, we're looking to make some changes. In this case, we're not looking to change anything at all.
On the final line, rather than inserting the person, we insert the changeset. The changeset knows about the person, the changes and the validation rules that must be met before the data can be entered into the database. When this third line runs, we'll see this:
{:error,
 #Ecto.Changeset<action: :insert, changes: %{},
 errors: [first_name: "can't be blank", last_name: "can't be blank"],
 data: #Friends.Person<>, valid?: false>}
Just like the last time we did an insertion, this returns a tuple. This time however, the first element in the tuple is :error, which indicates something bad happened. The specifics of what happened are included in the changeset which is returned. We can access these by doing some pattern matching:
{:error, changeset} = Friends.Repo.insert(changeset)
Then we can get to the errors by doing changeset.errors:
[first_name: {"can't be blank", [validation: :required]}, last_name: {"can't be blank", [validation: :required]}]
And we can ask the changeset itself if it is valid, even before doing an insertion:
changeset.valid?
#=> false
Since this changeset has errors, no new record was inserted into the people
table.
Let's try now with some valid data.
person = %Friends.Person{}
changeset = Friends.Person.changeset(person, %{first_name: "Ryan", last_name: "Bigg"})
We start out here with a normal Friends.Person struct. We then create a changeset for that person which has a first_name and a last_name parameter specified. At this point, we can ask the changeset if it has errors:
changeset.errors
#=> []
And we can ask if it's valid or not:
changeset.valid?
#=> true
The changeset does not have errors, and is valid. Therefore if we try to insert this changeset it will work:
Friends.Repo.insert(changeset)
#=> {:ok,
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: nil,
 first_name: "Ryan", id: 3, last_name: "Bigg"}}
Due to Friends.Repo.insert returning a tuple, we can use a case to determine different code paths depending on what happens:
case Friends.Repo.insert(changeset) do
 {:ok, person} ->
 # do something with person
 {:error, changeset} ->
 # do something with changeset
end
NOTE: changeset.valid? will not check constraints (such as uniqueness_constraint). For that, you will need to attempt to do an insertion and check for errors from the database. It's for this reason it's best practice to try inserting data and validate the returned tuple from Friends.Repo.insert to get the correct errors, as prior to insertion the changeset will only contain validation errors from the application itself.
If the insertion of the changeset succeeds, then you can do whatever you wish with the person returned in that result. If it fails, then you have access to the changeset and its errors. In the failure case, you may wish to present these errors to the end user. The errors in the changeset are a keyword list that looks like this:
[first_name: {"can't be blank", [validation: :required]},
 last_name: {"can't be blank", [validation: :required]}]
The first element of the tuple is the validation message, and the second element is a keyword list of options for the validation message. Imagine that we had a field called bio that we were validating, and that field has to be longer than 15 characters. This is what would be returned:
[first_name: {"can't be blank", [validation: :required]},
 last_name: {"can't be blank", [validation: :required]},
 bio: {"should be at least %{count} character(s)", [count: 15, validation: :length, kind: :min, type: :string]}]
To display these error messages in a human friendly way, we can use Ecto.Changeset.traverse_errors/2:
traverse_errors(changeset, fn {msg, opts} ->
 Enum.reduce(opts, msg, fn {key, value}, acc ->
 String.replace(acc, "%{#{key}}", to_string(value))
 end)
end)
This will return the following for the errors shown above:
%{
 first_name: ["can't be blank"],
 last_name: ["can't be blank"],
 bio: ["should be at least 15 character(s)"],
}
One more final thing to mention here: you can trigger an exception to be thrown by using Friends.Repo.insert!/2. If a changeset is invalid, you will see an Ecto.InvalidChangesetError exception. Here's a quick example of that:
Friends.Repo.insert! Friends.Person.changeset(%Friends.Person{}, %{first_name: "Ryan"})

** (Ecto.InvalidChangesetError) could not perform insert because changeset is invalid.

Errors

 %{last_name: [{"can't be blank", [validation: :required]}]}

Applied changes

 %{first_name: "Ryan"}

Params

 %{"first_name" => "Ryan"}

Changeset

 #Ecto.Changeset<
 action: :insert,
 changes: %{first_name: "Ryan"},
 errors: [last_name: {"can't be blank", [validation: :required]}],
 data: #Friends.Person<>,
 valid?: false
 >

 (ecto) lib/ecto/repo/schema.ex:257: Ecto.Repo.Schema.insert!/4
This exception shows us the changes from the changeset, and how the changeset is invalid. This can be useful if you want to insert a bunch of data and then have an exception raised if that data is not inserted correctly at all.
Now that we've covered inserting data into the database, let's look at how we can pull that data back out.

 Our first queries

Querying a database requires two steps in Ecto. First, we must construct the query and then we must execute that query against the database by passing the query to the repository. Before we do this, let's re-create the database for our app and setup some test data. To re-create the database, we'll run these commands:
mix ecto.drop
mix ecto.create
mix ecto.migrate
Then to create the test data, we'll run this in an iex -S mix session:
people = [
 %Friends.Person{first_name: "Ryan", last_name: "Bigg", age: 28},
 %Friends.Person{first_name: "John", last_name: "Smith", age: 27},
 %Friends.Person{first_name: "Jane", last_name: "Smith", age: 26},
]

Enum.each(people, fn (person) -> Friends.Repo.insert(person) end)
This code will create three new people in our database, Ryan, John and Jane. Note here that we could've used a changeset to validate the data going into the database, but the choice was made not to use one.
We'll be querying for these people in this section. Let's jump in!

 Fetching a single record

Let's start off with fetching just one record from our people table:
Friends.Person |> Ecto.Query.first
That code will generate an Ecto.Query, which will be this:
#Ecto.Query<from p0 in Friends.Person, order_by: [asc: p0.id], limit: 1>
The code between the angle brackets <...> here shows the Ecto query which has been constructed. We could construct this query ourselves with almost exactly the same syntax:
require Ecto.Query
Ecto.Query.from p in Friends.Person, order_by: [asc: p.id], limit: 1
We need to require Ecto.Query here to enable the macros from that module. Then it's a matter of calling the from function from Ecto.Query and passing in the code from between the angle brackets. As we can see here, Ecto.Query.first saves us from having to specify the order and limit for the query.
To execute the query that we've just constructed, we can call Friends.Repo.one:
Friends.Person |> Ecto.Query.first |> Friends.Repo.one
The one function retrieves just one record from our database and returns a new struct from the Friends.Person module:
%Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 28,
 first_name: "Ryan", id: 1, last_name: "Bigg"}
Similar to first, there is also last:
Friends.Person |> Ecto.Query.last |> Friends.Repo.one
#=> %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 26,
 first_name: "Jane", id: 3, last_name: "Smith"}
The Ecto.Repo.one function will only return a struct if there is one record in the
result from the database. If there is more than one record returned, an
Ecto.MultipleResultsError exception will be thrown. Some code that would
cause that issue to happen is:
Friends.Person |> Friends.Repo.one
We've left out the Ecto.Query.first here, and so there is no limit or order clause applied to the executed query. We'll see the executed query in the debug log:
[timestamp] [debug] SELECT p0."id", p0."first_name", p0."last_name", p0."age" FROM "people" AS p0 [] OK query=1.8ms
Then immediately after that, we will see the Ecto.MultipleResultsError exception:
** (Ecto.MultipleResultsError) expected at most one result but got 3 in query:

from p in Friends.Person

 lib/ecto/repo/queryable.ex:67: Ecto.Repo.Queryable.one/4
This happens because Ecto doesn't know what one record out of all the records
returned that we want. Ecto will only return a result if we are explicit in
our querying about which result we want.
If there is no record which matches the query, one will return nil.

 Fetching all records

To fetch all records from the schema, Ecto provides the all function:
Friends.Person |> Friends.Repo.all
This will return a Friends.Person struct representation of all the records that currently exist within our people table:
[%Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 28,
 first_name: "Ryan", id: 1, last_name: "Bigg"},
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 27,
 first_name: "John", id: 2, last_name: "Smith"},
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 26,
 first_name: "Jane", id: 3, last_name: "Smith"}]

 Fetch a single record based on ID

To fetch a record based on its ID, you use the get function:
Friends.Person |> Friends.Repo.get(1)
#=> %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 28,
 first_name: "Ryan", id: 1, last_name: "Bigg"}

 Fetch a single record based on a specific attribute

If we want to get a record based on something other than the id attribute, we can use get_by:
 Friends.Person |> Friends.Repo.get_by(first_name: "Ryan")
 #=> %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 28,
 first_name: "Ryan", id: 1, last_name: "Bigg"}

 Filtering results

If we want to get multiple records matching a specific attribute, we can use where:
Friends.Person |> Ecto.Query.where(last_name: "Smith") |> Friends.Repo.all
[%Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 27,
 first_name: "John", id: 2, last_name: "Smith"},
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 26,
 first_name: "Jane", id: 3, last_name: "Smith"}]
If we leave off the Friends.Repo.all on the end of this, we will see the query Ecto generates:
#Ecto.Query<from p in Friends.Person, where: p.last_name == "Smith">
We can also use this query syntax to fetch these same records:
Ecto.Query.from(p in Friends.Person, where: p.last_name == "Smith") |> Friends.Repo.all
One important thing to note with both query syntaxes is that they require variables to be pinned, using the pin operator (^). Otherwise, this happens:
last_name = "Smith"
Friends.Person |> Ecto.Query.where(last_name: last_name) |> Friends.Repo.all
** (Ecto.Query.CompileError) unbound variable `last_name` in query. If you are attempting to interpolate a value, use ^var
 (ecto) expanding macro: Ecto.Query.where/2
 iex:15: (file)
 (elixir) expanding macro: Kernel.|>/2
 iex:15: (file)
The same will happen in the longer query syntax too:
Ecto.Query.from(p in Friends.Person, where: p.last_name == last_name) |> Friends.Repo.all
** (Ecto.Query.CompileError) unbound variable `last_name` in query. If you are attempting to interpolate a value, use ^var
 (ecto) expanding macro: Ecto.Query.where/3
 iex:15: (file)
 (ecto) expanding macro: Ecto.Query.from/2
 iex:15: (file)
 (elixir) expanding macro: Kernel.|>/2
 iex:15: (file)
To get around this, we use the pin operator (^):
last_name = "Smith"
Friends.Person |> Ecto.Query.where(last_name: ^last_name) |> Friends.Repo.all
Or:
last_name = "Smith"
Ecto.Query.from(p in Friends.Person, where: p.last_name == ^last_name) |> Friends.Repo.all
The pin operator instructs the query builder to use parameterized SQL queries protecting against SQL injection.

 Composing Ecto queries

Ecto queries don't have to be built in one spot. They can be built up by calling Ecto.Query functions on existing queries. For instance, if we want to find all people with the last name "Smith", we can do:
query = Friends.Person |> Ecto.Query.where(last_name: "Smith")
If we want to scope this down further to only people with the first name of "Jane", we can do this:
query = query |> Ecto.Query.where(first_name: "Jane")
Our query will now have two where clauses in it:
#Ecto.Query<from p in Friends.Person, where: p.last_name == "Smith",
 where: p.first_name == "Jane">
This can be useful if you want to do something with the first query, and then build off that query later on.

 Updating records

Updating records in Ecto requires us to first fetch a record from the database. We then create a changeset from that record and the changes we want to make to that record, and then call the Ecto.Repo.update function.
Let's fetch the first person from our database and change their age. First, we'll fetch the person:
person = Friends.Person |> Ecto.Query.first |> Friends.Repo.one
Next, we'll build a changeset. We need to build a changeset because if we just create a new Friends.Person struct with the new age, Ecto wouldn't be able to know that the age has changed without inspecting the database. Let's build that changeset:
changeset = Friends.Person.changeset(person, %{age: 29})
This changeset will inform the database that we want to update the record to have the age set to 29. To tell the database about the change we want to make, we run this command:
Friends.Repo.update(changeset)
Just like Friends.Repo.insert, Friends.Repo.update will return a tuple:
{:ok,
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 29,
 first_name: "Ryan", id: 1, last_name: "Bigg"}}
If the changeset fails for any reason, the result of Friends.Repo.update will be {:error, changeset}. We can see this in action by passing through a blank first_name in our changeset's parameters:
changeset = Friends.Person.changeset(person, %{first_name: ""})
Friends.Repo.update(changeset)
#=> {:error,
 #Ecto.Changeset<
 action: :update,
 changes: %{},
 errors: [first_name: {"can't be blank", [validation: :required]}],
 data: #Friends.Person<>,
 valid?: false
 >}
This means that you can also use a case statement to do different things depending on the outcome of the update function:
case Friends.Repo.update(changeset) do
 {:ok, person} ->
 # do something with person
 {:error, changeset} ->
 # do something with changeset
end
Similar to insert!, there is also update! which will raise an exception if the changeset is invalid:
changeset = Friends.Person.changeset(person, %{first_name: ""})
Friends.Repo.update! changeset

** (Ecto.InvalidChangesetError) could not perform update because changeset is invalid.

Errors

 %{first_name: [{"can't be blank", [validation: :required]}]}

Applied changes

 %{}

Params

 %{"first_name" => ""}

Changeset

 #Ecto.Changeset<
 action: :update,
 changes: %{},
 errors: [first_name: {"can't be blank", [validation: :required]}],
 data: #Friends.Person<>,
 valid?: false
 >

 (ecto) lib/ecto/repo/schema.ex:270: Ecto.Repo.Schema.update!/4

 Deleting records

We've now covered creating (insert), reading (get, get_by, where) and updating records. The last thing that we'll cover in this guide is how to delete a record using Ecto.
Similar to updating, we must first fetch a record from the database and then call Friends.Repo.delete to delete that record:
person = Friends.Repo.get(Friends.Person, 1)
Friends.Repo.delete(person)
#=> {:ok,
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:deleted, "people">, age: 29,
 first_name: "Ryan", id: 2, last_name: "Bigg"}}
Similar to insert and update, delete returns a tuple. If the deletion succeeds, then the first element in the tuple will be :ok, but if it fails then it will be an :error.

Embedded Schemas

Embedded schemas allow you to define and validate structured data. This data can live in memory, or can be stored in the database. Some use cases for embedded schemas include:
	You are maintaining intermediate-state data, like when UI form fields map onto multiple tables in a database.

	You are working within a persisted parent schema and you want to embed data that is...
	simple, like a map of user preferences inside a User schema.
	changes often, like a list of product images with associated structured data inside a Product schema.
	requires complex tracking and validation, like an Address schema inside a User schema.

	You are using a document storage database and you want to interact with and manipulate embedded documents.

 User Profile Example

Let's explore an example where we have a User and want to store "profile" information about them. The data we want to store is UI-dependent information which is likely to change over time alongside changes in the UI. Also, this data is not necessarily important enough to warrant new User fields in the User schema, as it is not data that is fundamental to the User. An embedded schema is a good solution for this kind of data.
defmodule User do
 use Ecto.Schema

 schema "users" do
 field :full_name, :string
 field :email, :string
 field :avatar_url, :string
 field :confirmed_at, :naive_datetime

 embeds_one :profile, Profile do
 field :online, :boolean
 field :dark_mode, :boolean
 field :visibility, Ecto.Enum, values: [:public, :private, :friends_only]
 end

 timestamps()
 end
end

 Embeds

There are two ways to represent embedded data within a schema, Ecto.Schema.embeds_many/3, which creates a list of embeds, and Ecto.Schema.embeds_one/3, which creates only a single instance of the embed. Your choice here affects the behavior of embed-specific functions like Ecto.Changeset.put_embed/4 and Ecto.Changeset.cast_embed/3, so choose whichever is most appropriate to your use case. In our example we are going to use Ecto.Schema.embeds_one/3 since users will only ever have one profile associated with them.
defmodule User do
 use Ecto.Schema

 schema "users" do
 field :full_name, :string
 field :email, :string
 field :avatar_url, :string
 field :confirmed_at, :naive_datetime

 embeds_one :profile, Profile do
 field :online, :boolean
 field :dark_mode, :boolean
 field :visibility, Ecto.Enum, values: [:public, :private, :friends_only]
 end

 timestamps()
 end
end
Embedded schemas defined in such way are said to be defined inline, which means that they are:
	generated as a module in the parent scope with the appropriate struct (for the example above, the module will be User.Profile)
	persisted within the parent schema
	required to provide the with option to Ecto.Changeset.cast_embed/3

 Extracting the embeds

While the above User schema is simple and sufficient, we might want to work independently with the embedded profile struct. For example, if there was a lot of functionality devoted solely to manipulating the profile data, we'd want to consider extracting the embedded schema into its own module. This can be achieved with Ecto.Schema.embedded_schema/1.
user/user.ex
defmodule User do
 use Ecto.Schema

 schema "users" do
 field :full_name, :string
 field :email, :string
 field :avatar_url, :string
 field :confirmed_at, :naive_datetime

 embeds_one :profile, UserProfile

 timestamps()
 end
end

user/user_profile.ex
defmodule UserProfile do
 use Ecto.Schema

 embedded_schema do
 field :online, :boolean
 field :dark_mode, :boolean
 field :visibility, Ecto.Enum, values: [:public, :private, :friends_only]
 end
end
Embedded schemas defined in such way are said to be explicit-defined, which:
	are dedicated modules having own scope, changeset functions, props, documentation, etc...
	could be embedded by multiple parent schemas
	are persistence agnostic, which means that embedded_schema doesn't require to be persisted

It is important to remember that embedded_schema has many use cases independent of embeds_one and embeds_many. As they are persistent agnostic, they are ideal for scenarios where you want to manage structured data without necessarily persisting it. For example, if you want to build a contact form, you still want to parse and validate the data, but the data is likely not persisted anywhere. Instead, it is used to send an email. Embedded schemas would be a good fit for such a use case.

 Migrations

If you wish to save your embedded schema to the database, you need to write a migration to include the embedded data.
alter table("users") do
 add :profile, :map
end
Whether you use embeds_one or embeds_many, it is recommended to use the :map data type (although {:array, :map} will work with embeds_many as well). The reason is that typical relational databases are likely to represent a :map as JSON (or JSONB in Postgres), allowing Ecto adapter libraries more flexibility over how to efficiently store the data.

 Changesets

Changeset functionality for embeds will allow you to enforce arbitrary validations on the data. You can define a changeset function for each module. For example, the UserProfile module could require the online and visibility fields to be present when generating a changeset.
defmodule UserProfile do
 # ...

 def changeset(%UserProfile{} = profile, attrs \\ %{}) do
 profile
 |> cast(attrs, [:online, :dark_mode, :visibility])
 |> validate_required([:online, :visibility])
 end
end

profile = %UserProfile{}
UserProfile.changeset(profile, %{online: true, visibility: :public})
Meanwhile, the User changeset function can require its own validations without worrying about the details of the UserProfile changes because it can pass that responsibility to UserProfile via cast_embed/3. A validation failure in an embed will cause the parent changeset to be invalid, even if the parent changeset itself had no errors.
defmodule User do
 # ...

 def changeset(user, attrs \\ %{}) do
 user
 |> cast(attrs, [:full_name, :email, :avatar_url])
 |> cast_embed(:profile, required: true)
 end
end

changeset = User.changeset(%User{}, %{profile: %{online: true}})
changeset.valid? # => false; "visibility can't be blank"
changeset = User.changeset(%User{}, %{profile: %{online: true, visibility: :public}})
changeset.valid? # => true
In situations where you have kept the embedded schema within the parent module, e.g., you have not extracted a UserProfile, you can still have custom changeset functions for the embedded data within the parent schema.
defmodule User do
 use Ecto.Schema

 schema "users" do
 field :full_name, :string
 field :email, :string
 field :avatar_url, :string
 field :confirmed_at, :naive_datetime

 embeds_one :profile, Profile do
 field :online, :boolean
 field :dark_mode, :boolean
 field :visibility, Ecto.Enum, values: [:public, :private, :friends_only]
 end

 timestamps()
 end

 def changeset(%User{} = user, attrs \\ %{}) do
 user
 |> cast(attrs, [:full_name, :email])
 |> cast_embed(:profile, required: true, with: &profile_changeset/2)
 end

 def profile_changeset(profile, attrs \\ %{}) do
 profile
 |> cast(attrs, [:online, :dark_mode, :visibility])
 |> validate_required([:online, :visibility])
 end
end

changeset = User.changeset(%User{}, %{profile: %{online: true, visibility: :public}})
changeset.valid? # => true

 Querying embedded data

Once you have written embedded data to the database, you can use it in queries on the parent schema.
user_changeset = User.changeset(%User{}, %{profile: %{online: true, visibility: :public}})
{:ok, _user} = Repo.insert(user_changeset)

(Ecto.Query.from u in User, select: {u.profile["online"], u.profile["visibility"]}) |> Repo.one
=> {true, "public"}

(Ecto.Query.from u in User, select: u.profile, where: u.profile["visibility"] == ^:public) |> Repo.all
=> [
%UserProfile{
id: "...",
online: true,
dark_mode: nil,
visibility: :public
}
#]
In databases where :maps are stored as JSONB (like Postgres), Ecto constructs the appropriate jsonpath queries for you. More examples of embedded schema queries are documented in json_extract_path/2.

Testing with Ecto

After you have successfully set up your database connection with Ecto for your application,
its usage for your tests requires further changes, especially if you want to leverage the
Ecto SQL Sandbox that allows
you to run tests that talk to the database concurrently.
Create the config/test.exs file or append the following content:
import Config

config :my_app, MyApp.Repo,
 username: "postgres",
 password: "postgres",
 database: "myapp_test",
 hostname: "localhost",
 pool: Ecto.Adapters.SQL.Sandbox

Thereby, we configure the database connection for our test setup.
In this case, we use a Postgres database and set it up to use the sandbox pool that will wrap each test in a transaction.
Make sure we import the configuration for the test environment at the very bottom of config/config.exs:
import_config "#{config_env()}.exs"
We also need to add an explicit statement to the end of test/test_helper.exs about the sandbox mode:
Ecto.Adapters.SQL.Sandbox.mode(MyApp.Repo, :manual)
Lastly, you need to establish the database connection ahead of your tests.
You can enable it either for all of your test cases by extending the ExUnit template or by setting it up individually for each test. Let's start with the former and place it to the test/support/repo_case.ex:
defmodule MyApp.RepoCase do
 use ExUnit.CaseTemplate

 using do
 quote do
 alias MyApp.Repo

 import Ecto
 import Ecto.Query
 import MyApp.RepoCase

 # and any other stuff
 end
 end

 setup tags do
 pid = Ecto.Adapters.SQL.Sandbox.start_owner!(MyApp.Repo, shared: not tags[:async])
 on_exit(fn -> Ecto.Adapters.SQL.Sandbox.stop_owner(pid) end)
 :ok
 end
end
The case template above brings Ecto and Ecto.Query functions into your tests and checks-out a database connection. It also enables a shared sandbox connection mode in case the test is not running asynchronously.
See Ecto.Adapters.SQL.Sandbox for more information.
To add test/support/ folder for compilation in test environment we need to update mix.exs configuration
 def project do
 [
 # ...
 elixirc_paths: elixirc_paths(Mix.env())
]
 end

 # Specifies which paths to compile per environment.
 defp elixirc_paths(:test), do: ["lib", "test/support"]
 defp elixirc_paths(_), do: ["lib"]
And then in each test that uses the repository:
defmodule MyApp.MyTest do
 use MyApp.RepoCase

 # Tests etc...
end
In case you don't want to define a "case template", you can checkout on each individual case:
defmodule MyApp.MyTest do
 use ExUnit.Case

 setup do
 :ok = Ecto.Adapters.SQL.Sandbox.checkout(MyApp.Repo)
 end

 # Tests etc...
end
For convenience reasons, you can also define aliases to automatically set up your database at the execution of your tests.
Change the following content in your mix.exs.

 def project do
 [app: :my_app,

 ...

 aliases: aliases()]
 end

 defp aliases do
 [...
 "test": ["ecto.create --quiet", "ecto.migrate", "test"]
]
 end

Basic CRUD

In this document, "Internal data" represents data or logic hardcoded into your Elixir code. "External data" means data that comes from the user via forms, APIs, and often need to be normalized, pruned, and validated via Ecto.Changeset.

 Fetching records

 Single record

Fetching record by ID
Repo.get(Movie, 1)
Fetching record by attributes
Repo.get_by(Movie, title: "Ready Player One")
Fetching the first record
Movie |> Ecto.Query.first() |> Repo.one()
Fetching the last record
Movie |> Ecto.Query.last() |> Repo.one()
Use ! to raise if none is found
Repo.get!(Movie, 1)
Repo.get_by!(Movie, title: "Ready Player One")
Movie |> Ecto.Query.first() |> Repo.one!()

 Multiple records

Fetch all at once
Movie |> Repo.all()
Stream all
Movie |> Repo.stream() |> Enum.each(fn record -> ... end)
Check at least one exists?
Movie |> Repo.exists?()

 Querying records

 Keyword-based queries

Bindingless queries
query =
 from Movie,
 where: [title: "Ready Player One"],
 select: [:title, :tagline]
Repo.all(query)
Bindings in queries
query =
 from m in Movie,
 where: m.title == "Ready Player One",
 select: [m.title, m.tagline]
Repo.all(query)

 Interpolation with ^

title = "Ready Player One"
query =
 from m in Movie,
 where: m.title == ^title,
 select: [m.title, m.tagline]
Repo.all(query)

 Pipe-based queries

Movie
|> where([m], m.title == "Ready Player One")
|> select([m], {m.title, m.tagline})
|> Repo.all

 Inserting records

 Single record

Using internal data
%Person{name: "Bob"}
|> Repo.insert()
Using external data
Params represent data from a form, API, CLI, etc
params = %{"name" => "Bob"}

%Person{}
|> Ecto.Changeset.cast(params, [:name])
|> Repo.insert()

 Multiple records

data = [%{name: "Bob"}, %{name: "Alice"}]
Repo.insert_all(Person, data)

 Updating records

 Single record

Using internal data
person =
 Person
 |> Ecto.Query.first()
 |> Repo.one!()

changeset = change(person, %{age: 29})
Repo.update(changeset)
Using external data
Params represent data from a form, API, CLI, etc
params = %{"age" => "29"}

person =
 Person
 |> Ecto.Query.first()
 |> Repo.one!()

changeset = cast(person, params, [:age])
Repo.update(changeset)

 Multiple records (using queries)

Repo.update_all(Person, set: [age: 29])

 Deleting records

 Single record

person = Repo.get!(Person, 1)
Repo.delete(person)

 Multiple records (using queries)

Repo.delete_all(Person)

Associations

In this document, "Internal data" represents data or logic hardcoded into your Elixir code. "External data" means data that comes from the user via forms, APIs, and often need to be normalized, pruned, and validated via Ecto.Changeset.

 Has many / belongs to

 The has many association

defmodule Movie do
 use Ecto.Schema

 schema "movies" do
 field :title, :string
 field :release_date, :date
 has_many :characters, Character
 end
end

 The belongs to association

defmodule Character do
 use Ecto.Schema

 schema "characters" do
 field :name, :string
 field :age, :integer
 belongs_to :movie, Movie
 end
end

 Has one / belongs to

 The has one association

defmodule Movie do
 use Ecto.Schema

 schema "movies" do
 field :title, :string
 field :release_date, :date
 has_one :screenplay, Screenplay
 end
end

 The belongs association

defmodule Screenplay do
 use Ecto.Schema

 schema "screenplays" do
 field :lead_writer, :string
 belongs_to :movie, Movie
 end
end

 Many to many

 Through a join table

The first schema
defmodule Movie do
 use Ecto.Schema

 schema "movies" do
 field :title, :string
 field :release_date, :date
 many_to_many :actors, Actor, join_through: "movies_actors"
 end
end
The second schema
defmodule Actor do
 use Ecto.Schema

 schema "actors" do
 field :name, :string
 many_to_many :movies, Movie, join_through: "movies_actors"
 end
end

 Through a join schema

The first schema
defmodule User do
 use Ecto.Schema

 schema "users" do
 many_to_many :organizations, Organization, join_through: UserOrganization
 end
end
The second schema
defmodule Organization do
 use Ecto.Schema

 schema "organizations" do
 many_to_many :users, User, join_through: UserOrganization
 end
end
The join schema
defmodule UserOrganization do
 use Ecto.Schema

 @primary_key false
 schema "users_organizations" do
 belongs_to :user, User
 belongs_to :organization, Organization
 timestamps()
 end
end

 Querying associated records

 Preloading in the parent record query

query = from m in Movie, preload: :characters
Repo.all(query)

 Preloading when parent records are already loaded

movies = Repo.all(Movie)
movies = Repo.preload(movies, :characters)

 Preloading with join to generate a single query

Regular join
query =
 from m in Movie,
 join: c in Character,
 on: m.id == c.movie_id,
 preload: [characters: c]
Repo.all(query)
Join using assoc
query =
 from m in Movie,
 join: c in assoc(m, :characters),
 preload: [characters: c]
Repo.all(query)

 Inserting associated records

 Inserting a child record to an existing parent

Using internal data
Repo.get_by!(Movie, title: "The Shawshank Redemption")
|> Ecto.build_assoc(:characters, name: "Red", age: 60)
|> Repo.insert()
Using external data
Params represent data from a form, API, CLI, etc
params = %{"name" => "Red", "age" => 60}

Repo.get_by!(Movie, title: "The Shawshank Redemption")
|> Ecto.build_assoc(:characters)
|> cast(params, [:name, :age])
|> Repo.insert()

 Inserting parent and child records together

Using internal data
Repo.insert(
 %Movie{
 title: "The Shawshank Redemption",
 release_date: ~D[1994-10-14],
 characters: [
 %Character{name: "Andy Dufresne", age: 50},
 %Character{name: "Red", age: 60}
]
 }
)
Using external data
Params represent data from a form, API, CLI, etc
params = %{
 "title" => "Shawshank Redemption",
 "release_date" => "1994-10-14",
 "characters" =>
 [
 %{"name" => "Andy Dufresne", "age" => "50"},
 %{"name" => "Red", "age" => "60"}
]
}

%Movie{}
|> cast(params, [:title, :release_date])
|> cast_assoc(:characters)
|> Repo.insert()

 Updating associated records

 Updating records individually

For individual updates, fetch and update records directly
movie =
 Repo.get_by!(Movie, title: "The Shawshank Redemption")
 |> Repo.preload(:screenplay)

movie.screenplay
|> change(%{lead_writer: "Frank Darabont"})
|> Repo.update()

 Updating all associated records, using internal data

Using Ecto.Changeset.put_assoc/3
movie =
 Repo.get_by!(Movie, title: "The Shawshank Redemption")
 |> Repo.preload(:characters)

IO.inspect(movie.characters)
#=> [%Character{name: "Andy Dufresne", age: 50},
#=> %Character{name: "Red", age: 60}]

characters =
 Enum.map(movie.characters, fn character ->
 change(character, age: character.age + 1)
 end)

{:ok, movie} =
 movie
 |> change()
 |> put_assoc(:characters, characters)
 |> Repo.update()

movie.characters |> Enum.map(&(&1.age)) |> IO.inspect
#=> [51, 61]
Note: the example above performs the same operation on all entries,
therefore it can be written as a query. Queries should be preferred
when possible as they avoid loading all data into memory and are
more performant. See next example.
Using Ecto.Repo.update_all/3
movie = Repo.get_by!(Movie, title: "The Shawshank Redemption")

movie
Query to load all characters associated to a given movie
|> Ecto.assoc(:characters)
|> Repo.update_all(inc: [age: 1])

 Updating all associated records, using external data

Using Ecto.Changeset.cast_assoc/3
Params represent data from a form, API, CLI, etc
params = %{
 "director" => "Frank Darabont",
 "characters" => [
 %{"id" => 1, "name" => "Andy Dufresne"},
 %{"name" => "Red", "age" => 60}
]
}

movie =
 Repo.get_by!(Movie, title: "The Shawshank Redemption")
 |> Repo.preload(:characters)

IO.inspect(movie.characters)
#=> [%{id: 1, name: "Andy", age: 50}]

{:ok, movie} =
 movie
 |> cast(params, ["director"])
 |> cast_assoc(:characters)
 |> Repo.update()

IO.inspect(movie.characters)
#=> [%{id: 1, name: "Andy Dufresne", age: 50},
#=> %{id: 2, name: "Red", age: 60}]
When using Ecto.Changeset.cast_assoc/3:
	Entries without ID are added.
	Existing entries with matching IDs are updated.
	Existing entries without matching IDs will raise
but it can be configured using :on_replace.
	Additional options are supported to customize
casting, sorting, and deletion

Aggregates and subqueries

Now it's time to discuss aggregates and subqueries. As we will learn, one builds directly on the other.

 Aggregates

Ecto includes a convenience function in repositories to calculate aggregates.
For example, if we assume every post has an integer column named visits, we can find the average number of visits across all posts with:
MyApp.Repo.aggregate(MyApp.Post, :avg, :visits)
#=> Decimal.new(1743)
Behind the scenes, the query above translates to:
MyApp.Repo.one(from p in MyApp.Post, select: avg(p.visits))
The Ecto.Repo.aggregate/4 function supports any of the aggregate operations listed in the Ecto.Query.API module.
At first, it looks like the implementation of aggregate/4 is quite straight-forward. You could even start to wonder why it was added to Ecto in the first place. However, complexities start to arise on queries that rely on limit, offset or distinct clauses.
Imagine that instead of calculating the average of all posts, you want the average of only the top 10. Your first try may be:
MyApp.Repo.one(
 from p in MyApp.Post,
 order_by: [desc: :visits],
 limit: 10,
 select: avg(p.visits)
)
#=> Decimal.new(1743)
Oops. The query above returned the same value as the queries before. The option limit: 10 has no effect here since it is limiting the aggregated result and queries with aggregates return only a single row anyway. In order to retrieve the correct result, we would need to first find the top 10 posts and only then aggregate. That's exactly what aggregate/4 does:
query =
 from MyApp.Post,
 order_by: [desc: :visits],
 limit: 10

MyApp.Repo.aggregate(query, :avg, :visits)
#=> Decimal.new(4682)
When limit, offset or distinct is specified in the query, aggregate/4 automatically wraps the given query in a subquery. Therefore the query executed by aggregate/4 above is rather equivalent to:
inner_query =
 from MyApp.Post,
 order_by: [desc: :visits],
 limit: 10

query =
 from q in subquery(inner_query),
 select: avg(q.visits)

MyApp.Repo.one(query)
Let's take a closer look at subqueries.

 Subqueries

In the previous section we have already learned some queries that would be hard to express without support for subqueries. That's one of many examples that caused subqueries to be added to Ecto.
Subqueries in Ecto are created by calling Ecto.Query.subquery/1. This function receives any data structure that can be converted to a query, via the Ecto.Queryable protocol, and returns a subquery construct (which is also queryable).
In Ecto, it is allowed for a subquery to select a whole table (p) or a field (p.field). All fields selected in a subquery can be accessed from the parent query. Let's revisit the aggregate query we saw in the previous section:
inner_query =
 from MyApp.Post,
 order_by: [desc: :visits],
 limit: 10

query =
 from q in subquery(inner_query),
 select: avg(q.visits)

MyApp.Repo.one(query)
Because the query does not specify a :select clause, it will return select: p where p is controlled by MyApp.Post schema. Since the query will return all fields in MyApp.Post, when we convert it to a subquery, all of the fields from MyApp.Post will be available on the parent query, such as q.visits. In fact, Ecto will keep the schema properties across queries. For example, if you write q.field_that_does_not_exist, your Ecto query won't compile.
Ecto also allows an Elixir map to be returned from a subquery, making the map keys directly available to the parent query.
Let's see one last example. Imagine you manage a library (as in an actual library in the real world) and there is a table that logs every time the library lends a book. The "lendings" table uses an auto-incrementing primary key and can be backed by the following schema:
defmodule Library.Lending do
 use Ecto.Schema

 schema "lendings" do
 belongs_to :book, MyApp.Book # defines book_id
 belongs_to :visitor, MyApp.Visitor # defines visitor_id
 end
end
Now consider we want to retrieve the name of every book alongside the name of the last person the library has lent it to. To do so, we need to find the last lending ID of every book, and then join on the book and visitor tables. With subqueries, that's straight-forward:
last_lendings =
 from l in MyApp.Lending,
 group_by: l.book_id,
 select: %{
 book_id: l.book_id,
 last_lending_id: max(l.id)
 }

from l in Lending,
 join: last in subquery(last_lendings),
 on: last.last_lending_id == l.id,
 join: b in assoc(l, :book),
 join: v in assoc(l, :visitor),
 select: {b.name, v.name}

Composable transactions with Multi

Ecto relies on database transactions when multiple operations must be performed atomically. The most common example used for transactions are bank transfers between two people:
Repo.transaction(fn ->
 mary_update =
 from Account,
 where: [id: ^mary.id],
 update: [inc: [balance: +10]]

 {1, _} = Repo.update_all(mary_update, [])

 john_update =
 from Account,
 where: [id: ^john.id],
 update: [inc: [balance: -10]]

 {1, _} = Repo.update_all(john_update, [])
end)
In Ecto, transactions can be performed via the Repo.transaction function. When we expect both operations to succeed, as above, transactions are quite straight-forward. However, transactions get more complicated if we need to check the status of each operation along the way:
Repo.transaction(fn ->
 mary_update =
 from Account,
 where: [id: ^mary.id],
 update: [inc: [balance: +10]]

 case Repo.update_all(mary_update, []) do
 {1, _} ->
 john_update =
 from Account,
 where: [id: ^john.id],
 update: [inc: [balance: -10]]

 case Repo.update_all(john_update, []) do
 {1, _} -> {mary, john}
 {_, _} -> Repo.rollback({:failed_transfer, john})
 end

 {_, _} ->
 Repo.rollback({:failed_transfer, mary})
 end
end)
Transactions in Ecto can also be nested arbitrarily. For example, imagine the transaction above is moved into its own function that receives both accounts, defined as transfer_money(mary, john, 10), and besides transferring money we also want to log the transfer:
Repo.transaction(fn ->
 case transfer_money(mary, john, 10) do
 {:ok, {mary, john}} ->
 transfer = %Transfer{
 from: mary.id,
 to: john.id,
 amount: 10
 }

 Repo.insert!(transfer)

 {:error, error} ->
 Repo.rollback(error)
 end
end)
The snippet above starts a transaction and then calls transfer_money/3 that also runs in a transaction. In the case of multiple transactions, they are all flattened, which means a failure in an inner transaction causes the outer transaction to also fail. That's why matching and rolling back on {:error, error} is important.
While nesting transactions can improve the code readability by breaking large transactions into multiple smaller transactions, there is still a lot of boilerplate involved in handling the success and failure scenarios. Furthermore, composition is quite limited, as all operations must still be performed inside transaction blocks.
A more declarative approach when working with transactions would be to define all operations we want to perform in a transaction decoupled from the transaction execution. This way we would be able to compose transactions operations without worrying about its execution context or about each individual success/failure scenario. That's exactly what Ecto.Multi allows us to do.

 Composing with data structures

Let's rewrite the snippets above using Ecto.Multi. The first snippet that transfers money between Mary and John can be rewritten to:
mary_update =
 from Account,
 where: [id: ^mary.id],
 update: [inc: [balance: +10]]

john_update =
 from Account,
 where: [id: ^john.id],
 update: [inc: [balance: -10]]

Ecto.Multi.new()
|> Ecto.Multi.update_all(:mary, mary_update, [])
|> Ecto.Multi.run(:check_mary, fn
 _repo, %{mary: {1, _}} -> {:ok, nil}
 repo, %{mary: {, _}} -> {:error, {:failed_transfer, mary}}
)
|> Ecto.Multi.update_all(:john, john_update, [])
|> Ecto.Multi.run(:check_john, fn
 _repo, %{john: {1, _}} -> {:ok, nil}
 repo, %{john: {, _}} -> {:error, {:failed_transfer, john}}
)
Ecto.Multi is a data structure that defines multiple operations that must be performed together, without worrying about when they will be executed. Ecto.Multi mirrors most of the Ecto.Repo API, with the difference that each operation must be explicitly named. In the example above, we have defined two update operations, named :mary and :john, and two validation operations, named :check_mary and :check_john. As we will see later, the names are important when handling the transaction results.
Since Ecto.Multi is just a data structure, we can pass it as argument to other functions, as well as return it. Assuming the multi above is moved into its own function, defined as transfer_money(mary, john, value), we can add a new operation to the multi that logs the transfer as follows:
transfer = %Transfer{
 from: mary.id,
 to: john.id,
 amount: 10
}

transfer_money(mary, john, 10)
|> Ecto.Multi.insert(:transfer, transfer)
This is considerably simpler than the nested transaction approach we have seen earlier. Once all operations are defined in the multi, we can finally call Repo.transaction, this time passing the multi:
transfer = %Transfer{
 from: mary.id,
 to: john.id,
 amount: 10
}

transfer_money(mary, john, 10)
|> Ecto.Multi.insert(:transfer, transfer)
|> Repo.transaction()
|> case do
 {:ok, %{transfer: transfer}} ->
 # Handle success case
 {:error, name, value, changes_so_far} ->
 # Handle failure case
end
If all operations in the multi succeed, it returns {:ok, map} where the map contains the name of all operations as keys and their success value. If any operation in the multi fails, the transaction is rolled back and Repo.transaction returns {:error, name, value, changes_so_far}, where name is the name of the failed operation, value is the failure value and changes_so_far is a map of the previously successful multi operations that have been rolled back due to the failure.
In other words, Ecto.Multi takes care of all the flow control boilerplate while decoupling the transaction definition from its execution, allowing us to compose operations as needed.

 Dependent values

Besides operations such as insert, update and delete, Ecto.Multi also provides functions for handling more complex scenarios. For example, prepend and append can be used to merge multis together. And more generally, the functions Ecto.Multi.run/3 and Ecto.Multi.run/5 can be used to define any operation that depends on the results of a previous multi operation. In addition, Ecto.Multi also gives us put and inspect, which allow us to dynamically update and inspect changes.
Let's study a more practical example. In Constraints and Upserts, we want to modify a post while possibly giving it a list of tags as a string separated by commas. At the end of the guide, we present a solution that inserts any missing tag and then fetches all of them using only two queries:
defmodule MyApp.Post do
 use Ecto.Schema

 # Schema is the same
 schema "posts" do
 field :title
 field :body
 many_to_many :tags, MyApp.Tag,
 join_through: "posts_tags",
 on_replace: :delete
 timestamps()
 end

 # Changeset is the same
 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title, :body])
 |> Ecto.Changeset.put_assoc(:tags, parse_tags(params))
 end

 # Parse tags has slightly changed
 defp parse_tags(params) do
 (params["tags"] || "")
 |> String.split(",")
 |> Enum.map(&String.trim/1)
 |> Enum.reject(& &1 == "")
 |> insert_and_get_all()
 end

 defp insert_and_get_all([]) do
 []
 end

 defp insert_and_get_all(names) do
 timestamp =
 NaiveDateTime.utc_now()
 |> NaiveDateTime.truncate(:second)

 maps =
 Enum.map(names, &%{
 name: &1,
 inserted_at: timestamp,
 updated_at: timestamp
 })

 Repo.insert_all(MyApp.Tag, maps, on_conflict: :nothing)

 Repo.all(from t in MyApp.Tag, where: t.name in ^names)
 end
end
While insert_and_get_all/1 is idempotent, allowing us to run it multiple times and get the same result back, it does not run inside a transaction, so any failure while attempting to modify the parent post struct would end-up creating tags that have no posts associated to them.
Let's fix the problem above by introducing using Ecto.Multi. Let's start by splitting the logic into both Post and Tag modules and keeping it free from side-effects such as database operations:
defmodule MyApp.Post do
 use Ecto.Schema

 schema "posts" do
 field :title
 field :body
 many_to_many :tags, MyApp.Tag,
 join_through: "posts_tags",
 on_replace: :delete
 timestamps()
 end

 def changeset(struct, tags, params) do
 struct
 |> Ecto.Changeset.cast(params, [:title, :body])
 |> Ecto.Changeset.put_assoc(:tags, tags)
 end
end

defmodule MyApp.Tag do
 use Ecto.Schema

 schema "tags" do
 field :name
 timestamps()
 end

 def parse(tags) do
 (tags || "")
 |> String.split(",")
 |> Enum.map(&String.trim/1)
 |> Enum.reject(& &1 == "")
 end
end
Now, whenever we need to introduce a post with tags, we can create a multi that wraps all operations and the repository access:
alias MyApp.Tag

def insert_or_update_post_with_tags(post, params) do
 Ecto.Multi.new()
 |> Ecto.Multi.run(:tags, fn _repo, changes ->
 insert_and_get_all_tags(changes, params)
 end)
 |> Ecto.Multi.run(:post, fn _repo, changes ->
 insert_or_update_post(changes, post, params)
 end)
 |> Repo.transaction()
end

defp insert_and_get_all_tags(_changes, params) do
 case MyApp.Tag.parse(params["tags"]) do
 [] ->
 {:ok, []}

 names ->
 timestamp =
 NaiveDateTime.utc_now()
 |> NaiveDateTime.truncate(:second)

 maps =
 Enum.map(names, &%{
 name: &1,
 inserted_at: timestamp,
 updated_at: timestamp
 })

 Repo.insert_all(Tag, maps, on_conflict: :nothing)

 query = from t in Tag, where: t.name in ^names

 {:ok, Repo.all(query)}
 end
end

defp insert_or_update_post(%{tags: tags}, post, params) do
 post
 |> MyApp.Post.changeset(tags, params)
 |> Repo.insert_or_update()
end
In the example above we have used Ecto.Multi.run/3 twice, albeit for two different reasons.
	In Ecto.Multi.run(:tags, ...), we used run/3 because we need to perform both insert_all and all operations, and while the multi exposes Ecto.Multi.insert_all/4, it does not have an equivalent to Ecto.Repo.all. Whenever we need to perform a repository operation that is not supported by Ecto.Multi, we can always fallback to run/3 or run/5.

	In Ecto.Multi.run(:post, ...), we used run/3 because we need to access the value of a previous multi operation. The function given to run/3 receives, as second argument, a map with the results of the operations performed so far. To grab the tags returned in the previous step, we simply pattern match on %{tags: tags} on insert_or_update_post.

Note: The first argument received by the function given to run/3 is the repo in which the transaction is executing.

While run/3 is very handy when we need to go beyond the functionalities provided natively by Ecto.Multi, it has the downside that operations defined with Ecto.Multi.run/3 are opaque and therefore they cannot be inspected by functions such as Ecto.Multi.to_list/1. Still, Ecto.Multi allows us to greatly simplify control flow logic and remove boilerplate when working with transactions.

Constraints and Upserts

In this guide we will learn how to use constraints and upserts. To showcase those features, we will work on a practical scenario: which is by studying a many to many relationship between posts and tags.

 put_assoc vs cast_assoc

Imagine we are building an application that has blog posts and such posts may have many tags. Not only that, a given tag may also belong to many posts. This is a classic scenario where we would use many_to_many associations. Our migrations would look like:
create table(:posts) do
 add :title, :string
 add :body, :text
 timestamps()
end

create table(:tags) do
 add :name, :string
 timestamps()
end

create unique_index(:tags, [:name])

create table(:posts_tags, primary_key: false) do
 add :post_id, references(:posts)
 add :tag_id, references(:tags)
end
Note we added a unique index to the tag name because we don't want to have duplicated tags in our database. It is important to add an index at the database level instead of using a validation since there is always a chance two tags with the same name would be validated and inserted simultaneously, passing the validation and leading to duplicated entries.
Now let's also imagine we want the user to input such tags as a list of words split by comma, such as: "elixir, erlang, ecto". Once this data is received in the server, we will break it apart into multiple tags and associate them to the post, creating any tag that does not yet exist in the database.
While the constraints above sound reasonable, that's exactly what put us in trouble with cast_assoc/3. The cast_assoc/3 changeset function was designed to receive external parameters and compare them with the associated data in our structs. To do so correctly, Ecto requires tags to be sent as a list of maps. We can see an example of this in Polymorphic associations with many to many. However, here we expect tags to be sent in a string separated by comma.
Furthermore, cast_assoc/3 relies on the primary key field for each tag sent in order to decide if it should be inserted, updated or deleted. Again, because the user is simply passing a string, we don't have the ID information at hand.
When we can't cope with cast_assoc/3, it is time to use put_assoc/4. In put_assoc/4, we give Ecto structs or changesets instead of parameters, giving us the ability to manipulate the data as we want. Let's define the schema and the changeset function for a post which may receive tags as a string:
defmodule MyApp.Post do
 use Ecto.Schema

 schema "posts" do
 field :title
 field :body

 many_to_many :tags, MyApp.Tag,
 join_through: "posts_tags",
 on_replace: :delete

 timestamps()
 end

 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title, :body])
 |> Ecto.Changeset.put_assoc(:tags, parse_tags(params))
 end

 defp parse_tags(params) do
 (params["tags"] || "")
 |> String.split(",")
 |> Enum.map(&String.trim/1)
 |> Enum.reject(& &1 == "")
 |> Enum.map(&get_or_insert_tag/1)
 end

 defp get_or_insert_tag(name) do
 Repo.get_by(MyApp.Tag, name: name) ||
 Repo.insert!(%Tag{name: name})
 end
end
In the changeset function above, we moved all the handling of tags to a separate function, called parse_tags/1, which checks for the parameter, breaks each tag apart via String.split/2, then removes any left over whitespace with String.trim/1, rejects any empty string and finally checks if the tag exists in the database or not, creating one in case none exists.
The parse_tags/1 function is going to return a list of MyApp.Tag structs which are then passed to put_assoc/4. By calling put_assoc/4, we are telling Ecto those should be the tags associated to the post from now on. In case a previous tag was associated to the post and not given in put_assoc/4, Ecto will invoke the behaviour defined in the :on_replace option, which we have set to :delete. The :delete behaviour will remove the association between the post and the removed tag from the database.
And that's all we need to use many_to_many associations with put_assoc/4. put_assoc/4 is very useful when we want to have more explicit control over our associations and it also works with has_many, belongs_to and all others association types.
However, our code is not yet ready for production. Let's see why.

 Constraints and race conditions

Remember we added a unique index to the tag :name column when creating the tags table. We did so to protect us from having duplicate tags in the database.
By adding the unique index and then using get_by with a insert! to get or insert a tag, we introduced a potential error in our application. If two posts are submitted at the same time with a similar tag, there is a chance we will check if the tag exists at the same time, leading both submissions to believe there is no such tag in the database. When that happens, only one of the submissions will succeed while the other one will fail. That's a race condition: your code will error from time to time, only when certain conditions are met. And those conditions are time sensitive.
Luckily Ecto gives us a mechanism to handle constraint errors from the database.

 Checking for constraint errors

Since our get_or_insert_tag(name) function fails when a tag already exists in the database, we need to handle such scenarios accordingly. Let's rewrite it taking race conditions into account:
defp get_or_insert_tag(name) do
 %Tag{}
 |> Ecto.Changeset.change(name: name)
 |> Ecto.Changeset.unique_constraint(:name)
 |> Repo.insert()
 |> case do
 {:ok, tag} -> tag
 {:error, _} -> Repo.get_by!(MyApp.Tag, name: name)
 end
end
Instead of inserting the tag directly, we now build a changeset, which allows us to use the unique_constraint annotation. Now if the Repo.insert operation fails because the unique index for :name is violated, Ecto won't raise, but return an {:error, changeset} tuple. Therefore, if Repo.insert succeeds, it is because the tag was saved, otherwise the tag already exists, which we then fetch with Repo.get_by!.
While the mechanism above fixes the race condition, it is a quite expensive one: we need to perform two queries for every tag that already exists in the database: the (failed) insert and then the repository lookup. Given that's the most common scenario, we may want to rewrite it to the following:
defp get_or_insert_tag(name) do
 Repo.get_by(MyApp.Tag, name: name) ||
 maybe_insert_tag(name)
end

defp maybe_insert_tag(name) do
 %Tag{}
 |> Ecto.Changeset.change(name: name)
 |> Ecto.Changeset.unique_constraint(:name)
 |> Repo.insert
 |> case do
 {:ok, tag} -> tag
 {:error, _} -> Repo.get_by!(MyApp.Tag, name: name)
 end
end
The above performs 1 query for every tag that already exists, 2 queries for every new tag and possibly 3 queries in the case of race conditions. While the above would perform slightly better on average, Ecto has a better option in stock.

 Upserts

Ecto supports the so-called "upsert" command which is an abbreviation for "update or insert". The idea is that we try to insert a record and in case it conflicts with an existing entry, for example due to a unique index, we can choose how we want the database to act by either raising an error (the default behaviour), ignoring the insert (no error) or by updating the conflicting database entries.
"upsert" in Ecto is done with the :on_conflict option. Let's rewrite get_or_insert_tag(name) once more but this time using the :on_conflict option. Remember that "upsert" is a new feature in PostgreSQL 9.5, so make sure you are up to date.
Your first try in using :on_conflict may be by setting it to :nothing, as below:
defp get_or_insert_tag(name) do
 Repo.insert!(
 %MyApp.Tag{name: name},
 on_conflict: :nothing
)
end
While the above won't raise an error in case of conflicts, it also won't update the struct given, so it will return a tag without ID. One solution is to force an update to happen in case of conflicts, even if the update is about setting the tag name to its current name. In such cases, PostgreSQL also requires the :conflict_target option to be given, which is the column (or a list of columns) we are expecting the conflict to happen:
defp get_or_insert_tag(name) do
 Repo.insert!(
 %MyApp.Tag{name: name},
 on_conflict: [set: [name: name]],
 conflict_target: :name
)
end
And that's it! We try to insert a tag with the given name and if such tag already exists, we tell Ecto to update its name to the current value, updating the tag and fetching its id. While the above is certainly a step up from all solutions so far, it still performs one query per tag. If 10 tags are sent, we will perform 10 queries. Can we further improve this?

 Upserts and insert_all

Ecto accepts the :on_conflict option not only in Ecto.Repo.insert/2 but also in the Ecto.Repo.insert_all/3 function. This means we can build one query that attempts to insert all missing tags and then another query that fetches all of them at once. Let's see how our Post schema will look like after those changes:
defmodule MyApp.Post do
 use Ecto.Schema

 # We need to import Ecto.Query
 import Ecto.Query

 # Schema is the same
 schema "posts" do
 add :title
 add :body

 many_to_many :tags, MyApp.Tag,
 join_through: "posts_tags",
 on_replace: :delete

 timestamps()
 end

 # Changeset is the same
 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title, :body])
 |> Ecto.Changeset.put_assoc(:tags, parse_tags(params))
 end

 # Parse tags has slightly changed
 defp parse_tags(params) do
 (params["tags"] || "")
 |> String.split(",")
 |> Enum.map(&String.trim/1)
 |> Enum.reject(& &1 == "")
 |> insert_and_get_all()
 end

 defp insert_and_get_all([]) do
 []
 end
 defp insert_and_get_all(names) do
 timestamp =
 NaiveDateTime.utc_now()
 |> NaiveDateTime.truncate(:second)

 placeholders = %{timestamp: timestamp}

 maps =
 Enum.map(names, &%{
 name: &1,
 inserted_at: {:placeholder, :timestamp},
 updated_at: {:placeholder, :timestamp}
 })

 Repo.insert_all(
 MyApp.Tag,
 maps,
 placeholders: placeholders,
 on_conflict: :nothing
)

 Repo.all(from t in MyApp.Tag, where: t.name in ^names)
 end
end
Instead of getting and inserting each tag individually, the code above works on all tags at once, first by building a list of maps which is given to insert_all. Then we look up all tags with the given names. Regardless of how many tags are sent, we will perform only 2 queries - unless no tag is sent, in which we return an empty list back promptly. This solution is only possible thanks to the :on_conflict option, which guarantees insert_all won't fail in case a unique index is violated, such as from duplicate tag names. Remember, insert_all won't autogenerate values like timestamps. That's why we define a timestamp placeholder and reuse it across inserted_at and updated_at fields.
Finally, keep in mind that we haven't used transactions in any of the examples so far. That decision was deliberate as we relied on the fact that getting or inserting tags is an idempotent operation, i.e. we can repeat it many times for a given input and it will always give us the same result back. Therefore, even if we fail to introduce the post to the database due to a validation error, the user will be free to resubmit the form and we will just attempt to get or insert the same tags once again. The downside of this approach is that tags will be created even if creating the post fails, which means some tags may not have posts associated to them. In case that's not desired, the whole operation could be wrapped in a transaction or modeled with Ecto.Multi.

Data mapping and validation

We will take a look at the role schemas play when validating and casting data through changesets. As we will see, sometimes the best solution is not to completely avoid schemas, but break a large schema into smaller ones. Maybe one for reading data, another for writing. Maybe one for your database, another for your forms.

 Schemas are mappers

The Ecto.Schema moduledoc says:
An Ecto schema is used to map any data source into an Elixir struct.

We put emphasis on any because it is a common misconception to think Ecto schemas map only to your database tables.
For instance, when you write a web application using Phoenix and you use Ecto to receive external changes and apply such changes to your database, we have this mapping:
Database <-> Ecto schema <-> Forms / API
Although there is a single Ecto schema mapping to both your database and your API, in many situations it is better to break this mapping in two. Let's see some practical examples.
Imagine you are working with a client that wants the "Sign Up" form to contain the fields "First name", "Last name" along side "E-mail" and other information. You know there are a couple problems with this approach.
First of all, not everyone has a first and last name. Although your client is decided on presenting both fields, they are a UI concern, and you don't want the UI to dictate the shape of your data. Furthermore, you know it would be useful to break the "Sign Up" information across two tables, the "accounts" and "profiles" tables.
Given the requirements above, how would we implement the Sign Up feature in the backend?
One approach would be to have two schemas, Account and Profile, with virtual fields such as first_name and last_name, and use associations along side nested forms to tie the schemas to your UI. One of such schemas would be:
defmodule Profile do
 use Ecto.Schema

 schema "profiles" do
 field :name
 field :first_name, :string, virtual: true
 field :last_name, :string, virtual: true
 ...
 end
end
It is not hard to see how we are polluting our Profile schema with UI requirements by adding fields such first_name and last_name. If the Profile schema is used for both reading and writing data, it may end-up in an awkward place where it is not useful for any, as it contains fields that map just to one or the other operation.
One alternative solution is to break the "Database <-> Ecto schema <-> Forms / API" mapping in two parts. The first will cast and validate the external data with its own structure which you then transform and write to the database. For such, let's define a schema named Registration that will take care of casting and validating the form data exclusively, mapping directly to the UI fields:
defmodule Registration do
 use Ecto.Schema

 embedded_schema do
 field :first_name
 field :last_name
 field :email
 end
end
We used embedded_schema because it is not our intent to persist it anywhere. With the schema in hand, we can use Ecto changesets and validations to process the data:
fields = [:first_name, :last_name, :email]

changeset =
 %Registration{}
 |> Ecto.Changeset.cast(params["sign_up"], fields)
 |> validate_required(...)
 |> validate_length(...)
Now that the registration changes are mapped and validated, we can check if the resulting changeset is valid and act accordingly:
if changeset.valid? do
 # Get the modified registration struct from changeset
 registration = Ecto.Changeset.apply_changes(changeset)
 account = Registration.to_account(registration)
 profile = Registration.to_profile(registration)

 MyApp.Repo.transaction fn ->
 MyApp.Repo.insert_all "accounts", [account]
 MyApp.Repo.insert_all "profiles", [profile]
 end

 {:ok, registration}
else
 # Annotate the action so the UI shows errors
 changeset = %{changeset | action: :registration}
 {:error, changeset}
end
The to_account/1 and to_profile/1 functions in Registration would receive the registration struct and split the attributes apart accordingly:
def to_account(registration) do
 Map.take(registration, [:email])
end

def to_profile(%{first_name: first, last_name: last}) do
 %{name: "#{first} #{last}"}
end
In the example above, by breaking apart the mapping between the database and Elixir and between Elixir and the UI, our code becomes clearer and our data structures simpler.
Note we have used MyApp.Repo.insert_all/2 to add data to both "accounts" and "profiles" tables directly. We have chosen to bypass schemas altogether. However, there is nothing stopping you from also defining both Account and Profile schemas and changing to_account/1 and to_profile/1 to respectively return %Account{} and %Profile{} structs. Once structs are returned, they could be inserted through the usual MyApp.Repo.insert/2 operation. One can also check for uniqueness or other constraints during insertion by wrapping the structs in a changeset.

 Schemaless changesets

Although we chose to define a Registration schema to use in the changeset, Ecto also allows developers to use changesets without schemas. We can dynamically define the data and their types. Let's rewrite the registration changeset above to bypass schemas:
data = %{}
types = %{name: :string, email: :string}

The data+types tuple is equivalent to %Registration{}
changeset =
 {data, types}
 |> Ecto.Changeset.cast(params["sign_up"], Map.keys(types))
 |> validate_required(...)
 |> validate_length(...)
You can use this technique to validate API endpoints, search forms, and other sources of data. The choice of using schemas depends mostly if you want to use the same mapping in different places or if you desire the compile-time guarantees Elixir structs gives you. Otherwise, you can bypass schemas altogether, be it when using changesets or interacting with the repository.
However, the most important lesson in this guide is not when to use or not to use schemas, but rather understand when a big problem can be broken into smaller problems that can be solved independently leading to an overall cleaner solution. The choice of using schemas or not above didn't affect the solution as much as the choice of breaking the registration problem apart.

Dynamic queries

Ecto was designed from the ground up to have an expressive query API that leverages Elixir syntax to write queries that are pre-compiled for performance and safety. When building queries, we may use the keywords syntax
import Ecto.Query

from p in Post,
 where: p.author == "José" and p.category == "Elixir",
 where: p.published_at > ^minimum_date,
 order_by: [desc: p.published_at]
or the pipe-based one
import Ecto.Query

Post
|> where([p], p.author == "José" and p.category == "Elixir")
|> where([p], p.published_at > ^minimum_date)
|> order_by([p], desc: p.published_at)
Both APIs are also composable. For example, imagine you want to abstract the published_at filtering and sorting into a function, with the keyword syntax you could write:
def most_recent_from(query, minimum_date) do
 from p in query,
 where: p.published_at > ^minimum_date,
 order_by: [desc: p.published_at]
end
and with the pipe syntax:
def most_recent_from(query, minimum_date) do
 query
 |> where([p], p.published_at > ^minimum_date)
 |> order_by([p], desc: p.published_at)
end
The examples above show you can build and compose queries at a high-level: by composing each call to where, order_by, and so on. However, sometimes you want the contents of the where or the order_by themselves to be defined dynamically. For example, a web application that provides search functionality on top of existing posts. The user should be able to specify multiple criteria, such as the author name, the post category, publishing interval, etc.
Furthermore, while many developers prefer the pipe-based syntax, having to repeat the binding p made it quite verbose compared to the keyword one.
To solve those problems, Ecto also provides a data-structure centric API to build queries as well as a very powerful mechanism for dynamic queries. Let's take a look.

 Focusing on data structures

Ecto provides a simpler API for both keyword and pipe based queries by making data structures first-class. Let's see an example:
from p in Post,
 where: [author: "José", category: "Elixir"],
 where: p.published_at > ^minimum_date,
 order_by: [desc: :published_at]
and
Post
|> where(author: "José", category: "Elixir")
|> where([p], p.published_at > ^minimum_date)
|> order_by(desc: :published_at)
Notice how we were able to ditch the p selector in most expressions. All Ecto constructs accept data structures as input. Such data structures can also be specified dynamically, shown below:
where = [author: "José", category: "Elixir"]
order_by = [desc: :published_at]
Post
|> where(^where)
|> where([p], p.published_at > ^minimum_date)
|> order_by(^order_by)
While using data-structures already brings a good amount of flexibility to Ecto queries, not all expressions can be converted to data structures. For example, where converts a key-value to a key == value comparison, and therefore order-based comparisons such as p.published_at > ^minimum_date need to be written as before.

 Dynamic fragments

For cases where we cannot rely on data structures but still desire to build queries dynamically, Ecto includes the Ecto.Query.dynamic/2 macro.
The dynamic macro allows us to conditionally build query fragments and interpolate them in the main query. For example, imagine that in the example above you may optionally filter posts by a date of publication. You could of course write it like this:
query =
 Post
 |> where(^where)
 |> order_by(^order_by)

query =
 if published_at = params["published_at"] do
 where(query, [p], p.published_at < ^published_at)
 else
 query
 end
But with dynamic fragments, you can also write it as:
where = [author: "José", category: "Elixir"]
order_by = [desc: :published_at]

filter_published_at =
 if published_at = params["published_at"] do
 dynamic([p], p.published_at < ^published_at)
 else
 true
 end

Post
|> where(^where)
|> where(^filter_published_at)
|> order_by(^order_by)
The dynamic macro allows us to build dynamic expressions that are later interpolated into the query. dynamic expressions can also be interpolated into dynamic expressions, allowing developers to build complex expressions dynamically without hassle.
By using dynamic fragments, we can decouple the processing of parameters from the query generation. Let's see a more complex example.

 Building dynamic queries

Let's go back to the original problem. We want to build a search functionality where the user can configure how to traverse all posts in many different ways. For example, the user may choose how to order the data, filter by author and category, as well as select posts published after a certain date.
To tackle this in Ecto, we can break our problem into a bunch of small functions, that build either data structures or dynamic fragments, and then we interpolate it into the query:
def filter(params) do
 Post
 |> order_by(^filter_order_by(params["order_by"]))
 |> where(^filter_where(params))
end

def filter_order_by("published_at_desc"),
 do: [desc: dynamic([p], p.published_at)]

def filter_order_by("published_at"),
 do: [asc: dynamic([p], p.published_at)]

def filter_order_by(_),
 do: []

def filter_where(params) do
 Enum.reduce(params, dynamic(true), fn
 {"author", value}, dynamic ->
 dynamic([p], ^dynamic and p.author == ^value)

 {"category", value}, dynamic ->
 dynamic([p], ^dynamic and p.category == ^value)

 {"published_at", value}, dynamic ->
 dynamic([p], ^dynamic and p.published_at > ^value)

 {_, _}, dynamic ->
 # Not a where parameter
 dynamic
 end)
end
Because we were able to break our problem into smaller functions that receive regular data structures, we can use all the tools available in Elixir to work with data. For handling the order_by parameter, it may be best to simply pattern match on the order_by parameter. For building the where clause, we can use reduce to start with an empty dynamic (that always returns true) and refine it with new conditions as we traverse the parameters.
Testing also becomes simpler as we can test each function in isolation, even when using dynamic queries:
test "filter published at based on the given date" do
 assert dynamic_match?(
 filter_where(%{}),
 "true"
)

 assert dynamic_match?(
 filter_where(%{"published_at" => "2010-04-17"}),
 "true and q.published_at > ^\"2010-04-17\""
)
end

defp dynamic_match?(dynamic, string) do
 inspect(dynamic) == "dynamic([q], #{string})"
end
In the example above, we created a small helper that allows us to assert on the dynamic contents by matching on the results of inspect(dynamic).

 Dynamic and joins

Even query joins can be tackled dynamically. For example, let's do two modifications to the example above. Let's say we can also sort by author name ("author_name" and "author_name_desc") and at the same time let's say that authors are in a separate table, which means our authors filter in filter_where now need to go through the join table.
Our final solution would look like this:
def filter(params) do
 Post
 # 1. Add named join binding
 |> join(:inner, [p], assoc(p, :authors), as: :authors)
 |> order_by(^filter_order_by(params["order_by"]))
 |> where(^filter_where(params))
end

2. Returned dynamic with join binding
def filter_order_by("published_at_desc"),
 do: [desc: dynamic([p], p.published_at)]

def filter_order_by("published_at"),
 do: dynamic([p], p.published_at)

def filter_order_by("author_name_desc"),
 do: [desc: dynamic([authors: a], a.name)]

def filter_order_by("author_name"),
 do: dynamic([authors: a], a.name)

def filter_order_by(_),
 do: []

3. Change the authors clause inside reduce
def filter_where(params) do
 Enum.reduce(params, dynamic(true), fn
 {"author", value}, dynamic ->
 dynamic([authors: a], ^dynamic and a.name == ^value)

 {"category", value}, dynamic ->
 dynamic([p], ^dynamic and p.category == ^value)

 {"published_at", value}, dynamic ->
 dynamic([p], ^dynamic and p.published_at > ^value)

 {_, _}, dynamic ->
 # Not a where parameter
 dynamic
 end)
end
Adding more filters in the future is simply a matter of adding more clauses to the Enum.reduce/3 call in filter_where.

Multi tenancy with query prefixes

With Ecto we can run queries in different prefixes using a single pool of database connections. For databases engines such as Postgres, Ecto's prefix maps to Postgres' DDL schemas. For MySQL, each prefix is a different database on its own.
Multi-tenancy and migrations
When working with multi-tenant databases, you need to apply database migrations (such as adding/removing tables, columns, and indexes) to each tenant. If your application grows to dozens of thousands of tenants or more, those migrations can eventually become too expensive and take a long time to complete.
Query prefixes may be useful in different scenarios. For example, multi tenant apps running on PostgreSQL would define multiple prefixes, usually one per client, under a single database. The idea is that prefixes will provide data isolation between the different users of the application, guaranteeing either globally or at the data level that queries and commands act on a specific tenants.
Prefixes may also be useful on high-traffic applications where data is partitioned upfront. For example, a gaming platform may break game data into isolated partitions, each named after a different prefix. A partition for a given player is either chosen at random or calculated based on the player information.
Given each tenant has its own database structure, multi tenancy with query prefixes is expensive to setup. For example, migrations have to run individually for each prefix. Therefore this approach is useful when there is a limited or a slowly growing number of tenants.
Let's get started. Note all the examples below assume you are using PostgreSQL. Other databases engines may require slightly different solutions.

 Connection prefixes

As a starting point, let's start with a simple scenario: your application must connect to a particular prefix when running in production. This may be due to infrastructure conditions, database administration rules or others.
Let's define a repository and a schema to get started:
lib/repo.ex
defmodule MyApp.Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres
end

lib/sample.ex
defmodule MyApp.Sample do
 use Ecto.Schema

 schema "samples" do
 field :name
 timestamps
 end
end
Now let's configure the repository:
config/config.exs
config :my_app, MyApp.Repo,
 username: "postgres",
 password: "postgres",
 database: "demo",
 hostname: "localhost",
 pool_size: 10
And define a migration:
priv/repo/migrations/20160101000000_create_sample.exs
defmodule MyApp.Repo.Migrations.CreateSample do
 use Ecto.Migration

 def change do
 create table(:samples) do
 add :name, :string
 timestamps()
 end
 end
end
Now let's create the database, migrate it and then start an IEx session:
$ mix ecto.create
$ mix ecto.migrate
$ iex -S mix
Interactive Elixir - press Ctrl+C to exit
iex(1)> MyApp.Repo.all MyApp.Sample
[]

We haven't done anything unusual so far. We created our database instance, made it up to date by running migrations and then successfully made a query against the "samples" table, which returned an empty list.
By default, connections to Postgres' databases run on the "public" prefix. When we run migrations and queries, they are all running against the "public" prefix. However imagine your application has a requirement to run on a particular prefix in production, let's call it "connection_prefix".
Luckily Postgres allows us to change the prefix our database connections run on by setting the "schema search path". The best moment to change the search path is right after we setup the database connection, ensuring all of our queries will run on that particular prefix, throughout the connection life-cycle.
To do so, let's change our database configuration in "config/config.exs" and specify an :after_connect option. :after_connect expects a tuple with module, function and arguments it will invoke with the connection process, as soon as a database connection is established:
query_args = ["SET search_path TO connection_prefix", []]

config :my_app, MyApp.Repo,
 username: "postgres",
 password: "postgres",
 database: "demo_dev",
 hostname: "localhost",
 pool_size: 10,
 after_connect: {Postgrex, :query!, query_args}
Now let's try to run the same query as before:
$ iex -S mix
Interactive Elixir - press Ctrl+C to exit
iex(1)> MyApp.Repo.all MyApp.Sample
** (Postgrex.Error) ERROR (undefined_table):
 relation "samples" does not exist

Our previously successful query now fails because there is no table "samples" under the new prefix. Let's try to fix that by running migrations:
$ mix ecto.migrate
** (Postgrex.Error) ERROR (invalid_schema_name):
 no schema has been selected to create in

Oops. Now migration says there is no such schema name. That's because Postgres automatically creates the "public" prefix every time we create a new database. If we want to use a different prefix, we must explicitly create it on the database we are running on:
$ psql -d demo_dev -c "CREATE SCHEMA connection_prefix"

Now we are ready to migrate and run our queries:
$ mix ecto.migrate
$ iex -S mix
Interactive Elixir - press Ctrl+C to exit
iex(1)> MyApp.Repo.all MyApp.Sample
[]

Data in different prefixes are isolated. Writing to the "samples" table in one prefix cannot be accessed by the other unless we change the prefix in the connection or use the Ecto conveniences we will discuss next.

 Schema prefixes

Ecto also allows you to set a particular schema to run on a specific prefix. Imagine you are building a multi-tenant application. Each client data belongs to a particular prefix, such as "client_foo", "client_bar" and so forth. Yet your application may still rely on a set of tables that are shared across all clients. One of such tables may be exactly the table that maps the Client ID to its database prefix. Let's assume we want to store this data in a prefix named "main":
defmodule MyApp.Mapping do
 use Ecto.Schema

 @schema_prefix "main"
 schema "mappings" do
 field :client_id, :integer
 field :db_prefix
 timestamps
 end
end
Now running MyApp.Repo.all MyApp.Mapping will by default run on the "main" prefix, regardless of the value configured for the connection on the :after_connect callback. However, we may want to override the schema prefix too and Ecto gives us the opportunity to do so, let's see how.

 Per-query and per-struct prefixes

Now, suppose that while still configured to connect to the "connection_prefix" on :after_connect, we run the following queries:
iex(1)> alias MyApp.Sample
MyApp.Sample
iex(2)> MyApp.Repo.all(Sample)
[]
iex(3)> MyApp.Repo.insert(%Sample{name: "mary"})
{:ok, %MyApp.Sample{...}}
iex(4)> MyApp.Repo.all(Sample)
[%MyApp.Sample{...}]
The operations above ran on the "connection_prefix". So what happens if we try to run the sample query on the "public" prefix? All Ecto repository operations support the :prefix option. So let's set it to public.
iex(7)> MyApp.Repo.all(Sample)
[%MyApp.Sample{...}]
iex(8)> MyApp.Repo.all(Sample, prefix: "public")
[]
Notice how we were able to change the prefix the query runs on. Back in the default "public" prefix, there is no data.
One interesting aspect of prefixes in Ecto is that the prefix information is carried along each struct returned by a query:
iex(9)> [sample] = MyApp.Repo.all(Sample)
[%MyApp.Sample{}]
iex(10)> Ecto.get_meta(sample, :prefix)
nil
The example above returned nil, which means no prefix was specified by Ecto, and therefore the database connection default will be used. In this case, "connection_prefix" will be used because of the :after_connect callback we added at the beginning of this guide.
Since the prefix data is carried in the struct, we can use such to copy data from one prefix to the other. Let's copy the sample above from the "connection_prefix" to the "public" one:
iex(11)> new_sample = Ecto.put_meta(sample, prefix: "public")
%MyApp.Sample{}
iex(12)> MyApp.Repo.insert(new_sample)
{:ok, %MyApp.Sample{}}
iex(13)> [sample] = MyApp.Repo.all(Sample, prefix: "public")
[%MyApp.Sample{}]
iex(14)> Ecto.get_meta(sample, :prefix)
"public"
Now we have data inserted in both prefixes. Note how we passed the :prefix option to MyApp.Repo.all. Almost all Repo operations accept :prefix as an option, with one important distinction:
	the :prefix option in query operations (all/2, update_all/2, and delete_all/2) is a fallback. It will only be used when a @schema_prefix or a query prefix was not previously specified

	the :prefix option in schema operations (insert_all/3, insert/2, update/2, etc) will override the @schema_prefix as well as any prefix in the struct/changeset

This difference in behaviour is by design: we want to allow flexibility when writing queries but we want to enforce struct/changeset operations to always work isolated within a given prefix. In fact, if call MyApp.Repo.insert(post) or MyApp.Repo.update(post), and the post includes associations, the associated data will also be inserted/updated in the same prefix as post.

 Per from/join prefixes

Finally, Ecto allows you to set the prefix individually for each from and join expression. Here's an example:
from p in Post, prefix: "foo",
 join: c in Comment, prefix: "bar"
Those will take precedence over all other prefixes we have defined so far. For each join/from in the query, the prefix used will be determined by the following order:
	If the prefix option is given exclusively to join/from
	If the @schema_prefix is set in the related schema
	If the :prefix field given to the repo operation (i.e. Repo.all(query, prefix: prefix))
	The connection prefix

 Migration prefixes

When the connection prefix is set, it also changes the prefix migrations run on. However it is also possible to set the prefix through the command line or per table in the migration itself.
For example, imagine you are a gaming company where the game is broken in 128 partitions, named "prefix_1", "prefix_2", "prefix_3" up to "prefix_128". Now, whenever you need to migrate data, you need to migrate data on all different 128 prefixes. There are two ways of achieve that.
The first mechanism is to invoke mix ecto.migrate multiple times, once per prefix, passing the --prefix option:
$ mix ecto.migrate --prefix "prefix_1"
$ mix ecto.migrate --prefix "prefix_2"
$ mix ecto.migrate --prefix "prefix_3"
...
$ mix ecto.migrate --prefix "prefix_128"

The other approach is by changing each desired migration to run across multiple prefixes. For example:
defmodule MyApp.Repo.Migrations.CreateSample do
 use Ecto.Migration

 def change do
 for i <- 1..128 do
 prefix = "prefix_#{i}"
 create table(:samples, prefix: prefix) do
 add :name, :string
 timestamps()
 end

 # Execute the commands on the current prefix
 # before moving on to the next prefix
 flush()
 end
 end
end

 Summing up

Ecto provides many conveniences for working with querying prefixes. Those conveniences allow developers to configure prefixes with different precedence, starting with the highest one. When executing queries with all, update_all or delete_all, the prefix is computed as follows:
	from/join prefixes
	schema prefixes
	the :prefix option
	connection prefixes

When working with schemas and changesets in insert_all, insert, update, and so forth, the precedence is:
	the :prefix option
	changeset prefixes
	schema prefixes
	connection prefixes

This way developers can tackle different scenarios from production requirements to multi-tenant applications.

Multi tenancy with foreign keys

In Multi tenancy with query prefixes, we have learned how to set up multi tenant applications by using separate query prefixes, known as DDL Schemas in PostgreSQL and MSSQL and simply a separate database in MySQL.
Each query prefix is isolated, having their own tables and data, which provides the security guarantees we need. On the other hand, such approach for multi tenancy may be too expensive, as each schema needs to be created, migrated, and versioned separately.
Therefore, some applications may prefer a cheaper mechanism for multi tenancy, by relying on foreign keys. The idea here is that most - if not all - resources in the system belong to a tenant. The tenant is typically an organization or a user and all resources have an org_id (or user_id) foreign key pointing directly to it.
In this guide, we will show how to leverage Ecto constructs to guarantee that all Ecto queries in your application are properly scoped to a chosen org_id.

 Adding org_id to read operations

The first step in our implementation is to make the repository aware of org_id. We want to allow commands such as:
MyApp.Repo.all Post, org_id: 13
Where the repository will automatically scope all posts to the organization with ID=13. We can achieve this with the Ecto.Repo.prepare_query/3 repository callback:
defmodule MyApp.Repo do
 use Ecto.Repo, otp_app: :my_app

 require Ecto.Query

 @impl true
 def prepare_query(_operation, query, opts) do
 cond do
 opts[:skip_org_id] || opts[:ecto_query] in [:schema_migration, :preload] ->
 {query, opts}

 org_id = opts[:org_id] ->
 {Ecto.Query.where(query, org_id: ^org_id), opts}

 true ->
 raise "expected org_id or skip_org_id to be set"
 end
 end
end
Now we can pass :org_id to all READ operations, such as get, get_by, preload, etc and all query operations, such all, update_all, and delete_all. Note we have intentionally made the :org_id required, with the exception of two scenarios:
	if you explicitly set :skip_org_id to true, it won't require an :org_id. This reduces the odds of a developer forgetting to scope their queries, which can accidentally expose private data to other users

	if the :ecto_query option is set. This means the repository operation was issued by Ecto itself, with value :schema_migration when migrating our database, or :preload when issuing a preload query, and we don't want to apply an org_id to them

Still, setting the org_id for every operation is cumbersome and error prone. We will be better served if all operations attempt to set an org_id.

 Setting org_id by default

To make sure our read operations use the org_id by default, we will make two additional changes to the repository.
First, we will store the org_id in the process dictionary. The process dictionary is a storage that is exclusive to each process. For example, each test in your project runs in a separate process. Each request in a web application runs in a separate process too. Each of these processes have their own dictionary which we will store and read from. Let's add these functions:
defmodule MyApp.Repo do
 ...

 @tenant_key {__MODULE__, :org_id}

 def put_org_id(org_id) do
 Process.put(@tenant_key, org_id)
 end

 def get_org_id() do
 Process.get(@tenant_key)
 end
end
We added two new functions. The first, put_org_id, stores the organization id in the process dictionary. get_org_id reads the value in the process dictionary.
You will want to call put_org_id on every process before you use the repository. For example, on every request in a web application, as soon as you read the current organization from the request parameter or the session, you should call MyApp.Repo.put_org_id(params_org_id). In tests, you want to explicitly set the put_org_id or pass the :org_id option as in the previous section.
The second change we need to do is to set the org_id as a default option on all repository operations. The value of org_id will be precisely the value in the process dictionary. We can do so trivially by implementing the default_options callback:
defmodule MyApp.Repo do
 ...

 @impl true
 def default_options(_operation) do
 [org_id: get_org_id()]
 end
end
With these changes, we will always set the org_id field in our Ecto queries, unless we explicitly set skip_org_id: true when calling the repository. The only remaining step is to make sure the org_id field is not null in your database tables and make sure the org_id is set whenever inserting into the database.
To better understand how our database schema should look like, let's discuss some other techniques that we can use to tighten up multi tenant support, especially in regards to associations.

 Working with multi tenant associations

Let's expand our data domain a little bit.
So far we have assumed there is an organization schema. However, instead of naming its primary key id, we will name it org_id, so Repo.one(Org, org_id: 13) just works:
defmodule MyApp.Organization do
 use Ecto.Schema

 @primary_key {:org_id, :id, autogenerate: true}
 schema "orgs" do
 field :name
 timestamps()
 end
end
Let's also say that you may have multiple posts in an organization and the posts themselves may have multiple comments:
defmodule MyApp.Post do
 use Ecto.Schema

 schema "posts" do
 field :title
 field :org_id, :integer
 has_many :comments, MyApp.Comment
 timestamps()
 end
end

defmodule MyApp.Comment do
 use Ecto.Schema

 schema "comments" do
 field :body
 field :org_id, :integer
 belongs_to :post, MyApp.Post
 timestamps()
 end
end
One thing to have in mind is that, our prepare_query callback will apply to all queries, but it won't apply to joins inside the same query. Therefore, if you write this query:
MyApp.Repo.put_org_id(some_org_id)

MyApp.Repo.all(
 from p in Post, join: c in assoc(p, :comments)
)
prepare_query will apply the org_id only to posts but not to the join. While this may seem problematic, in practice it is not an issue, because when you insert posts and comments in the database, they will always have the same org_id. If posts and comments do not have the same org_id, then there is a bug: the data either got corrupted or there is a bug in our software when inserting data.
Luckily, we can leverage database's foreign keys to guarantee that the org_ids always match between posts and comments. Our first stab at defining these schema migrations would look like this:
create table(:orgs, primary_key: false) do
 add :org_id, :bigserial, primary_key: true
 add :name, :string
 timestamps()
end

create table(:posts) do
 add :title, :string

 add :org_id,
 references(:orgs, column: :org_id),
 null: false

 timestamps()
end

create table(:comments) do
 add :body, :string
 add :org_id, references(:orgs), null: false
 add :post_id, references(:posts), null: false
 timestamps()
end
So far the only noteworthy change compared to a regular migration is the primary_key: false option to the :orgs table, as we want to mirror the primary key of org_id given to the schema. While the schema above works and guarantees that posts references an existing organization and that comments references existing posts and organizations, it does not guarantee that all posts and their related comments belong to the same organization.
We can tighten up this requirement by using composite foreign keys with the following changes:
create unique_index(:posts, [:id, :org_id])

create table(:comments) do
 add :body, :string

 # There is no need to define a reference for org_id
 add :org_id, :integer, null: false

 # Instead define a composite foreign key
 add :post_id,
 references(:posts, with: [org_id: :org_id]),
 null: false

 timestamps()
end
Instead of defining both post_id and org_id as individual foreign keys, we define org_id as a regular integer and then we define post_id+org_id as a composite foreign key by passing the :with option to Ecto.Migration.references/2. This makes sure comments point to posts which point to orgs, where all org_ids match.
Given composite foreign keys require the referenced keys to be unique, we also defined a unique index on the posts table before we defined the composite foreign key.
If you are using PostgreSQL and you want to tighten these guarantees even further, you can pass the match: :full option to references:
references(:posts, with: [org_id: :org_id], match: :full)
which will help enforce none of the columns in the foreign key can be nil.

 Summary

In this guide, we have changed our repository interface to guarantee our queries are always scoped to an org_id, unless we explicitly opt out. We also learned how to leverage database features to enforce the data is always valid.
When it comes to associations, you will want to apply composite foreign keys whenever possible. For example, imagine comments belongs to posts (which belong to an organization) and also to user (which belong to an organization). The comments schema migration should be defined like this:
create table(:comments) do
 add :body, :string
 add :org_id, :integer, null: false

 add :post_id,
 references(:posts, with: [org_id: :org_id]),
 null: false

 add :user_id,
 references(:users, with: [org_id: :org_id]),
 null: false

 timestamps()
end
As long as all schemas have an org_id, all operations will be safely contained by the current tenant.
If by any chance you have schemas that are not tied to an org_id, you can even consider keeping them in a separate query prefix or in a separate database altogether, so you keep non-tenant data completely separated from tenant-specific data.

Self-referencing many to many

Ecto.Schema.many_to_many/3 is used to establish the association between two schemas with a join table (or a join schema) tracking the relationship between them. But, what if we want the same table to reference itself? This is commonly used for symmetric relationships and is often referred to as a self-referencing many_to_many association.

 People relationships

Let's imagine we are building a system that supports a model for relationships between people.
defmodule MyApp.Accounts.Person do
 use Ecto.Schema

 alias MyApp.Accounts.Person
 alias MyApp.Relationships.Relationship

 schema "people" do
 field :name, :string

 many_to_many :relationships,
 Person,
 join_through: Relationship,
 join_keys: [person_id: :id, relation_id: :id]

 many_to_many :reverse_relationships,
 Person,
 join_through: Relationship,
 join_keys: [relation_id: :id, person_id: :id]

 timestamps()
 end
end

defmodule MyApp.Relationships.Relationship do
 use Ecto.Schema

 schema "relationships" do
 field :person_id, :id
 field :relation_id, :id
 timestamps()
 end
end
In our example, we implement an intermediate schema, MyApp.Relationships.Relationship, on our :join_through option and pass in a pair of ids that we will be creating a unique index on in our database migration. By implementing an intermediate schema, we make it easy to add additional attributes and functionality to relationships in the future.
We had to create an additional many_to_many :reverse_relationships call with an inverse of the :join_keys in order to finish the other half of the association. This ensures that both sides of the relationship will get added in the database when either side completes a successful relationship request.
The person who is the inverse of the relationship will have the relationship struct stored in a list under the "reverse_relationships" key. We can then construct queries for both :relationships and :reverse_relationships with the proper :preload:
iex> preloads = [:relationships, :reverse_relationships]
iex> people = Repo.all from p in Person, preload: preloads
[
 MyApp.Accounts.Person<
 ...
 relationships: [
 MyApp.Accounts.Person<
 id: ...,
 ...
 >
]
 >,
 MyApp.Accounts.Person<
 ...
 reverse_relationships: [
 MyApp.Accounts.Person<
 id: ...,
 ...
 >
]
 >
]
In the example query above, we are assuming that we have two "people" that have entered into a relationship. Our query illustrates how one person is added on the :relationships side and the other on the :reverse_relationships side.
It is also worth noticing that we are implementing separate parent modules for both our Person and Relationship modules. This separation of concerns helps improve code organization and maintainability by allowing us to isolate core functions for relationships in the MyApp.Relationships context and vice-versa.
Let's take a look at our Ecto migration:
def change do
 create table(:relationships) do
 add :person_id, references(:people)
 add :relation_id, references(:people)
 timestamps()
 end

 create index(:relationships, [:person_id])
 create index(:relationships, [:relation_id])

 create unique_index(
 :relationships,
 [:person_id, :relation_id],
 name: :relationships_person_id_relation_id_index
)
end
We create indexes on both the :person_id and :relation_id for quicker access in the future. Then, we create one unique index on the :relationships to ensure that people cannot have duplicate relationships. Lastly, we pass a name to the :name option to help clarify the unique constraint when working with our changeset.
In MyApp.Relationships.Relationship
@attrs [:person_id, :relation_id]

def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, @attrs)
 |> Ecto.Changeset.unique_constraint(
 [:person_id, :relation_id],
 name: :relationships_person_id_relation_id_index
)
end
Due to the self-referential nature, we will only need to cast the :join_keys in order for Ecto to correctly associate the two records in the database. When considering production applications, we will most likely want to add additional attributes and validations. This is where our isolation of modules will help us maintain and organize the increasing complexity.

 Summary

In this guide we used many_to_many associations to implement a self-referencing symmetric relationship.
Our goal was to allow "people" to associate to different "people". Further, we wanted to lay a strong foundation for code organization and maintainability into the future. We have done this by creating intermediate tables, two separate functional core modules, a clear naming strategy, an inverse association, and by using many_to_many :join_keys to automatically manage those join tables.
Overall, our code contains a small structural modification, when compared with a typical many_to_many, in order to implement an inverse join between our self-referenced table and schema.
Where we go from here will depend greatly on the specific needs of our application. If we remember to adhere to our clear naming strategy with a strong separation of concerns, we will go a long way in keeping our self-referencing many_to_many association organized and easier to maintain.

Polymorphic associations with many to many

Besides belongs_to, has_many, has_one and :through associations, Ecto also includes many_to_many. many_to_many relationships, as the name says, allows a record from table X to have many associated entries from table Y and vice-versa. Although many_to_many associations can be written as has_many :through, using many_to_many may considerably simplify some workflows.
In this guide, we will talk about polymorphic associations and how many_to_many can remove boilerplate from certain approaches compared to has_many :through.

 Todo lists v65131

The internet has seen its share of todo list applications. But that won't stop us from creating our own!
In our case, there is one aspect of todo list applications we are interested in, which is the relationship where the todo list has many todo items. This exact scenario is explored in detail in a post about nested associations and embeds from Dashbit's blog. Let's recap the important points.
Our todo list app has two schemas, Todo.List and Todo.Item:
defmodule MyApp.TodoList do
 use Ecto.Schema

 schema "todo_lists" do
 field :title
 has_many :todo_items, MyApp.TodoItem
 timestamps()
 end
end

defmodule MyApp.TodoItem do
 use Ecto.Schema

 schema "todo_items" do
 field :description
 timestamps()
 end
end
One of the ways to introduce a todo list with multiple items into the database is to couple our UI representation to our schemas. That's the approach we took in the blog post with Phoenix. Roughly:
<%= form_for @todo_list_changeset,
 todo_list_path(@conn, :create),
 fn f -> %>
 <%= text_input f, :title %>
 <%= inputs_for f, :todo_items, fn i -> %>
 ...
 <% end %>
<% end %>
When such a form is submitted in Phoenix, it will send parameters with the following shape:
%{
 "todo_list" => %{
 "title" => "shopping list",
 "todo_items" => %{
 0 => %{"description" => "bread"},
 1 => %{"description" => "eggs"}
 }
 }
}
We could then retrieve those parameters and pass it to an Ecto changeset and Ecto would automatically figure out what to do:
In MyApp.TodoList
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title])
 |> Ecto.Changeset.cast_assoc(:todo_items, required: true)
end

And then in MyApp.TodoItem
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:description])
end
By calling Ecto.Changeset.cast_assoc/3, Ecto will look for a "todo_items" key inside the parameters given on cast, and compare those parameters with the items stored in the todo list struct. Ecto will automatically generate instructions to insert, update or delete todo items such that:
	if a todo item sent as parameter has an ID and it matches an existing associated todo item, we consider that todo item should be updated
	if a todo item sent as parameter does not have an ID (nor a matching ID), we consider that todo item should be inserted
	if a todo item is currently associated but its ID was not sent as parameter, we consider the todo item is being replaced and we act according to the :on_replace callback. By default :on_replace will raise so you choose a behaviour between replacing, deleting, ignoring or nilifying the association

The advantage of using cast_assoc/3 is that Ecto is able to do all of the hard work of keeping the entries associated, as long as we pass the data exactly in the format that Ecto expects. However, such approach is not always preferable and in many situations it is better to design our associations differently or decouple our UIs from our database representation.

 Polymorphic todo items

To show an example of where using cast_assoc/3 is just too complicated to be worth it, let's imagine you want your "todo items" to be polymorphic. For example, you want to be able to add todo items not only to "todo lists" but to many other parts of your application, such as projects, milestones, you name it.
First of all, it is important to remember Ecto does not provide the same type of polymorphic associations available in frameworks such as Rails and Laravel. In such frameworks, a polymorphic association uses two columns, the parent_id and parent_type. For example, one todo item would have parent_id of 1 with parent_type of "TodoList" while another would have parent_id of 1 with parent_type of "Project".
The issue with the design above is that it breaks database references. The database is no longer capable of guaranteeing the item you associate to exists or will continue to exist in the future. This leads to an inconsistent database which end-up pushing workarounds to your application.
The design above is also extremely inefficient, especially if you're working with large tables. Bear in mind that if that's your case, you might be forced to remove such polymorphic references in the future when frequent polymorphic queries start grinding the database to a halt even after adding indexes and optimizing the database.
Luckily, the documentation for the Ecto.Schema.belongs_to/3 macro includes a section named "Polymorphic associations" with some examples on how to design sane and performant associations. One of those approaches consists in using several join tables. Besides the "todo_lists" and "projects" tables and the "todo_items" table, we would create "todo_list_items" and "project_items" to associate todo items to todo lists and todo items to projects respectively. In terms of migrations, we are looking at the following:
create table(:todo_lists) do
 add :title
 timestamps()
end

create table(:projects) do
 add :name
 timestamps()
end

create table(:todo_items) do
 add :description
 timestamps()
end

create table(:todo_list_items) do
 add :todo_item_id, references(:todo_items)
 add :todo_list_id, references(:todo_lists)
 timestamps()
end

create table(:project_items) do
 add :todo_item_id, references(:todo_items)
 add :project_id, references(:projects)
 timestamps()
end
By adding one table per association pair, we keep database references and can efficiently perform queries that relies on indexes.
First let's see how to implement this functionality in Ecto using a has_many :through and then use many_to_many to remove a lot of the boilerplate we were forced to introduce.

 Polymorphism with has_many :through

Given we want our todo items to be polymorphic, we can no longer associate a todo list to todo items directly. Instead we will create an intermediate schema to tie MyApp.TodoList and MyApp.TodoItem together.
defmodule MyApp.TodoList do
 use Ecto.Schema

 schema "todo_lists" do
 field :title
 has_many :todo_list_items, MyApp.TodoListItem
 has_many :todo_items,
 through: [:todo_list_items, :todo_item]
 timestamps()
 end
end

defmodule MyApp.TodoListItem do
 use Ecto.Schema

 schema "todo_list_items" do
 belongs_to :todo_list, MyApp.TodoList
 belongs_to :todo_item, MyApp.TodoItem
 timestamps()
 end
end

defmodule MyApp.TodoItem do
 use Ecto.Schema

 schema "todo_items" do
 field :description
 timestamps()
 end
end
Although we introduced MyApp.TodoListItem as an intermediate schema, has_many :through allows us to access all todo items for any todo list transparently:
todo_lists |> Repo.preload(:todo_items)
The trouble is that :through associations are read-only since Ecto does not have enough information to fill in the intermediate schema. This means that, if we still want to use cast_assoc to insert a todo list with many todo items directly from the UI, we cannot use the :through association and instead must go step by step. We would need to first cast_assoc(:todo_list_items) from TodoList and then call cast_assoc(:todo_item) from the TodoListItem schema:
In MyApp.TodoList
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title])
 |> Ecto.Changeset.cast_assoc(
 :todo_list_items,
 required: true
)
end

And then in the MyApp.TodoListItem
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast_assoc(:todo_item, required: true)
end

And then in MyApp.TodoItem
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:description])
end
To further complicate things, remember cast_assoc expects a particular shape of data that reflects your associations. In this case, because of the intermediate schema, the data sent through your forms in Phoenix would have to look as follows:
%{"todo_list" => %{
 "title" => "shipping list",
 "todo_list_items" => %{
 0 => %{"todo_item" => %{"description" => "bread"}},
 1 => %{"todo_item" => %{"description" => "eggs"}},
 }
}}
To make matters worse, you would have to duplicate this logic for every intermediate schema, and introduce MyApp.TodoListItem for todo lists, MyApp.ProjectItem for projects, etc.
Luckily, many_to_many allows us to remove all of this boilerplate.

 Polymorphism with many_to_many

In a way, the idea behind many_to_many associations is that it allows us to associate two schemas via an intermediate schema while automatically taking care of all details about the intermediate schema. Let's rewrite the schemas above to use many_to_many:
defmodule MyApp.TodoList do
 use Ecto.Schema

 schema "todo_lists" do
 field :title
 many_to_many :todo_items, MyApp.TodoItem,
 join_through: MyApp.TodoListItem
 timestamps()
 end
end

defmodule MyApp.TodoListItem do
 use Ecto.Schema

 schema "todo_list_items" do
 belongs_to :todo_list, MyApp.TodoList
 belongs_to :todo_item, MyApp.TodoItem
 timestamps()
 end
end

defmodule MyApp.TodoItem do
 use Ecto.Schema

 schema "todo_items" do
 field :description
 timestamps()
 end
end
Notice MyApp.TodoList no longer needs to define a has_many association pointing to the MyApp.TodoListItem schema and instead we can just associate to :todo_items using many_to_many.
Differently from has_many :through, many_to_many associations are also writable. This means we can send data through our forms exactly as we did at the beginning of this guide:
%{"todo_list" => %{
 "title" => "shipping list",
 "todo_items" => %{
 0 => %{"description" => "bread"},
 1 => %{"description" => "eggs"},
 }
}}
And we no longer need to define a changeset function in the intermediate schema:
In MyApp.TodoList
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title])
 |> Ecto.Changeset.cast_assoc(:todo_items, required: true)
end

And then in MyApp.TodoItem
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:description])
end
In other words, we can use exactly the same code we had in the "todo lists has_many todo items" case. So even when external constraints require us to use a join table, many_to_many associations can automatically manage them for us. Everything you know about associations will just work with many_to_many associations as well.
Finally, even though we have specified a schema as the :join_through option in many_to_many, many_to_many can also work without intermediate schemas altogether by simply giving it a table name:
defmodule MyApp.TodoList do
 use Ecto.Schema

 schema "todo_lists" do
 field :title
 many_to_many :todo_items, MyApp.TodoItem,
 join_through: "todo_list_items"
 timestamps()
 end
end
In this case, you can completely remove the MyApp.TodoListItem schema from your application and the code above will still work. The only difference is that when using tables, any autogenerated value that is filled by Ecto schema, such as timestamps, won't be filled as we no longer have a schema. To solve this, you can either drop those fields from your migrations or set a default at the database level.

 Summary

In this guide we used many_to_many associations to drastically improve a polymorphic association design that relied on has_many :through. Our goal was to allow "todo_items" to associate to different entities in our code base, such as "todo_lists" and "projects". We have done this by creating intermediate tables and by using many_to_many associations to automatically manage those join tables.
At the end, our schemas may look like:
defmodule MyApp.TodoList do
 use Ecto.Schema

 schema "todo_lists" do
 field :title
 many_to_many :todo_items, MyApp.TodoItem,
 join_through: "todo_list_items"
 timestamps()
 end

 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title])
 |> Ecto.Changeset.cast_assoc(
 :todo_items,
 required: true
)
 end
end

defmodule MyApp.Project do
 use Ecto.Schema

 schema "projects" do
 field :name
 many_to_many :todo_items, MyApp.TodoItem,
 join_through: "project_items"
 timestamps()
 end

 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:name])
 |> Ecto.Changeset.cast_assoc(
 :todo_items,
 required: true
)
 end
end

defmodule MyApp.TodoItem do
 use Ecto.Schema

 schema "todo_items" do
 field :description
 timestamps()
 end

 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:description])
 end
end
And the database migration:
create table("todo_lists") do
 add :title
 timestamps()
end

create table("projects") do
 add :name
 timestamps()
end

create table("todo_items") do
 add :description
 timestamps()
end

Primary key and timestamps are not required if
using many_to_many without schemas
create table("todo_list_items", primary_key: false) do
 add :todo_item_id, references(:todo_items)
 add :todo_list_id, references(:todo_lists)
 # timestamps()
end

Primary key and timestamps are not required if
using many_to_many without schemas
create table("project_items", primary_key: false) do
 add :todo_item_id, references(:todo_items)
 add :project_id, references(:projects)
 # timestamps()
end
Overall our code looks structurally the same as has_many would, although at the database level our relationships are expressed with join tables.
While in this guide we changed our code to cope with the parameter format required by cast_assoc, in Constraints and Upserts we drop cast_assoc altogether and use put_assoc which brings more flexibilities when working with associations.

Replicas and dynamic repositories

When applications reach a certain scale, a single database may not be enough to sustain the required throughput. In such scenarios, it is very common to introduce read replicas: all write operations are sent to the primary database and most of the read operations are performed against the replicas. The credentials of the primary and replica databases are typically known upfront by the time the code is compiled.
In other cases, you may need a single Ecto repository to interact with different database instances which are not known upfront. For instance, you may need to communicate with hundreds of databases very sporadically, so instead of opening up a connection to each of those hundreds of databases when your application starts, you want to quickly start a connection, perform some queries, and then shut down, while still leveraging Ecto's APIs as a whole.
This guide will cover how to tackle both approaches.

 Primary and Replicas

Since the credentials of the primary and replicas databases are known upfront, adding support for primary and replica databases in your Ecto application is relatively straightforward. Imagine you have a MyApp.Repo and you want to add four read replicas. This could be done in three steps.
First, define the primary and replicas repositories in lib/my_app/repo.ex:
defmodule MyApp.Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres

 @replicas [
 MyApp.Repo.Replica1,
 MyApp.Repo.Replica2,
 MyApp.Repo.Replica3,
 MyApp.Repo.Replica4
]

 def replica do
 Enum.random(@replicas)
 end

 for repo <- @replicas do
 defmodule repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres,
 read_only: true
 end
 end
end
The code above defines a regular MyApp.Repo and four replicas, called MyApp.Repo.Replica1 up to MyApp.Repo.Replica4. We pass the :read_only option to the replica repositories, so operations such as insert, update and friends are not made accessible. We also define a function called replica with the purpose of returning a random replica.
Next we need to make sure both primary and replicas are configured properly in your config/config.exs files. In development and test, you can likely use the same database credentials for all repositories, all pointing to the same database address:
replicas = [
 MyApp.Repo,
 MyApp.Repo.Replica1,
 MyApp.Repo.Replica2,
 MyApp.Repo.Replica3,
 MyApp.Repo.Replica4
]

for repo <- replicas do
 config :my_app, repo,
 username: "postgres",
 password: "postgres",
 database: "my_app_prod",
 hostname: "localhost",
 pool_size: 10
end
In production, you want each database to connect to a different hostname:
repos = %{
 MyApp.Repo => "prod-primary",
 MyApp.Repo.Replica1 => "prod-replica-1",
 MyApp.Repo.Replica2 => "prod-replica-2",
 MyApp.Repo.Replica3 => "prod-replica-3",
 MyApp.Repo.Replica4 => "prod-replica-4"
}

for {repo, hostname} <- repos do
 config :my_app, repo,
 username: "postgres",
 password: "postgres",
 database: "my_app_prod",
 hostname: hostname,
 pool_size: 10
end
Finally, make sure to start all repositories in your supervision tree:
children = [
 MyApp.Repo,
 MyApp.Repo.Replica1,
 MyApp.Repo.Replica2,
 MyApp.Repo.Replica3,
 MyApp.Repo.Replica4
]
Now that all repositories are configured, we can safely use them in your application code. Every time you are performing a read operation, you can call the replica/0 function that we have added to return a random replica we will send the query to:
MyApp.Repo.replica().all(query)
And now you are ready to work with primary and replicas, no hacks or complex dependencies required!

 Testing replicas

While all of the work we have done so far should fully work in development and production, it may not be enough for tests. Most developers testing Ecto applications are using a sandbox, such as the Ecto SQL Sandbox.
When using a sandbox, each of your tests run in an isolated and independent transaction. Once the test is done, the transaction is rolled back. Which means we can trivially revert all of the changes done in a test in a very performant way.
Unfortunately, even if you configure your primary and replicas to have the same credentials and point to the same hostname, each Ecto repository will open up their own pool of database connections. This means that, once you move to a primary + replicas setup, a simple test like this one won't pass:
user = Repo.insert!(%User{name: "jane doe"})
assert Repo.replica().get!(User, user.id)
That's because Repo.insert! will write to one database connection and the repository returned by Repo.replica() will perform the read in another connection. Since the write is done in a transaction, its contents won't be available to other connections until the transaction commits, which will never happen for test connections.
There are two options to tackle this problem: one is to change replicas and the other is to use dynamic repos.

 A custom replica definition

One simple solution to the problem above is to use a custom replica implementation during tests that always return the primary repository, like this:
if Mix.env() == :test do
 def replica, do: __MODULE__
else
 def replica, do: Enum.random(@replicas)
end
Now during tests, the replica will always return the repository primary repository itself. While this approach works fine, it has the downside that, if you accidentally invoke a write function in a replica, the test will pass, since the replica function is returning the primary repo, while the code will fail in production.

 Using :default_dynamic_repo

Another approach to testing is to set the :default_dynamic_repo option when defining the repository. Let's see what we mean by that.
When you list a repository in your supervision tree, such as MyApp.Repo, behind the scenes it will start a supervision tree with a process named MyApp.Repo. By default, the process has the same name as the repository module itself. Now every time you invoke a function in MyApp.Repo, such as MyApp.Repo.insert/2, Ecto will use the connection pool from the process named MyApp.Repo.
From v3.0, Ecto has the ability to start multiple processes from the same repository. The only requirement is that they must have different process names, like this:
children = [
 MyApp.Repo,
 {MyApp.Repo, name: :another_instance_of_repo}
]
While the particular example doesn't make much sense (we will cover an actual use case for this feature next), the idea is that now you have two repositories running: one is named MyApp.Repo and the other one is named :another_instance_of_repo. Each of those processes have their own connection pool. You can tell Ecto which process you want to use in your repo operations by calling:
MyApp.Repo.put_dynamic_repo(MyApp.Repo)
MyApp.Repo.put_dynamic_repo(:another_instance_of_repo)
Once you call MyApp.Repo.put_dynamic_repo(name), all invocations made on MyApp.Repo will use the connection pool denoted by name.
How can this help with our replica tests? If we look back to the supervision tree we defined earlier in this guide, you will find this:
children = [
 MyApp.Repo,
 MyApp.Repo.Replica1,
 MyApp.Repo.Replica2,
 MyApp.Repo.Replica3,
 MyApp.Repo.Replica4
]
We are starting five different repositories and five different connection pools. Since we want the replica repositories to use the MyApp.Repo, we can achieve this by doing the following on the setup of each test:
@replicas [
 MyApp.Repo.Replica1,
 MyApp.Repo.Replica2,
 MyApp.Repo.Replica3,
 MyApp.Repo.Replica4
]

setup do
 for replica <- @replicas do
 replica.put_dynamic_repo(MyApp.Repo)
 end

 :ok
end
Note put_dynamic_repo is per process. So every time you spawn a new process, the dynamic_repo value will reset to its default until you call put_dynamic_repo again.
Luckily, there is even a better way! We can pass a :default_dynamic_repo option when we define the repository. In this case, we want to set the :default_dynamic_repo to MyApp.Repo only during the test environment. In your lib/my_app/repo.ex, do this:
 for repo <- @replicas do
 default_dynamic_repo =
 if Mix.env() == :test do
 MyApp.Repo
 else
 repo
 end

 defmodule repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres,
 read_only: true,
 default_dynamic_repo: default_dynamic_repo
 end
 end
And now your tests should work as before, while still being able to detect if you accidentally perform a write operation in a replica.

 Dynamic repositories

At this point, we have learned that Ecto allows you to start multiple connections based on the same repository. This is typically useful when you have to connect multiple databases or perform short-lived database connections.
For example, you can start a repository with a given set of credentials dynamically, like this:
MyApp.Repo.start_link(
 name: :some_client,
 hostname: "client.example.com",
 username: "...",
 password: "...",
 pool_size: 1
)
In other words, start_link accepts the same options as the database configuration. Now let's do a query on the dynamically started repository. If you attempt to simply perform MyApp.Repo.all(Post), it may fail, as by default it will try to use a process named MyApp.Repo, which may or may not be running. So don't forget to call put_dynamic_repo/1 before:
MyApp.Repo.put_dynamic_repo(:some_client)
MyApp.Repo.all(Post)
Ecto also allows you to start a repository with no name (just like that famous horse). In such cases, you need to explicitly pass name: nil and match on the result of MyApp.Repo.start_link/1 to retrieve the PID, which should be given to put_dynamic_repo. Let's also use this opportunity and perform proper database clean-up, by shutting up the new repository and reverting the value of put_dynamic_repo:
default_dynamic_repo = MyApp.Repo.get_dynamic_repo()

{:ok, repo} =
 MyApp.Repo.start_link(
 name: nil,
 hostname: "client.example.com",
 username: "...",
 password: "...",
 pool_size: 1
)

try do
 MyApp.Repo.put_dynamic_repo(repo)
 MyApp.Repo.all(Post)
after
 MyApp.Repo.put_dynamic_repo(default_dynamic_repo)
 Supervisor.stop(repo)
end
We can encapsulate all of this in a function too, which you could define in your repository:
defmodule MyApp.Repo do
 use Ecto.Repo, ...

 def with_dynamic_repo(credentials, callback) do
 default_dynamic_repo = get_dynamic_repo()
 start_opts = [name: nil, pool_size: 1] ++ credentials
 {:ok, repo} = MyApp.Repo.start_link(start_opts)

 try do
 MyApp.Repo.put_dynamic_repo(repo)
 callback.()
 after
 MyApp.Repo.put_dynamic_repo(default_dynamic_repo)
 Supervisor.stop(repo)
 end
 end
end
And now use it as:
credentials = [
 hostname: "client.example.com",
 username: "...",
 password: "..."
]

MyApp.Repo.with_dynamic_repo(credentials, fn ->
 MyApp.Repo.all(Post)
end)
And that's it! Now you can have dynamic connections, all properly encapsulated in a single function and built on top of the dynamic repo API.

Schemaless queries

Most queries in Ecto are written using schemas. For example, to retrieve all posts in a database, one may write:
MyApp.Repo.all(Post)
In the construct above, Ecto knows all fields and their types in the schema, rewriting the query above to:
query =
 from p in Post,
 select: %Post{title: p.title, body: p.body, ...}

MyApp.Repo.all(query)
Although you might use schemas for most of your queries, Ecto also adds the ability to write regular schemaless queries when preferred.
One example is this ability to select all desired fields without duplication:
from "posts", select: [:title, :body]
When a list of fields is given, Ecto will automatically convert the list of fields to a map or a struct.
Support for passing a list of fields or keyword lists is available to almost all query constructs. For example, we can use an update query to change the title of a given post without a schema:
def update_title(post, new_title) do
 query =
 from "posts",
 where: [id: ^post.id],
 update: [set: [title: ^new_title]]

 MyApp.Repo.update_all(query, [])
end
The Ecto.Query.update/3 construct supports four commands:
	:set - sets the given column to the given values
	:inc - increments the given column by the given value
	:push - pushes (appends) the given value to the end of an array column
	:pull - pulls (removes) the given value from an array column

For example, we can increment a column atomically by using the :inc command, with or without schemas:
def increment_page_views(post) do
 query =
 from "posts",
 where: [id: ^post.id],
 update: [inc: [page_views: 1]]

 MyApp.Repo.update_all(query, [])
end
Let's take a look at another example. Imagine you are writing a reporting view, it may be counter-productive to think how your existing application schemas relate to the report being generated. It is often simpler to write a query that returns only the data you need, without trying to fit the data into existing schemas:
import Ecto.Query

def running_activities(start_at, end_at) do
 query =
 from u in "users",
 join: a in "activities",
 on: a.user_id == u.id,
 where:
 a.start_at > type(^start_at, :naive_datetime) and
 a.end_at < type(^end_at, :naive_datetime),
 group_by: a.user_id,
 select: %{
 user_id: a.user_id,
 interval: a.end_at - a.start_at,
 count: count(u.id)
 }

 MyApp.Repo.all(query)
end
The function above does not rely on schemas. It returns only the data that matters for building the report. Notice how we use the type/2 function to specify what is the expected type of the argument we are interpolating, benefiting from the same type casting guarantees a schema would give.
By allowing regular data structures to be given to most query operations, Ecto makes queries with and without schemas more accessible. Not only that, it also enables developers to write dynamic queries, where fields, filters, ordering cannot be specified upfront.

 insert_all, update_all and delete_all

Ecto allows all database operations to be expressed without a schema. One of the functions provided is Ecto.Repo.insert_all/3. With insert_all, developers can insert multiple entries at once into a repository using the source and a list of fields and values to be passed directly to the adapter:
MyApp.Repo.insert_all(
 "posts",
 [
 [title: "hello", body: "world"],
 [title: "another", body: "post"]
]
)
Updates and deletes can also be done without schemas via Ecto.Repo.update_all/3 and Ecto.Repo.delete_all/2 respectively:
Use the ID to trigger updates
post = from p in "posts", where: [id: ^id]

Update the title for all matching posts
{1, _} =
 MyApp.Repo.update_all post, set: [title: "new title"]

Delete all matching posts
{1, _} =
 MyApp.Repo.delete_all post
It is not hard to see how these operations directly map to their SQL variants, keeping the database at your fingertips without the need to intermediate all operations through schemas.

Test factories

Many projects depend on external libraries to build their test data. Some of those libraries are called factories because they provide convenience functions for producing different groups of data. However, given Ecto is able to manage complex data trees, we can implement such functionality without relying on third-party projects.
To get started, let's create a file at "test/support/factory.ex" with the following contents:
defmodule MyApp.Factory do
 alias MyApp.Repo

 # Factories

 def build(:post) do
 %MyApp.Post{title: "hello world"}
 end

 def build(:comment) do
 %MyApp.Comment{body: "good post"}
 end

 def build(:post_with_comments) do
 %MyApp.Post{
 title: "hello with comments",
 comments: [
 build(:comment, body: "first"),
 build(:comment, body: "second")
]
 }
 end

 def build(:user) do
 %MyApp.User{
 email: "hello#{System.unique_integer()}",
 username: "hello#{System.unique_integer()}"
 }
 end

 # Convenience API

 def build(factory_name, attributes) do
 factory_name |> build() |> struct!(attributes)
 end

 def insert!(factory_name, attributes \\ []) do
 factory_name |> build(attributes) |> Repo.insert!()
 end
end
Our factory module defines four "factories" as different clauses to the build function: :post, :comment, :post_with_comments and :user. Each clause defines structs with the fields that are required by the database. In certain cases, the generated struct also needs to generate unique fields, such as the user's email and username. We did so by calling Elixir's System.unique_integer() - you could call System.unique_integer([:positive]) if you need a strictly positive number.
At the end, we defined two functions, build/2 and insert!/2, which are conveniences for building structs with specific attributes and for inserting data directly in the repository respectively.
That's literally all that is necessary for building our factories. We are now ready to use them in our tests. First, open up your "mix.exs" and make sure the "test/support/factory.ex" file is compiled:
def project do
 [...,
 elixirc_paths: elixirc_paths(Mix.env),
 ...]
end

defp elixirc_paths(:test), do: ["lib", "test/support"]
defp elixirc_paths(_), do: ["lib"]
Now in any of the tests that need to generate data, we can import the MyApp.Factory module and use its functions:
import MyApp.Factory

build(:post)
#=> %MyApp.Post{id: nil, title: "hello world", ...}

build(:post, title: "custom title")
#=> %MyApp.Post{id: nil, title: "custom title", ...}

insert!(:post, title: "custom title")
#=> %MyApp.Post{id: ..., title: "custom title"}
By building the functionality we need on top of Ecto capabilities, we are able to extend and improve our factories on whatever way we desire, without being constrained to third-party limitations.

Ecto

Ecto is split into 4 main components:
	Ecto.Repo - repositories are wrappers around the data store.
Via the repository, we can create, update, destroy and query
existing entries. A repository needs an adapter and credentials
to communicate to the database

	Ecto.Schema - schemas are used to map external data into Elixir
structs. We often use them to map database tables to Elixir data but
they have many other use cases

	Ecto.Query - written in Elixir syntax, queries are used to retrieve
information from a given repository. Ecto queries are secure and composable

	Ecto.Changeset - changesets provide a way to track and validate changes
before they are applied to the data

In summary:
	Ecto.Repo - where the data is
	Ecto.Schema - what the data is
	Ecto.Query - how to read the data
	Ecto.Changeset - how to change the data

Besides the four components above, most developers use Ecto to interact
with SQL databases, such as PostgreSQL and MySQL via the
ecto_sql project. ecto_sql provides many
conveniences for working with SQL databases as well as the ability to version
how your database changes through time via
database migrations.
If you want to quickly check a sample application using Ecto, please check
the getting started guide and
the accompanying sample application. Ecto's README
also links to other resources.
In the following sections, we will provide an overview of those components and
how they interact with each other. Feel free to access their respective module
documentation for more specific examples, options and configuration.

 Repositories

Ecto.Repo is a wrapper around the database. We can define a
repository as follows:
defmodule Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres
end
Where the configuration for the Repo must be in your application
environment, usually defined in your config/config.exs:
config :my_app, Repo,
 database: "ecto_simple",
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 # OR use a URL to connect instead
 url: "postgres://postgres:postgres@localhost/ecto_simple"
Each repository in Ecto defines a start_link/0 function that needs to be invoked
before using the repository. In general, this function is not called directly,
but is used as part of your application supervision tree.
If your application was generated with a supervisor (by passing --sup to mix new)
you will have a lib/my_app/application.ex file containing the application start
callback that defines and starts your supervisor. You just need to edit the start/2
function to start the repo as a supervisor on your application's supervisor:
def start(_type, _args) do
 children = [
 MyApp.Repo,
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end

 Schema

Schemas allow developers to define the shape of their data.
Let's see an example:
defmodule Weather do
 use Ecto.Schema

 # weather is the DB table
 schema "weather" do
 field :city, :string
 field :temp_lo, :integer
 field :temp_hi, :integer
 field :prcp, :float, default: 0.0
 end
end
By defining a schema, Ecto automatically defines a struct with
the schema fields:
iex> weather = %Weather{temp_lo: 30}
iex> weather.temp_lo
30
The schema also allows us to interact with a repository:
iex> weather = %Weather{temp_lo: 0, temp_hi: 23}
iex> Repo.insert!(weather)
%Weather{...}
After persisting weather to the database, it will return a new copy of
%Weather{} with the primary key (the id) set. We can use this value
to read a struct back from the repository:
Get the struct back
iex> weather = Repo.get Weather, 1
%Weather{id: 1, ...}

Delete it
iex> Repo.delete!(weather)
%Weather{...}
NOTE: by using Ecto.Schema, an :id field with type :id (:id means :integer) is
generated by default, which is the primary key of the schema. If you want
to use a different primary key, you can declare custom @primary_key
before the schema/2 call. Consult the Ecto.Schema documentation
for more information.

Notice how the storage (repository) and the data are decoupled. This provides
two main benefits:
	By having structs as data, we guarantee they are light-weight,
serializable structures. In many languages, the data is often represented
by large, complex objects, with entwined state transactions, which makes
serialization, maintenance and understanding hard;

	You do not need to define schemas in order to interact with repositories,
operations like all, insert_all and so on allow developers to directly
access and modify the data, keeping the database at your fingertips when
necessary;

 Changesets

Although in the example above we have directly inserted and deleted the
struct in the repository, operations on top of schemas are done through
changesets so Ecto can efficiently track changes.
Changesets allow developers to filter, cast, and validate changes before
we apply them to the data. Imagine the given schema:
defmodule User do
 use Ecto.Schema

 import Ecto.Changeset

 schema "users" do
 field :name
 field :email
 field :age, :integer
 end

 def changeset(user, params \\ %{}) do
 user
 |> cast(params, [:name, :email, :age])
 |> validate_required([:name, :email])
 |> validate_format(:email, ~r/@/)
 |> validate_inclusion(:age, 18..100)
 end
end
The changeset/2 function first invokes Ecto.Changeset.cast/4 with
the struct, the parameters and a list of allowed fields; this returns a changeset.
The parameters is a map with binary keys and values that will be cast based
on the type defined by the schema.
Any parameter that was not explicitly listed in the fields list will be ignored.
After casting, the changeset is given to many Ecto.Changeset.validate_*
functions that validate only the changed fields. In other words:
if a field was not given as a parameter, it won't be validated at all.
For example, if the params map contain only the "name" and "email" keys,
the "age" validation won't run.
Once a changeset is built, it can be given to functions like insert and
update in the repository that will return an :ok or :error tuple:
case Repo.update(changeset) do
 {:ok, user} ->
 # user updated
 {:error, changeset} ->
 # an error occurred
end
The benefit of having explicit changesets is that we can easily provide
different changesets for different use cases. For example, one
could easily provide specific changesets for registering and updating
users:
def registration_changeset(user, params) do
 # Changeset on create
end

def update_changeset(user, params) do
 # Changeset on update
end
Changesets are also capable of transforming database constraints,
like unique indexes and foreign key checks, into errors. Allowing
developers to keep their database consistent while still providing
proper feedback to end users. Check Ecto.Changeset.unique_constraint/3
for some examples as well as the other _constraint functions.

 Query

Last but not least, Ecto allows you to write queries in Elixir and send
them to the repository, which translates them to the underlying database.
Let's see an example:
import Ecto.Query, only: [from: 2]

query = from u in User,
 where: u.age > 18 or is_nil(u.email),
 select: u

Returns %User{} structs matching the query
Repo.all(query)
In the example above we relied on our schema but queries can also be
made directly against a table by giving the table name as a string. In
such cases, the data to be fetched must be explicitly outlined:
query = from u in "users",
 where: u.age > 18 or is_nil(u.email),
 select: %{name: u.name, age: u.age}

Returns maps as defined in select
Repo.all(query)
Queries are defined and extended with the from macro. The supported
keywords are:
	:distinct
	:where
	:order_by
	:offset
	:limit
	:lock
	:group_by
	:having
	:join
	:select
	:preload

Examples and detailed documentation for each of those are available
in the Ecto.Query module. Functions supported in queries are listed
in Ecto.Query.API.
When writing a query, you are inside Ecto's query syntax. In order to
access params values or invoke Elixir functions, you need to use the ^
operator, which is overloaded by Ecto:
def min_age(min) do
 from u in User, where: u.age > ^min
end
Besides Repo.all/1 which returns all entries, repositories also
provide Repo.one/1 which returns one entry or nil, Repo.one!/1
which returns one entry or raises, Repo.get/2 which fetches
entries for a particular ID and more.
Finally, if you need an escape hatch, Ecto provides fragments
(see Ecto.Query.API.fragment/1) to inject SQL (and non-SQL)
fragments into queries. Also, most adapters provide direct
APIs for queries, like Ecto.Adapters.SQL.query/4, allowing
developers to completely bypass Ecto queries.

 Other topics

 Associations

Ecto supports defining associations on schemas:
defmodule Post do
 use Ecto.Schema

 schema "posts" do
 has_many :comments, Comment
 end
end

defmodule Comment do
 use Ecto.Schema

 schema "comments" do
 field :title, :string
 belongs_to :post, Post
 end
end
When an association is defined, Ecto also defines a field in the schema
with the association name. By default, associations are not loaded into
this field:
iex> post = Repo.get(Post, 42)
iex> post.comments
#Ecto.Association.NotLoaded<...>
However, developers can use the preload functionality in queries to
automatically pre-populate the field:
Repo.all from p in Post, preload: [:comments]
Preloading can also be done with a pre-defined join value:
Repo.all from p in Post,
 join: c in assoc(p, :comments),
 where: c.votes > p.votes,
 preload: [comments: c]
Finally, for the simple cases, preloading can also be done after
a collection was fetched:
posts = Repo.all(Post) |> Repo.preload(:comments)
The Ecto module also provides conveniences for working
with associations. For example, Ecto.assoc/3 returns a query
with all associated data to a given struct:
import Ecto

Get all comments for the given post
Repo.all assoc(post, :comments)

Or build a query on top of the associated comments
query = from c in assoc(post, :comments), where: not is_nil(c.title)
Repo.all(query)
Another function in Ecto is build_assoc/3, which allows
someone to build an associated struct with the proper fields:
Repo.transaction fn ->
 post = Repo.insert!(%Post{title: "Hello", body: "world"})

 # Build a comment from post
 comment = Ecto.build_assoc(post, :comments, body: "Excellent!")

 Repo.insert!(comment)
end
In the example above, Ecto.build_assoc/3 is equivalent to:
%Comment{post_id: post.id, body: "Excellent!"}
You can find more information about defining associations and each
respective association module in Ecto.Schema docs.
NOTE: Ecto does not lazy load associations. While lazily loading
associations may sound convenient at first, in the long run it
becomes a source of confusion and performance issues.

 Embeds

Ecto also supports embeds. While associations keep parent and child
entries in different tables, embeds stores the child along side the
parent.
Databases like MongoDB have native support for embeds. Databases
like PostgreSQL uses a mixture of JSONB (embeds_one/3) and ARRAY
columns to provide this functionality.
Check Ecto.Schema.embeds_one/3 and Ecto.Schema.embeds_many/3
for more information.

 Mix tasks and generators

Ecto provides many tasks to help your workflow as well as code generators.
You can find all available tasks by typing mix help inside a project
with Ecto listed as a dependency.
Ecto generators will automatically open the generated files if you have
ECTO_EDITOR set in your environment variable.
Repo resolution
Ecto requires developers to specify the key :ecto_repos in their
application configuration before using tasks like ecto.create and
ecto.migrate. For example:
config :my_app, :ecto_repos, [MyApp.Repo]

config :my_app, MyApp.Repo,
 database: "ecto_simple",
 username: "postgres",
 password: "postgres",
 hostname: "localhost"

 Summary

 Functions

 Ecto.Changeset - Ecto v3.12.5

Ecto.Changeset

Changesets allow filtering, casting, validation and
definition of constraints when manipulating structs.
There is an example of working with changesets in the introductory
documentation in the Ecto module. The functions cast/4 and
change/2 are the usual entry points for creating changesets.
The first one is used to cast and validate external parameters,
such as parameters sent through a form, API, command line, etc.
The second one is used to change data directly from your application.
The remaining functions in this module, such as validations,
constraints, association handling, are about manipulating
changesets.

 External vs internal data

Changesets allow working with two kinds of data:
	internal to the application - for example programmatically generated,
or coming from other subsystems. This use case is primarily covered
by the change/2 and put_change/3 functions.

	external to the application - for example data provided by the user in
a form that needs to be type-converted and properly validated. This
use case is primarily covered by the cast/4 function.

When working with external data, the data is typically provided
as maps with string keys (also known as parameters). On the other hand,
when working with internal data, you typically have maps of atom keys
or structs. This duality allows you to track the nature of your data:
if you have structs or maps with atom keys, it means the data has been
parsed/validated.
If you have external data or you have maps that may have either
string or atom keys, consider using cast/4 to create a changeset.
The changeset will parse and validate these parameters and provide APIs
to safely manipulate and change the data accordingly.

 Validations and constraints

Ecto changesets provide both validations and constraints which
are ultimately turned into errors in case something goes wrong.
The difference between them is that most validations can be
executed without a need to interact with the database and, therefore,
are always executed before attempting to insert or update the entry
in the database. Validations run immediately when a validation function
is called on the data that is contained in the changeset at that time.
Some validations may happen against the database but
they are inherently unsafe. Those validations start with a unsafe_
prefix, such as unsafe_validate_unique/4.
On the other hand, constraints rely on the database and are always safe.
As a consequence, validations are always checked before constraints.
Constraints won't even be checked in case validations failed.
Let's see an example:
defmodule User do
 use Ecto.Schema
 import Ecto.Changeset

 schema "users" do
 field :name
 field :email
 field :age, :integer
 end

 def changeset(user, params \\ %{}) do
 user
 |> cast(params, [:name, :email, :age])
 |> validate_required([:name, :email])
 |> validate_format(:email, ~r/@/)
 |> validate_inclusion(:age, 18..100)
 |> unique_constraint(:email)
 end
end
In the changeset/2 function above, we define three validations.
They check that name and email fields are present in the
changeset, the e-mail is of the specified format, and the age is
between 18 and 100 - as well as a unique constraint in the email
field.
Let's suppose the e-mail is given but the age is invalid. The
changeset would have the following errors:
changeset = User.changeset(%User{}, %{age: 0, email: "mary@example.com"})
{:error, changeset} = Repo.insert(changeset)
changeset.errors #=> [age: {"is invalid", []}, name: {"can't be blank", []}]
In this case, we haven't checked the unique constraint in the
e-mail field because the data did not validate. Let's fix the
age and the name, and assume that the e-mail already exists in the
database:
changeset = User.changeset(%User{}, %{age: 42, name: "Mary", email: "mary@example.com"})
{:error, changeset} = Repo.insert(changeset)
changeset.errors #=> [email: {"has already been taken", []}]
Validations and constraints define an explicit boundary when the check
happens. By moving constraints to the database, we also provide a safe,
correct and data-race free means of checking the user input.

 Deferred constraints

Some databases support deferred constraints, i.e., constraints which are
checked at the end of the transaction rather than at the end of each statement.
Changesets do not support this type of constraints. When working with deferred
constraints, a violation while invoking Ecto.Repo.insert/2 or Ecto.Repo.update/2 won't
return {:error, changeset}, but rather raise an error at the end of the
transaction.

 Empty values

Many times, the data given on cast needs to be further pruned, specially
regarding empty values. For example, if you are gathering data to be
cast from the command line or through an HTML form or any other text-based
format, it is likely those means cannot express nil values. For
those reasons, changesets include the concept of empty values.
When applying changes using cast/4, an empty value will be automatically
converted to the field's default value. If the field is an array type, any
empty value inside the array will be removed. When a plain map is used in
the data portion of a schemaless changeset, every field's default value is
considered to be nil. For example:
iex> data = %{name: "Bob"}
iex> types = %{name: :string}
iex> params = %{name: ""}
iex> changeset = Ecto.Changeset.cast({data, types}, params, Map.keys(types))
iex> changeset.changes
%{name: nil}
Empty values are stored as a list in the changeset's :empty_values field.
The list contains elements of type empty_value/0. Those are either values,
which will be considered empty if they
match, or a function that must return a boolean if the value is empty or
not. By default, Ecto uses Ecto.Changeset.empty_values/0 which will mark
a field as empty if it is a string made only of whitespace characters.
You can also pass the :empty_values option to cast/4 in case you want
to change how a particular cast/4 work.

 Associations, embeds, and on replace

Using changesets you can work with associations as well as with embedded
structs. There are two primary APIs:
	cast_assoc/3 and cast_embed/3 - those functions are used when
working with external data. In particular, they allow you to change
associations and embeds alongside the parent struct, all at once.

	put_assoc/4 and put_embed/4 - it allows you to replace the
association or embed as a whole. This can be used to move associated
data from one entry to another, to completely remove or replace
existing entries.

These functions are opinionated on how it works with associations.
If you need different behaviour or explicit control over the associated
data, you can skip this functionality and use Ecto.Multi to encode how
several database operations will happen on several schemas and changesets
at once.
You can learn more about working with associations in our documentation,
including cheatsheets and practical examples. Check out:
	The docs for cast_assoc/3 and put_assoc/3
	The associations cheatsheet
	The Constraints and Upserts guide
	The Polymorphic associations with many to many guide

 The :on_replace option

When using any of those APIs, you may run into situations where Ecto sees
data is being replaced. For example, imagine a Post has many Comments where
the comments have IDs 1, 2 and 3. If you call cast_assoc/3 passing only
the IDs 1 and 2, Ecto will consider 3 is being "replaced" and it will raise
by default. Such behaviour can be changed when defining the relation by
setting :on_replace option when defining your association/embed according
to the values below:
	:raise (default) - do not allow removing association or embedded
data via parent changesets
	:mark_as_invalid - if attempting to remove the association or
embedded data via parent changeset - an error will be added to the parent
changeset, and it will be marked as invalid
	:nilify - sets owner reference column to nil (available only for
associations). Use this on a belongs_to column to allow the association
to be cleared out so that it can be set to a new value. Will set action
on associated changesets to :replace
	:update - updates the association, available only for has_one, belongs_to
and embeds_one. This option will update all the fields given to the changeset
including the id for the association
	:delete - removes the association or related data from the database.
This option has to be used carefully (see below). Will set action on associated
changesets to :replace
	:delete_if_exists - like :delete except that it ignores any stale entry
error. For instance, if you set on_replace: :delete but the replaced
resource was already deleted by a separate request, it will raise a
Ecto.StaleEntryError. :delete_if_exists makes it so it will only delete
if the entry still exists

The :delete and :delete_if_exists options must be used carefully as they allow
users to delete any associated data by simply setting it to nil or an empty list.
If you need deletion, it is often preferred to add a separate boolean virtual field
in the schema and manually mark the changeset for deletion if the :delete field is
set in the params, as in the example below. Note that we don't call cast/4 in this
case because we don't want to prevent deletion if a change is invalid (changes are
irrelevant if the entity needs to be deleted).
defmodule Comment do
 use Ecto.Schema
 import Ecto.Changeset

 schema "comments" do
 field :body, :string
 field :delete, :boolean, virtual: true
 end

 def changeset(comment, %{"delete" => "true"}) do
 %{Ecto.Changeset.change(comment, delete: true) | action: :delete}
 end

 def changeset(comment, params) do
 cast(comment, params, [:body])
 end
end

 Schemaless changesets

In the changeset examples so far, we have always used changesets to validate
and cast data contained in a struct defined by an Ecto schema, such as the %User{}
struct defined by the User module.
However, changesets can also be used with "regular" structs too by passing a tuple
with the data and its types:
user = %User{}
types = %{name: :string, email: :string, age: :integer}
params = %{name: "Callum", email: "callum@example.com", age: 27}
changeset =
 {user, types}
 |> Ecto.Changeset.cast(params, Map.keys(types))
 |> Ecto.Changeset.validate_required(...)
 |> Ecto.Changeset.validate_length(...)
where the user struct refers to the definition in the following module:
defmodule User do
 defstruct [:name, :email, :age]
end
Changesets can also be used with data in a plain map, by following the same API:
data = %{}
types = %{name: :string, email: :string, age: :integer}
params = %{name: "Callum", email: "callum@example.com", age: 27}
changeset =
 {data, types}
 |> Ecto.Changeset.cast(params, Map.keys(types))
 |> Ecto.Changeset.validate_required(...)
 |> Ecto.Changeset.validate_length(...)
Besides the basic types which are mentioned above, such as :boolean and :string,
parameterized types can also be used in schemaless changesets. They implement
the Ecto.ParameterizedType behaviour and we can create the necessary type info by
calling the init/2 function.
For example, to use Ecto.Enum in a schemaless changeset:
types = %{
 name: :string,
 role: Ecto.ParameterizedType.init(Ecto.Enum, values: [:reader, :editor, :admin])
}

data = %{}
params = %{name: "Callum", role: "reader"}

changeset =
 {data, types}
 |> Ecto.Changeset.cast(params, Map.keys(types))
 |> Ecto.Changeset.validate_required(...)
 |> Ecto.Changeset.validate_length(...)
Schemaless changesets make Ecto extremely useful to cast, validate and prune data even
if it is not meant to be persisted to the database.

 Changeset actions

Changesets have an action field which is usually set by Ecto.Repo
whenever one of the operations such as insert or update is called:
changeset = User.changeset(%User{}, %{age: 42, email: "mary@example.com"})
{:error, changeset} = Repo.insert(changeset)
changeset.action
#=> :insert
This means that when working with changesets that are not meant to be
persisted to the database, such as schemaless changesets, you may need
to explicitly set the action to one specific value. Frameworks such as
Phoenix use the action value to define how HTML forms should
act.
Instead of setting the action manually, you may use apply_action/2 that
emulates operations such as c:Ecto.Repo.insert. apply_action/2 will return
{:ok, changes} if the changeset is valid or {:error, changeset}, with
the given action set in the changeset in case of errors.

 The Ecto.Changeset struct

The public fields are:
	valid? - Stores if the changeset is valid
	data - The changeset source data, for example, a struct
	params - The parameters as given on changeset creation
	changes - The changes from parameters that were approved in casting
	errors - All errors from validations
	required - All required fields as a list of atoms
	action - The action to be performed with the changeset
	types - Cache of the data's field types
	empty_values - A list of values to be considered empty
	repo - The repository applying the changeset (only set after a Repo function is called)
	repo_opts - A keyword list of options given to the underlying repository operation

The following fields are private and must not be accessed directly.
	validations
	constraints
	filters
	prepare

 Redacting fields in inspect

To hide a field's value from the inspect protocol of Ecto.Changeset, mark
the field as redact: true in the schema, and it will display with the
value **redacted**.

 Summary

 Types

 Ecto.Multi - Ecto v3.12.5

Ecto.Multi

Ecto.Multi is a data structure for grouping multiple Repo operations.
Ecto.Multi makes it possible to pack operations that should be
performed in a single database transaction and gives a way to introspect
the queued operations without actually performing them. Each operation
is given a name that is unique and will identify its result in case of
success or failure.
If a multi is valid (i.e. all the changesets in it are valid),
all operations will be executed in the order they were added.
The Ecto.Multi structure should be considered opaque. You can use
%Ecto.Multi{} to pattern match the type, but accessing fields or
directly modifying them is not advised.
Ecto.Multi.to_list/1 returns a canonical representation of the
structure that can be used for introspection.

 Changesets

If multi contains operations that accept changesets (like insert/4,
update/4 or delete/4) they will be checked before starting the
transaction. If any changeset has errors, the transaction won't even
be started and the error will be immediately returned.
Note: insert/4, update/4, insert_or_update/4, and delete/4
variants that accept a function do not perform these checks since
the functions are executed after the transaction has started.

 Run

Multi allows you to run arbitrary functions as part of your transaction
via run/3 and run/5. This is especially useful when an operation
depends on the value of a previous operation. For this reason, the
function given as a callback to run/3 and run/5 will receive the repo
as the first argument, and all changes performed by the multi so far as a
map for the second argument.
The function given to run must return {:ok, value} or {:error, value}
as its result. Returning an error will abort any further operations
and make the whole multi fail.

 Example

Let's look at an example definition and usage. The use case we'll be
looking into is resetting a password. We need to update the account
with proper information, log the request and remove all current sessions:
defmodule PasswordManager do
 alias Ecto.Multi

 def reset(account, params) do
 Multi.new()
 |> Multi.update(:account, Account.password_reset_changeset(account, params))
 |> Multi.insert(:log, Log.password_reset_changeset(account, params))
 |> Multi.delete_all(:sessions, Ecto.assoc(account, :sessions))
 end
end
We can later execute it in the integration layer using Repo:
Repo.transaction(PasswordManager.reset(account, params))
By pattern matching on the result we can differentiate different conditions:
case result do
 {:ok, %{account: account, log: log, sessions: sessions}} ->
 # Operation was successful, we can access results (exactly the same
 # we would get from running corresponding Repo functions) under keys
 # we used for naming the operations.
 {:error, failed_operation, failed_value, changes_so_far} ->
 # One of the operations failed. We can access the operation's failure
 # value (like changeset for operations on changesets) to prepare a
 # proper response. We also get access to the results of any operations
 # that succeeded before the indicated operation failed. However, any
 # successful operations would have been rolled back.
end
We can also easily unit test our transaction without actually running it.
Since changesets can use in-memory-data, we can use an account that is
constructed in memory as well (without persisting it to the database):
test "dry run password reset" do
 account = %Account{password: "letmein"}
 multi = PasswordManager.reset(account, params)

 assert [
 {:account, {:update, account_changeset, []}},
 {:log, {:insert, log_changeset, []}},
 {:sessions, {:delete_all, query, []}}
] = Ecto.Multi.to_list(multi)

 # We can introspect changesets and query to see if everything
 # is as expected, for example:
 assert account_changeset.valid?
 assert log_changeset.valid?
 assert inspect(query) == "#Ecto.Query<from a in Session>"
end
The name of each operation does not have to be an atom. This can be particularly
useful when you wish to update a collection of changesets at once, and track their
errors individually:
accounts = [%Account{id: 1}, %Account{id: 2}]

Enum.reduce(accounts, Multi.new(), fn account, multi ->
 Multi.update(
 multi,
 {:account, account.id},
 Account.password_reset_changeset(account, params)
)
end)

 Summary

 Types

 Ecto.Query - Ecto v3.12.5

Ecto.Query

Provides the Query DSL.
Queries are used to retrieve and manipulate data from a repository
(see Ecto.Repo). Ecto queries come in two flavors: keyword-based
and macro-based. Most examples will use the keyword-based syntax,
the macro one will be explored in later sections.
Let's see a sample query:
Imports only from/2 of Ecto.Query
import Ecto.Query, only: [from: 2]

Create a query
query = from u in "users",
 where: u.age > 18,
 select: u.name

Send the query to the repository
Repo.all(query)
In the example above, we are directly querying the "users" table
from the database. Queries do not reach out to the data store until
they are passed as arguments to a function from Ecto.Repo.

 Query expressions

Ecto allows a limited set of expressions inside queries. In the
query below, for example, we use u.age to access a field, the
> comparison operator and the literal 0:
query = from u in "users", where: u.age > 0, select: u.name
You can find the full list of operations in Ecto.Query.API.
Besides the operations listed there, the following literals are
supported in queries:
	Integers: 1, 2, 3
	Floats: 1.0, 2.0, 3.0
	Booleans: true, false
	Binaries: <<1, 2, 3>>
	Strings: "foo bar", ~s(this is a string)
	Atoms (other than booleans and nil): :foo, :bar
	Arrays: [1, 2, 3], ~w(interpolate words)

All other types and dynamic values must be passed as a parameter using
interpolation as explained below.

 Interpolation and casting

External values and Elixir expressions can be injected into a query
expression with ^:
def with_minimum(age, height_ft) do
 from u in "users",
 where: u.age > ^age and u.height > ^(height_ft * 3.28),
 select: u.name
end

with_minimum(18, 5.0)
When interpolating values, you may want to explicitly tell Ecto
what is the expected type of the value being interpolated:
age = "18"
Repo.all(from u in "users",
 where: u.age > type(^age, :integer),
 select: u.name)
In the example above, Ecto will cast the age to type integer. When
a value cannot be cast, Ecto.Query.CastError is raised.
To avoid the repetition of always specifying the types, you may define
an Ecto.Schema. In such cases, Ecto will analyze your queries and
automatically cast the interpolated "age" when compared to the u.age
field, as long as the age field is defined with type :integer in
your schema:
age = "18"
Repo.all(from u in User, where: u.age > ^age, select: u.name)
Another advantage of using schemas is that we no longer need to specify
the select option in queries, as by default Ecto will retrieve all
fields specified in the schema:
age = "18"
Repo.all(from u in User, where: u.age > ^age)
For this reason, we will use schemas on the remaining examples but
remember Ecto does not require them in order to write queries.

 nil comparison

nil comparison in filters, such as where and having, is forbidden
and it will raise an error:
Raises if age is nil
from u in User, where: u.age == ^age
This is done as a security measure to avoid attacks that attempt
to traverse entries with nil columns. To check that value is nil,
use is_nil/1 instead:
from u in User, where: is_nil(u.age)

 Composition

Ecto queries are composable. For example, the query above can
actually be defined in two parts:
Create a query
query = from u in User, where: u.age > 18

Extend the query
query = from u in query, select: u.name
Composing queries uses the same syntax as creating a query.
The difference is that, instead of passing a schema like User
on the right-hand side of in, we passed the query itself.
Any value can be used on the right-hand side of in as long as it implements
the Ecto.Queryable protocol. For now, we know the protocol is
implemented for both atoms (like User) and strings (like "users").
In any case, regardless if a schema has been given or not, Ecto
queries are always composable thanks to its binding system.

 Positional bindings

On the left-hand side of in we specify the query bindings. This is
done inside from and join clauses. In the query below u is a
binding and u.age is a field access using this binding.
query = from u in User, where: u.age > 18
Bindings are not exposed from the query. When composing queries, you
must specify bindings again for each refinement query. For example,
to further narrow down the above query, we again need to tell Ecto what
bindings to expect:
query = from u in query, select: u.city
Bindings in Ecto are positional, and the names do not have to be
consistent between input and refinement queries. For example, the
query above could also be written as:
query = from q in query, select: q.city
It would make no difference to Ecto. This is important because
it allows developers to compose queries without caring about
the bindings used in the initial query.
When using joins, the bindings should be matched in the order they
are specified:
Create a query
query = from p in Post,
 join: c in Comment, on: c.post_id == p.id

Extend the query
query = from [p, c] in query,
 select: {p.title, c.body}
You are not required to specify all bindings when composing.
For example, if we would like to order the results above by
post insertion date, we could further extend it as:
query = from q in query, order_by: q.inserted_at
The example above will work if the input query has 1 or 10
bindings. As long as the number of bindings is less than the
number of froms + joins, Ecto will match only what you have
specified. The first binding always matches the source given
in from.
Similarly, if you are interested only in the last binding
(or the last bindings) in a query, you can use ... to
specify "all bindings before" and match on the last one.
For instance, imagine you wrote:
posts_with_comments =
 from p in query, join: c in Comment, on: c.post_id == p.id
And now we want to make sure to return both the post title
and the comment body. Although we may not know how many
bindings there are in the query, we are sure posts is the
first binding and comments are the last one, so we can write:
from [p, ..., c] in posts_with_comments, select: {p.title, c.body}
In other words, ... will include all the bindings between the
first and the last, which may be one, many or no bindings at all.

 Named bindings

Another option for flexibly building queries with joins are named
bindings. Coming back to the previous example, we can use the
as: :comment option to bind the comments join to a concrete name:
posts_with_comments =
 from p in Post,
 join: c in Comment, as: :comment, on: c.post_id == p.id
Now we can refer to it using the following form of a bindings list:
from [p, comment: c] in posts_with_comments, select: {p.title, c.body}
This approach lets us not worry about keeping track of the position
of the bindings when composing the query. The :as option can be
given both on joins and on from:
from p in Post, as: :post
Only atoms are accepted for binding names. Named binding references
must always be placed at the end of the bindings list:
[positional_binding_1, positional_binding_2, named_1: binding, named_2: binding]
Named bindings can also be used for late binding with the as/1
construct, allowing you to refer to a binding that has not been
defined yet:
from c in Comment, where: as(:posts).id == c.post_id
This is especially useful when working with subqueries, where you
may need to refer to a parent binding with parent_as, which is
not known when writing the subquery:
child_query = from c in Comment, where: parent_as(:posts).id == c.post_id
from p in Post, as: :posts, inner_lateral_join: c in subquery(child_query)
You can also match on a specific binding when building queries. For
example, let's suppose you want to create a generic sort function
that will order by a given field with a given as in query:
Knowing the name of the binding
def sort(query, as, field) do
 from [{^as, x}] in query, order_by: field(x, ^field)
end

 Bindingless operations

Although bindings are extremely useful when working with joins,
they are not necessary when the query has only the from clause.
For such cases, Ecto supports a way for building queries
without specifying the binding:
from Post,
 where: [category: "fresh and new"],
 order_by: [desc: :published_at],
 select: [:id, :title, :body]
The query above will select all posts with category "fresh and new",
order by the most recently published, and return Post structs with
only the id, title and body fields set. It is equivalent to:
from p in Post,
 where: p.category == "fresh and new",
 order_by: [desc: p.published_at],
 select: struct(p, [:id, :title, :body])
One advantage of bindingless queries is that they are data-driven
and therefore useful for dynamically building queries. For example,
the query above could also be written as:
where = [category: "fresh and new"]
order_by = [desc: :published_at]
select = [:id, :title, :body]
from Post, where: ^where, order_by: ^order_by, select: ^select
This feature is very useful when queries need to be built based
on some user input, like web search forms, CLIs and so on.

 Fragments

If you need an escape hatch, Ecto provides fragments
(see Ecto.Query.API.fragment/1) to inject SQL (and non-SQL)
fragments into queries.
For example, to get all posts while running the "lower(?)"
function in the database where p.title is interpolated
in place of ?, one can write:
from p in Post,
 where: is_nil(p.published_at) and
 fragment("lower(?)", p.title) == ^title
Also, most adapters provide direct APIs for queries, like
Ecto.Adapters.SQL.query/4, allowing developers to
completely bypass Ecto queries.

 Macro API

In all examples so far we have used the keywords query syntax to
create a query:
import Ecto.Query
from u in "users", where: u.age > 18, select: u.name
Due to the prevalence of the pipe operator in Elixir, Ecto also supports
a pipe-based syntax:
"users"
|> where([u], u.age > 18)
|> select([u], u.name)
The keyword-based and pipe-based examples are equivalent. The downside
of using macros is that the binding must be specified for every operation.
However, since keyword-based and pipe-based examples are equivalent, the
bindingless syntax also works for macros. Please note that the following
example is not completely equivalent to the previous example,
as it does not return the name but rather the User struct:
"users"
|> where([u], u.age > 18)
|> select([:name])
Such a syntax allows developers to write queries using bindings only in more
complex query expressions.
This module documents each of those macros, providing examples in
both the keywords query and pipe expression formats.

 Query prefix

It is possible to set a prefix for the queries. For Postgres users,
this will specify the schema where the table is located, while for
MySQL users this will specify the database where the table is
located. When no prefix is set, Postgres queries are assumed to be
in the public schema, while MySQL queries are assumed to be in the
database set in the config for the repo.
The query prefix may be set either for the whole query or on each
individual from and join expression. If a prefix is not given
to a from or a join, the prefix of the schema given to the from
or join is used. The query prefix is used only if none of the above
are declared.
Let's see some examples. To set the query prefix globally, the simplest
mechanism is to pass an option to the repository operation:
results = Repo.all(query, prefix: "accounts")
You may also set the prefix for the whole query by setting the prefix field:
results =
 query # May be User or an Ecto.Query itself
 |> Ecto.Query.put_query_prefix("accounts")
 |> Repo.all()
Setting the prefix in the query changes the default prefix of all from
and join expressions. You can override the query prefix by either setting
the @schema_prefix in your schema definitions or by passing the prefix
option:
from u in User,
 prefix: "accounts",
 join: p in assoc(u, :posts),
 prefix: "public"
Overall, here is the prefix lookup precedence:
	The :prefix option given to from/join has the highest precedence
	Then it falls back to the @schema_prefix attribute declared in the schema
given to from/join
	Then it falls back to the query prefix. The query prefix may be
set either on the query with put_query_prefix/2 or by passing
the :prefix option when calling the Repo module (where the
former wins if both methods are used)

The prefixes set in the query will be preserved when loading data.

 Summary

 Types

 Ecto.Repo - Ecto v3.12.5

Ecto.Repo behaviour

Defines a repository.
A repository maps to an underlying data store, controlled by the
adapter. For example, Ecto ships with a Postgres adapter that
stores data into a PostgreSQL database.
When used, the repository expects the :otp_app and :adapter as
option. The :otp_app should point to an OTP application that has
the repository configuration. For example, the repository:
defmodule Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres
end
Could be configured with:
config :my_app, Repo,
 database: "ecto_simple",
 username: "postgres",
 password: "postgres",
 hostname: "localhost"
Most of the configuration that goes into the config is specific
to the adapter. For this particular example, you can check
Ecto.Adapters.Postgres
for more information. In spite of this, the following configuration values
are common across all adapters:
	:name- The name of the Repo supervisor process

	:priv - the directory where to keep repository data, like
migrations, schema and more. Defaults to "priv/YOUR_REPO".
It must always point to a subdirectory inside the priv directory

	:url - an URL that specifies storage information. Read below
for more information

	:log - the log level used when logging the query with Elixir's
Logger. Can be any of Logger.level/0 values or false. If false,
disables logging for that repository. Defaults to :debug

	:pool_size - the size of the pool used by the connection module.
Defaults to 10

	:pool_count - the number of pools to run concurrently,
increase this option when the pool itself may be under contention.
When running multiple pools, queries are randomly routed to different
pools, without taking into account how many connections are available
in each. So in some circumstances, you may be routed to a fully busy
pool while others have connections available. The overall number of
connections used will be pool_size * pool_count. Defaults to 1

	:telemetry_prefix - we recommend adapters to publish events
using the Telemetry library. By default, the telemetry prefix
is based on the module name, so if your module is called
MyApp.Repo, the prefix will be [:my_app, :repo]. See the
"Telemetry Events" section to see which events we recommend
adapters to publish. Note that if you have multiple databases, you
should keep the :telemetry_prefix consistent for each repo and
use the :repo property in the event metadata for distinguishing
between repos.

	:stacktrace- when true, publishes the stacktrace in telemetry events
and allows more advanced logging.

 URLs

Repositories by default support URLs. For example, the configuration
above could be rewritten to:
config :my_app, Repo,
 url: "ecto://postgres:postgres@localhost/ecto_simple"
The schema can be of any value and the path represents the database name.
The URL will be used generate the relevant Repo configuration values, such
as :database, :username, :password, :hostname and :port. These
values take precedence over those already specified in the Repo's configuration.
URL can include query parameters to override shared and adapter-specific
options, like ssl, timeout and pool_size. The following example
shows how to pass these configuration values:
config :my_app, Repo,
 url: "ecto://postgres:postgres@localhost/ecto_simple?ssl=true&pool_size=10"

 Shared options

Almost all of the repository functions outlined in this module accept the following
options:
	:timeout - The time in milliseconds (as an integer) to wait for the query call to
finish. :infinity will wait indefinitely (default: 15_000)
	:log - Can be any of the Logger.level/0 values or false. If false,
logging is disabled. Defaults to the configured Repo logger level
	:telemetry_event - The telemetry event name to dispatch the event under.
See the next section for more information
	:telemetry_options - Extra options to attach to telemetry event name.
See the next section for more information

 Adapter-Specific Errors

Many of the functions in this module may raise adapter-specific errors, such as PostgrexError.
This can happen, for example, when the underlying database cannot execute the specified query.

 Telemetry events

There are two types of telemetry events. The ones emitted by Ecto and the
ones that are adapter specific.

 Ecto telemetry events

The following events are emitted by all Ecto repositories:
	[:ecto, :repo, :init] - it is invoked whenever a repository starts.
The measurement is a single system_time entry in native unit. The
metadata is the :repo and all initialization options under :opts.

 Adapter-specific events

We recommend adapters to publish certain Telemetry events listed below.
Those events will use the :telemetry_prefix outlined above which defaults
to [:my_app, :repo].
For instance, to receive all query events published by a repository called
MyApp.Repo, one would define a module:
defmodule MyApp.Telemetry do
 def handle_event([:my_app, :repo, :query], measurements, metadata, config) do
 IO.inspect binding()
 end
end
Then, in the Application.start/2 callback, attach the handler to this event using
a unique handler id:
:ok = :telemetry.attach("my-app-handler-id", [:my_app, :repo, :query], &MyApp.Telemetry.handle_event/4, %{})
For details, see the telemetry documentation.
Below we list all events developers should expect from Ecto. All examples
below consider a repository named MyApp.Repo:
[:my_app, :repo, :query]
This event should be invoked on every query sent to the adapter, including
queries that are related to the transaction management.
The :measurements map may include the following, all given in the
:native time unit:
	:idle_time - the time the connection spent waiting before being checked out for the query
	:queue_time - the time spent waiting to check out a database connection
	:query_time - the time spent executing the query
	:decode_time - the time spent decoding the data received from the database
	:total_time - the sum of (queue_time, query_time, and decode_time)️

All measurements are given in the :native time unit. You can read more
about it in the docs for System.convert_time_unit/3.
A telemetry :metadata map including the following fields. Each database
adapter may emit different information here. For Ecto.SQL databases, it
will look like this:
	:type - the type of the Ecto query. For example, for Ecto.SQL
databases, it would be :ecto_sql_query
	:repo - the Ecto repository
	:result - the query result
	:params - the dumped query parameters (formatted for database drivers like Postgrex)
	:cast_params - the casted query parameters (normalized before dumping)
	:query - the query sent to the database as a string
	:source - the source the query was made on (may be nil)
	:stacktrace - the stacktrace information, if enabled, or nil
	:options - extra options given to the repo operation under
:telemetry_options

 Read-only repositories

You can mark a repository as read-only by passing the :read_only
flag on use:
use Ecto.Repo, otp_app: ..., adapter: ..., read_only: true
By passing the :read_only option, none of the functions that perform
write operations, such as insert/2, insert_all/3, update_all/3,
and friends will be defined.

 Summary

 Query API

 Ecto.Schema - Ecto v3.12.5

Ecto.Schema

An Ecto schema maps external data into Elixir structs.
The definition of the schema is possible through two main APIs:
schema/2 and embedded_schema/1.
schema/2 is typically used to map data from a persisted source,
usually a database table, into Elixir structs and vice-versa. For
this reason, the first argument of schema/2 is the source (table)
name. Structs defined with schema/2 also contain a __meta__ field
with metadata holding the status of the struct, for example, if it
has been built, loaded or deleted.
On the other hand, embedded_schema/1 is used for defining schemas
that are embedded in other schemas or only exist in-memory. For example,
you can use such schemas to receive data from a command line interface
and validate it, without ever persisting it elsewhere. Such structs
do not contain a __meta__ field, as they are never persisted.
Besides working as data mappers, embedded_schema/1 and schema/2 can
also be used together to decouple how the data is represented in your
applications from the database. Let's see some examples.

 Example

defmodule User do
 use Ecto.Schema

 schema "users" do
 field :name, :string
 field :age, :integer, default: 0
 field :password, :string, redact: true
 has_many :posts, Post
 end
end
By default, a schema will automatically generate a primary key which is named
id and of type :integer. The field macro defines a field in the schema
with given name and type. has_many associates many posts with the user
schema. Schemas are regular structs and can be created and manipulated directly
using Elixir's struct API:
iex> user = %User{name: "jane"}
iex> %{user | age: 30}
However, most commonly, structs are cast, validated and manipulated with the
Ecto.Changeset module.
The first argument of schema/2 is the name of database's table, which does
not need to correlate to your module name (commonly referred to as the schema/schema name).
For example, if you are working with a legacy database, you can reference the table name
(legacy_users) when you define your schema (User):
defmodule User do
 use Ecto.Schema

 schema "legacy_users" do
 # ... fields ...
 end
end
Source-based schemas are queryable by default, which means we can pass them
to Ecto.Repo modules and also build queries:
MyRepo.all(User)
MyRepo.all(from u in User, where: u.id == 13)
The repository will then run the query against the source/table.
Embedded schemas are defined similarly to source-based schemas. For example,
you can use an embedded schema to represent your UI, mapping and validating
its inputs, and then you convert such embedded schema to other schemas that
are persisted to the database:
defmodule SignUp do
 use Ecto.Schema

 embedded_schema do
 field :name, :string
 field :age, :integer
 field :email, :string
 field :accepts_conditions, :boolean
 end
end

defmodule Profile do
 use Ecto.Schema

 schema "profiles" do
 field :name
 field :age
 belongs_to :account, Account
 end
end

defmodule Account do
 use Ecto.Schema

 schema "accounts" do
 field :email
 end
end
The SignUp schema can be cast and validated with the help of the
Ecto.Changeset module, and afterwards, you can copy its data to
the Profile and Account structs that will be persisted to the
database with the help of Ecto.Repo. On the other hand, embedded
schemas cannot be queried directly (they are not queryable).
use Ecto.Schema
When you use Ecto.Schema, it will:
	import Ecto.Schema macros schema/2 and embedded_schema/1
	register default values for module attributes that can be overridden, such as
@primary_key and @timestamps_opts
	define reflection functions such as __schema__/1 and __changeset__/1

We detail those throughout the module documentation.

 Redacting fields

A field marked with redact: true will display a value of **redacted**
when inspected in changes inside a Ecto.Changeset and be excluded from
inspect on the schema unless the schema module is tagged with
the option @ecto_derive_inspect_for_redacted_fields false.

 Schema attributes

Supported attributes for configuring the defined schema. They must
be set after the use Ecto.Schema call and before the schema/2
definition.
These attributes are:
	@primary_key - configures the schema primary key. It expects
a tuple {field_name, type, options} with the primary key field
name, type (typically :id or :binary_id, but can be any type) and
options. It also accepts false to disable the generation of a primary
key field. Defaults to {:id, :id, autogenerate: true}.

	@schema_prefix - configures the schema prefix. Defaults to nil,
which generates structs and queries without prefix. When set, the
prefix will be used by every built struct and on queries whenever
the schema is used in a from or a join. In PostgreSQL, the prefix
is called "SCHEMA" (typically set via Postgres' search_path).
In MySQL the prefix points to databases.

	@schema_context - configures the schema context. Defaults to nil,
which generates structs and queries without context. Context are not used
by the built-in SQL adapters.

	@foreign_key_type - configures the default foreign key type
used by belongs_to associations. It must be set in the same
module that defines the belongs_to. Defaults to :id;

	@timestamps_opts - configures the default timestamps type
used by timestamps. Defaults to [type: :naive_datetime];

	@derive - the same as @derive available in Kernel.defstruct/1
as the schema defines a struct behind the scenes;

	@field_source_mapper - a function that receives the current field name
and returns the mapping of this field name in the underlying source.
In other words, it is a mechanism to automatically generate the :source
option for the field macro. It defaults to fn x -> x end, where no
field transformation is done;

The advantage of configuring the schema via those attributes is
that they can be set with a macro to configure application wide
defaults.
For example, if your database does not support autoincrementing
primary keys and requires something like UUID or a RecordID, you
can configure and use :binary_id as your primary key type as follows:
Define a module to be used as base
defmodule MyApp.Schema do
 defmacro __using__(_) do
 quote do
 use Ecto.Schema
 @primary_key {:id, :binary_id, autogenerate: true}
 @foreign_key_type :binary_id
 end
 end
end

Now use MyApp.Schema to define new schemas
defmodule MyApp.Comment do
 use MyApp.Schema

 schema "comments" do
 belongs_to :post, MyApp.Post
 end
end
Any schemas using MyApp.Schema will get the :id field with type
:binary_id as the primary key. We explain what the :binary_id type
entails in the next section.
The belongs_to association on MyApp.Comment will also define
a :post_id field with :binary_id type that references the :id
field of the MyApp.Post schema.

 Primary keys

Ecto supports two ID types, called :id and :binary_id, which are
often used as the type for primary keys and associations.
The :id type is used when the primary key is an integer while the
:binary_id is used for primary keys in particular binary formats,
which may be Ecto.UUID for databases like PostgreSQL and MySQL,
or some specific ObjectID or RecordID often imposed by NoSQL databases.
In both cases, both types have their semantics specified by the
underlying adapter/database. If you use the :id type with
:autogenerate, it means the database will be responsible for
auto-generation of the id. This is often the case for primary keys
in relational databases which are auto-incremented.
There are two ways to define primary keys in Ecto: using the @primary_key
module attribute and using primary_key: true as option for field/3 in
your schema definition. They are not mutually exclusive and can be used
together.
Using @primary_key should be preferred for single field primary keys and
sharing primary key definitions between multiple schemas using macros.
Setting @primary_key also automatically configures the reference types
for has_one and has_many associations.
Ecto also supports composite primary keys, which is where you need to use
primary_key: true for the fields in your schema. This usually goes along
with setting @primary_key false to disable generation of additional
primary key fields.
Besides :id and :binary_id, which are often used by primary
and foreign keys, Ecto provides a huge variety of types to be used
by any field.

 Types and casting

When defining the schema, types need to be given. Types are split
into two categories, primitive types and custom types.

 Primitive types

The primitive types are:
	Ecto type	Elixir type	Literal syntax in query
	:id	integer	1, 2, 3
	:binary_id	binary	<<int, int, int, ...>>
	:integer	integer	1, 2, 3
	:float	float	1.0, 2.0, 3.0
	:boolean	boolean	true, false
	:string	UTF-8 encoded string	"hello"
	:binary	binary	<<int, int, int, ...>>
	:bitstring	bitstring	<<_::size>>
	{:array, inner_type}	list	[value, value, value, ...]
	:map	map	
	{:map, inner_type}	map	
	:decimal	Decimal	
	:date	Date	
	:time	Time	
	:time_usec	Time	
	:naive_datetime	NaiveDateTime	
	:naive_datetime_usec	NaiveDateTime	
	:utc_datetime	DateTime	
	:utc_datetime_usec	DateTime	
	:duration	Duration	

Notes:
	When using database migrations provided by "Ecto SQL", you can pass
your Ecto type as the column type. However, note the same Ecto type
may support multiple database types. For example, all of :varchar,
:text, :bytea, etc. translate to Ecto's :string. Similarly,
Ecto's :decimal can be used for :numeric and other database
types. For more information, see all migration types.

	For the {:array, inner_type} and {:map, inner_type} type,
replace inner_type with one of the valid types, such as :string.

	For the :decimal type, +Infinity, -Infinity, and NaN values
are not supported, even though the Decimal library handles them.
To support them, you can create a custom type.

	For calendar types with and without microseconds, the precision is
enforced when persisting to the DB. For example, casting ~T[09:00:00]
as :time_usec will succeed and result in ~T[09:00:00.000000], but
persisting a type without microseconds as :time_usec will fail.
Similarly, casting ~T[09:00:00.000000] as :time will succeed, but
persisting will not. This is the same behaviour as seen in other types,
where casting has to be done explicitly and is never performed
implicitly when loading from or dumping to the database.

	For the :duration type, you may need to enable Duration support in
your adapter. For information on how to enable it in Postgrex, see their
HexDocs page.

 Custom types

Besides providing primitive types, Ecto allows custom types to be
implemented by developers, allowing Ecto behaviour to be extended.
A custom type is a module that implements one of the Ecto.Type
or Ecto.ParameterizedType behaviours. By default, Ecto provides
the following custom types:
	Custom type	Database type	Elixir type
	Ecto.UUID	:uuid (as a binary)	string() (as a UUID)
	Ecto.Enum	:string	atom()

Finally, schemas can also have virtual fields by passing the
virtual: true option. These fields are not persisted to the database
and can optionally not be type checked by declaring type :any.

 The datetime types

Four different datetime primitive types are available:
	naive_datetime - has a precision of seconds and casts values
to Elixir's NaiveDateTime struct which has no timezone information.

	naive_datetime_usec - has a default precision of microseconds and
also casts values to NaiveDateTime with no timezone information.

	utc_datetime - has a precision of seconds and casts values to
Elixir's DateTime struct and expects the time zone to be set to UTC.

	utc_datetime_usec has a default precision of microseconds and also
casts values to DateTime expecting the time zone be set to UTC.

All of those types are represented by the same timestamp/datetime in the
underlying data storage, the difference are in their precision and how the
data is loaded into Elixir.
Having different precisions allows developers to choose a type that will
be compatible with the database and your project's precision requirements.
For example, some older versions of MySQL do not support microseconds in
datetime fields.
When choosing what datetime type to work with, keep in mind that Elixir
functions like NaiveDateTime.utc_now/0 have a default precision of 6.
Casting a value with a precision greater than 0 to a non-usec type will
truncate all microseconds and set the precision to 0.

 The map type

The map type allows developers to store an Elixir map directly
in the database:
In your migration
create table(:users) do
 add :data, :map
end

In your schema
field :data, :map

Now in your code
user = Repo.insert! %User{data: %{"foo" => "bar"}}
Keep in mind that we advise the map keys to be strings or integers
instead of atoms. Atoms may be accepted depending on how maps are
serialized but the database will always convert atom keys to strings
due to security reasons.
In order to support maps, different databases may employ different
techniques. For example, PostgreSQL will store those values in jsonb
fields, allowing you to just query parts of it. MSSQL, on
the other hand, does not yet provide a JSON type, so the value will be
stored in a text field.
For maps to work in such databases, Ecto will need a JSON library.
By default Ecto will use Jason
which needs to be added to your deps in mix.exs:
{:jason, "~> 1.0"}
You can however configure the adapter to use another library. For example,
if using Postgres:
config :postgrex, :json_library, YourLibraryOfChoice
Or if using MySQL:
config :myxql, :json_library, YourLibraryOfChoice
If changing the JSON library, remember to recompile the adapter afterwards
by cleaning the current build:
mix deps.clean --build postgrex

 Casting

When directly manipulating the struct, it is the responsibility of
the developer to ensure the field values have the proper type. For
example, you can create a user struct with an invalid value
for age:
iex> user = %User{age: "0"}
iex> user.age
"0"
However, if you attempt to persist the struct above, an error will
be raised since Ecto validates the types when sending them to the
adapter/database.
Therefore, when working with and manipulating external data, it is
recommended to use Ecto.Changeset's that are able to filter
and properly cast external data:
changeset = Ecto.Changeset.cast(%User{}, %{"age" => "0"}, [:age])
user = Repo.insert!(changeset)
You can use Ecto schemas and changesets to cast and validate any kind
of data, regardless if the data will be persisted to an Ecto repository
or not.

 Reflection

Any schema module will generate the __schema__ function that can be
used for runtime introspection of the schema:
	__schema__(:source) - Returns the source as given to schema/2;

	__schema__(:prefix) - Returns optional prefix for source provided by
@schema_prefix schema attribute;

	__schema__(:primary_key) - Returns a list of primary key fields (empty if there is none);

	__schema__(:fields) - Returns a list of all non-virtual field names;

	__schema__(:virtual_fields) - Returns a list of all virtual field names;

	__schema__(:field_source, field) - Returns the alias of the given field;

	__schema__(:type, field) - Returns the type of the given non-virtual field;

	__schema__(:virtual_type, field) - Returns the type of the given virtual field;

	__schema__(:associations) - Returns a list of all association field names;

	__schema__(:association, assoc) - Returns the association reflection of the given assoc;

	__schema__(:embeds) - Returns a list of all embedded field names;

	__schema__(:embed, embed) - Returns the embedding reflection of the given embed;

	__schema__(:read_after_writes) - Non-virtual fields that must be read back
from the database after every write (insert, update, and delete);

	__schema__(:autogenerate_id) - Primary key that is auto generated on insert;

	__schema__(:autogenerate_fields) - Returns a list of fields names that are auto
generated on insert, except for the primary key;

	__schema__(:redact_fields) - Returns a list of redacted field names;

Furthermore, both __struct__ and __changeset__ functions are
defined so structs and changeset functionalities are available.

 Working with typespecs

Generating typespecs for schemas is out of the scope of Ecto.Schema.
In order to be able to use types such as User.t(), t/0 has to be defined manually:
defmodule User do
 use Ecto.Schema

 @type t :: %__MODULE__{
 name: String.t(),
 age: non_neg_integer()
 }

 # ... schema ...
end
Defining the type of each field is not mandatory, but it is preferable.

 Summary

 Types

 Ecto.Schema.Metadata - Ecto v3.12.5

Ecto.Schema.Metadata

Stores metadata of a struct.

 State

The state of the schema is stored in the :state field and allows
following values:
	:built - the struct was constructed in memory and is not persisted
to database yet;
	:loaded - the struct was loaded from database and represents
persisted data;
	:deleted - the struct was deleted and no longer represents persisted
data.

 Source

The :source tracks the (table or collection) where the struct is or should
be persisted to.

 Prefix

Tracks the source prefix in the data storage.

 Context

The :context field represents additional state some databases require
for proper updates of data. It is not used by the built-in adapters of
Ecto.Adapters.Postgres and Ecto.Adapters.MySQL.

 Schema

The :schema field refers the module name for the schema this metadata belongs to.

 Summary

 Types

 Mix.Ecto - Ecto v3.12.5

Mix.Ecto

Conveniences for writing Ecto related Mix tasks.

 Summary

 Functions

 Ecto.Enum - Ecto v3.12.5

Ecto.Enum

A custom type that maps atoms to strings or integers.
Ecto.Enum must be used whenever you want to keep atom values in a field.
Since atoms cannot be persisted to the database, Ecto.Enum converts them
to strings or integers when writing to the database and converts them back
to atoms when loading data. It can be used in your schemas as follows:
Stored as strings
field :status, Ecto.Enum, values: [:foo, :bar, :baz]
or
Stored as integers
field :status, Ecto.Enum, values: [foo: 1, bar: 2, baz: 5]
Therefore, the type to be used in your migrations for enum fields depends
on the choice above. For the cases above, one would do, respectively:
add :status, :string
or
add :status, :integer
Some databases also support enum types, which you could use in combination
with the above.
Composite types, such as :array, are also supported which allow selecting
multiple values per record:
field :roles, {:array, Ecto.Enum}, values: [:author, :editor, :admin]
Overall, :values must be a list of atoms or a keyword list. Values will be
cast to atoms safely and only if the atom exists in the list (otherwise an
error will be raised). Attempting to load any string/integer not represented
by an atom in the list will be invalid.
The helper function mappings/2 returns the mappings for a given schema and
field, which can be used in places like form drop-downs. See mappings/2 for
examples.
If you want the values only, you can use values/2, and if you want
the "dump-able" values only, you can use dump_values/2.

 Embeds

Ecto.Enum allows to customize how fields are dumped within embeds through the
:embed_as option. Two alternatives are supported: :values, which will save
the enum keys (and not their respective mapping), and :dumped, which will save
the dumped value. The default is :values. For example, assuming the following
schema:
defmodule EnumSchema do
 use Ecto.Schema

 schema "my_schema" do
 embeds_one :embed, Embed do
 field :embed_as_values, Ecto.Enum, values: [foo: 1, bar: 2], embed_as: :values
 field :embed_as_dump, Ecto.Enum, values: [foo: 1, bar: 2], embed_as: :dumped
 end
 end
end
The :embed_as_values field value will save :foo or :bar, while the
:embed_as_dump field value will save 1 or 2.

 Summary

 Functions

 Ecto.ParameterizedType - Ecto v3.12.5

Ecto.ParameterizedType behaviour

Parameterized types are Ecto types that can be customized per field.
Parameterized types allow a set of options to be specified in the schema
which are initialized on compilation and passed to the callback functions
as the last argument.
For example, field :foo, :string behaves the same for every field.
On the other hand, field :foo, Ecto.Enum, values: [:foo, :bar, :baz]
will likely have a different set of values per field.
Note that options are specified as a keyword, but it is idiomatic to
convert them to maps inside init/1 for easier pattern matching in
other callbacks.
Parameterized types are a superset of regular types. In other words,
with parameterized types you can do everything a regular type does,
and more. For example, parameterized types can handle nil values
in both load and dump callbacks, they can customize cast behavior
per query and per changeset, and also control how values are embedded.
However, parameterized types are also more complex. Therefore, if
everything you need to achieve can be done with basic types, they
should be preferred to parameterized ones.

 Examples

To create a parameterized type, create a module as shown below:
defmodule MyApp.MyType do
 use Ecto.ParameterizedType

 def type(_params), do: :string

 def init(opts) do
 validate_opts(opts)
 Enum.into(opts, %{})
 end

 def cast(data, params) do
 ...
 {:ok, cast_data}
 end

 def load(data, _loader, params) do
 ...
 {:ok, loaded_data}
 end

 def dump(data, dumper, params) do
 ...
 {:ok, dumped_data}
 end

 def equal?(a, b, _params) do
 a == b
 end
end
To use this type in a schema field, specify the type and parameters like this:
schema "foo" do
 field :bar, MyApp.MyType, opt1: :baz, opt2: :boo
end
To use this type in places where you need it to be initialized (for example,
schemaless changesets), you can use init/2.
use Ecto.ParameterizedType
When you use Ecto.ParameterizedType, it will set
@behaviour Ecto.ParameterizedType and define default, overridable
implementations for embed_as/2 and equal?/3.

 Summary

 Types

 Ecto.Type - Ecto v3.12.5

Ecto.Type behaviour

Defines functions and the Ecto.Type behaviour for implementing
basic custom types.
Ecto provides two types of custom types: basic types and
parameterized types. Basic types are simple, requiring only four
callbacks to be implemented, and are enough for most occasions.
Parameterized types can be customized on the field definition and
provide a wide variety of callbacks.
The definition of basic custom types and all of their callbacks are
available in this module. You can learn more about parameterized
types in Ecto.ParameterizedType. If in doubt, prefer to use
basic custom types and rely on parameterized types if you need
the extra functionality.

 External vs internal vs database representation

The core functionality of a custom type is the mapping between
external, internal and database representations of a value belonging
to the type.
For a definition of external and internal data take a look at the
related section
in the changeset documentation.
stateDiagram-v2
 external: External Data
 internal: Internal Data
 database: Database Data
 external --> internal: cast/1
 external --> database: dump/1
 internal --> database: dump/1
 database --> internal: load/1

 Example

Imagine you want to store a URI struct as part of a schema in a
url-shortening service. There isn't an Ecto field type to support
that value at runtime therefore a custom one is needed.
You also want to query not only by the full url, but for example
by specific ports used. This is possible by putting the URI data
into a map field instead of just storing the plain
string representation.
from s in ShortUrl,
 where: fragment("?->>? ILIKE ?", s.original_url, "port", "443")
So the custom type does need to handle the conversion from
external data to runtime data (cast/1) as well as
transforming that runtime data into the :map Ecto native type and
back (dump/1 and load/1).
defmodule EctoURI do
 use Ecto.Type
 def type, do: :map

 # Provide custom casting rules.
 # Cast strings into the URI struct to be used at runtime
 def cast(uri) when is_binary(uri) do
 {:ok, URI.parse(uri)}
 end

 # Accept casting of URI structs as well
 def cast(%URI{} = uri), do: {:ok, uri}

 # Everything else is a failure though
 def cast(_), do: :error

 # When loading data from the database, as long as it's a map,
 # we just put the data back into a URI struct to be stored in
 # the loaded schema struct.
 def load(data) when is_map(data) do
 data =
 for {key, val} <- data do
 {String.to_existing_atom(key), val}
 end
 {:ok, struct!(URI, data)}
 end

 # When dumping data to the database, we *expect* a URI struct
 # but any value could be inserted into the schema struct at runtime,
 # so we need to guard against them.
 def dump(%URI{} = uri), do: {:ok, Map.from_struct(uri)}
 def dump(_), do: :error
end
Now we can use our new field type above in our schemas:
defmodule ShortUrl do
 use Ecto.Schema

 schema "posts" do
 field :original_url, EctoURI
 end
end
Note: nil values are always bypassed and cannot be handled by
custom types.
use Ecto.Type
When you use Ecto.Type, it will set @behaviour Ecto.Type and define
default, overridable implementations for embed_as/1 and equal?/2.

 Custom types and primary keys

Remember that, if you change the type of your primary keys,
you will also need to change the type of all associations that
point to said primary key.
Imagine you want to encode the ID so they cannot enumerate the
content in your application. An Ecto type could handle the conversion
between the encoded version of the id and its representation in the
database. For the sake of simplicity, we'll use base64 encoding in
this example:
defmodule EncodedId do
 use Ecto.Type

 def type, do: :id

 def cast(id) when is_integer(id) do
 {:ok, encode_id(id)}
 end
 def cast(_), do: :error

 def dump(id) when is_binary(id) do
 {:ok, id_decoded} = Base.decode64(id)
 {:ok, String.to_integer(id_decoded)}
 end

 def load(id) when is_integer(id) do
 {:ok, encode_id(id)}
 end

 defp encode_id(id) do
 id
 |> Integer.to_string()
 |> Base.encode64()
 end
end
To use it as the type for the id in our schema, we can use the
@primary_key module attribute:
defmodule BlogPost do
 use Ecto.Schema

 @primary_key {:id, EncodedId, autogenerate: true}
 schema "posts" do
 belongs_to :author, Author, type: EncodedId
 field :content, :string
 end
end

defmodule Author do
 use Ecto.Schema

 @primary_key {:id, EncodedId, autogenerate: true}
 schema "authors" do
 field :name, :string
 has_many :posts, BlogPost
 end
end
The @primary_key attribute will tell ecto which type to
use for the id.
Note the type: EncodedId option given to belongs_to in
the BlogPost schema. By default, Ecto will treat
associations as if their keys were :integers. Our primary
keys are a custom type, so when Ecto tries to cast those
ids, it will fail.
Alternatively, you can set @foreign_key_type EncodedId
after @primary_key to automatically configure the type
of all belongs_to fields.

 Summary

 Types

 Ecto.UUID - Ecto v3.12.5

Ect