

 Ecto

 v3.13.4

 [image: Logo]

 Table of contents

 	Changelog for v3.x

 	Introduction

 	Getting Started

 	Cheatsheets

 	Basic CRUD

 	Associations

 	How-To's

 	Aggregates and subqueries

 	Constraints and Upserts

 	Data mapping and validation

 	Duration Types with Postgrex

 	Dynamic queries

 	Embedded Schemas

 	Multi tenancy with query prefixes

 	Multi tenancy with foreign keys

 	Self-referencing many to many

 	Polymorphic associations with many to many

 	Replicas and dynamic repositories

 	Schemaless queries

 	Test factories

 	Testing

 	Testing with Ecto

 	
 Modules

 	Ecto

 	Ecto.Changeset

 	Ecto.Multi

 	Ecto.Query

 	Ecto.Repo

 	Ecto.Schema

 	Ecto.Schema.Metadata

 	Mix.Ecto

 	Types

 	Ecto.Enum

 	Ecto.ParameterizedType

 	Ecto.Type

 	Ecto.UUID

 	Query APIs

 	Ecto.Query.API

 	Ecto.Query.WindowAPI

 	Ecto.Queryable

 	Ecto.SubQuery

 	Adapter specification

 	Ecto.Adapter

 	Ecto.Adapter.Queryable

 	Ecto.Adapter.Schema

 	Ecto.Adapter.Storage

 	Ecto.Adapter.Transaction

 	Relation structs

 	Ecto.Association.BelongsTo

 	Ecto.Association.Has

 	Ecto.Association.HasThrough

 	Ecto.Association.ManyToMany

 	Ecto.Association.NotLoaded

 	Ecto.Embedded

 	Exceptions

 	Ecto.CastError

 	Ecto.ChangeError

 	Ecto.ConstraintError

 	Ecto.InvalidChangesetError

 	Ecto.InvalidURLError

 	Ecto.MigrationError

 	Ecto.MultiplePrimaryKeyError

 	Ecto.MultipleResultsError

 	Ecto.NoPrimaryKeyFieldError

 	Ecto.NoPrimaryKeyValueError

 	Ecto.NoResultsError

 	Ecto.Query.CastError

 	Ecto.Query.CompileError

 	Ecto.QueryError

 	Ecto.StaleEntryError

 	Ecto.SubQueryError

 	
 Mix Tasks

 	mix ecto

 	mix ecto.create

 	mix ecto.drop

 	mix ecto.gen.repo

 Changelog for v3.x

v3.13.4 (2025-10-24)
Bug fixes
	[Ecto.Changeset] Ensure empty binaries are trimmed
	[Ecto.Repo] Ensure rollback applies to dynamic repos
	[Ecto.Type] Properly format :in composite types

v3.13.3 (2025-09-19)
Enhancements
	[Ecto.Query] Accept a list of things to exclude in exclude

Bug fixes
	[Ecto.Query] Allow 2-arity functions as preload function in query
	[Ecto.Query] Remove soft deprecated literal warning
	[Ecto.Schema] Do not consider space and newlines as empty for binary types

v3.13.2 (2025-06-24)
Bug fixes
	[Ecto.Query] Fix regression which made queries with multiple joins expensive to compile
	[Ecto.Repo] Fix detection of missing primary key on associations with only nil entries
	[Ecto.Query] Fix macro expansion in over clause's order_by

v3.13.1 (2025-06-19)
Bug fixes
	[Ecto.Repo] Do not automatically apply HOT updates on upsert with replace. It is the user responsibility to make sure they do not overlap

v3.13.0 (2025-06-18)
Requires Elixir v1.14+.
Enhancements
	[Ecto] Support Elixir's built-in JSON
	[Ecto.Enum] Add Ecto.Enum.cast_value/3
	[Ecto.Query] Allow schema to be used for values list types
	[Ecto.Query] Allow strings in field/2
	[Ecto.Query] Add identifier/1 in queries
	[Ecto.Query] Add constant/1 in queries
	[Ecto.Query] Allow exclude/2 to remove windows
	[Ecto.Query] Allow source fields in json_extract_path
	[Ecto.Repo] Add Ecto.Repo.prepare_transaction/2 user callback
	[Ecto.Repo] Add Ecto.Repo.all_by/3
	[Ecto.Repo] Add Ecto.Repo.transact/2
	[Ecto.Repo] Allow HOT updates on upsert queries in Postgres by removing duplicate fields during replace_all_except
	[Ecto.Schema] Support @schema_redact: :all_except_primary_keys module attribute

Bug fixes
	[Ecto.Query] Allow select merging maps with all nil values
	[Ecto.Query] map/2 in queries now always returns a map on joins, even on left joins, for consistency with from sources
	[Ecto.Schema] Fix an issue where Ecto could warn an association did not exist, when it did

Soft deprecations (no warnings emitted)
	[Ecto.Repo] Ecto.Repo.transaction/2 is soft-deprecated in favor of Ecto.Repo.transact/1
	[Ecto.Query.API] literal/1 is deprecated in favor of identifier/1

v3.12.6 (2025-06-11)
Fix deprecations on Elixir v1.19.
v3.12.5 (2024-11-28)
Bug fixes
	[Ecto.Query] Raise when empty list is given to values/2
	[Ecto.Query] Fix inspecting dynamic/2 with interpolated named bindings
	[Ecto.Query] Plan sources before creating plan_subquery closure
	[Ecto.Repo] Remove read-only changes from returned record during insert/update
	[Ecto.Repo] Cascade :allow_stale options to assocs

v3.12.4 (2024-10-07)
Enhancements
	[Ecto.Repo] Document new :pool_count option

Bug fixes
	[Ecto.Repo] Make Ecto.Repo.reload respect source

v3.12.3 (2024-09-06)
Bug fixes
	[Ecto.Changeset] Allow associations to be cast/put inside of embedded schema changesets

v3.12.2 (2024-08-25)
Bug fixes
	[Ecto.Query] Allow :prefix to be set to any term
	[Ecto.Repo] Avoid overwriting ssl opts from url if already set in config

v3.12.1 (2024-08-13)
Enhancements
	[Ecto.Type] Add Ecto.Type.parameterized?/2

Bug fixes
	[Ecto.Enum] Fix dialyzer specification
	[Ecto.Query] Remove incorrect subquery parameter check

v3.12.0 (2024-08-12)
Enhancements
	[Ecto.Changeset] Allow {message, opts} to be given as message for several validation APIs
	[Ecto.Query] Introduce is_named_binding guard
	[Ecto.Query] Subqueries are now supported in distinct, group_by, order_by and window expressions
	[Ecto.Query] Allow select_merge to be used in more insert_all and subquery operations by merging distinct fields
	[Ecto.Query] Allow literal maps inside dynamic/2
	[Ecto.Query] Support macro expansion at the root level of order_by
	[Ecto.Query] Support preloading subquery sources in from and join
	[Ecto.Query] Allow map updates with dynamic values in select
	[Ecto.Query] Allow any data structure that implements the Enumerable protocol on the right side of in
	[Ecto.Repo] Support 2-arity preload functions that receive ids and the association metadata
	[Ecto.Repo] Allow HOT updates on upsert queries in Postgres by removing duplicate fields during replace_all
	[Ecto.Repo] insert_all supports queries with only source
	[Ecto.Repo] insert_all supports queries with the update syntax
	[Ecto.Repo] Support :allow_stale on Repo struct/changeset operations
	[Ecto.Schema] Allow schema fields to be read-only via :writable option
	[Ecto.Schema] Add :defaults_to_struct option to embeds_one
	[Ecto.Schema] Support :duration type which maps to Elixir v1.17 duration
	[Ecto.Type] Bubble up custom cast errors of the inner type for {:map, type} and {:array, type}
	[Ecto.Type] Add Ecto.Type.cast!/2

Bug fixes
	[Ecto.Query] Ignore query prefix in CTE sources
	[Ecto.Query] Fix a bug of preload when a through association is used in a join and has a nested separate query preload. Now the association chain is no longer preloaded and we simply preload directly onto the loaded through association.
	[Ecto.Query] Fix inspection when select has map/struct modifiers
	[Ecto.Query] Disable query cache for values lists
	[Ecto.Repo] Convert fields to their sources in insert_all
	[Ecto.Repo] Raise if empty list is given to {:replace, fields}
	[Ecto.Repo] Validate :prefix is a string/binary, warn otherwise
	[Ecto.Repo] Remove compile dependency on :preload_order MFA in has_many

Adapter changes
	distinct, group_by, order_by and window expressions use the new Ecto.Query.ByExpr
struct rather than the old Ecto.Query.QueryExpr struct

Potential incompatibilities
	[Ecto.Changeset] Associations inside embeds have always been read-only. We now raise if you try to cast them inside a changeset (this was reverted in v3.12.3)
	[Ecto.ParameterizedType] Parameterized types are now represented internally as {:parameterized, {mod, state}}. While this representation is private, projects may have been relying on it, and therefore they need to adapt accordingly. Use Ecto.ParameterizedType.init/2 to instantiate parameterized types.
	[Ecto.Query] Drop :array_join join type. It was added for Clickhouse support but it is no longer used
	[Ecto.Query] Validate :prefix is a string/binary (this was reverted in v3.12.2)

v3.11.2 (2024-03-07)
Bug fixes
	[Ecto.Query] Fix compatibility with upcoming Elixir v1.17
	[Ecto.Repo] Do not hide failures when preloading if the parent process is trapping exits

v3.11.1 (2023-12-07)
Enhancements
	[Ecto.Query] Allow module attributes to be given to in operator

Bug fixes
	[Ecto.Query] Fix interpolating strings and atoms as map keys
	[Ecto.Query] Plan subqueries in having
	[Ecto.Query] Fix late binding with composite types

v3.11.0 (2023-11-14)
Enhancements
	[Ecto.Association] Allow preload_order to take MFAs for many_to_many associations. This allows ordering by the join table
	[Ecto.Query] Add :operation option to with_cte/3. This allows CTEs to perform updates and deletes
	[Ecto.Query] Support splice(^...) in fragment
	[Ecto.Query] Add prepend_order_by/3
	[Ecto.Query] Allow selected_as/1 and selected_as/2 to take interpolated names
	[Ecto.Query] Allow map update syntax to work with nil values in select
	[Ecto.Query] Allow hints to inject SQL using unsafe_fragment
	[Ecto.Query] Support values/2 lists
	[Ecto.Repo] Add :on_preload_spawn option to preload/3
	[Ecto.Schema] Support :load_in_query option for embeds
	[Ecto.Schema] Support :returning option for delete

Bug fixes
	[Ecto.Association] Ensure parent prefix is passed to on_delete queries
	[Ecto.Changeset] Ensure duplicate primary keys are always detected for embeds
	[Ecto.Embedded] Raise ArgumentError when specifying an autogenerated :id primary key
	[Ecto.Query] Ensure subquery selects generate unique cache keys
	[Ecto.Query] Raise on literal non-base binary/uuids in query
	[Ecto.Repo] Reset belongs_to association if foreign key update results in a mismatch

Adapter changes
	Adapters now receive nil for encoding/decoding
	Adapters now receive type instead of {:maybe, type} as the first argument to loaders/2

Deprecations
	[Ecto.Query] Keyword hints are no longer supported. Please use unsafe_fragment inside of hints instead

v3.10.3 (2023-07-07)
Enhancements
	[Ecto.Query] Allow dynamic field/2 in type/2

Bug fixes
	[Ecto.Changesets] Limit the largest integer to less than 32 digits
	[Ecto.Type] Limit the largest integer to less than 32 digits

v3.10.2 (2023-06-07)
Enhancements
	[Ecto.Changeset] Support a three-arity function with position on cast_assoc and cast_embed
	[Ecto.Changeset] Add support for maps in validate_length/3
	[Ecto.Changeset] Add :nulls_distinct option to unsafe_validate_unique
	[Ecto.Query] Support array_join type for ClickHouse adapter
	[Ecto.Query.API] Support parameterized and custom map types in json path validation

Bug fixes
	[Ecto.Repo] Respect parent prefix in Repo.aggregate
	[Ecto.Query.API] Fix late binding in json_extract_path

Deprecations
	Deprecate MFAs on :with

v3.10.1 (2023-04-12)
Bug fixes
	[Ecto.Changeset] Consider sort_param even if the relation param was not given
	[Ecto.Query] Correct typespec to avoid Dialyzer warnings

v3.10.0 (2023-04-10)
This release contains many improvements to Ecto.Changeset, functions like Ecto.Changeset.changed?/2 and field_missing?/2 will help make your code more expressive. Improvements to association and embed handling will also make it easier to manage more complex forms, especially those embedded within Phoenix.LiveView applications.
On the changeset front, note this release unifies the handling of empty values between cast/4 and validate_required/3. If you were setting :empty_values in the past and you want to preserve this new behaviour throughout, you may want to update your code from this:
Ecto.Changeset.cast(changeset, params, [:field1, :field2], empty_values: ["", []])
to:
empty_values = [[]] ++ Ecto.Changeset.empty_values()
Ecto.Changeset.cast(changeset, params, [:field1, :field2], empty_values: empty_values)
Queries have also been improved to support LIMIT WITH TIES as well as materialized CTEs.
Enhancements
	[Ecto.Changeset] Add get_assoc/get_embed
	[Ecto.Changeset] Add field_missing?/2
	[Ecto.Changeset] Add changed?/2 and changed?/3 with predicates support
	[Ecto.Changeset] Allow Regex to be used in constraint names for exact matches
	[Ecto.Changeset] Allow :empty_values option in cast/4 to include a function which must return true if the value is empty
	[Ecto.Changeset] cast/4 will by default consider strings made only of whitespace characters to be empty
	[Ecto.Changeset] Add support for :sort_param and :drop_param on cast_assoc and cast_embed
	[Ecto.Query] Support materialized option in CTEs
	[Ecto.Query] Support dynamic field inside json_extract_path
	[Ecto.Query] Support interpolated values for from/join prefixes
	[Ecto.Query] Support ties in limit expressions through with_ties/3
	[Ecto.Schema] Add :autogenerate_fields to the schema reflection API
	[Ecto.ParameterizedType] Add optional callback format/1

Bug fixes
	[Ecto.Changeset] Make unsafe validate unique exclude primary key only for loaded schemas
	[Ecto.Changeset] Raise when change provided to validate_format/4 is not a string
	[Ecto.Query] Fix bug in json_extract_path where maps were not allowed to be nested inside of embeds
	[Ecto.Schema] Allow inline embeds to overwrite conflicting aliases

v3.9.6 (2023-07-07)
Enhancements
	[Ecto.Query] Allow dynamic field/2 in type/2

Bug fixes
	[Ecto.Changesets] Limit the largest integer to less than 32 digits
	[Ecto.Type] Limit the largest integer to less than 32 digits

v3.9.5 (2023-03-22)
Bug fixes
	[Ecto.Query] Rename @opaque dynamic type to @opaque dynamic_expr to avoid conflicts with Erlang/OTP 26

v3.9.4 (2022-12-21)
Bug fixes
	[Ecto.Query] Fix regression with interpolated preloads introduced in v3.9.3

v3.9.3 (2022-12-20)
Enhancements
	[Ecto] Add reset_fields/2
	[Ecto.Multi] Add exists?/4 function
	[Ecto.Repo] Keep url scheme in the repo configuration
	[Ecto.Query] Add support for cross lateral joins
	[Ecto.Query] Allow preloads to use dynamic/2
	[Ecto.Query.API] Allow the entire path to be interpolated in json_extract_path/2

v3.9.2 (2022-11-18)
Enhancements
	[Ecto.Query] Allow selected_as inside CTE
	[Ecto.Query] Allow selected_as to be used in subquery

Bug fixes
	[Ecto.Repo] Fix preloading through associations on nil
	[Ecto.Query] Fix select merging a selected_as field into a source

v3.9.1 (2022-10-06)
Enhancements
	[Ecto.Query] Allow selected_as at the root of dynamic/2
	[Ecto.Query] Allow selected_as to be used with type/2
	[Ecto.Query] Allow selected_as to be used with select_merge

Bug fixes
	[Ecto.Changeset] Reenable support for embedded schemas in unsafe_validate_unique/4
	[Ecto.Query] Ensure join_where conditions preload correctly in many_to_many or with queries with one or many joins

v3.9.0 (2022-09-27)
Enhancements
	[Ecto.Changeset] Add :force_changes option to cast/4
	[Ecto.Enum] Allow enum fields to be embed either as their values or their dumped versions
	[Ecto.Query] Support ^%{field: dynamic(...)} in select and select_merge
	[Ecto.Query] Support %{field: subquery(...)} in select and select_merge
	[Ecto.Query] Support select aliases through selected_as/1 and selected_as/2
	[Ecto.Query] Allow parent_as/1 in type/2
	[Ecto.Query] Add with_named_binding/3
	[Ecto.Query] Allow fragment sources in keyword queries
	[Ecto.Repo] Support idle_interval query parameter in connection URL
	[Ecto.Repo] Log human-readable UUIDs by using pre-dumped query parameters
	[Ecto.Schema] Support preloading associations in embedded schemas

Bug fix
	[Ecto.Changeset] Raise when schemaless changeset or embedded schema is used in unsafe_validate_unique/4
	[Ecto.Query] Respect virtual field type in subqueries
	[Ecto.Query] Don't select struct fields overridden with nil
	[Ecto.Query] Fix select_merge not tracking load_in_query: false field
	[Ecto.Query] Fix field source when used in json_extract_path
	[Ecto.Query] Properly build CTEs at compile time
	[Ecto.Query] Properly order subqueries in dynamic
	[Ecto.Repo] Fix insert_all query parameter count when using value queries alongside placeholder
	[Ecto.Repo] Raise if combination query is used in a many preload
	[Ecto.Schema] Ignore associations that aren't loaded on insert

v3.8.4 (2022-06-04)
Enhancements
	[Ecto.Multi] Add one/2 and all/2 functions
	[Ecto.Query] Support literal(...) in fragment

Bug fix
	[Ecto.Schema] Make sure fields are inspected in the correct order in Elixir v1.14+

v3.8.3 (2022-05-11)
Bug fix
	[Ecto.Query] Allow source aliases to be used in type/2
	[Ecto.Schema] Avoid "undefined behaviour/struct" warnings and errors during compilation

v3.8.2 (2022-05-05)
Bug fix
	[Ecto.Adapter] Do not require adapter metadata to be raw maps
	[Ecto.Association] Respect join_where in many to many on_replace deletes
	[Ecto.Changeset] Check if list is in empty_values before nested validations

v3.8.1 (2022-04-27)
Bug fix
	[Ecto.Query] Fix regression where a join's on parameter on update_all was out of order

v3.8.0 (2022-04-26)
Ecto v3.8 requires Elixir v1.10+.
Enhancements
	[Ecto] Add new Embedded chapter to Introductory guides
	[Ecto.Changeset] Allow custom :error_key in unique_constraint
	[Ecto.Changeset] Add :match option to all constraint functions
	[Ecto.Query] Support dynamic aliases
	[Ecto.Query] Allow using type/2 with virtual fields
	[Ecto.Query] Suggest alternatives to inexistent fields in queries
	[Ecto.Query] Support passing queries using subqueries to insert_all
	[Ecto.Repo] Allow stacktrace: true so stacktraces are included in telemetry events and logs
	[Ecto.Schema] Validate options given to schema fields

Bug fixes
	[Ecto.Changeset] Address regression on validate_subset no longer working with custom array types
	[Ecto.Changeset] Potentially breaking change: Detect empty_values inside lists when casting. This may cause issues if you were relying on the casting of empty values (by default, only "").
	[Ecto.Query] Handle atom list sigils in select
	[Ecto.Query] Improve tracking of select_merge inside subqueries
	[Ecto.Repo] Properly handle literals in queries given to insert_all
	[Ecto.Repo] Don't surface persisted data as changes on embed updates
	[Ecto.Repo] Potentially breaking change: Raise if an association doesn't have a primary key and is preloaded in a join query. Previously, this would silently produce the wrong the result in certain circumstances.
	[Ecto.Schema] Preserve parent prefix on join tables

v3.7.2 (2022-03-13)
Enhancements
	[Ecto.Schema] Add option to skip validations for default values
	[Ecto.Query] Allow coalesce in type/2
	[Ecto.Query] Support parameterized types in type/2
	[Ecto.Query] Allow arbitrary parentheses in query expressions

v3.7.1 (2021-08-27)
Enhancements
	[Ecto.Embedded] Make Ecto.Embedded public and describe struct fields

Bug fixes
	[Ecto.Repo] Make sure parent changeset is included in changes for insert/update/delete when there are errors processing the parent itself

v3.7.0 (2021-08-19)
Enhancements
	[Ecto.Changeset] Add Ecto.Changeset.traverse_validations/2
	[Ecto.Enum] Add Ecto.Enum.mappings/2 and Ecto.Enum.dump_values/2
	[Ecto.Query] Add support for dynamic as(^as) and parent_as(^as)
	[Ecto.Repo] Add stale changeset to Ecto.StaleEntryError fields
	[Ecto.Schema] Add support for @schema_context to set context metadata on schema definition

Bug fixes
	[Ecto.Changeset] Fix changeset inspection not redacting when embedded
	[Ecto.Changeset] Use semantic comparison on validate_inclusion, validate_exclusion, and validate_subset
	[Ecto.Enum] Raise on duplicate values in Ecto.Enum
	[Ecto.Query] Make sure hints are included in the query cache
	[Ecto.Repo] Support placeholders in insert_all without schemas
	[Ecto.Repo] Wrap in a subquery when query given to Repo.aggregate has combination
	[Ecto.Repo] Fix CTE subqueries not finding parent bindings
	[Ecto.Repo] Return changeset with assocs if any of the assocs are invalid

v3.6.2 (2021-05-28)
Enhancements
	[Ecto.Query] Support macros in with_cte
	[Ecto.Repo] Add Ecto.Repo.all_running/0 to list all running repos

Bug fixes
	[Ecto.Query] Do not omit nil fields in a subquery select
	[Ecto.Query] Allow parent_as to look for an alias all the way up across subqueries
	[Ecto.Query] Raise if a nil value is given to a query from a nested map parameter
	[Ecto.Query] Fix insert_all when using both :on_conflict and :placeholders
	[mix ecto.load] Do not pass --force to underlying compile task

v3.6.1 (2021-04-12)
Enhancements
	[Ecto.Changeset] Allow the :query option in unsafe_validate_unique

Bug fixes
	[Ecto.Changeset] Add the relation id in apply_changes if the relation key exists (instead of hardcoding it to id)

v3.6.0 (2021-04-03)
Enhancements
	[Ecto.Changeset] Support :repo_opts in unsafe_validate_unique
	[Ecto.Changeset] Add a validation error if trying to cast a cardinality one embed/assoc with anything other than a map or keyword list
	[Ecto.Enum] Allow enums to map to custom values
	[Ecto.Multi] Add Ecto.Multi.put/3 for directly storing values
	[Ecto.Query] Potentially breaking change: optimize many_to_many queries so it no longer load intermediary tables in more occasions. This may cause issues if you are using Ecto.assoc/2 to load many_to_many associations and then trying to access intermediate bindings (which is discouraged but it was possible)
	[Ecto.Repo] Allow insert_all to be called with a query instead of rows
	[Ecto.Repo] Add :placeholders support to insert_all to avoid sending the same value multiple times
	[Ecto.Schema] Support :preload_order on has_many and many_to_many associations
	[Ecto.UUID] Add bang UUID conversion methods
	[Ecto.Query] The :hints option now accepts dynamic values when supplied as tuples
	[Ecto.Query] Support select: map(source, fields) where source is a fragment
	[Ecto.Query] Allow referring to the parent query in a join's subquery select via parent_as
	[mix ecto] Support file and line interpolation on ECTO_EDITOR

Bug fixes
	[Ecto.Changeset] Change apply_changes/1 to add the relation to the struct.relation_id if relation struct is persisted
	[Ecto.Query] Remove unnecessary INNER JOIN in many to many association query
	[Ecto.Query] Allow parametric types to be interpolated in queries
	[Ecto.Schema] Raise ArgumentError when default has invalid type

v3.5.8 (2021-02-21)
Enhancements
	[Ecto.Query] Support map/2 on fragments and subqueries

v3.5.7 (2021-02-07)
Bug fixes
	[Ecto.Query] Fixes param ordering issue on dynamic queries with subqueries

v3.5.6 (2021-01-20)
Enhancements
	[Ecto.Schema] Support on_replace: :delete_if_exists on associations

Bug fixes
	[Ecto.Query] Allow unary minus operator in query expressions
	[Ecto.Schema] Allow nil values on typed maps

v3.5.5 (2020-11-12)
Enhancements
	[Ecto.Query] Add support for subqueries operators: all, any, and exists

Bug fixes
	[Ecto.Changeset] Use association source on put_assoc with maps/keywords
	[Ecto.Enum] Add cast clause for nil values on Ecto.Enum
	[Ecto.Schema] Allow nested type :any for non-virtual fields

v3.5.4 (2020-10-28)
Enhancements
	[mix ecto.drop] Provide --force-drop for databases that may support it
	[guides] Add new "Multi tenancy with foreign keys" guide

Bug fixes
	[Ecto.Changeset] Make keys optional in specs
	[Ecto.Enum] Make sure values/2 works for virtual fields
	[Ecto.Query] Fix missing type on CTE queries that select a single field

v3.5.3 (2020-10-21)
Bug fixes
	[Ecto.Query] Do not reset parameter counter for nested CTEs
	[Ecto.Type] Fix regression where array type with nils could no longer be cast/load/dump
	[Ecto.Type] Fix CaseClauseError when casting a decimal with a binary remainder

v3.5.2 (2020-10-12)
Enhancements
	[Ecto.Repo] Add Repo.reload/2 and Repo.reload!/2

Bug fixes
	[Ecto.Changeset] Fix "schema/1 is undefined or private" error while inspecting a schemaless changeset
	[Ecto.Repo] Invoke Ecto.Repo.default_options/1 per entry-point operation

v3.5.1 (2020-10-08)
Enhancements
	[Ecto.Changeset] Warn if there are duplicate IDs in the parent schema for cast_assoc/3/cast_embed/3
	[Ecto.Schema] Allow belongs_to to accept options for parameterized types

Bug fixes
	[Ecto.Query] Keep field types when using a subquery with source

v3.5.0 (2020-10-03)
v3.5 requires Elixir v1.8+.
Bug fixes
	[Ecto.Changeset] Ensure :empty_values in cast/4 does not automatically propagate to following cast calls. If you want a given set of :empty_values to apply to all cast/4 calls, change the value stored in changeset.empty_values instead
	[Ecto.Changeset] Potentially breaking change: Do not force repository updates to happen when using optimistic_lock. The lock field will only be incremented if the record has other changes. If no changes, nothing happens.
	[Ecto.Changeset] Do not automatically share empty values across cast/3 calls
	[Ecto.Query] Consider query prefix in cte/combination query cache
	[Ecto.Query] Allow the entry to be marked as nil when using left join with subqueries
	[Ecto.Query] Support subqueries inside dynamic expressions
	[Ecto.Repo] Fix preloading when using dynamic repos and the sandbox in automatic mode
	[Ecto.Repo] Do not duplicate collections when associations are preloaded for repeated elements

Enhancements
	[Ecto.Enum] Add Ecto.Enum as a custom parameterized type
	[Ecto.Query] Allow :prefix in from to be set to nil
	[Ecto.Query] Do not restrict subqueries in where to map/struct types
	[Ecto.Query] Allow atoms in query without interpolation in order to support Ecto.Enum
	[Ecto.Schema] Do not validate uniqueness if there is a prior error on the field
	[Ecto.Schema] Allow redact: true in field
	[Ecto.Schema] Support parameterized types via Ecto.ParameterizedType
	[Ecto.Schema] Rewrite embeds and assocs as parameterized types. This means __schema__(:type, assoc_or_embed) now returns a parameterized type. To check if something is an association, use __schema__(:assocs) or __schema__(:embeds) instead

v3.4.6 (2020-08-07)
Enhancements
	[Ecto.Query] Allow count/0 on type/2
	[Ecto.Multi] Support anonymous functions in multiple functions

Bug fixes
	[Ecto.Query] Consider booleans as literals in unions, subqueries, ctes, etc
	[Ecto.Schema] Generate IDs for nested embeds

v3.4.5 (2020-06-14)
Enhancements
	[Ecto.Changeset] Allow custom error key in unsafe_validate_unique
	[Ecto.Changeset] Improve performance when casting large params maps

Bug fixes
	[Ecto.Changeset] Improve error message for invalid cast_assoc
	[Ecto.Query] Fix inspecting query with fragment CTE
	[Ecto.Query] Fix inspecting dynamics with aliased bindings
	[Ecto.Query] Improve error message when selecting a single atom
	[Ecto.Repo] Reduce data-copying when preloading multiple associations
	[Ecto.Schema] Do not define a compile-time dependency for schema in :join_through

v3.4.4 (2020-05-11)
Enhancements
	[Ecto.Schema] Add join_where support to many_to_many

v3.4.3 (2020-04-27)
Enhancements
	[Ecto.Query] Support as/1 and parent_as/1 for lazy named bindings and to allow parent references from subqueries
	[Ecto.Query] Support x in subquery(query)

Bug fixes
	[Ecto.Query] Do not raise for missing assocs if :force is given to preload
	[Ecto.Repo] Return error from Repo.delete on invalid changeset from prepare_changeset

v3.4.2 (2020-04-10)
Enhancements
	[Ecto.Changeset] Support multiple fields in unique_constraint/3

v3.4.1 (2020-04-08)
Enhancements
	[Ecto] Add Ecto.embedded_load/3 and Ecto.embedded_dump/2
	[Ecto.Query] Improve error message on invalid JSON expressions
	[Ecto.Repo] Emit [:ecto, :repo, :init] telemetry event upon Repo init

Bug fixes
	[Ecto.Query] Do not support JSON selectors on type/2

Deprecations
	[Ecto.Repo] Deprecate conflict_target: {:constraint, _}. It is a discouraged approach and {:unsafe_fragment, _} is still available if someone definitely needs it

v3.4.0 (2020-03-24)
v3.4 requires Elixir v1.7+.
Enhancements
	[Ecto.Query] Allow dynamic queries in CTE and improve error message
	[Ecto.Query] Add Ecto.Query.API.json_extract_path/2 and JSON path support to query syntax. For example, posts.metadata["tags"][0]["name"] will return the name of the first tag stored in the :map metadata field
	[Ecto.Repo] Add new default_options/1 callback to repository
	[Ecto.Repo] Support passing :telemetry_options to repository operations

Bug fixes
	[Ecto.Changeset] Properly add validation annotation to validate_acceptance
	[Ecto.Query] Raise if there is loaded non-empty association data without related key when preloading. This typically means not all fields have been loaded in a query
	[Ecto.Schema] Show meaningful error in case schema is invoked twice in an Ecto.Schema

v3.3.4 (2020-02-27)
Bug fixes
	[mix ecto] Do not rely on map ordering when parsing repos
	[mix ecto.gen.repo] Improve error message when a repo is not given

v3.3.3 (2020-02-14)
Enhancements
	[Ecto.Query] Support fragments in lock
	[Ecto.Query] Handle nil in select_merge with similar semantics to SQL databases (i.e. it simply returns nil itself)

v3.3.2 (2020-01-28)
Enhancements
	[Ecto.Changeset] Only bump optimistic lock in case of success
	[Ecto.Query] Allow macros in Ecto window expressions
	[Ecto.Schema] Support :join_defaults on many_to_many associations
	[Ecto.Schema] Allow MFargs to be given to association :defaults
	[Ecto.Type] Add Ecto.Type.embedded_load and Ecto.Type.embedded_dump

Bug fixes
	[Ecto.Repo] Ignore empty hostname when parsing database url (Elixir v1.10 support)
	[Ecto.Repo] Rewrite combinations on Repo.exists? queries
	[Ecto.Schema] Respect child @schema_prefix in cast_assoc
	[mix ecto.gen.repo] Use config_path when writing new config in mix ecto.gen.repo

v3.3.1 (2019-12-27)
Enhancements
	[Ecto.Query.WindowAPI] Support filter/2

Bug fixes
	[Ecto.Query.API] Fix coalesce/2 usage with mixed types

v3.3.0 (2019-12-11)
Enhancements
	[Ecto.Adapter] Add storage_status/1 callback to Ecto.Adapters.Storage behaviour
	[Ecto.Changeset] Add Ecto.Changeset.apply_action!/2
	[Ecto.Changeset] Remove actions restriction in Ecto.Changeset.apply_action/2
	[Ecto.Repo] Introduce c:Ecto.Repo.aggregate/2
	[Ecto.Repo] Support {:replace_all_except, fields} in :on_conflict

Bug fixes
	[Ecto.Query] Make sure the :prefix option in :from/:join also cascades to subqueries
	[Ecto.Query] Make sure the :prefix option in :join also cascades to queries
	[Ecto.Query] Use database returned values for literals. Previous Ecto versions knew literals from queries should not be discarded for combinations but, even if they were not discarded, we would ignore the values returned by the database
	[Ecto.Repo] Do not wrap schema operations in a transaction if already inside a transaction. We have also removed the private option called :skip_transaction

Deprecations
	[Ecto.Repo] :replace_all_except_primary_keys is deprecated in favor of {:replace_all_except, fields} in :on_conflict

v3.2.5 (2019-11-03)
Bug fixes
	[Ecto.Query] Fix a bug where executing some queries would leak the {:maybe, ...} type

v3.2.4 (2019-11-02)
Bug fixes
	[Ecto.Query] Improve error message on invalid join binding
	[Ecto.Query] Make sure the :prefix option in :join also applies to through associations
	[Ecto.Query] Invoke custom type when loading aggregations from the database (but fallback to database value if it can't be cast)
	[mix ecto.gen.repo] Support Elixir v1.9 style configs

v3.2.3 (2019-10-17)
Bug fixes
	[Ecto.Changeset] Do not convert enums given to validate_inclusion to a list

Enhancements
	[Ecto.Changeset] Improve error message on non-atom keys to change/put_change
	[Ecto.Changeset] Allow :with to be given as a {module, function, args} tuple on cast_association/cast_embed
	[Ecto.Changeset] Add fetch_change!/2 and fetch_field!/2

v3.2.2 (2019-10-01)
Bug fixes
	[Ecto.Query] Fix keyword arguments given to :on when a bind is not given to join
	[Ecto.Repo] Make sure a preload given to an already preloaded has_many :through is loaded

v3.2.1 (2019-09-17)
Enhancements
	[Ecto.Changeset] Add rollover logic for default incrementer in optimistic_lock
	[Ecto.Query] Also expand macros when used inside type/2

Bug fixes
	[Ecto.Query] Ensure queries with non-cacheable queries in CTEs/combinations are also not-cacheable

v3.2.0 (2019-09-07)
v3.2 requires Elixir v1.6+.
Enhancements
	[Ecto.Query] Add common table expressions support with_cte/3 and recursive_ctes/2
	[Ecto.Query] Allow dynamic/3 to be used in order_by, distinct, group_by, as well as in partition_by, order_by, and frame inside windows
	[Ecto.Query] Allow filters in type/2 expressions
	[Ecto.Repo] Merge options given to the repository into the changeset repo_opts and assign it back to make it available down the chain
	[Ecto.Repo] Add prepare_query/3 callback that is invoked before query operations
	[Ecto.Repo] Support :returning option in Ecto.Repo.update/2
	[Ecto.Repo] Support passing a one arity function to Ecto.Repo.transaction/2, where the argument is the current repo
	[Ecto.Type] Add a new embed_as/1 callback to Ecto.Type that allows adapters to control embedding behaviour
	[Ecto.Type] Add use Ecto.Type for convenience that implements the new required callbacks

Bug fixes
	[Ecto.Association] Ensure we delete an association before inserting when replacing on has_one
	[Ecto.Query] Do not allow interpolated nil in literal keyword list when building query
	[Ecto.Query] Do not remove literals from combinations, otherwise UNION/INTERSECTION queries may not match the number of values in select
	[Ecto.Query] Do not attempt to merge at compile-time non-keyword lists given to select_merge
	[Ecto.Repo] Do not override :through associations on preload unless forcing
	[Ecto.Repo] Make sure prefix option cascades to combinations and recursive queries
	[Ecto.Schema] Use OS time without drift when generating timestamps
	[Ecto.Type] Allow any datetime in datetime_add

v3.1.7 (2019-06-27)
Bug fixes
	[Ecto.Changeset] Make sure put_assoc with empty changeset propagates on insert

v3.1.6 (2019-06-19)
Enhancements
	[Ecto.Repo] Add :read_only repositories
	[Ecto.Schema] Also validate options given to :through associations

Bug fixes
	[Ecto.Changeset] Do not mark put_assoc from [] to [] or from nil to nil as change
	[Ecto.Query] Remove named binding when excluding joins
	[mix ecto.gen.repo] Use :config_path instead of hardcoding to config/config.exs

v3.1.5 (2019-06-06)
Enhancements
	[Ecto.Repo] Allow :default_dynamic_repo option on use Ecto.Repo
	[Ecto.Schema] Support {:fragment, ...} in the :where option for associations

Bug fixes
	[Ecto.Query] Fix handling of literals in combinators (union, except, intersection)

v3.1.4 (2019-05-07)
Bug fixes
	[Ecto.Changeset] Convert validation enums to lists before adding them as validation metadata
	[Ecto.Schema] Properly propagate prefix to join_through source in many_to_many associations

v3.1.3 (2019-04-30)
Enhancements
	[Ecto.Changeset] Expose the enum that was validated against in errors from enum-based validations

v3.1.2 (2019-04-24)
Enhancements
	[Ecto.Query] Add support for type+over
	[Ecto.Schema] Allow schema fields to be excluded from queries

Bug fixes
	[Ecto.Changeset] Do not list a field as changed if it is updated to its original value
	[Ecto.Query] Keep literal numbers and bitstring in subqueries and unions
	[Ecto.Query] Improve error message for invalid type/2 expression
	[Ecto.Query] Properly count interpolations in select_merge/2

v3.1.1 (2019-04-04)
Bug fixes
	[Ecto] Do not require Jason (i.e. it should continue to be an optional dependency)
	[Ecto.Repo] Make sure many_to_many and Ecto.Multi work with dynamic repos

v3.1.0 (2019-04-02)
v3.1 requires Elixir v1.5+.
Enhancements
	[Ecto.Changeset] Add not_equal_to option for validate_number
	[Ecto.Query] Improve error message for missing fragment arguments
	[Ecto.Query] Improve error message on missing struct key for structs built in select
	[Ecto.Query] Allow dynamic named bindings
	[Ecto.Repo] Add dynamic repository support with Ecto.Repo.put_dynamic_repo/1 and Ecto.Repo.get_dynamic_repo/0 (experimental)
	[Ecto.Type] Cast naive_datetime/utc_datetime strings without seconds

Bug fixes
	[Ecto.Changeset] Do not run unsafe_validate_unique query unless relevant fields were changed
	[Ecto.Changeset] Raise if an unknown field is given on Ecto.Changeset.change/2
	[Ecto.Changeset] Expose the type that was validated in errors generated by validate_length/3
	[Ecto.Query] Add support for field/2 as first element of type/2 and alias as second element of type/2
	[Ecto.Query] Do not attempt to assert types of named bindings that are not known at compile time
	[Ecto.Query] Properly cast boolean expressions in select
	[Mix.Ecto] Load applications during repo lookup so their app environment is available

Deprecations
	[Ecto.LogEntry] Fully deprecate previously soft deprecated API

v3.0.7 (2019-02-06)
Bug fixes
	[Ecto.Query] reverse_order reverses by primary key if no order is given

v3.0.6 (2018-12-31)
Enhancements
	[Ecto.Query] Add reverse_order/1

Bug fixes
	[Ecto.Multi] Raise better error message on accidental rollback inside Ecto.Multi
	[Ecto.Query] Properly merge deeply nested preloaded joins
	[Ecto.Query] Raise better error message on missing select on schemaless queries
	[Ecto.Schema] Fix parameter ordering in assoc :where

v3.0.5 (2018-12-08)
Backwards incompatible changes
	[Ecto.Schema] The :where option added in Ecto 3.0.0 had a major flaw and it has been reworked in this version. This means a tuple of three elements can no longer be passed to :where, instead a keyword list must be given. Check the "Filtering associations" section in has_many/3 docs for more information

Bug fixes
	[Ecto.Query] Do not raise on lists of tuples that are not keywords. Instead, let custom Ecto.Type handle them
	[Ecto.Query] Allow prefix: nil to be given to subqueries
	[Ecto.Query] Use different cache keys for unions/intersections/excepts
	[Ecto.Repo] Fix support for upserts with :replace without a schema
	[Ecto.Type] Do not lose precision when casting utc_datetime_usec with a time zone different than Etc/UTC

v3.0.4 (2018-11-29)
Enhancements
	[Decimal] Bump decimal dependency
	[Ecto.Repo] Remove unused :pool_timeout

v3.0.3 (2018-11-20)
Enhancements
	[Ecto.Changeset] Add count: :bytes option in validate_length/3
	[Ecto.Query] Support passing Ecto.Query in Ecto.Repo.insert_all

Bug fixes
	[Ecto.Type] Respect adapter types when loading/dumping arrays and maps
	[Ecto.Query] Ensure no bindings in order_by when using combinations in Ecto.Query
	[Ecto.Repo] Ensure adapter is compiled (instead of only loaded) before invoking it
	[Ecto.Repo] Support new style child spec from adapters

v3.0.2 (2018-11-17)
Bug fixes
	[Ecto.LogEntry] Bring old Ecto.LogEntry APIs back for compatibility
	[Ecto.Repo] Consider non-joined fields when merging preloaded assocs only at root
	[Ecto.Repo] Take field sources into account in :replace_all_fields upsert option
	[Ecto.Type] Convert :utc_datetime to DateTime when sending it to adapters

v3.0.1 (2018-11-03)
Bug fixes
	[Ecto.Query] Ensure parameter order is preserved when using more than 32 parameters
	[Ecto.Query] Consider query prefix when planning association joins
	[Ecto.Repo] Consider non-joined fields as unique parameters when merging preloaded query assocs

v3.0.0 (2018-10-29)
Note this version includes changes from ecto and ecto_sql but in future releases all ecto_sql entries will be listed in their own CHANGELOG.
Enhancements
	[Ecto.Adapters.MySQL] Add ability to specify cli_protocol for ecto.create and ecto.drop commands
	[Ecto.Adapters.PostgreSQL] Add ability to specify maintenance database name for PostgreSQL adapter for ecto.create and ecto.drop commands
	[Ecto.Changeset] Store constraint name in error metadata for constraints
	[Ecto.Changeset] Add validations/1 and constraints/1 instead of allowing direct access on the struct fields
	[Ecto.Changeset] Add :force_update option when casting relations, to force an update even if there are no changes
	[Ecto.Migration] Migrations now lock the migrations table in order to avoid concurrent migrations in a cluster. The type of lock can be configured via the :migration_lock repository configuration and defaults to "FOR UPDATE" or disabled if set to nil
	[Ecto.Migration] Add :migration_default_prefix repository configuration
	[Ecto.Migration] Add reversible version of remove/2 subcommand
	[Ecto.Migration] Add support for non-empty arrays as defaults in migrations
	[Ecto.Migration] Add support for logging notices/alerts/warnings when running migrations (only supported by Postgres currently)
	[Ecto.Migrator] Warn when migrating and there is a higher version already migrated in the database
	[Ecto.Multi] Add support for anonymous functions in insert/4, update/4, insert_or_update/4, and delete/4
	[Ecto.Query] Support tuples in where and having, allowing queries such as where: {p.foo, p.bar} > {^foo, ^bar}
	[Ecto.Query] Support arithmetic operators in queries as a thin layer around the DB functionality
	[Ecto.Query] Allow joins in queries to be named via :as and allow named bindings
	[Ecto.Query] Support excluding specific join types in exclude/2
	[Ecto.Query] Allow virtual field update in subqueries
	[Ecto.Query] Support coalesce/2 in queries, such as select: coalesce(p.title, p.old_title)
	[Ecto.Query] Support filter/2 in queries, such as select: filter(count(p.id), p.public == true)
	[Ecto.Query] The :prefix and :hints options are now supported on both from and join expressions
	[Ecto.Query] Support :asc_nulls_last, :asc_nulls_first, :desc_nulls_last, and :desc_nulls_first in order_by
	[Ecto.Query] Allow variables (sources) to be given in queries, for example, useful for invoking functions, such as fragment("some_function(?)", p)
	[Ecto.Query] Add support for union, union_all, intersection, intersection_all, except and except_all
	[Ecto.Query] Add support for windows and over
	[Ecto.Query] Raise when comparing a string with a charlist during planning
	[Ecto.Repo] Only start transactions if an association or embed has changed, this reduces the overhead during repository operations
	[Ecto.Repo] Support :replace_all_except_primary_key as :on_conflict strategy
	[Ecto.Repo] Support {:replace, fields} as :on_conflict strategy
	[Ecto.Repo] Support :unsafe_fragment as :conflict_target
	[Ecto.Repo] Support select in queries given to update_all and delete_all
	[Ecto.Repo] Add Repo.exists?/2
	[Ecto.Repo] Add Repo.checkout/2 - useful when performing multiple operations in short-time to interval, allowing the pool to be bypassed
	[Ecto.Repo] Add :stale_error_field to Repo.insert/update/delete that converts Ecto.StaleEntryError into a changeset error. The message can also be set with :stale_error_message
	[Ecto.Repo] Preloading now only sorts results by the relationship key instead of sorting by the whole struct
	[Ecto.Schema] Allow :where option to be given to has_many/has_one/belongs_to/many_to_many

Bug fixes
	[Ecto.Inspect] Do not fail when inspecting query expressions which have a number of bindings more than bindings available
	[Ecto.Migration] Keep double underscores on autogenerated index names to be consistent with changesets
	[Ecto.Query] Fix Ecto.Query.API.map/2 for single nil column with join
	[Ecto.Migration] Ensure create_if_not_exists is properly reversible
	[Ecto.Repo] Allow many_to_many associations to be preloaded via a function (before the behaviour was erratic)
	[Ecto.Schema] Make autogen ID loading work with custom type
	[Ecto.Schema] Make updated_at have the same value as inserted_at
	[Ecto.Schema] Ensure all fields are replaced with on_conflict: :replace_all/:replace_all_except_primary_key and not only the fields sent as changes
	[Ecto.Type] Return :error when casting NaN or infinite decimals
	[mix ecto.migrate] Properly run migrations after ECTO_EDITOR changes
	[mix ecto.migrations] List migrated versions even if the migration file is deleted
	[mix ecto.load] The task now fails on SQL errors on Postgres

Deprecations
Although Ecto 3.0 is a major bump version, the functionality below emits deprecation warnings to ease the migration process. The functionality below will be removed in future Ecto 3.1+ releases.
	[Ecto.Changeset] Passing a list of binaries to cast/3 is deprecated, please pass a list of atoms instead
	[Ecto.Multi] Ecto.Multi.run/3 now receives the repo in which the transaction is executing as the first argument to functions, and the changes so far as the second argument
	[Ecto.Query] join/5 now expects on: expr as last argument instead of simply expr. This was done in order to properly support the :as, :hints and :prefix options
	[Ecto.Repo] The :returning option for update_all and delete_all has been deprecated as those statements now support select clauses
	[Ecto.Repo] Passing :adapter via config is deprecated in favor of passing it on use Ecto.Repo
	[Ecto.Repo] The :loggers configuration is deprecated in favor of "Telemetry Events"

Backwards incompatible changes
	[Ecto.DateTime] Ecto.Date, Ecto.Time and Ecto.DateTime were previously deprecated and have now been removed
	[Ecto.DataType] Ecto.DataType protocol has been removed
	[Ecto.Migration] Automatically inferred index names may differ in Ecto v3.0 for indexes on complex column names
	[Ecto.Multi] Ecto.Multi.run/5 now receives the repo in which the transaction is executing as the first argument to functions, and the changes so far as the second argument
	[Ecto.Query] A join no longer wraps fragment in parentheses. In some cases, such as common table expressions, you will have to explicitly wrap the fragment in parens.
	[Ecto.Repo] The on_conflict: :replace_all option now will also send fields with default values to the database. If you prefer the old behaviour that only sends the changes in the changeset, you can set it to on_conflict: {:replace, Map.keys(changeset.changes)} (this change is also listed as a bug fix)
	[Ecto.Repo] The repository operations are no longer called from association callbacks - this behaviour was not guaranteed in previous versions but we are listing as backwards incompatible changes to help with users relying on this behaviour
	[Ecto.Repo] :pool_timeout is no longer supported in favor of a new queue system described in DBConnection.start_link/2 under "Queue config". For most users, configuring :timeout is enough, as it now includes both queue and query time
	[Ecto.Schema] :time, :naive_datetime and :utc_datetime no longer keep microseconds information. If you want to keep microseconds, use :time_usec, :naive_datetime_usec, :utc_datetime_usec
	[Ecto.Schema] The @schema_prefix option now only affects the from/join of where the schema is used and no longer the whole query
	[Ecto.Schema.Metadata] The source key no longer returns a tuple of the schema_prefix and the table/collection name. It now returns just the table/collection string. You can now access the schema_prefix via the prefix key.
	[Mix.Ecto] Mix.Ecto.ensure_started/2 has been removed. However, in Ecto 2.2 the Mix.Ecto module was not considered part of the public API and should not have been used but we are listing this for guidance.

Adapter changes
	[Ecto.Adapter] Split Ecto.Adapter into Ecto.Adapter.Queryable and Ecto.Adapter.Schema to provide more granular repository APIs
	[Ecto.Adapter] The :sources field in query_meta now contains three elements tuples with {source, schema, prefix} in order to support from/join prefixes (#2572)
	[Ecto.Adapter] The database types time, utc_datetime and naive_datetime should translate to types with seconds precision while the database types time_usec, utc_datetime_usec and naive_datetime_usec should have microseconds precision (#2291)
	[Ecto.Adapter] The on_conflict argument for insert and insert_all no longer receives a {:replace_all, list(), atom()} tuple. Instead, it receives a {fields :: [atom()], list(), atom()} where fields is a list of atoms of the fields to be replaced (#2181)
	[Ecto.Adapter] insert/update/delete now receive both :source and :prefix fields instead of a single :source field with both source and prefix in it (#2490)
	[Ecto.Adapter.Migration] A new lock_for_migration/4 callback has been added. It is implemented by default by Ecto.Adapters.SQL (#2215)
	[Ecto.Adapter.Migration] The execute_ddl should now return {:ok, []} to make space for returning notices/hints/warnings in the future (adapters leveraging Ecto.Adapters.SQL do not have to perform any change)
	[Ecto.Query] The from field in Ecto.Query now returns a Ecto.Query.FromExpr with the :source field, unifying the behaviour in from and join expressions (#2497)
	[Ecto.Query] Tuple expressions are now supported in queries. For example, where: {p.foo, p.bar} > {p.bar, p.baz} should translate to WHERE (p.foo, p.bar) > (p.bar, p.baz) in SQL databases. Adapters should be changed to handle {:{}, meta, exprs} in the query AST (#2344)
	[Ecto.Query] Adapters should support the following arithmetic operators in queries +, -, * and / (#2400)
	[Ecto.Query] Adapters should support filter/2 in queries, as in select: filter(count(p.id), p.public == true) (#2487)

Previous versions
	See the CHANGELOG.md in the v2.2 branch

 Getting Started

This guide is an introduction to Ecto,
the database wrapper and query generator for Elixir. Ecto provides a
standardized API and a set of abstractions for talking to all the different
kinds of databases, so that Elixir developers can query whatever database
they're using by employing similar constructs.
In this guide, we're going to learn some basics about Ecto, such as creating,
reading, updating and destroying records from a PostgreSQL database. If you want
to see the code from this guide, you can view it at ecto/examples/friends on GitHub.
This guide will require you to have setup PostgreSQL beforehand.
Adding Ecto to an application
To start off with, we'll generate a new Elixir application by running this command:
mix new friends --sup
The --sup option ensures that this application has a supervision tree, which we'll need for Ecto a little later on.
To add Ecto to this application, there are a few steps that we need to take. The first step will be adding Ecto and a driver called Postgrex to our mix.exs file, which we'll do by changing the deps definition in that file to this:
defp deps do
 [
 {:ecto_sql, "~> 3.0"},
 {:postgrex, ">= 0.0.0"}
]
end
Ecto provides the common querying API, but we need the Postgrex driver installed too, as that is what Ecto uses to speak in terms a PostgreSQL database can understand. Ecto talks to its own Ecto.Adapters.Postgres module, which then in turn talks to the postgrex package to talk to PostgreSQL.
To install these dependencies, we will run this command:
mix deps.get
The Postgrex application will receive queries from Ecto and execute them
against our database. If we didn't do this step, we wouldn't be able to do any
querying at all.
That's the first two steps taken now. We have installed Ecto and Postgrex as
dependencies of our application. Next let's update the .formatter.exs
file so that Ecto's rules will be applied on mix format:
[
 # Add this line to enable Ecto formatter rules
 import_deps: [:ecto, :ecto_sql],

 # Default Elixir project rules
 inputs: ["{mix,.formatter}.exs", "{config,lib,test}/**/*.{ex,exs}"]
]
We now need to setup some configuration for Ecto so that we can perform actions
on a database from within the application's code. We can set up this
configuration by running this command:
mix ecto.gen.repo -r Friends.Repo
This command will generate the configuration required to connect to a database. The first bit of configuration is in config/config.exs:
config :friends, Friends.Repo,
 database: "friends",
 username: "user",
 password: "pass",
 hostname: "localhost"
NOTE: Your PostgreSQL database may be setup to
	not require a username and password. If the above configuration doesn't work, try removing the username and password fields, or setting them both to "postgres".
	be running on a non-standard port. The default port is 5432. You can specify your specific port by adding it to the config: e.g. port: 15432.

This configures how Ecto will connect to our database, called "friends". Specifically, it configures a "repo". More information about Ecto.Repo can be found in its documentation.
The Friends.Repo module is defined in lib/friends/repo.ex by our mix ecto.gen.repo command:
defmodule Friends.Repo do
 use Ecto.Repo,
 otp_app: :friends,
 adapter: Ecto.Adapters.Postgres
end
This module is what we'll be using to query our database shortly. It uses the Ecto.Repo module, and the otp_app tells Ecto which Elixir application it can look for database configuration in. In this case, we've specified that it is the :friends application where Ecto can find that configuration and so Ecto will use the configuration that was set up in config/config.exs. Finally, we configure the database :adapter to Postgres.
Finally, the Friends.Repo must be started within the application's supervision tree, which we can do in lib/friends/application.ex, inside the start/2 function:
def start(_type, _args) do
 children = [
 Friends.Repo,
]

 ...
This piece of configuration will start the Ecto process which receives and executes our application's queries. Without it, we wouldn't be able to query the database at all!
There's one final bit of configuration that we'll need to add ourselves, since the generator does not add it. Underneath the configuration in config/config.exs, add this line:
config :friends, ecto_repos: [Friends.Repo]
This tells our application about the repo, which will allow us to run commands such as mix ecto.create very soon.
We've now configured our application so that it's able to make queries to our database. Let's now create our database, add a table to it, and then perform some queries.
Setting up the database
To be able to query a database, it first needs to exist. We can create the database with this command:
mix ecto.create
If the database has been created successfully, then you will see this message:
The database for Friends.Repo has been created.
NOTE: If you get an error, you should try changing your configuration in config/config.exs, as it may be an authentication error.
A database by itself isn't very queryable, so we will need to create a table within that database. To do that, we'll use what's referred to as a migration. If you've come from Active Record (or similar), you will have seen these before. A migration is a single step in the process of constructing your database.
Let's create a migration now with this command:
mix ecto.gen.migration create_people
This command will generate a brand new migration file in priv/repo/migrations, which is empty by default:
defmodule Friends.Repo.Migrations.CreatePeople do
 use Ecto.Migration

 def change do

 end
end
Let's add some code to this migration to create a new table called "people", with a few columns in it:
defmodule Friends.Repo.Migrations.CreatePeople do
 use Ecto.Migration

 def change do
 create table(:people) do
 add :first_name, :string
 add :last_name, :string
 add :age, :integer
 end
 end
end
This new code will tell Ecto to create a new table called people, and add three new fields: first_name, last_name and age to that table. The types of these fields are string and integer. (The different types that Ecto supports are covered in the Ecto.Schema documentation.)
NOTE: The naming convention for tables in Ecto databases is to use a pluralized name.
To run this migration and create the people table in our database, we will run this command:
mix ecto.migrate
If we found out that we made a mistake in this migration, we could run mix ecto.rollback to undo the changes in the migration. We could then fix the changes in the migration and run mix ecto.migrate again. If we ran mix ecto.rollback now, it would delete the table that we just created.
We now have a table created in our database. The next step that we'll need to do is to create the schema.
Creating the schema
The schema is an Elixir representation of data from our database. Schemas are commonly associated with a database table, however they can be associated with a database view as well.
Let's create the schema within our application at lib/friends/person.ex:
defmodule Friends.Person do
 use Ecto.Schema

 schema "people" do
 field :first_name, :string
 field :last_name, :string
 field :age, :integer
 end
end
This defines the schema from the database that this schema maps to. In this case, we're telling Ecto that the Friends.Person schema maps to the people table in the database, and the first_name, last_name and age fields in that table. The second argument passed to field tells Ecto how we want the information from the database to be represented in our schema.
We've called this schema Person because the naming convention in Ecto for schemas is a singularized name.
We can play around with this schema in an IEx session by starting one up with iex -S mix and then running this code in it:
person = %Friends.Person{}
This code will give us a new Friends.Person struct, which will have nil values for all the fields. We can set values on these fields by generating a new struct:
person = %Friends.Person{age: 28}
Or with syntax like this:
person = %{person | age: 28}
We can retrieve values using this syntax:
person.age # => 28
Let's take a look at how we can insert data into the database.
Inserting data
We can insert a new record into our people table with this code:
person = %Friends.Person{}
Friends.Repo.insert(person)
To insert the data into our database, we call insert on Friends.Repo, which is the module that uses Ecto to talk to our database. This function tells Ecto that we want to insert a new Friends.Person record into the database corresponding with Friends.Repo. The person struct here represents the data that we want to insert into the database.
A successful insertion will return a tuple, like so:
{:ok,
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: nil,
 first_name: nil, id: 1, last_name: nil}}
The :ok atom can be used for pattern matching purposes to ensure that the insertion succeeds. A situation where the insertion may not succeed is if you have a constraint on the database itself. For instance, if the database had a unique constraint on a field called email so that an email can only be used for one person record, then the insertion would fail.
You may wish to pattern match on the tuple in order to refer to the record inserted into the database:
{:ok, person} = Friends.Repo.insert person
Validating changes
In Ecto, you may wish to validate changes before they go to the database. For instance, you may wish that a person has both a first name and a last name before a record can be entered into the database. For this, Ecto has changesets.
Let's add a changeset to our Friends.Person module inside lib/friends/person.ex now:
def changeset(person, params \\ %{}) do
 person
 |> Ecto.Changeset.cast(params, [:first_name, :last_name, :age])
 |> Ecto.Changeset.validate_required([:first_name, :last_name])
end
This changeset takes a person and a set of params, which are to be the changes to apply to this person. The changeset function first casts the first_name, last_name and age keys from the parameters passed in to the changeset. Casting tells the changeset what parameters are allowed to be passed through in this changeset, and anything not in the list will be ignored.
On the next line, we call validate_required which says that, for this changeset, we expect first_name and last_name to have values specified. Let's use this changeset to attempt to create a new record without a first_name and last_name:
person = %Friends.Person{}
changeset = Friends.Person.changeset(person, %{})
Friends.Repo.insert(changeset)
On the first line here, we get a struct from the Friends.Person module. We know what that does, because we saw it not too long ago. On the second line we do something brand new: we define a changeset. This changeset says that on the specified person object, we're looking to make some changes. In this case, we're not looking to change anything at all.
On the final line, rather than inserting the person, we insert the changeset. The changeset knows about the person, the changes and the validation rules that must be met before the data can be entered into the database. When this third line runs, we'll see this:
{:error,
 #Ecto.Changeset<action: :insert, changes: %{},
 errors: [first_name: "can't be blank", last_name: "can't be blank"],
 data: #Friends.Person<>, valid?: false>}
Just like the last time we did an insertion, this returns a tuple. This time however, the first element in the tuple is :error, which indicates something bad happened. The specifics of what happened are included in the changeset which is returned. We can access these by doing some pattern matching:
{:error, changeset} = Friends.Repo.insert(changeset)
Then we can get to the errors by doing changeset.errors:
[first_name: {"can't be blank", [validation: :required]}, last_name: {"can't be blank", [validation: :required]}]
And we can ask the changeset itself if it is valid, even before doing an insertion:
changeset.valid?
#=> false
Since this changeset has errors, no new record was inserted into the people
table.
Let's try now with some valid data.
person = %Friends.Person{}
changeset = Friends.Person.changeset(person, %{first_name: "Ryan", last_name: "Bigg"})
We start out here with a normal Friends.Person struct. We then create a changeset for that person which has a first_name and a last_name parameter specified. At this point, we can ask the changeset if it has errors:
changeset.errors
#=> []
And we can ask if it's valid or not:
changeset.valid?
#=> true
The changeset does not have errors, and is valid. Therefore if we try to insert this changeset it will work:
Friends.Repo.insert(changeset)
#=> {:ok,
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: nil,
 first_name: "Ryan", id: 3, last_name: "Bigg"}}
Due to Friends.Repo.insert returning a tuple, we can use a case to determine different code paths depending on what happens:
case Friends.Repo.insert(changeset) do
 {:ok, person} ->
 # do something with person
 {:error, changeset} ->
 # do something with changeset
end
NOTE: changeset.valid? will not check constraints (such as uniqueness_constraint). For that, you will need to attempt to do an insertion and check for errors from the database. It's for this reason it's best practice to try inserting data and validate the returned tuple from Friends.Repo.insert to get the correct errors, as prior to insertion the changeset will only contain validation errors from the application itself.
If the insertion of the changeset succeeds, then you can do whatever you wish with the person returned in that result. If it fails, then you have access to the changeset and its errors. In the failure case, you may wish to present these errors to the end user. The errors in the changeset are a keyword list that looks like this:
[first_name: {"can't be blank", [validation: :required]},
 last_name: {"can't be blank", [validation: :required]}]
The first element of the tuple is the validation message, and the second element is a keyword list of options for the validation message. Imagine that we had a field called bio that we were validating, and that field has to be longer than 15 characters. This is what would be returned:
[first_name: {"can't be blank", [validation: :required]},
 last_name: {"can't be blank", [validation: :required]},
 bio: {"should be at least %{count} character(s)", [count: 15, validation: :length, kind: :min, type: :string]}]
To display these error messages in a human friendly way, we can use Ecto.Changeset.traverse_errors/2:
traverse_errors(changeset, fn {msg, opts} ->
 Enum.reduce(opts, msg, fn {key, value}, acc ->
 String.replace(acc, "%{#{key}}", to_string(value))
 end)
end)
This will return the following for the errors shown above:
%{
 first_name: ["can't be blank"],
 last_name: ["can't be blank"],
 bio: ["should be at least 15 character(s)"],
}
One more final thing to mention here: you can trigger an exception to be thrown by using Friends.Repo.insert!/2. If a changeset is invalid, you will see an Ecto.InvalidChangesetError exception. Here's a quick example of that:
Friends.Repo.insert! Friends.Person.changeset(%Friends.Person{}, %{first_name: "Ryan"})

** (Ecto.InvalidChangesetError) could not perform insert because changeset is invalid.

Errors

 %{last_name: [{"can't be blank", [validation: :required]}]}

Applied changes

 %{first_name: "Ryan"}

Params

 %{"first_name" => "Ryan"}

Changeset

 #Ecto.Changeset<
 action: :insert,
 changes: %{first_name: "Ryan"},
 errors: [last_name: {"can't be blank", [validation: :required]}],
 data: #Friends.Person<>,
 valid?: false
 >

 (ecto) lib/ecto/repo/schema.ex:257: Ecto.Repo.Schema.insert!/4
This exception shows us the changes from the changeset, and how the changeset is invalid. This can be useful if you want to insert a bunch of data and then have an exception raised if that data is not inserted correctly at all.
Now that we've covered inserting data into the database, let's look at how we can pull that data back out.
Our first queries
Querying a database requires two steps in Ecto. First, we must construct the query and then we must execute that query against the database by passing the query to the repository. Before we do this, let's re-create the database for our app and setup some test data. To re-create the database, we'll run these commands:
mix ecto.drop
mix ecto.create
mix ecto.migrate
Then to create the test data, we'll run this in an iex -S mix session:
people = [
 %Friends.Person{first_name: "Ryan", last_name: "Bigg", age: 28},
 %Friends.Person{first_name: "John", last_name: "Smith", age: 27},
 %Friends.Person{first_name: "Jane", last_name: "Smith", age: 26},
]

Enum.each(people, fn (person) -> Friends.Repo.insert(person) end)
This code will create three new people in our database, Ryan, John and Jane. Note here that we could've used a changeset to validate the data going into the database, but the choice was made not to use one.
We'll be querying for these people in this section. Let's jump in!
Fetching a single record
Let's start off with fetching just one record from our people table:
Friends.Person |> Ecto.Query.first
That code will generate an Ecto.Query, which will be this:
#Ecto.Query<from p0 in Friends.Person, order_by: [asc: p0.id], limit: 1>
The code between the angle brackets <...> here shows the Ecto query which has been constructed. We could construct this query ourselves with almost exactly the same syntax:
require Ecto.Query
Ecto.Query.from p in Friends.Person, order_by: [asc: p.id], limit: 1
We need to require Ecto.Query here to enable the macros from that module. Then it's a matter of calling the from function from Ecto.Query and passing in the code from between the angle brackets. As we can see here, Ecto.Query.first saves us from having to specify the order and limit for the query.
To execute the query that we've just constructed, we can call Friends.Repo.one:
Friends.Person |> Ecto.Query.first |> Friends.Repo.one
The one function retrieves just one record from our database and returns a new struct from the Friends.Person module:
%Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 28,
 first_name: "Ryan", id: 1, last_name: "Bigg"}
Similar to first, there is also last:
Friends.Person |> Ecto.Query.last |> Friends.Repo.one
#=> %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 26,
 first_name: "Jane", id: 3, last_name: "Smith"}
The Ecto.Repo.one function will only return a struct if there is one record in the
result from the database. If there is more than one record returned, an
Ecto.MultipleResultsError exception will be thrown. Some code that would
cause that issue to happen is:
Friends.Person |> Friends.Repo.one
We've left out the Ecto.Query.first here, and so there is no limit or order clause applied to the executed query. We'll see the executed query in the debug log:
[timestamp] [debug] SELECT p0."id", p0."first_name", p0."last_name", p0."age" FROM "people" AS p0 [] OK query=1.8ms
Then immediately after that, we will see the Ecto.MultipleResultsError exception:
** (Ecto.MultipleResultsError) expected at most one result but got 3 in query:

from p in Friends.Person

 lib/ecto/repo/queryable.ex:67: Ecto.Repo.Queryable.one/4
This happens because Ecto doesn't know what one record out of all the records
returned that we want. Ecto will only return a result if we are explicit in
our querying about which result we want.
If there is no record which matches the query, one will return nil.
Fetching all records
To fetch all records from the schema, Ecto provides the all function:
Friends.Person |> Friends.Repo.all
This will return a Friends.Person struct representation of all the records that currently exist within our people table:
[%Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 28,
 first_name: "Ryan", id: 1, last_name: "Bigg"},
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 27,
 first_name: "John", id: 2, last_name: "Smith"},
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 26,
 first_name: "Jane", id: 3, last_name: "Smith"}]
Fetch a single record based on ID
To fetch a record based on its ID, you use the get function:
Friends.Person |> Friends.Repo.get(1)
#=> %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 28,
 first_name: "Ryan", id: 1, last_name: "Bigg"}
Fetch a single record based on a specific attribute
If we want to get a record based on something other than the id attribute, we can use get_by:
 Friends.Person |> Friends.Repo.get_by(first_name: "Ryan")
 #=> %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 28,
 first_name: "Ryan", id: 1, last_name: "Bigg"}
Filtering results
If we want to get multiple records matching a specific attribute, we can use where:
Friends.Person |> Ecto.Query.where(last_name: "Smith") |> Friends.Repo.all
[%Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 27,
 first_name: "John", id: 2, last_name: "Smith"},
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 26,
 first_name: "Jane", id: 3, last_name: "Smith"}]
If we leave off the Friends.Repo.all on the end of this, we will see the query Ecto generates:
#Ecto.Query<from p in Friends.Person, where: p.last_name == "Smith">
We can also use this query syntax to fetch these same records:
Ecto.Query.from(p in Friends.Person, where: p.last_name == "Smith") |> Friends.Repo.all
One important thing to note with both query syntaxes is that they require variables to be pinned, using the pin operator (^). Otherwise, this happens:
last_name = "Smith"
Friends.Person |> Ecto.Query.where(last_name: last_name) |> Friends.Repo.all
** (Ecto.Query.CompileError) unbound variable `last_name` in query. If you are attempting to interpolate a value, use ^var
 (ecto) expanding macro: Ecto.Query.where/2
 iex:15: (file)
 (elixir) expanding macro: Kernel.|>/2
 iex:15: (file)
The same will happen in the longer query syntax too:
Ecto.Query.from(p in Friends.Person, where: p.last_name == last_name) |> Friends.Repo.all
** (Ecto.Query.CompileError) unbound variable `last_name` in query. If you are attempting to interpolate a value, use ^var
 (ecto) expanding macro: Ecto.Query.where/3
 iex:15: (file)
 (ecto) expanding macro: Ecto.Query.from/2
 iex:15: (file)
 (elixir) expanding macro: Kernel.|>/2
 iex:15: (file)
To get around this, we use the pin operator (^):
last_name = "Smith"
Friends.Person |> Ecto.Query.where(last_name: ^last_name) |> Friends.Repo.all
Or:
last_name = "Smith"
Ecto.Query.from(p in Friends.Person, where: p.last_name == ^last_name) |> Friends.Repo.all
The pin operator instructs the query builder to use parameterized SQL queries protecting against SQL injection.
Composing Ecto queries
Ecto queries don't have to be built in one spot. They can be built up by calling Ecto.Query functions on existing queries. For instance, if we want to find all people with the last name "Smith", we can do:
query = Friends.Person |> Ecto.Query.where(last_name: "Smith")
If we want to scope this down further to only people with the first name of "Jane", we can do this:
query = query |> Ecto.Query.where(first_name: "Jane")
Our query will now have two where clauses in it:
#Ecto.Query<from p in Friends.Person, where: p.last_name == "Smith",
 where: p.first_name == "Jane">
This can be useful if you want to do something with the first query, and then build off that query later on.
Updating records
Updating records in Ecto requires us to first fetch a record from the database. We then create a changeset from that record and the changes we want to make to that record, and then call the Ecto.Repo.update function.
Let's fetch the first person from our database and change their age. First, we'll fetch the person:
person = Friends.Person |> Ecto.Query.first |> Friends.Repo.one
Next, we'll build a changeset. We need to build a changeset because if we just create a new Friends.Person struct with the new age, Ecto wouldn't be able to know that the age has changed without inspecting the database. Let's build that changeset:
changeset = Friends.Person.changeset(person, %{age: 29})
This changeset will inform the database that we want to update the record to have the age set to 29. To tell the database about the change we want to make, we run this command:
Friends.Repo.update(changeset)
Just like Friends.Repo.insert, Friends.Repo.update will return a tuple:
{:ok,
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:loaded, "people">, age: 29,
 first_name: "Ryan", id: 1, last_name: "Bigg"}}
If the changeset fails for any reason, the result of Friends.Repo.update will be {:error, changeset}. We can see this in action by passing through a blank first_name in our changeset's parameters:
changeset = Friends.Person.changeset(person, %{first_name: ""})
Friends.Repo.update(changeset)
#=> {:error,
 #Ecto.Changeset<
 action: :update,
 changes: %{},
 errors: [first_name: {"can't be blank", [validation: :required]}],
 data: #Friends.Person<>,
 valid?: false
 >}
This means that you can also use a case statement to do different things depending on the outcome of the update function:
case Friends.Repo.update(changeset) do
 {:ok, person} ->
 # do something with person
 {:error, changeset} ->
 # do something with changeset
end
Similar to insert!, there is also update! which will raise an exception if the changeset is invalid:
changeset = Friends.Person.changeset(person, %{first_name: ""})
Friends.Repo.update! changeset

** (Ecto.InvalidChangesetError) could not perform update because changeset is invalid.

Errors

 %{first_name: [{"can't be blank", [validation: :required]}]}

Applied changes

 %{}

Params

 %{"first_name" => ""}

Changeset

 #Ecto.Changeset<
 action: :update,
 changes: %{},
 errors: [first_name: {"can't be blank", [validation: :required]}],
 data: #Friends.Person<>,
 valid?: false
 >

 (ecto) lib/ecto/repo/schema.ex:270: Ecto.Repo.Schema.update!/4
Deleting records
We've now covered creating (insert), reading (get, get_by, where) and updating records. The last thing that we'll cover in this guide is how to delete a record using Ecto.
Similar to updating, we must first fetch a record from the database and then call Friends.Repo.delete to delete that record:
person = Friends.Repo.get(Friends.Person, 1)
Friends.Repo.delete(person)
#=> {:ok,
 %Friends.Person{__meta__: #Ecto.Schema.Metadata<:deleted, "people">, age: 29,
 first_name: "Ryan", id: 2, last_name: "Bigg"}}
Similar to insert and update, delete returns a tuple. If the deletion succeeds, then the first element in the tuple will be :ok, but if it fails then it will be an :error.

 Basic CRUD

In this document, "Internal data" represents data or logic hardcoded into your Elixir code. "External data" means data that comes from the user via forms, APIs, and often need to be normalized, pruned, and validated via Ecto.Changeset.
Fetching records
Single record
Fetching record by ID
Repo.get(Movie, 1)
Fetching record by attributes
Repo.get_by(Movie, title: "Ready Player One")
Fetching the first record
Movie |> Ecto.Query.first() |> Repo.one()
Fetching the last record
Movie |> Ecto.Query.last() |> Repo.one()
Use ! to raise if none is found
Repo.get!(Movie, 1)
Repo.get_by!(Movie, title: "Ready Player One")
Movie |> Ecto.Query.first() |> Repo.one!()
Multiple records
Fetch all at once
Movie |> Repo.all()
Stream all
Movie |> Repo.stream() |> Enum.each(fn record -> ... end)
Check at least one exists?
Movie |> Repo.exists?()
Querying records
Keyword-based queries
Bindingless queries
query =
 from Movie,
 where: [title: "Ready Player One"],
 select: [:title, :tagline]
Repo.all(query)
Bindings in queries
query =
 from m in Movie,
 where: m.title == "Ready Player One",
 select: [m.title, m.tagline]
Repo.all(query)
Interpolation with ^
title = "Ready Player One"
query =
 from m in Movie,
 where: m.title == ^title,
 select: [m.title, m.tagline]
Repo.all(query)
Pipe-based queries
Movie
|> where([m], m.title == "Ready Player One")
|> select([m], {m.title, m.tagline})
|> Repo.all
Inserting records
Single record
Using internal data
%Person{name: "Bob"}
|> Repo.insert()
Using external data
Params represent data from a form, API, CLI, etc
params = %{"name" => "Bob"}

%Person{}
|> Ecto.Changeset.cast(params, [:name])
|> Repo.insert()
Multiple records
data = [%{name: "Bob"}, %{name: "Alice"}]
Repo.insert_all(Person, data)
Updating records
Single record
Using internal data
person =
 Person
 |> Ecto.Query.first()
 |> Repo.one!()

changeset = change(person, %{age: 29})
Repo.update(changeset)
Using external data
Params represent data from a form, API, CLI, etc
params = %{"age" => "29"}

person =
 Person
 |> Ecto.Query.first()
 |> Repo.one!()

changeset = cast(person, params, [:age])
Repo.update(changeset)
Multiple records (using queries)
Repo.update_all(Person, set: [age: 29])
Deleting records
Single record
person = Repo.get!(Person, 1)
Repo.delete(person)
Multiple records (using queries)
Repo.delete_all(Person)

 Associations

In this document, "Internal data" represents data or logic hardcoded into your Elixir code. "External data" means data that comes from the user via forms, APIs, and often need to be normalized, pruned, and validated via Ecto.Changeset. We also include examples of migrations, according to EctoSQL.
Has many / belongs to
The has many association
defmodule Movie do
 use Ecto.Schema

 schema "movies" do
 field :title, :string
 field :release_date, :date
 has_many :characters, Character
 end
end
The belongs to association
defmodule Character do
 use Ecto.Schema

 schema "characters" do
 field :name, :string
 field :age, :integer
 belongs_to :movie, Movie
 end
end
The migration
defmodule MyApp.Migrations.CreateMoviesAndCharacters do
 use Ecto.Migration

 def change do
 create table("movies") do
 add :title, :string, null: false
 add :release_date, :date
 timestamps()
 end

 # The foreign key is in the belongs_to schema
 create table("characters") do
 add :name, :string, null: false
 add :age, :integer
 add :movie_id,
 references(:movies, on_delete: :delete_all),
 null: false

 timestamps()
 end
 end
end
Has one / belongs to
The has one association
defmodule Movie do
 use Ecto.Schema

 schema "movies" do
 field :title, :string
 field :release_date, :date
 has_one :screenplay, Screenplay
 end
end
The belongs association
defmodule Screenplay do
 use Ecto.Schema

 schema "screenplays" do
 field :lead_writer, :string
 belongs_to :movie, Movie
 end
end
The migration
defmodule MyApp.Migrations.CreateMoviesAndPlays do
 use Ecto.Migration

 def change do
 create table("movies") do
 add :title, :string, null: false
 add :release_date, :date
 timestamps()
 end

 # The foreign key is in the belongs_to schema
 create table("screenplays") do
 add :lead_writer, :string, null: false
 add :movie_id,
 references(:movies, on_delete: :delete_all),
 null: false

 timestamps()
 end
 end
end
Many to many
Through a join table
The first schema
defmodule Movie do
 use Ecto.Schema

 schema "movies" do
 field :title, :string
 field :release_date, :date
 many_to_many :actors, Actor, join_through: "movies_actors"
 end
end
The second schema
defmodule Actor do
 use Ecto.Schema

 schema "actors" do
 field :name, :string
 many_to_many :movies, Movie, join_through: "movies_actors"
 end
end
Through a join schema
The first schema
defmodule User do
 use Ecto.Schema

 schema "users" do
 many_to_many :organizations, Organization, join_through: UserOrganization
 end
end
The second schema
defmodule Organization do
 use Ecto.Schema

 schema "organizations" do
 many_to_many :users, User, join_through: UserOrganization
 end
end
The join schema
defmodule UserOrganization do
 use Ecto.Schema

 @primary_key false
 schema "users_organizations" do
 belongs_to :user, User
 belongs_to :organization, Organization
 timestamps()
 end
end
The migration
It applies to both join tables and schemas.
defmodule MyApp.Migrations.CreateUsersAndOrgs do
 use Ecto.Migration

 def change do
 create table("users") do
 timestamps()
 end

 create table("organizations") do
 timestamps()
 end

 create table("users_organizations", primary_key: false) do
 add :user_id,
 references(:users, on_delete: :delete_all),
 null: false

 add :organization_id,
 references(:organizations, on_delete: :delete_all),
 null: false

 timestamps()
 end

 create unique_index(:users_organizations, [:user_id, :organization_id])
 end
end
Querying associated records
Preloading in the parent record query
query = from m in Movie, preload: :characters
Repo.all(query)
Preloading when parent records are already loaded
movies = Repo.all(Movie)
movies = Repo.preload(movies, :characters)
Preloading with join to generate a single query
Regular join
query =
 from m in Movie,
 join: c in Character,
 on: m.id == c.movie_id,
 preload: [characters: c]
Repo.all(query)
Join using assoc
query =
 from m in Movie,
 join: c in assoc(m, :characters),
 preload: [characters: c]
Repo.all(query)
Inserting associated records
Inserting a child record to an existing parent
Using internal data
Repo.get_by!(Movie, title: "The Shawshank Redemption")
|> Ecto.build_assoc(:characters, name: "Red", age: 60)
|> Repo.insert()
Using external data
Params represent data from a form, API, CLI, etc
params = %{"name" => "Red", "age" => 60}

Repo.get_by!(Movie, title: "The Shawshank Redemption")
|> Ecto.build_assoc(:characters)
|> cast(params, [:name, :age])
|> Repo.insert()
Inserting parent and child records together
Using internal data
Repo.insert(
 %Movie{
 title: "The Shawshank Redemption",
 release_date: ~D[1994-10-14],
 characters: [
 %Character{name: "Andy Dufresne", age: 50},
 %Character{name: "Red", age: 60}
]
 }
)
Using external data
Params represent data from a form, API, CLI, etc
params = %{
 "title" => "Shawshank Redemption",
 "release_date" => "1994-10-14",
 "characters" =>
 [
 %{"name" => "Andy Dufresne", "age" => "50"},
 %{"name" => "Red", "age" => "60"}
]
}

%Movie{}
|> cast(params, [:title, :release_date])
|> cast_assoc(:characters)
|> Repo.insert()
Updating associated records
Updating records individually
For individual updates, fetch and update records directly
movie =
 Repo.get_by!(Movie, title: "The Shawshank Redemption")
 |> Repo.preload(:screenplay)

movie.screenplay
|> change(%{lead_writer: "Frank Darabont"})
|> Repo.update()
Updating all associated records, using internal data
Using Ecto.Changeset.put_assoc/3
movie =
 Repo.get_by!(Movie, title: "The Shawshank Redemption")
 |> Repo.preload(:characters)

IO.inspect(movie.characters)
#=> [%Character{name: "Andy Dufresne", age: 50},
#=> %Character{name: "Red", age: 60}]

characters =
 Enum.map(movie.characters, fn character ->
 change(character, age: character.age + 1)
 end)

{:ok, movie} =
 movie
 |> change()
 |> put_assoc(:characters, characters)
 |> Repo.update()

movie.characters |> Enum.map(&(&1.age)) |> IO.inspect
#=> [51, 61]
Note: the example above performs the same operation on all entries,
therefore it can be written as a query. Queries should be preferred
when possible as they avoid loading all data into memory and are
more performant. See next example.
Using Ecto.Repo.update_all/3
movie = Repo.get_by!(Movie, title: "The Shawshank Redemption")

movie
Query to load all characters associated to a given movie
|> Ecto.assoc(:characters)
|> Repo.update_all(inc: [age: 1])
Updating all associated records, using external data
Using Ecto.Changeset.cast_assoc/3
Params represent data from a form, API, CLI, etc
params = %{
 "director" => "Frank Darabont",
 "characters" => [
 %{"id" => 1, "name" => "Andy Dufresne"},
 %{"name" => "Red", "age" => 60}
]
}

movie =
 Repo.get_by!(Movie, title: "The Shawshank Redemption")
 |> Repo.preload(:characters)

IO.inspect(movie.characters)
#=> [%{id: 1, name: "Andy", age: 50}]

{:ok, movie} =
 movie
 |> cast(params, ["director"])
 |> cast_assoc(:characters)
 |> Repo.update()

IO.inspect(movie.characters)
#=> [%{id: 1, name: "Andy Dufresne", age: 50},
#=> %{id: 2, name: "Red", age: 60}]
When using Ecto.Changeset.cast_assoc/3:
	Entries without ID are added.
	Existing entries with matching IDs are updated.
	Existing entries without matching IDs will raise
but it can be configured using :on_replace.
	Additional options are supported to customize
casting, sorting, and deletion

 Aggregates and subqueries

Now it's time to discuss aggregates and subqueries. As we will learn, one builds directly on the other.
Aggregates
Ecto includes a convenience function in repositories to calculate aggregates.
For example, if we assume every post has an integer column named visits, we can find the average number of visits across all posts with:
MyApp.Repo.aggregate(MyApp.Post, :avg, :visits)
#=> Decimal.new(1743)
Behind the scenes, the query above translates to:
MyApp.Repo.one(from p in MyApp.Post, select: avg(p.visits))
The Ecto.Repo.aggregate/4 function supports any of the aggregate operations listed in the Ecto.Query.API module.
At first, it looks like the implementation of aggregate/4 is quite straight-forward. You could even start to wonder why it was added to Ecto in the first place. However, complexities start to arise on queries that rely on limit, offset or distinct clauses.
Imagine that instead of calculating the average of all posts, you want the average of only the top 10. Your first try may be:
MyApp.Repo.one(
 from p in MyApp.Post,
 order_by: [desc: :visits],
 limit: 10,
 select: avg(p.visits)
)
#=> Decimal.new(1743)
Oops. The query above returned the same value as the queries before. The option limit: 10 has no effect here since it is limiting the aggregated result and queries with aggregates return only a single row anyway. In order to retrieve the correct result, we would need to first find the top 10 posts and only then aggregate. That's exactly what aggregate/4 does:
query =
 from MyApp.Post,
 order_by: [desc: :visits],
 limit: 10

MyApp.Repo.aggregate(query, :avg, :visits)
#=> Decimal.new(4682)
When limit, offset or distinct is specified in the query, aggregate/4 automatically wraps the given query in a subquery. Therefore the query executed by aggregate/4 above is rather equivalent to:
inner_query =
 from MyApp.Post,
 order_by: [desc: :visits],
 limit: 10

query =
 from q in subquery(inner_query),
 select: avg(q.visits)

MyApp.Repo.one(query)
Let's take a closer look at subqueries.
Subqueries
In the previous section we have already learned some queries that would be hard to express without support for subqueries. That's one of many examples that caused subqueries to be added to Ecto.
Subqueries in Ecto are created by calling Ecto.Query.subquery/1. This function receives any data structure that can be converted to a query, via the Ecto.Queryable protocol, and returns a subquery construct (which is also queryable).
In Ecto, it is allowed for a subquery to select a whole table (p) or a field (p.field). All fields selected in a subquery can be accessed from the parent query. Let's revisit the aggregate query we saw in the previous section:
inner_query =
 from MyApp.Post,
 order_by: [desc: :visits],
 limit: 10

query =
 from q in subquery(inner_query),
 select: avg(q.visits)

MyApp.Repo.one(query)
Because the query does not specify a :select clause, it will return select: p where p is controlled by MyApp.Post schema. Since the query will return all fields in MyApp.Post, when we convert it to a subquery, all of the fields from MyApp.Post will be available on the parent query, such as q.visits. In fact, Ecto will keep the schema properties across queries. For example, if you write q.field_that_does_not_exist, your Ecto query won't compile.
If you need to reference the parent in the subquery, you can do so using named bindings in the parent query and Ecto.Query.API.parent_as/1 in the subquery. Here is an example:
inner_query =
 from c in Comment,
 where: parent_as(:posts).id == c.post_id

query =
 from p in Post,
 as: :posts,
 inner_lateral_join: c in subquery(inner_query)

MyApp.Repo.one(query)
Ecto also allows an Elixir map to be returned from a subquery, making the map keys directly available to the parent query.
Let's see one last example. Imagine you manage a library (as in an actual library in the real world) and there is a table that logs every time the library lends a book. The "lendings" table uses an auto-incrementing primary key and can be backed by the following schema:
defmodule Library.Lending do
 use Ecto.Schema

 schema "lendings" do
 belongs_to :book, MyApp.Book # defines book_id
 belongs_to :visitor, MyApp.Visitor # defines visitor_id
 end
end
Now consider we want to retrieve the name of every book alongside the name of the last person the library has lent it to. To do so, we need to find the last lending ID of every book, and then join on the book and visitor tables. With subqueries, that's straight-forward:
last_lendings =
 from l in MyApp.Lending,
 group_by: l.book_id,
 select: %{
 book_id: l.book_id,
 last_lending_id: max(l.id)
 }

from l in Lending,
 join: last in subquery(last_lendings),
 on: last.last_lending_id == l.id,
 join: b in assoc(l, :book),
 join: v in assoc(l, :visitor),
 select: {b.name, v.name}

 Constraints and Upserts

In this guide we will learn how to use constraints and upserts. To showcase those features, we will work on a practical scenario: which is by studying a many to many relationship between posts and tags.
put_assoc vs cast_assoc
Imagine we are building an application that has blog posts and such posts may have many tags. Not only that, a given tag may also belong to many posts. This is a classic scenario where we would use many_to_many associations. Our migrations would look like:
create table(:posts) do
 add :title, :string
 add :body, :text
 timestamps()
end

create table(:tags) do
 add :name, :string
 timestamps()
end

create unique_index(:tags, [:name])

create table(:posts_tags, primary_key: false) do
 add :post_id, references(:posts)
 add :tag_id, references(:tags)
end
Note we added a unique index to the tag name because we don't want to have duplicated tags in our database. It is important to add an index at the database level instead of using a validation since there is always a chance two tags with the same name would be validated and inserted simultaneously, passing the validation and leading to duplicated entries.
Now let's also imagine we want the user to input such tags as a list of words split by comma, such as: "elixir, erlang, ecto". Once this data is received in the server, we will break it apart into multiple tags and associate them to the post, creating any tag that does not yet exist in the database.
While the constraints above sound reasonable, that's exactly what put us in trouble with cast_assoc/3. The cast_assoc/3 changeset function was designed to receive external parameters and compare them with the associated data in our structs. To do so correctly, Ecto requires tags to be sent as a list of maps. We can see an example of this in Polymorphic associations with many to many. However, here we expect tags to be sent in a string separated by comma.
Furthermore, cast_assoc/3 relies on the primary key field for each tag sent in order to decide if it should be inserted, updated or deleted. Again, because the user is simply passing a string, we don't have the ID information at hand.
When we can't cope with cast_assoc/3, it is time to use put_assoc/4. In put_assoc/4, we give Ecto structs or changesets instead of parameters, giving us the ability to manipulate the data as we want. Let's define the schema and the changeset function for a post which may receive tags as a string:
defmodule MyApp.Post do
 use Ecto.Schema

 schema "posts" do
 field :title
 field :body

 many_to_many :tags, MyApp.Tag,
 join_through: "posts_tags",
 on_replace: :delete

 timestamps()
 end

 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title, :body])
 |> Ecto.Changeset.put_assoc(:tags, parse_tags(params))
 end

 defp parse_tags(params) do
 (params["tags"] || "")
 |> String.split(",")
 |> Enum.map(&String.trim/1)
 |> Enum.reject(& &1 == "")
 |> Enum.map(&get_or_insert_tag/1)
 end

 defp get_or_insert_tag(name) do
 Repo.get_by(MyApp.Tag, name: name) ||
 Repo.insert!(%Tag{name: name})
 end
end
In the changeset function above, we moved all the handling of tags to a separate function, called parse_tags/1, which checks for the parameter, breaks each tag apart via String.split/2, then removes any left over whitespace with String.trim/1, rejects any empty string and finally checks if the tag exists in the database or not, creating one in case none exists.
The parse_tags/1 function is going to return a list of MyApp.Tag structs which are then passed to put_assoc/4. By calling put_assoc/4, we are telling Ecto those should be the tags associated to the post from now on. In case a previous tag was associated to the post and not given in put_assoc/4, Ecto will invoke the behaviour defined in the :on_replace option, which we have set to :delete. The :delete behaviour will remove the association between the post and the removed tag from the database.
And that's all we need to use many_to_many associations with put_assoc/4. put_assoc/4 is very useful when we want to have more explicit control over our associations and it also works with has_many, belongs_to and all others association types.
However, our code is not yet ready for production. Let's see why.
Constraints and race conditions
Remember we added a unique index to the tag :name column when creating the tags table. We did so to protect us from having duplicate tags in the database.
By adding the unique index and then using Repo.get_by with a Repo.insert! to get or insert a tag, we introduced a potential error in our application. If two posts are submitted at the same time with a similar tag, there is a chance we will check if the tag exists at the same time, leading both submissions to believe there is no such tag in the database. When that happens, only one of the submissions will succeed while the other one will fail. That's a race condition: your code will error from time to time, only when certain conditions are met. And those conditions are time sensitive.
Luckily Ecto gives us a mechanism to handle constraint errors from the database.
Checking for constraint errors
Since our get_or_insert_tag(name) function fails when a tag already exists in the database, we need to handle such scenarios accordingly. Let's rewrite it taking race conditions into account:
defp get_or_insert_tag(name) do
 %Tag{}
 |> Ecto.Changeset.change(name: name)
 |> Ecto.Changeset.unique_constraint(:name)
 |> Repo.insert()
 |> case do
 {:ok, tag} -> tag
 {:error, _} -> Repo.get_by!(MyApp.Tag, name: name)
 end
end
Instead of inserting the tag directly, we now build a changeset, which allows us to use the unique_constraint annotation. Now if the Repo.insert operation fails because the unique index for :name is violated, Ecto won't raise, but return an {:error, changeset} tuple. Therefore, if Repo.insert succeeds, it is because the tag was saved, otherwise the tag already exists, which we then fetch with Repo.get_by!.
While the mechanism above fixes the race condition, it is a quite expensive one: we need to perform two queries for every tag that already exists in the database: the (failed) insert and then the repository lookup. Given that's the most common scenario, we may want to rewrite it to the following:
defp get_or_insert_tag(name) do
 Repo.get_by(MyApp.Tag, name: name) ||
 maybe_insert_tag(name)
end

defp maybe_insert_tag(name) do
 %Tag{}
 |> Ecto.Changeset.change(name: name)
 |> Ecto.Changeset.unique_constraint(:name)
 |> Repo.insert
 |> case do
 {:ok, tag} -> tag
 {:error, _} -> Repo.get_by!(MyApp.Tag, name: name)
 end
end
The above performs 1 query for every tag that already exists, 2 queries for every new tag and possibly 3 queries in the case of race conditions. While the above would perform slightly better on average, Ecto has a better option in stock.
Upserts
Ecto supports the so-called "upsert" command which is an abbreviation for "update or insert". The idea is that we try to insert a record and in case it conflicts with an existing entry, for example due to a unique index, we can choose how we want the database to act by either raising an error (the default behaviour), ignoring the insert (no error) or by updating the conflicting database entries.
"upsert" in Ecto is done with the :on_conflict option. Let's rewrite get_or_insert_tag(name) once more but this time using the :on_conflict option. Remember that "upsert" is a new feature in PostgreSQL 9.5, so make sure you are up to date.
Your first try in using :on_conflict may be by setting it to :nothing, as below:
defp get_or_insert_tag(name) do
 Repo.insert!(
 %MyApp.Tag{name: name},
 on_conflict: :nothing
)
end
While the above won't raise an error in case of conflicts, it also won't update the struct given, so it will return a tag without ID. One solution is to force an update to happen in case of conflicts, even if the update is about setting the tag name to its current name. In such cases, PostgreSQL also requires the :conflict_target option to be given, which is the column (or a list of columns) we are expecting the conflict to happen:
defp get_or_insert_tag(name) do
 Repo.insert!(
 %MyApp.Tag{name: name},
 on_conflict: [set: [name: name]],
 conflict_target: :name
)
end
And that's it! We try to insert a tag with the given name and if such tag already exists, we tell Ecto to update its name to the current value, updating the tag and fetching its id. While the above is certainly a step up from all solutions so far, it still performs one query per tag. If 10 tags are sent, we will perform 10 queries. Can we further improve this?
Upserts and insert_all
Ecto accepts the :on_conflict option not only in Ecto.Repo.insert/2 but also in the Ecto.Repo.insert_all/3 function. This means we can build one query that attempts to insert all missing tags and then another query that fetches all of them at once. Let's see how our Post schema will look like after those changes:
defmodule MyApp.Post do
 use Ecto.Schema

 # We need to import Ecto.Query
 import Ecto.Query

 # Schema is the same
 schema "posts" do
 add :title
 add :body

 many_to_many :tags, MyApp.Tag,
 join_through: "posts_tags",
 on_replace: :delete

 timestamps()
 end

 # Changeset is the same
 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title, :body])
 |> Ecto.Changeset.put_assoc(:tags, parse_tags(params))
 end

 # Parse tags has slightly changed
 defp parse_tags(params) do
 (params["tags"] || "")
 |> String.split(",")
 |> Enum.map(&String.trim/1)
 |> Enum.reject(& &1 == "")
 |> insert_and_get_all()
 end

 defp insert_and_get_all([]) do
 []
 end
 defp insert_and_get_all(names) do
 timestamp =
 NaiveDateTime.utc_now()
 |> NaiveDateTime.truncate(:second)

 placeholders = %{timestamp: timestamp}

 maps =
 Enum.map(names, &%{
 name: &1,
 inserted_at: {:placeholder, :timestamp},
 updated_at: {:placeholder, :timestamp}
 })

 Repo.insert_all(
 MyApp.Tag,
 maps,
 placeholders: placeholders,
 on_conflict: :nothing
)

 Repo.all(from t in MyApp.Tag, where: t.name in ^names)
 end
end
Instead of getting and inserting each tag individually, the code above works on all tags at once, first by building a list of maps which is given to Repo.insert_all. Then we look up all tags with the given names. Regardless of how many tags are sent, we will perform only 2 queries - unless no tag is sent, in which we return an empty list back promptly. This solution is only possible thanks to the :on_conflict option, which guarantees insert_all won't fail in case a unique index is violated, such as from duplicate tag names. Remember, insert_all won't autogenerate values like timestamps. That's why we define a timestamp placeholder and reuse it across inserted_at and updated_at fields.
Finally, keep in mind that we haven't used transactions in any of the examples so far. That decision was deliberate as we relied on the fact that getting or inserting tags is an idempotent operation, i.e. we can repeat it many times for a given input and it will always give us the same result back. Therefore, even if we fail to introduce the post to the database due to a validation error, the user will be free to resubmit the form and we will just attempt to get or insert the same tags once again. The downside of this approach is that tags will be created even if creating the post fails, which means some tags may not have posts associated to them. In case that's not desired, the whole operation could be wrapped in a transaction or modeled with Ecto.Multi.

 Data mapping and validation

We will take a look at the role schemas play when validating and casting data through changesets. As we will see, sometimes the best solution is not to completely avoid schemas, but break a large schema into smaller ones. Maybe one for reading data, another for writing. Maybe one for your database, another for your forms.
Schemas are mappers
The Ecto.Schema moduledoc says:
An Ecto schema is used to map any data source into an Elixir struct.

We put emphasis on any because it is a common misconception to think Ecto schemas map only to your database tables.
For instance, when you write a web application using Phoenix and you use Ecto to receive external changes and apply such changes to your database, we have this mapping:
Database <-> Ecto schema <-> Forms / API
Although there is a single Ecto schema mapping to both your database and your API, in many situations it is better to break this mapping in two. Let's see some practical examples.
Imagine you are working with a client that wants the "Sign Up" form to contain the fields "First name", "Last name" along side "E-mail" and other information. You know there are a couple problems with this approach.
First of all, not everyone has a first and last name. Although your client is decided on presenting both fields, they are a UI concern, and you don't want the UI to dictate the shape of your data. Furthermore, you know it would be useful to break the "Sign Up" information across two tables, the "accounts" and "profiles" tables.
Given the requirements above, how would we implement the Sign Up feature in the backend?
One approach would be to have two schemas, Account and Profile, with virtual fields such as first_name and last_name, and use associations along side nested forms to tie the schemas to your UI. One of such schemas would be:
defmodule Profile do
 use Ecto.Schema

 schema "profiles" do
 field :name
 field :first_name, :string, virtual: true
 field :last_name, :string, virtual: true
 ...
 end
end
It is not hard to see how we are polluting our Profile schema with UI requirements by adding fields such first_name and last_name. If the Profile schema is used for both reading and writing data, it may end-up in an awkward place where it is not useful for any, as it contains fields that map just to one or the other operation.
One alternative solution is to break the "Database <-> Ecto schema <-> Forms / API" mapping in two parts. The first will cast and validate the external data with its own structure which you then transform and write to the database. For such, let's define a schema named Registration that will take care of casting and validating the form data exclusively, mapping directly to the UI fields:
defmodule Registration do
 use Ecto.Schema

 embedded_schema do
 field :first_name
 field :last_name
 field :email
 end
end
We used embedded_schema because it is not our intent to persist it anywhere. With the schema in hand, we can use Ecto changesets and validations to process the data:
fields = [:first_name, :last_name, :email]

changeset =
 %Registration{}
 |> Ecto.Changeset.cast(params["sign_up"], fields)
 |> validate_required(...)
 |> validate_length(...)
Now that the registration changes are mapped and validated, we can check if the resulting changeset is valid and act accordingly:
if changeset.valid? do
 # Get the modified registration struct from changeset
 registration = Ecto.Changeset.apply_changes(changeset)
 account = Registration.to_account(registration)
 profile = Registration.to_profile(registration)

 MyApp.Repo.transact(fn ->
 MyApp.Repo.insert_all("accounts", [account])
 MyApp.Repo.insert_all("profiles", [profile])
 end)

 {:ok, registration}
else
 # Annotate the action so the UI shows errors
 changeset = %{changeset | action: :registration}
 {:error, changeset}
end
The to_account/1 and to_profile/1 functions in Registration would receive the registration struct and split the attributes apart accordingly:
def to_account(registration) do
 Map.take(registration, [:email])
end

def to_profile(%{first_name: first, last_name: last}) do
 %{name: "#{first} #{last}"}
end
In the example above, by breaking apart the mapping between the database and Elixir and between Elixir and the UI, our code becomes clearer and our data structures simpler.
Note we have used MyApp.Repo.insert_all/2 to add data to both "accounts" and "profiles" tables directly. We have chosen to bypass schemas altogether. However, there is nothing stopping you from also defining both Account and Profile schemas and changing to_account/1 and to_profile/1 to respectively return %Account{} and %Profile{} structs. Once structs are returned, they could be inserted through the usual MyApp.Repo.insert/2 operation. One can also check for uniqueness or other constraints during insertion by wrapping the structs in a changeset.
Schemaless changesets
Although we chose to define a Registration schema to use in the changeset, Ecto also allows developers to use changesets without schemas. We can dynamically define the data and their types. Let's rewrite the registration changeset above to bypass schemas:
data = %{}
types = %{name: :string, email: :string}

The data+types tuple is equivalent to %Registration{}
changeset =
 {data, types}
 |> Ecto.Changeset.cast(params["sign_up"], Map.keys(types))
 |> validate_required(...)
 |> validate_length(...)
You can use this technique to validate API endpoints, search forms, and other sources of data. The choice of using schemas depends mostly if you want to use the same mapping in different places or if you desire the compile-time guarantees Elixir structs gives you. Otherwise, you can bypass schemas altogether, be it when using changesets or interacting with the repository.
However, the most important lesson in this guide is not when to use or not to use schemas, but rather understand when a big problem can be broken into smaller problems that can be solved independently leading to an overall cleaner solution. The choice of using schemas or not above didn't affect the solution as much as the choice of breaking the registration problem apart.

 Duration Types with Postgrex

As of Ecto 3.12.0, Ecto supports a :duration type which maps to Elixir's Duration struct (available as of Elixir 1.17).
One natural use case for this is when using Postgres's interval type. Historically, Postgrex loads intervals from the database into a custom Postgrex.Interval struct. With the introduction of Duration, there is now the option to choose between the two. Please follow the steps below to enable mapping to Duration.
	Define your migration

create table("movies") do
 add :running_time, :interval
end
	Define your schema

defmodule Movie do
 use Ecto.Schema

 schema "movies" do
 field :running_time, :duration
 end
end
	Define your custom Postgrex type module and specify intervals should decode to Duration

Inside lib/my_app/postgrex_types.ex

Postgrex.Types.define(MyApp.PostgrexTypes, [], interval_decode_type: Duration)
	 Make Ecto aware of the Postgrex type module in your configuration

config :my_app, MyApp.Repo, types: MyApp.PostgresTypes

 Dynamic queries

Ecto was designed from the ground up to have an expressive query API that leverages Elixir syntax to write queries that are pre-compiled for performance and safety. When building queries, we may use the keywords syntax
import Ecto.Query

from p in Post,
 where: p.author == "José" and p.category == "Elixir",
 where: p.published_at > ^minimum_date,
 order_by: [desc: p.published_at]
or the pipe-based one
import Ecto.Query

Post
|> where([p], p.author == "José" and p.category == "Elixir")
|> where([p], p.published_at > ^minimum_date)
|> order_by([p], desc: p.published_at)
Both APIs are also composable. For example, imagine you want to abstract the published_at filtering and sorting into a function, with the keyword syntax you could write:
def most_recent_from(query, minimum_date) do
 from p in query,
 where: p.published_at > ^minimum_date,
 order_by: [desc: p.published_at]
end
and with the pipe syntax:
def most_recent_from(query, minimum_date) do
 query
 |> where([p], p.published_at > ^minimum_date)
 |> order_by([p], desc: p.published_at)
end
The examples above show you can build and compose queries at a high-level: by composing each call to where, order_by, and so on. However, sometimes you want the contents of the where or the order_by themselves to be defined dynamically. For example, a web application that provides search functionality on top of existing posts. The user should be able to specify multiple criteria, such as the author name, the post category, publishing interval, etc.
Furthermore, while many developers prefer the pipe-based syntax, having to repeat the binding p made it quite verbose compared to the keyword one.
To solve those problems, Ecto also provides a data-structure centric API to build queries as well as a very powerful mechanism for dynamic queries. Let's take a look.
Focusing on data structures
Ecto provides a simpler API for both keyword and pipe based queries by making data structures first-class. Let's see an example:
from p in Post,
 where: [author: "José", category: "Elixir"],
 where: p.published_at > ^minimum_date,
 order_by: [desc: :published_at]
and
Post
|> where(author: "José", category: "Elixir")
|> where([p], p.published_at > ^minimum_date)
|> order_by(desc: :published_at)
Notice how we were able to ditch the p selector in most expressions. All Ecto constructs accept data structures as input. Such data structures can also be specified dynamically, shown below:
where = [author: "José", category: "Elixir"]
order_by = [desc: :published_at]
Post
|> where(^where)
|> where([p], p.published_at > ^minimum_date)
|> order_by(^order_by)
While using data-structures already brings a good amount of flexibility to Ecto queries, not all expressions can be converted to data structures. For example, where converts a key-value to a key == value comparison, and therefore order-based comparisons such as p.published_at > ^minimum_date need to be written as before.
Dynamic fragments
For cases where we cannot rely on data structures but still desire to build queries dynamically, Ecto includes the Ecto.Query.dynamic/2 macro.
The dynamic macro allows us to conditionally build query fragments and interpolate them in the main query. For example, imagine that in the example above you may optionally filter posts by a date of publication. You could of course write it like this:
query =
 Post
 |> where(^where)
 |> order_by(^order_by)

query =
 if published_at = params["published_at"] do
 where(query, [p], p.published_at < ^published_at)
 else
 query
 end
But with dynamic fragments, you can also write it as:
where = [author: "José", category: "Elixir"]
order_by = [desc: :published_at]

filter_published_at =
 if published_at = params["published_at"] do
 dynamic([p], p.published_at < ^published_at)
 else
 true
 end

Post
|> where(^where)
|> where(^filter_published_at)
|> order_by(^order_by)
The dynamic macro allows us to build dynamic expressions that are later interpolated into the query. dynamic expressions can also be interpolated into dynamic expressions, allowing developers to build complex expressions dynamically without hassle.
By using dynamic fragments, we can decouple the processing of parameters from the query generation. Let's see a more complex example.
Building dynamic queries
Let's go back to the original problem. We want to build a search functionality where the user can configure how to traverse all posts in many different ways. For example, the user may choose how to order the data, filter by author and category, as well as select posts published after a certain date.
To tackle this in Ecto, we can break our problem into a bunch of small functions, that build either data structures or dynamic fragments, and then we interpolate it into the query:
def filter(params) do
 Post
 |> order_by(^filter_order_by(params["order_by"]))
 |> where(^filter_where(params))
end

def filter_order_by("published_at_desc"),
 do: [desc: dynamic([p], p.published_at)]

def filter_order_by("published_at"),
 do: [asc: dynamic([p], p.published_at)]

def filter_order_by(_),
 do: []

def filter_where(params) do
 Enum.reduce(params, dynamic(true), fn
 {"author", value}, dynamic ->
 dynamic([p], ^dynamic and p.author == ^value)

 {"category", value}, dynamic ->
 dynamic([p], ^dynamic and p.category == ^value)

 {"published_at", value}, dynamic ->
 dynamic([p], ^dynamic and p.published_at > ^value)

 {_, _}, dynamic ->
 # Not a where parameter
 dynamic
 end)
end
Because we were able to break our problem into smaller functions that receive regular data structures, we can use all the tools available in Elixir to work with data. For handling the order_by parameter, it may be best to simply pattern match on the order_by parameter. For building the where clause, we can use reduce to start with an empty dynamic (that always returns true) and refine it with new conditions as we traverse the parameters.
Testing also becomes simpler as we can test each function in isolation, even when using dynamic queries:
test "filter published at based on the given date" do
 assert dynamic_match?(
 filter_where(%{}),
 "true"
)

 assert dynamic_match?(
 filter_where(%{"published_at" => "2010-04-17"}),
 "true and q.published_at > ^\"2010-04-17\""
)
end

defp dynamic_match?(dynamic, string) do
 inspect(dynamic) == "dynamic([q], #{string})"
end
In the example above, we created a small helper that allows us to assert on the dynamic contents by matching on the results of inspect(dynamic).
Dynamic and joins
Even query joins can be tackled dynamically. For example, let's do two modifications to the example above. Let's say we can also sort by author name ("author_name" and "author_name_desc") and at the same time let's say that authors are in a separate table, which means our authors filter in filter_where now need to go through the join table.
Our final solution would look like this:
def filter(params) do
 Post
 # 1. Add named join binding
 |> join(:inner, [p], assoc(p, :authors), as: :authors)
 |> order_by(^filter_order_by(params["order_by"]))
 |> where(^filter_where(params))
end

2. Returned dynamic with join binding
def filter_order_by("published_at_desc"),
 do: [desc: dynamic([p], p.published_at)]

def filter_order_by("published_at"),
 do: dynamic([p], p.published_at)

def filter_order_by("author_name_desc"),
 do: [desc: dynamic([authors: a], a.name)]

def filter_order_by("author_name"),
 do: dynamic([authors: a], a.name)

def filter_order_by(_),
 do: []

3. Change the authors clause inside reduce
def filter_where(params) do
 Enum.reduce(params, dynamic(true), fn
 {"author", value}, dynamic ->
 dynamic([authors: a], ^dynamic and a.name == ^value)

 {"category", value}, dynamic ->
 dynamic([p], ^dynamic and p.category == ^value)

 {"published_at", value}, dynamic ->
 dynamic([p], ^dynamic and p.published_at > ^value)

 {_, _}, dynamic ->
 # Not a where parameter
 dynamic
 end)
end
Adding more filters in the future is simply a matter of adding more clauses to the Enum.reduce/3 call in filter_where.

 Embedded Schemas

Embedded schemas allow you to define and validate structured data. This data can live in memory, or can be stored in the database. Some use cases for embedded schemas include:
	You are maintaining intermediate-state data, like when UI form fields map onto multiple tables in a database, or to model entities which are not backed by a database, such as a contact form

	You are working within a persisted parent schema and you want to embed data that is...
	simple, like a map of user preferences inside a User schema.
	changes often, like a list of product images with associated structured data inside a Product schema.
	requires complex tracking and validation, like an Address schema inside a User schema.

	You are using a document storage database and you want to interact with and manipulate embedded documents.

User Profile Example
Let's explore an example where we have a User and want to store "profile" information about them. The data we want to store is UI-dependent information which is likely to change over time alongside changes in the UI. Also, this data is not necessarily important enough to warrant new User fields in the User schema, as it is not data that is fundamental to the User. An embedded schema is a good solution for this kind of data.
defmodule User do
 use Ecto.Schema

 schema "users" do
 field :full_name, :string
 field :email, :string
 field :avatar_url, :string
 field :confirmed_at, :naive_datetime

 embeds_one :profile, Profile do
 field :online, :boolean
 field :dark_mode, :boolean
 field :visibility, Ecto.Enum, values: [:public, :private, :friends_only]
 end

 timestamps()
 end
end
Embeds
There are two ways to represent embedded data within a schema, Ecto.Schema.embeds_many/3, which creates a list of embeds, and Ecto.Schema.embeds_one/3, which creates only a single instance of the embed. Your choice here affects the behavior of embed-specific functions like Ecto.Changeset.put_embed/4 and Ecto.Changeset.cast_embed/3, so choose whichever is most appropriate to your use case. In our example we are going to use Ecto.Schema.embeds_one/3 since users will only ever have one profile associated with them.
defmodule User do
 use Ecto.Schema

 schema "users" do
 field :full_name, :string
 field :email, :string
 field :avatar_url, :string
 field :confirmed_at, :naive_datetime

 embeds_one :profile, Profile do
 field :online, :boolean
 field :dark_mode, :boolean
 field :visibility, Ecto.Enum, values: [:public, :private, :friends_only]
 end

 timestamps()
 end
end
Embedded schemas defined in such way are said to be defined inline, which means that they are:
	generated as a module in the parent scope with the appropriate struct (for the example above, the module will be User.Profile)
	persisted within the parent schema
	required to provide the with option to Ecto.Changeset.cast_embed/3

Extracting the embeds
While the above User schema is simple and sufficient, we might want to work independently with the embedded profile struct. For example, if there was a lot of functionality devoted solely to manipulating the profile data, we'd want to consider extracting the embedded schema into its own module. This can be achieved with Ecto.Schema.embedded_schema/1.
user/user.ex
defmodule User do
 use Ecto.Schema

 schema "users" do
 field :full_name, :string
 field :email, :string
 field :avatar_url, :string
 field :confirmed_at, :naive_datetime

 embeds_one :profile, UserProfile

 timestamps()
 end
end

user/user_profile.ex
defmodule UserProfile do
 use Ecto.Schema

 embedded_schema do
 field :online, :boolean
 field :dark_mode, :boolean
 field :visibility, Ecto.Enum, values: [:public, :private, :friends_only]
 end
end
Embedded schemas defined in such way are said to be explicit-defined, which:
	are dedicated modules having own scope, changeset functions, props, documentation, etc...
	could be embedded by multiple parent schemas
	are persistence agnostic, which means that embedded_schema doesn't require to be persisted

It is important to remember that embedded_schema has many use cases independent of embeds_one and embeds_many. As they are persistent agnostic, they are ideal for scenarios where you want to manage structured data without necessarily persisting it. For example, if you want to build a contact form, you still want to parse and validate the data, but the data is likely not persisted anywhere. Instead, it is used to send an email. Embedded schemas would be a good fit for such a use case.
Migrations
If you wish to save your embedded schema to the database, you need to write a migration to include the embedded data.
alter table("users") do
 add :profile, :map
end
Whether you use embeds_one or embeds_many, it is recommended to use the :map data type (although {:array, :map} will work with embeds_many as well). The reason is that typical relational databases are likely to represent a :map as JSON (or JSONB in Postgres), allowing Ecto adapter libraries more flexibility over how to efficiently store the data.
Changesets
Changeset functionality for embeds will allow you to enforce arbitrary validations on the data. You can define a changeset function for each module. For example, the UserProfile module could require the online and visibility fields to be present when generating a changeset.
defmodule UserProfile do
 # ...

 def changeset(%UserProfile{} = profile, attrs \\ %{}) do
 profile
 |> cast(attrs, [:online, :dark_mode, :visibility])
 |> validate_required([:online, :visibility])
 end
end

profile = %UserProfile{}
UserProfile.changeset(profile, %{online: true, visibility: :public})
Meanwhile, the User changeset function can require its own validations without worrying about the details of the UserProfile changes because it can pass that responsibility to UserProfile via cast_embed/3. A validation failure in an embed will cause the parent changeset to be invalid, even if the parent changeset itself had no errors.
defmodule User do
 # ...

 def changeset(user, attrs \\ %{}) do
 user
 |> cast(attrs, [:full_name, :email, :avatar_url])
 |> cast_embed(:profile, required: true)
 end
end

changeset = User.changeset(%User{}, %{profile: %{online: true}})
changeset.valid? # => false; "visibility can't be blank"
changeset = User.changeset(%User{}, %{profile: %{online: true, visibility: :public}})
changeset.valid? # => true
In situations where you have kept the embedded schema within the parent module, e.g., you have not extracted a UserProfile, you can still have custom changeset functions for the embedded data within the parent schema.
defmodule User do
 use Ecto.Schema

 schema "users" do
 field :full_name, :string
 field :email, :string
 field :avatar_url, :string
 field :confirmed_at, :naive_datetime

 embeds_one :profile, Profile do
 field :online, :boolean
 field :dark_mode, :boolean
 field :visibility, Ecto.Enum, values: [:public, :private, :friends_only]
 end

 timestamps()
 end

 def changeset(%User{} = user, attrs \\ %{}) do
 user
 |> cast(attrs, [:full_name, :email])
 |> cast_embed(:profile, required: true, with: &profile_changeset/2)
 end

 def profile_changeset(profile, attrs \\ %{}) do
 profile
 |> cast(attrs, [:online, :dark_mode, :visibility])
 |> validate_required([:online, :visibility])
 end
end

changeset = User.changeset(%User{}, %{profile: %{online: true, visibility: :public}})
changeset.valid? # => true
Querying embedded data
Once you have written embedded data to the database, you can use it in queries on the parent schema.
user_changeset = User.changeset(%User{}, %{profile: %{online: true, visibility: :public}})
{:ok, _user} = Repo.insert(user_changeset)

(Ecto.Query.from u in User, select: {u.profile["online"], u.profile["visibility"]}) |> Repo.one
=> {true, "public"}

(Ecto.Query.from u in User, select: u.profile, where: u.profile["visibility"] == ^:public) |> Repo.all
=> [
%UserProfile{
id: "...",
online: true,
dark_mode: nil,
visibility: :public
}
#]
In databases where :maps are stored as JSONB (like Postgres), Ecto constructs the appropriate jsonpath queries for you. More examples of embedded schema queries are documented in json_extract_path/2.

 Multi tenancy with query prefixes

With Ecto we can run queries in different prefixes using a single pool of database connections. For databases engines such as Postgres, Ecto's prefix maps to Postgres' DDL schemas. For MySQL, each prefix is a different database on its own.
Multi-tenancy and migrations
When working with multi-tenant databases, you need to apply database migrations (such as adding/removing tables, columns, and indexes) to each tenant. If your application grows to dozens of thousands of tenants or more, those migrations can eventually become too expensive and take a long time to complete.
Query prefixes may be useful in different scenarios. For example, multi tenant apps running on PostgreSQL would define multiple prefixes, usually one per client, under a single database. The idea is that prefixes will provide data isolation between the different users of the application, guaranteeing either globally or at the data level that queries and commands act on a specific tenants.
Prefixes may also be useful on high-traffic applications where data is partitioned upfront. For example, a gaming platform may break game data into isolated partitions, each named after a different prefix. A partition for a given player is either chosen at random or calculated based on the player information.
Given each tenant has its own database structure, multi tenancy with query prefixes is expensive to setup. For example, migrations have to run individually for each prefix. Therefore this approach is useful when there is a limited or a slowly growing number of tenants.
Let's get started. Note all the examples below assume you are using PostgreSQL. Other databases engines may require slightly different solutions.
Connection prefixes
As a starting point, let's start with a simple scenario: your application must connect to a particular prefix when running in production. This may be due to infrastructure conditions, database administration rules or others.
Let's define a repository and a schema to get started:
lib/repo.ex
defmodule MyApp.Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres
end

lib/sample.ex
defmodule MyApp.Sample do
 use Ecto.Schema

 schema "samples" do
 field :name
 timestamps
 end
end
Now let's configure the repository:
config/config.exs
config :my_app, MyApp.Repo,
 username: "postgres",
 password: "postgres",
 database: "demo",
 hostname: "localhost",
 pool_size: 10
And define a migration:
priv/repo/migrations/20160101000000_create_sample.exs
defmodule MyApp.Repo.Migrations.CreateSample do
 use Ecto.Migration

 def change do
 create table(:samples) do
 add :name, :string
 timestamps()
 end
 end
end
Now let's create the database, migrate it and then start an IEx session:
$ mix ecto.create
$ mix ecto.migrate
$ iex -S mix
Interactive Elixir - press Ctrl+C to exit
iex(1)> MyApp.Repo.all MyApp.Sample
[]

We haven't done anything unusual so far. We created our database instance, made it up to date by running migrations and then successfully made a query against the "samples" table, which returned an empty list.
By default, connections to Postgres' databases run on the "public" prefix. When we run migrations and queries, they are all running against the "public" prefix. However imagine your application has a requirement to run on a particular prefix in production, let's call it "connection_prefix".
Luckily Postgres allows us to change the prefix our database connections run on by setting the "schema search path". The best moment to change the search path is right after we setup the database connection, ensuring all of our queries will run on that particular prefix, throughout the connection life-cycle.
To do so, let's change our database configuration in "config/config.exs" and specify an :after_connect option. :after_connect expects a tuple with module, function and arguments it will invoke with the connection process, as soon as a database connection is established:
query_args = ["SET search_path TO connection_prefix", []]

config :my_app, MyApp.Repo,
 username: "postgres",
 password: "postgres",
 database: "demo_dev",
 hostname: "localhost",
 pool_size: 10,
 after_connect: {Postgrex, :query!, query_args}
Now let's try to run the same query as before:
$ iex -S mix
Interactive Elixir - press Ctrl+C to exit
iex(1)> MyApp.Repo.all MyApp.Sample
** (Postgrex.Error) ERROR (undefined_table):
 relation "samples" does not exist

Our previously successful query now fails because there is no table "samples" under the new prefix. Let's try to fix that by running migrations:
$ mix ecto.migrate
** (Postgrex.Error) ERROR (invalid_schema_name):
 no schema has been selected to create in

Oops. Now migration says there is no such schema name. That's because Postgres automatically creates the "public" prefix every time we create a new database. If we want to use a different prefix, we must explicitly create it on the database we are running on:
$ psql -d demo_dev -c "CREATE SCHEMA connection_prefix"

Now we are ready to migrate and run our queries:
$ mix ecto.migrate
$ iex -S mix
Interactive Elixir - press Ctrl+C to exit
iex(1)> MyApp.Repo.all MyApp.Sample
[]

Data in different prefixes are isolated. Writing to the "samples" table in one prefix cannot be accessed by the other unless we change the prefix in the connection or use the Ecto conveniences we will discuss next.
Schema prefixes
Ecto also allows you to set a particular schema to run on a specific prefix. Imagine you are building a multi-tenant application. Each client data belongs to a particular prefix, such as "client_foo", "client_bar" and so forth. Yet your application may still rely on a set of tables that are shared across all clients. One of such tables may be exactly the table that maps the Client ID to its database prefix. Let's assume we want to store this data in a prefix named "main":
defmodule MyApp.Mapping do
 use Ecto.Schema

 @schema_prefix "main"
 schema "mappings" do
 field :client_id, :integer
 field :db_prefix
 timestamps
 end
end
Now running MyApp.Repo.all MyApp.Mapping will by default run on the "main" prefix, regardless of the value configured for the connection on the :after_connect callback. However, we may want to override the schema prefix too and Ecto gives us the opportunity to do so, let's see how.
Per-query and per-struct prefixes
Now, suppose that while still configured to connect to the "connection_prefix" on :after_connect, we run the following queries:
iex(1)> alias MyApp.Sample
MyApp.Sample
iex(2)> MyApp.Repo.all(Sample)
[]
iex(3)> MyApp.Repo.insert(%Sample{name: "mary"})
{:ok, %MyApp.Sample{...}}
iex(4)> MyApp.Repo.all(Sample)
[%MyApp.Sample{...}]
The operations above ran on the "connection_prefix". So what happens if we try to run the sample query on the "public" prefix? All Ecto repository operations support the :prefix option. So let's set it to public.
iex(7)> MyApp.Repo.all(Sample)
[%MyApp.Sample{...}]
iex(8)> MyApp.Repo.all(Sample, prefix: "public")
[]
Notice how we were able to change the prefix the query runs on. Back in the default "public" prefix, there is no data.
One interesting aspect of prefixes in Ecto is that the prefix information is carried along each struct returned by a query:
iex(9)> [sample] = MyApp.Repo.all(Sample)
[%MyApp.Sample{}]
iex(10)> Ecto.get_meta(sample, :prefix)
nil
The example above returned nil, which means no prefix was specified by Ecto, and therefore the database connection default will be used. In this case, "connection_prefix" will be used because of the :after_connect callback we added at the beginning of this guide.
Since the prefix data is carried in the struct, we can use such to copy data from one prefix to the other. Let's copy the sample above from the "connection_prefix" to the "public" one:
iex(11)> new_sample = Ecto.put_meta(sample, prefix: "public")
%MyApp.Sample{}
iex(12)> MyApp.Repo.insert(new_sample)
{:ok, %MyApp.Sample{}}
iex(13)> [sample] = MyApp.Repo.all(Sample, prefix: "public")
[%MyApp.Sample{}]
iex(14)> Ecto.get_meta(sample, :prefix)
"public"
Now we have data inserted in both prefixes. Note how we passed the :prefix option to MyApp.Repo.all. Almost all Repo operations accept :prefix as an option, with one important distinction:
	the :prefix option in query operations (all/2, update_all/2, and delete_all/2) is a fallback. It will only be used when a @schema_prefix or a query prefix was not previously specified

	the :prefix option in schema operations (insert_all/3, insert/2, update/2, etc) will override the @schema_prefix as well as any prefix in the struct/changeset

This difference in behaviour is by design: we want to allow flexibility when writing queries but we want to enforce struct/changeset operations to always work isolated within a given prefix. In fact, if call MyApp.Repo.insert(post) or MyApp.Repo.update(post), and the post includes associations, the associated data will also be inserted/updated in the same prefix as post.
Per from/join prefixes
Finally, Ecto allows you to set the prefix individually for each from and join expression. Here's an example:
from p in Post, prefix: "foo",
 join: c in Comment, prefix: "bar"
Those will take precedence over all other prefixes we have defined so far. For each join/from in the query, the prefix used will be determined by the following order:
	If the prefix option is given exclusively to join/from
	If the @schema_prefix is set in the related schema
	If the :prefix field given to the repo operation (i.e. Repo.all(query, prefix: prefix))
	The connection prefix

Migration prefixes
When the connection prefix is set, it also changes the prefix migrations run on. However it is also possible to set the prefix through the command line or per table in the migration itself.
For example, imagine you are a gaming company where the game is broken in 128 partitions, named "prefix_1", "prefix_2", "prefix_3" up to "prefix_128". Now, whenever you need to migrate data, you need to migrate data on all different 128 prefixes. There are two ways of achieve that.
The first mechanism is to invoke mix ecto.migrate multiple times, once per prefix, passing the --prefix option:
$ mix ecto.migrate --prefix "prefix_1"
$ mix ecto.migrate --prefix "prefix_2"
$ mix ecto.migrate --prefix "prefix_3"
...
$ mix ecto.migrate --prefix "prefix_128"

The other approach is by changing each desired migration to run across multiple prefixes. For example:
defmodule MyApp.Repo.Migrations.CreateSample do
 use Ecto.Migration

 def change do
 for i <- 1..128 do
 prefix = "prefix_#{i}"
 create table(:samples, prefix: prefix) do
 add :name, :string
 timestamps()
 end

 # Execute the commands on the current prefix
 # before moving on to the next prefix
 flush()
 end
 end
end
Summing up
Ecto provides many conveniences for working with querying prefixes. Those conveniences allow developers to configure prefixes with different precedence, starting with the highest one. When executing queries with all, update_all or delete_all, the prefix is computed as follows:
	from/join prefixes
	schema prefixes
	the :prefix option
	connection prefixes

When working with schemas and changesets in insert_all, insert, update, and so forth, the precedence is:
	the :prefix option
	changeset prefixes
	schema prefixes
	connection prefixes

This way developers can tackle different scenarios from production requirements to multi-tenant applications.

 Multi tenancy with foreign keys

In Multi tenancy with query prefixes, we have learned how to set up multi tenant applications by using separate query prefixes, known as DDL Schemas in PostgreSQL and MSSQL and simply a separate database in MySQL.
Each query prefix is isolated, having their own tables and data, which provides the security guarantees we need. On the other hand, such approach for multi tenancy may be too expensive, as each schema needs to be created, migrated, and versioned separately.
Therefore, some applications may prefer a cheaper mechanism for multi tenancy, by relying on foreign keys. The idea here is that most - if not all - resources in the system belong to a tenant. The tenant is typically an organization or a user and all resources have an org_id (or user_id) foreign key pointing directly to it.
In this guide, we will show how to leverage Ecto constructs to guarantee that all Ecto queries in your application are properly scoped to a chosen org_id.
Adding org_id to read operations
The first step in our implementation is to make the repository aware of org_id. We want to allow commands such as:
MyApp.Repo.all Post, org_id: 13
Where the repository will automatically scope all posts to the organization with ID=13. We can achieve this with the Ecto.Repo.prepare_query/3 repository callback:
defmodule MyApp.Repo do
 use Ecto.Repo, otp_app: :my_app

 require Ecto.Query

 @impl true
 def prepare_query(_operation, query, opts) do
 cond do
 opts[:skip_org_id] || opts[:ecto_query] in [:schema_migration, :preload] ->
 {query, opts}

 org_id = opts[:org_id] ->
 {Ecto.Query.where(query, org_id: ^org_id), opts}

 true ->
 raise "expected org_id or skip_org_id to be set"
 end
 end
end
Now we can pass :org_id to all READ operations, such as get, get_by, preload, etc and all query operations, such all, update_all, and delete_all. Note we have intentionally made the :org_id required, with the exception of two scenarios:
	if you explicitly set :skip_org_id to true, it won't require an :org_id. This reduces the odds of a developer forgetting to scope their queries, which can accidentally expose private data to other users

	if the :ecto_query option is set. This means the repository operation was issued by Ecto itself, with value :schema_migration when migrating our database, or :preload when issuing a preload query, and we don't want to apply an org_id to them

Still, setting the org_id for every operation is cumbersome and error prone. We will be better served if all operations attempt to set an org_id.
Setting org_id by default
To make sure our read operations use the org_id by default, we will make two additional changes to the repository.
First, we will store the org_id in the process dictionary. The process dictionary is a storage that is exclusive to each process. For example, each test in your project runs in a separate process. Each request in a web application runs in a separate process too. Each of these processes have their own dictionary which we will store and read from. Let's add these functions:
defmodule MyApp.Repo do
 ...

 @tenant_key {__MODULE__, :org_id}

 def put_org_id(org_id) do
 Process.put(@tenant_key, org_id)
 end

 def get_org_id() do
 Process.get(@tenant_key)
 end
end
We added two new functions. The first, put_org_id, stores the organization id in the process dictionary. get_org_id reads the value in the process dictionary.
You will want to call put_org_id on every process before you use the repository. For example, on every request in a web application, as soon as you read the current organization from the request parameter or the session, you should call MyApp.Repo.put_org_id(params_org_id). In tests, you want to explicitly set the put_org_id or pass the :org_id option as in the previous section.
The second change we need to do is to set the org_id as a default option on all repository operations. The value of org_id will be precisely the value in the process dictionary. We can do so trivially by implementing the default_options callback:
defmodule MyApp.Repo do
 ...

 @impl true
 def default_options(_operation) do
 [org_id: get_org_id()]
 end
end
With these changes, we will always set the org_id field in our Ecto queries, unless we explicitly set skip_org_id: true when calling the repository. The only remaining step is to make sure the org_id field is not null in your database tables and make sure the org_id is set whenever inserting into the database.
To better understand how our database schema should look like, let's discuss some other techniques that we can use to tighten up multi tenant support, especially in regards to associations.
Working with multi tenant associations
Let's expand our data domain a little bit.
So far we have assumed there is an organization schema. However, instead of naming its primary key id, we will name it org_id, so Repo.one(Org, org_id: 13) just works:
defmodule MyApp.Organization do
 use Ecto.Schema

 @primary_key {:org_id, :id, autogenerate: true}
 schema "orgs" do
 field :name
 timestamps()
 end
end
Let's also say that you may have multiple posts in an organization and the posts themselves may have multiple comments:
defmodule MyApp.Post do
 use Ecto.Schema

 schema "posts" do
 field :title
 field :org_id, :integer
 has_many :comments, MyApp.Comment
 timestamps()
 end
end

defmodule MyApp.Comment do
 use Ecto.Schema

 schema "comments" do
 field :body
 field :org_id, :integer
 belongs_to :post, MyApp.Post
 timestamps()
 end
end
One thing to have in mind is that, our prepare_query callback will apply to all queries, but it won't apply to joins inside the same query. Therefore, if you write this query:
MyApp.Repo.put_org_id(some_org_id)

MyApp.Repo.all(
 from p in Post, join: c in assoc(p, :comments)
)
prepare_query will apply the org_id only to posts but not to the join. While this may seem problematic, in practice it is not an issue, because when you insert posts and comments in the database, they will always have the same org_id. If posts and comments do not have the same org_id, then there is a bug: the data either got corrupted or there is a bug in our software when inserting data.
Luckily, we can leverage database's foreign keys to guarantee that the org_ids always match between posts and comments. Our first stab at defining these schema migrations would look like this:
create table(:orgs, primary_key: false) do
 add :org_id, :bigserial, primary_key: true
 add :name, :string
 timestamps()
end

create table(:posts) do
 add :title, :string

 add :org_id,
 references(:orgs, column: :org_id),
 null: false

 timestamps()
end

create table(:comments) do
 add :body, :string
 add :org_id, references(:orgs), null: false
 add :post_id, references(:posts), null: false
 timestamps()
end
So far the only noteworthy change compared to a regular migration is the primary_key: false option to the :orgs table, as we want to mirror the primary key of org_id given to the schema. While the schema above works and guarantees that posts references an existing organization and that comments references existing posts and organizations, it does not guarantee that all posts and their related comments belong to the same organization.
We can tighten up this requirement by using composite foreign keys with the following changes:
create unique_index(:posts, [:id, :org_id])

create table(:comments) do
 add :body, :string

 # There is no need to define a reference for org_id
 add :org_id, :integer, null: false

 # Instead define a composite foreign key
 add :post_id,
 references(:posts, with: [org_id: :org_id]),
 null: false

 timestamps()
end
Instead of defining both post_id and org_id as individual foreign keys, we define org_id as a regular integer and then we define post_id+org_id as a composite foreign key by passing the :with option to Ecto.Migration.references/2. This makes sure comments point to posts which point to orgs, where all org_ids match.
Given composite foreign keys require the referenced keys to be unique, we also defined a unique index on the posts table before we defined the composite foreign key.
If you are using PostgreSQL and you want to tighten these guarantees even further, you can pass the match: :full option to references:
references(:posts, with: [org_id: :org_id], match: :full)
which will help enforce none of the columns in the foreign key can be nil.
Summary
In this guide, we have changed our repository interface to guarantee our queries are always scoped to an org_id, unless we explicitly opt out. We also learned how to leverage database features to enforce the data is always valid.
When it comes to associations, you will want to apply composite foreign keys whenever possible. For example, imagine comments belongs to posts (which belong to an organization) and also to user (which belong to an organization). The comments schema migration should be defined like this:
create table(:comments) do
 add :body, :string
 add :org_id, :integer, null: false

 add :post_id,
 references(:posts, with: [org_id: :org_id]),
 null: false

 add :user_id,
 references(:users, with: [org_id: :org_id]),
 null: false

 timestamps()
end
As long as all schemas have an org_id, all operations will be safely contained by the current tenant.
If by any chance you have schemas that are not tied to an org_id, you can even consider keeping them in a separate query prefix or in a separate database altogether, so you keep non-tenant data completely separated from tenant-specific data.

 Self-referencing many to many

Ecto.Schema.many_to_many/3 is used to establish the association between two schemas with a join table (or a join schema) tracking the relationship between them. But, what if we want the same table to reference itself? This is commonly used for symmetric relationships and is often referred to as a self-referencing many_to_many association.
People relationships
Let's imagine we are building a system that supports a model for relationships between people.
defmodule MyApp.Accounts.Person do
 use Ecto.Schema

 alias MyApp.Accounts.Person
 alias MyApp.Relationships.Relationship

 schema "people" do
 field :name, :string

 many_to_many :relationships,
 Person,
 join_through: Relationship,
 join_keys: [person_id: :id, relation_id: :id]

 many_to_many :reverse_relationships,
 Person,
 join_through: Relationship,
 join_keys: [relation_id: :id, person_id: :id]

 timestamps()
 end
end

defmodule MyApp.Relationships.Relationship do
 use Ecto.Schema

 schema "relationships" do
 field :person_id, :id
 field :relation_id, :id
 timestamps()
 end
end
In our example, we implement an intermediate schema, MyApp.Relationships.Relationship, on our :join_through option and pass in a pair of ids that we will be creating a unique index on in our database migration. By implementing an intermediate schema, we make it easy to add additional attributes and functionality to relationships in the future.
We had to create an additional many_to_many :reverse_relationships call with an inverse of the :join_keys in order to finish the other half of the association. This ensures that both sides of the relationship will get added in the database when either side completes a successful relationship request.
The person who is the inverse of the relationship will have the relationship struct stored in a list under the "reverse_relationships" key. We can then construct queries for both :relationships and :reverse_relationships with the proper :preload:
iex> preloads = [:relationships, :reverse_relationships]
iex> people = Repo.all from p in Person, preload: preloads
[
 MyApp.Accounts.Person<
 ...
 relationships: [
 MyApp.Accounts.Person<
 id: ...,
 ...
 >
]
 >,
 MyApp.Accounts.Person<
 ...
 reverse_relationships: [
 MyApp.Accounts.Person<
 id: ...,
 ...
 >
]
 >
]
In the example query above, we are assuming that we have two "people" that have entered into a relationship. Our query illustrates how one person is added on the :relationships side and the other on the :reverse_relationships side.
It is also worth noticing that we are implementing separate parent modules for both our Person and Relationship modules. This separation of concerns helps improve code organization and maintainability by allowing us to isolate core functions for relationships in the MyApp.Relationships context and vice-versa.
Let's take a look at our Ecto migration:
def change do
 create table(:relationships) do
 add :person_id, references(:people)
 add :relation_id, references(:people)
 timestamps()
 end

 create index(:relationships, [:person_id])
 create index(:relationships, [:relation_id])

 create unique_index(
 :relationships,
 [:person_id, :relation_id],
 name: :relationships_person_id_relation_id_index
)
end
We create indexes on both the :person_id and :relation_id for quicker access in the future. Then, we create one unique index on the :relationships to ensure that people cannot have duplicate relationships. Lastly, we pass a name to the :name option to help clarify the unique constraint when working with our changeset.
In MyApp.Relationships.Relationship
@attrs [:person_id, :relation_id]

def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, @attrs)
 |> Ecto.Changeset.unique_constraint(
 [:person_id, :relation_id],
 name: :relationships_person_id_relation_id_index
)
end
Due to the self-referential nature, we will only need to cast the :join_keys in order for Ecto to correctly associate the two records in the database. When considering production applications, we will most likely want to add additional attributes and validations. This is where our isolation of modules will help us maintain and organize the increasing complexity.
Summary
In this guide we used many_to_many associations to implement a self-referencing symmetric relationship.
Our goal was to allow "people" to associate to different "people". Further, we wanted to lay a strong foundation for code organization and maintainability into the future. We have done this by creating intermediate tables, two separate functional core modules, a clear naming strategy, an inverse association, and by using many_to_many :join_keys to automatically manage those join tables.
Overall, our code contains a small structural modification, when compared with a typical many_to_many, in order to implement an inverse join between our self-referenced table and schema.
Where we go from here will depend greatly on the specific needs of our application. If we remember to adhere to our clear naming strategy with a strong separation of concerns, we will go a long way in keeping our self-referencing many_to_many association organized and easier to maintain.

 Polymorphic associations with many to many

Besides belongs_to, has_many, has_one and :through associations, Ecto also includes many_to_many. many_to_many relationships, as the name says, allows a record from table X to have many associated entries from table Y and vice-versa. Although many_to_many associations can be written as has_many :through, using many_to_many may considerably simplify some workflows.
In this guide, we will talk about polymorphic associations and how many_to_many can remove boilerplate from certain approaches compared to has_many :through.
Todo lists v65131
The internet has seen its share of todo list applications. But that won't stop us from creating our own!
In our case, there is one aspect of todo list applications we are interested in, which is the relationship where the todo list has many todo items. This exact scenario is explored in detail in a post about nested associations and embeds from Dashbit's blog. Let's recap the important points.
Our todo list app has two schemas, Todo.List and Todo.Item:
defmodule MyApp.TodoList do
 use Ecto.Schema

 schema "todo_lists" do
 field :title
 has_many :todo_items, MyApp.TodoItem
 timestamps()
 end
end

defmodule MyApp.TodoItem do
 use Ecto.Schema

 schema "todo_items" do
 field :description
 timestamps()
 end
end
One of the ways to introduce a todo list with multiple items into the database is to couple our UI representation to our schemas. That's the approach we took in the blog post with Phoenix. Roughly:
<%= form_for @todo_list_changeset,
 todo_list_path(@conn, :create),
 fn f -> %>
 <%= text_input f, :title %>
 <%= inputs_for f, :todo_items, fn i -> %>
 ...
 <% end %>
<% end %>
When such a form is submitted in Phoenix, it will send parameters with the following shape:
%{
 "todo_list" => %{
 "title" => "shopping list",
 "todo_items" => %{
 0 => %{"description" => "bread"},
 1 => %{"description" => "eggs"}
 }
 }
}
We could then retrieve those parameters and pass it to an Ecto changeset and Ecto would automatically figure out what to do:
In MyApp.TodoList
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title])
 |> Ecto.Changeset.cast_assoc(:todo_items, required: true)
end

And then in MyApp.TodoItem
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:description])
end
By calling Ecto.Changeset.cast_assoc/3, Ecto will look for a "todo_items" key inside the parameters given on cast, and compare those parameters with the items stored in the todo list struct. Ecto will automatically generate instructions to insert, update or delete todo items such that:
	if a todo item sent as parameter has an ID and it matches an existing associated todo item, we consider that todo item should be updated
	if a todo item sent as parameter does not have an ID (nor a matching ID), we consider that todo item should be inserted
	if a todo item is currently associated but its ID was not sent as parameter, we consider the todo item is being replaced and we act according to the :on_replace callback. By default :on_replace will raise so you choose a behaviour between replacing, deleting, ignoring or nilifying the association

The advantage of using cast_assoc/3 is that Ecto is able to do all of the hard work of keeping the entries associated, as long as we pass the data exactly in the format that Ecto expects. However, such approach is not always preferable and in many situations it is better to design our associations differently or decouple our UIs from our database representation.
Polymorphic todo items
To show an example of where using cast_assoc/3 is just too complicated to be worth it, let's imagine you want your "todo items" to be polymorphic. For example, you want to be able to add todo items not only to "todo lists" but to many other parts of your application, such as projects, milestones, you name it.
First of all, it is important to remember Ecto does not provide the same type of polymorphic associations available in frameworks such as Rails and Laravel. In such frameworks, a polymorphic association uses two columns, the parent_id and parent_type. For example, one todo item would have parent_id of 1 with parent_type of "TodoList" while another would have parent_id of 1 with parent_type of "Project".
The issue with the design above is that it breaks database references. The database is no longer capable of guaranteeing the item you associate to exists or will continue to exist in the future. This leads to an inconsistent database which end-up pushing workarounds to your application.
The design above is also extremely inefficient, especially if you're working with large tables. Bear in mind that if that's your case, you might be forced to remove such polymorphic references in the future when frequent polymorphic queries start grinding the database to a halt even after adding indexes and optimizing the database.
Luckily, the documentation for the Ecto.Schema.belongs_to/3 macro includes a section named "Polymorphic associations" with some examples on how to design sane and performant associations. One of those approaches consists in using several join tables. Besides the "todo_lists" and "projects" tables and the "todo_items" table, we would create "todo_list_items" and "project_items" to associate todo items to todo lists and todo items to projects respectively. In terms of migrations, we are looking at the following:
create table(:todo_lists) do
 add :title
 timestamps()
end

create table(:projects) do
 add :name
 timestamps()
end

create table(:todo_items) do
 add :description
 timestamps()
end

create table(:todo_list_items) do
 add :todo_item_id, references(:todo_items)
 add :todo_list_id, references(:todo_lists)
 timestamps()
end

create table(:project_items) do
 add :todo_item_id, references(:todo_items)
 add :project_id, references(:projects)
 timestamps()
end
By adding one table per association pair, we keep database references and can efficiently perform queries that relies on indexes.
First let's see how to implement this functionality in Ecto using a has_many :through and then use many_to_many to remove a lot of the boilerplate we were forced to introduce.
Polymorphism with has_many :through
Given we want our todo items to be polymorphic, we can no longer associate a todo list to todo items directly. Instead we will create an intermediate schema to tie MyApp.TodoList and MyApp.TodoItem together.
defmodule MyApp.TodoList do
 use Ecto.Schema

 schema "todo_lists" do
 field :title
 has_many :todo_list_items, MyApp.TodoListItem
 has_many :todo_items,
 through: [:todo_list_items, :todo_item]
 timestamps()
 end
end

defmodule MyApp.TodoListItem do
 use Ecto.Schema

 schema "todo_list_items" do
 belongs_to :todo_list, MyApp.TodoList
 belongs_to :todo_item, MyApp.TodoItem
 timestamps()
 end
end

defmodule MyApp.TodoItem do
 use Ecto.Schema

 schema "todo_items" do
 field :description
 timestamps()
 end
end
Although we introduced MyApp.TodoListItem as an intermediate schema, has_many :through allows us to access all todo items for any todo list transparently:
todo_lists |> Repo.preload(:todo_items)
The trouble is that :through associations are read-only since Ecto does not have enough information to fill in the intermediate schema. This means that, if we still want to use cast_assoc to insert a todo list with many todo items directly from the UI, we cannot use the :through association and instead must go step by step. We would need to first cast_assoc(:todo_list_items) from TodoList and then call cast_assoc(:todo_item) from the TodoListItem schema:
In MyApp.TodoList
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title])
 |> Ecto.Changeset.cast_assoc(
 :todo_list_items,
 required: true
)
end

And then in the MyApp.TodoListItem
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast_assoc(:todo_item, required: true)
end

And then in MyApp.TodoItem
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:description])
end
To further complicate things, remember cast_assoc expects a particular shape of data that reflects your associations. In this case, because of the intermediate schema, the data sent through your forms in Phoenix would have to look as follows:
%{"todo_list" => %{
 "title" => "shipping list",
 "todo_list_items" => %{
 0 => %{"todo_item" => %{"description" => "bread"}},
 1 => %{"todo_item" => %{"description" => "eggs"}},
 }
}}
To make matters worse, you would have to duplicate this logic for every intermediate schema, and introduce MyApp.TodoListItem for todo lists, MyApp.ProjectItem for projects, etc.
Luckily, many_to_many allows us to remove all of this boilerplate.
Polymorphism with many_to_many
In a way, the idea behind many_to_many associations is that it allows us to associate two schemas via an intermediate schema while automatically taking care of all details about the intermediate schema. Let's rewrite the schemas above to use many_to_many:
defmodule MyApp.TodoList do
 use Ecto.Schema

 schema "todo_lists" do
 field :title
 many_to_many :todo_items, MyApp.TodoItem,
 join_through: MyApp.TodoListItem
 timestamps()
 end
end

defmodule MyApp.TodoListItem do
 use Ecto.Schema

 schema "todo_list_items" do
 belongs_to :todo_list, MyApp.TodoList
 belongs_to :todo_item, MyApp.TodoItem
 timestamps()
 end
end

defmodule MyApp.TodoItem do
 use Ecto.Schema

 schema "todo_items" do
 field :description
 timestamps()
 end
end
Notice MyApp.TodoList no longer needs to define a has_many association pointing to the MyApp.TodoListItem schema and instead we can just associate to :todo_items using many_to_many.
Differently from has_many :through, many_to_many associations are also writable. This means we can send data through our forms exactly as we did at the beginning of this guide:
%{"todo_list" => %{
 "title" => "shipping list",
 "todo_items" => %{
 0 => %{"description" => "bread"},
 1 => %{"description" => "eggs"},
 }
}}
And we no longer need to define a changeset function in the intermediate schema:
In MyApp.TodoList
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title])
 |> Ecto.Changeset.cast_assoc(:todo_items, required: true)
end

And then in MyApp.TodoItem
def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:description])
end
In other words, we can use exactly the same code we had in the "todo lists has_many todo items" case. So even when external constraints require us to use a join table, many_to_many associations can automatically manage them for us. Everything you know about associations will just work with many_to_many associations as well.
Finally, even though we have specified a schema as the :join_through option in many_to_many, many_to_many can also work without intermediate schemas altogether by simply giving it a table name:
defmodule MyApp.TodoList do
 use Ecto.Schema

 schema "todo_lists" do
 field :title
 many_to_many :todo_items, MyApp.TodoItem,
 join_through: "todo_list_items"
 timestamps()
 end
end
In this case, you can completely remove the MyApp.TodoListItem schema from your application and the code above will still work. The only difference is that when using tables, any autogenerated value that is filled by Ecto schema, such as timestamps, won't be filled as we no longer have a schema. To solve this, you can either drop those fields from your migrations or set a default at the database level.
Summary
In this guide we used many_to_many associations to drastically improve a polymorphic association design that relied on has_many :through. Our goal was to allow "todo_items" to associate to different entities in our code base, such as "todo_lists" and "projects". We have done this by creating intermediate tables and by using many_to_many associations to automatically manage those join tables.
At the end, our schemas may look like:
defmodule MyApp.TodoList do
 use Ecto.Schema

 schema "todo_lists" do
 field :title
 many_to_many :todo_items, MyApp.TodoItem,
 join_through: "todo_list_items"
 timestamps()
 end

 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title])
 |> Ecto.Changeset.cast_assoc(
 :todo_items,
 required: true
)
 end
end

defmodule MyApp.Project do
 use Ecto.Schema

 schema "projects" do
 field :name
 many_to_many :todo_items, MyApp.TodoItem,
 join_through: "project_items"
 timestamps()
 end

 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:name])
 |> Ecto.Changeset.cast_assoc(
 :todo_items,
 required: true
)
 end
end

defmodule MyApp.TodoItem do
 use Ecto.Schema

 schema "todo_items" do
 field :description
 timestamps()
 end

 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:description])
 end
end
And the database migration:
create table("todo_lists") do
 add :title
 timestamps()
end

create table("projects") do
 add :name
 timestamps()
end

create table("todo_items") do
 add :description
 timestamps()
end

Primary key and timestamps are not required if
using many_to_many without schemas
create table("todo_list_items", primary_key: false) do
 add :todo_item_id, references(:todo_items)
 add :todo_list_id, references(:todo_lists)
 # timestamps()
end

Primary key and timestamps are not required if
using many_to_many without schemas
create table("project_items", primary_key: false) do
 add :todo_item_id, references(:todo_items)
 add :project_id, references(:projects)
 # timestamps()
end
Overall our code looks structurally the same as has_many would, although at the database level our relationships are expressed with join tables.
While in this guide we changed our code to cope with the parameter format required by cast_assoc, in Constraints and Upserts we drop cast_assoc altogether and use put_assoc which brings more flexibilities when working with associations.

 Replicas and dynamic repositories

When applications reach a certain scale, a single database may not be enough to sustain the required throughput. In such scenarios, it is very common to introduce read replicas: all write operations are sent to the primary database and most of the read operations are performed against the replicas. The credentials of the primary and replica databases are typically known upfront by the time the code is compiled.
In other cases, you may need a single Ecto repository to interact with different database instances which are not known upfront. For instance, you may need to communicate with hundreds of databases very sporadically, so instead of opening up a connection to each of those hundreds of databases when your application starts, you want to quickly start a connection, perform some queries, and then shut down, while still leveraging Ecto's APIs as a whole.
This guide will cover how to tackle both approaches.
Primary and Replicas
Since the credentials of the primary and replicas databases are known upfront, adding support for primary and replica databases in your Ecto application is relatively straightforward. Imagine you have a MyApp.Repo and you want to add four read replicas. This could be done in three steps.
First, define the primary and replicas repositories in lib/my_app/repo.ex:
defmodule MyApp.Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres

 @replicas [
 MyApp.Repo.Replica1,
 MyApp.Repo.Replica2,
 MyApp.Repo.Replica3,
 MyApp.Repo.Replica4
]

 def replica do
 Enum.random(@replicas)
 end

 for repo <- @replicas do
 defmodule repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres,
 read_only: true
 end
 end
end
The code above defines a regular MyApp.Repo and four replicas, called MyApp.Repo.Replica1 up to MyApp.Repo.Replica4. We pass the :read_only option to the replica repositories, so operations such as insert, update and friends are not made accessible. We also define a function called replica with the purpose of returning a random replica.
Next we need to make sure both primary and replicas are configured properly in your config/config.exs files. In development and test, you can likely use the same database credentials for all repositories, all pointing to the same database address:
replicas = [
 MyApp.Repo,
 MyApp.Repo.Replica1,
 MyApp.Repo.Replica2,
 MyApp.Repo.Replica3,
 MyApp.Repo.Replica4
]

for repo <- replicas do
 config :my_app, repo,
 username: "postgres",
 password: "postgres",
 database: "my_app_prod",
 hostname: "localhost",
 pool_size: 10
end
In production, you want each database to connect to a different hostname:
repos = %{
 MyApp.Repo => "prod-primary",
 MyApp.Repo.Replica1 => "prod-replica-1",
 MyApp.Repo.Replica2 => "prod-replica-2",
 MyApp.Repo.Replica3 => "prod-replica-3",
 MyApp.Repo.Replica4 => "prod-replica-4"
}

for {repo, hostname} <- repos do
 config :my_app, repo,
 username: "postgres",
 password: "postgres",
 database: "my_app_prod",
 hostname: hostname,
 pool_size: 10
end
Finally, make sure to start all repositories in your supervision tree:
children = [
 MyApp.Repo,
 MyApp.Repo.Replica1,
 MyApp.Repo.Replica2,
 MyApp.Repo.Replica3,
 MyApp.Repo.Replica4
]
Now that all repositories are configured, we can safely use them in your application code. Every time you are performing a read operation, you can call the replica/0 function that we have added to return a random replica we will send the query to:
MyApp.Repo.replica().all(query)
And now you are ready to work with primary and replicas, no hacks or complex dependencies required!
Testing replicas
While all of the work we have done so far should fully work in development and production, it may not be enough for tests. Most developers testing Ecto applications are using a sandbox, such as the Ecto SQL Sandbox.
When using a sandbox, each of your tests run in an isolated and independent transaction. Once the test is done, the transaction is rolled back. Which means we can trivially revert all of the changes done in a test in a very performant way.
Unfortunately, even if you configure your primary and replicas to have the same credentials and point to the same hostname, each Ecto repository will open up their own pool of database connections. This means that, once you move to a primary + replicas setup, a simple test like this one won't pass:
user = Repo.insert!(%User{name: "jane doe"})
assert Repo.replica().get!(User, user.id)
That's because Repo.insert! will write to one database connection and the repository returned by Repo.replica() will perform the read in another connection. Since the write is done in a transaction, its contents won't be available to other connections until the transaction commits, which will never happen for test connections.
There are two options to tackle this problem: one is to change replicas and the other is to use dynamic repos.
A custom replica definition
One simple solution to the problem above is to use a custom replica implementation during tests that always return the primary repository, like this:
if Mix.env() == :test do
 def replica, do: __MODULE__
else
 def replica, do: Enum.random(@replicas)
end
Now during tests, the replica will always return the repository primary repository itself. While this approach works fine, it has the downside that, if you accidentally invoke a write function in a replica, the test will pass, since the replica function is returning the primary repo, while the code will fail in production.
Using :default_dynamic_repo
Another approach to testing is to set the :default_dynamic_repo option when defining the repository. Let's see what we mean by that.
When you list a repository in your supervision tree, such as MyApp.Repo, behind the scenes it will start a supervision tree with a process named MyApp.Repo. By default, the process has the same name as the repository module itself. Now every time you invoke a function in MyApp.Repo, such as MyApp.Repo.insert/2, Ecto will use the connection pool from the process named MyApp.Repo.
From v3.0, Ecto has the ability to start multiple processes from the same repository. The only requirement is that they must have different process names, like this:
children = [
 MyApp.Repo,
 {MyApp.Repo, name: :another_instance_of_repo}
]
While the particular example doesn't make much sense (we will cover an actual use case for this feature next), the idea is that now you have two repositories running: one is named MyApp.Repo and the other one is named :another_instance_of_repo. Each of those processes have their own connection pool. You can tell Ecto which process you want to use in your repo operations by calling:
MyApp.Repo.put_dynamic_repo(MyApp.Repo)
MyApp.Repo.put_dynamic_repo(:another_instance_of_repo)
Once you call MyApp.Repo.put_dynamic_repo(name), all invocations made on MyApp.Repo will use the connection pool denoted by name.
How can this help with our replica tests? If we look back to the supervision tree we defined earlier in this guide, you will find this:
children = [
 MyApp.Repo,
 MyApp.Repo.Replica1,
 MyApp.Repo.Replica2,
 MyApp.Repo.Replica3,
 MyApp.Repo.Replica4
]
We are starting five different repositories and five different connection pools. Since we want the replica repositories to use the MyApp.Repo, we can achieve this by doing the following on the setup of each test:
@replicas [
 MyApp.Repo.Replica1,
 MyApp.Repo.Replica2,
 MyApp.Repo.Replica3,
 MyApp.Repo.Replica4
]

setup do
 for replica <- @replicas do
 replica.put_dynamic_repo(MyApp.Repo)
 end

 :ok
end
Note put_dynamic_repo is per process. So every time you spawn a new process, the dynamic_repo value will reset to its default until you call put_dynamic_repo again.
Luckily, there is even a better way! We can pass a :default_dynamic_repo option when we define the repository. In this case, we want to set the :default_dynamic_repo to MyApp.Repo only during the test environment. In your lib/my_app/repo.ex, do this:
 for repo <- @replicas do
 default_dynamic_repo =
 if Mix.env() == :test do
 MyApp.Repo
 else
 repo
 end

 defmodule repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres,
 read_only: true,
 default_dynamic_repo: default_dynamic_repo
 end
 end
And now your tests should work as before, while still being able to detect if you accidentally perform a write operation in a replica.
Dynamic repositories
At this point, we have learned that Ecto allows you to start multiple connections based on the same repository. This is typically useful when you have to connect multiple databases or perform short-lived database connections.
For example, you can start a repository with a given set of credentials dynamically, like this:
MyApp.Repo.start_link(
 name: :some_client,
 hostname: "client.example.com",
 username: "...",
 password: "...",
 pool_size: 1
)
In other words, start_link accepts the same options as the database configuration. Now let's do a query on the dynamically started repository. If you attempt to simply perform MyApp.Repo.all(Post), it may fail, as by default it will try to use a process named MyApp.Repo, which may or may not be running. So don't forget to call put_dynamic_repo/1 before:
MyApp.Repo.put_dynamic_repo(:some_client)
MyApp.Repo.all(Post)
Ecto also allows you to start a repository with no name (just like that famous horse). In such cases, you need to explicitly pass name: nil and match on the result of MyApp.Repo.start_link/1 to retrieve the PID, which should be given to put_dynamic_repo. Let's also use this opportunity and perform proper database clean-up, by shutting up the new repository and reverting the value of put_dynamic_repo:
default_dynamic_repo = MyApp.Repo.get_dynamic_repo()

{:ok, repo} =
 MyApp.Repo.start_link(
 name: nil,
 hostname: "client.example.com",
 username: "...",
 password: "...",
 pool_size: 1
)

try do
 MyApp.Repo.put_dynamic_repo(repo)
 MyApp.Repo.all(Post)
after
 MyApp.Repo.put_dynamic_repo(default_dynamic_repo)
 Supervisor.stop(repo)
end
We can encapsulate all of this in a function too, which you could define in your repository:
defmodule MyApp.Repo do
 use Ecto.Repo, ...

 def with_dynamic_repo(credentials, callback) do
 default_dynamic_repo = get_dynamic_repo()
 start_opts = [name: nil, pool_size: 1] ++ credentials
 {:ok, repo} = MyApp.Repo.start_link(start_opts)

 try do
 MyApp.Repo.put_dynamic_repo(repo)
 callback.()
 after
 MyApp.Repo.put_dynamic_repo(default_dynamic_repo)
 Supervisor.stop(repo)
 end
 end
end
And now use it as:
credentials = [
 hostname: "client.example.com",
 username: "...",
 password: "..."
]

MyApp.Repo.with_dynamic_repo(credentials, fn ->
 MyApp.Repo.all(Post)
end)
And that's it! Now you can have dynamic connections, all properly encapsulated in a single function and built on top of the dynamic repo API.

 Schemaless queries

Most queries in Ecto are written using schemas. For example, to retrieve all posts in a database, one may write:
MyApp.Repo.all(Post)
In the construct above, Ecto knows all fields and their types in the schema, rewriting the query above to:
query =
 from p in Post,
 select: %Post{title: p.title, body: p.body, ...}

MyApp.Repo.all(query)
Although you might use schemas for most of your queries, Ecto also adds the ability to write regular schemaless queries when preferred.
One example is this ability to select all desired fields without duplication:
from "posts", select: [:title, :body]
When a list of fields is given, Ecto will automatically convert the list of fields to a map or a struct.
Support for passing a list of fields or keyword lists is available to almost all query constructs. For example, we can use an update query to change the title of a given post without a schema:
def update_title(post, new_title) do
 query =
 from "posts",
 where: [id: ^post.id],
 update: [set: [title: ^new_title]]

 MyApp.Repo.update_all(query, [])
end
The Ecto.Query.update/3 construct supports four commands:
	:set - sets the given column to the given values
	:inc - increments the given column by the given value
	:push - pushes (appends) the given value to the end of an array column
	:pull - pulls (removes) the given value from an array column

For example, we can increment a column atomically by using the :inc command, with or without schemas:
def increment_page_views(post) do
 query =
 from "posts",
 where: [id: ^post.id],
 update: [inc: [page_views: 1]]

 MyApp.Repo.update_all(query, [])
end
Let's take a look at another example. Imagine you are writing a reporting view, it may be counter-productive to think how your existing application schemas relate to the report being generated. It is often simpler to write a query that returns only the data you need, without trying to fit the data into existing schemas:
import Ecto.Query

def running_activities(start_at, end_at) do
 query =
 from u in "users",
 join: a in "activities",
 on: a.user_id == u.id,
 where:
 a.start_at > type(^start_at, :naive_datetime) and
 a.end_at < type(^end_at, :naive_datetime),
 group_by: a.user_id,
 select: %{
 user_id: a.user_id,
 interval: a.end_at - a.start_at,
 count: count(u.id)
 }

 MyApp.Repo.all(query)
end
The function above does not rely on schemas. It returns only the data that matters for building the report. Notice how we use the type/2 function to specify what is the expected type of the argument we are interpolating, benefiting from the same type casting guarantees a schema would give.
By allowing regular data structures to be given to most query operations, Ecto makes queries with and without schemas more accessible. Not only that, it also enables developers to write dynamic queries, where fields, filters, ordering cannot be specified upfront.
insert_all, update_all and delete_all
Ecto allows all database operations to be expressed without a schema. One of the functions provided is Ecto.Repo.insert_all/3. With insert_all, developers can insert multiple entries at once into a repository using the source and a list of fields and values to be passed directly to the adapter:
MyApp.Repo.insert_all(
 "posts",
 [
 [title: "hello", body: "world"],
 [title: "another", body: "post"]
]
)
Updates and deletes can also be done without schemas via Ecto.Repo.update_all/3 and Ecto.Repo.delete_all/2 respectively:
Use the ID to trigger updates
post = from p in "posts", where: [id: ^id]

Update the title for all matching posts
{1, _} =
 MyApp.Repo.update_all post, set: [title: "new title"]

Delete all matching posts
{1, _} =
 MyApp.Repo.delete_all post
It is not hard to see how these operations directly map to their SQL variants, keeping the database at your fingertips without the need to intermediate all operations through schemas.

 Test factories

Many projects depend on external libraries to build their test data. Some of those libraries are called factories because they provide convenience functions for producing different groups of data. However, given Ecto is able to manage complex data trees, we can implement such functionality without relying on third-party projects.
To get started, let's create a file at "test/support/factory.ex" with the following contents:
defmodule MyApp.Factory do
 alias MyApp.Repo

 # Factories

 def build(:post) do
 %MyApp.Post{title: "hello world"}
 end

 def build(:comment) do
 %MyApp.Comment{body: "good post"}
 end

 def build(:post_with_comments) do
 %MyApp.Post{
 title: "hello with comments",
 comments: [
 build(:comment, body: "first"),
 build(:comment, body: "second")
]
 }
 end

 def build(:user) do
 %MyApp.User{
 email: "hello#{System.unique_integer()}",
 username: "hello#{System.unique_integer()}"
 }
 end

 # Convenience API

 def build(factory_name, attributes) do
 factory_name |> build() |> struct!(attributes)
 end

 def insert!(factory_name, attributes \\ []) do
 factory_name |> build(attributes) |> Repo.insert!()
 end
end
Our factory module defines four "factories" as different clauses to the build function: :post, :comment, :post_with_comments and :user. Each clause defines structs with the fields that are required by the database. In certain cases, the generated struct also needs to generate unique fields, such as the user's email and username. We did so by calling Elixir's System.unique_integer() - you could call System.unique_integer([:positive]) if you need a strictly positive number.
At the end, we defined two functions, build/2 and insert!/2, which are conveniences for building structs with specific attributes and for inserting data directly in the repository respectively.
That's literally all that is necessary for building our factories. We are now ready to use them in our tests. First, open up your "mix.exs" and make sure the "test/support/factory.ex" file is compiled:
def project do
 [...,
 elixirc_paths: elixirc_paths(Mix.env),
 ...]
end

defp elixirc_paths(:test), do: ["lib", "test/support"]
defp elixirc_paths(_), do: ["lib"]
Now in any of the tests that need to generate data, we can import the MyApp.Factory module and use its functions:
import MyApp.Factory

build(:post)
#=> %MyApp.Post{id: nil, title: "hello world", ...}

build(:post, title: "custom title")
#=> %MyApp.Post{id: nil, title: "custom title", ...}

insert!(:post, title: "custom title")
#=> %MyApp.Post{id: ..., title: "custom title"}
By building the functionality we need on top of Ecto capabilities, we are able to extend and improve our factories on whatever way we desire, without being constrained to third-party limitations.

 Testing with Ecto

After you have successfully set up your database connection with Ecto for your application,
its usage for your tests requires further changes, especially if you want to leverage the
Ecto SQL Sandbox that allows
you to run tests that talk to the database concurrently.
Create the config/test.exs file or append the following content:
import Config

config :my_app, MyApp.Repo,
 username: "postgres",
 password: "postgres",
 database: "myapp_test",
 hostname: "localhost",
 pool: Ecto.Adapters.SQL.Sandbox

Thereby, we configure the database connection for our test setup.
In this case, we use a Postgres database and set it up to use the sandbox pool that will wrap each test in a transaction.
Make sure we import the configuration for the test environment at the very bottom of config/config.exs:
import_config "#{config_env()}.exs"
We also need to add an explicit statement to the end of test/test_helper.exs about the sandbox mode:
Ecto.Adapters.SQL.Sandbox.mode(MyApp.Repo, :manual)
Lastly, you need to establish the database connection ahead of your tests.
You can enable it either for all of your test cases by extending the ExUnit template or by setting it up individually for each test. Let's start with the former and place it to the test/support/repo_case.ex:
defmodule MyApp.RepoCase do
 use ExUnit.CaseTemplate

 using do
 quote do
 alias MyApp.Repo

 import Ecto
 import Ecto.Query
 import MyApp.RepoCase

 # and any other stuff
 end
 end

 setup tags do
 pid = Ecto.Adapters.SQL.Sandbox.start_owner!(MyApp.Repo, shared: not tags[:async])
 on_exit(fn -> Ecto.Adapters.SQL.Sandbox.stop_owner(pid) end)
 :ok
 end
end
The case template above brings Ecto and Ecto.Query functions into your tests and checks-out a database connection. It also enables a shared sandbox connection mode in case the test is not running asynchronously.
See Ecto.Adapters.SQL.Sandbox for more information.
To add test/support/ folder for compilation in test environment we need to update mix.exs configuration
 def project do
 [
 # ...
 elixirc_paths: elixirc_paths(Mix.env())
]
 end

 # Specifies which paths to compile per environment.
 defp elixirc_paths(:test), do: ["lib", "test/support"]
 defp elixirc_paths(_), do: ["lib"]
And then in each test that uses the repository:
defmodule MyApp.MyTest do
 use MyApp.RepoCase

 # Tests etc...
end
In case you don't want to define a "case template", you can checkout on each individual case:
defmodule MyApp.MyTest do
 use ExUnit.Case

 setup do
 :ok = Ecto.Adapters.SQL.Sandbox.checkout(MyApp.Repo)
 end

 # Tests etc...
end
For convenience reasons, you can also define aliases to automatically set up your database at the execution of your tests.
Change the following content in your mix.exs.

 def project do
 [app: :my_app,

 ...

 aliases: aliases()]
 end

 defp aliases do
 [...
 "test": ["ecto.create --quiet", "ecto.migrate", "test"]
]
 end

Ecto

Ecto is split into 4 main components:
	Ecto.Repo - repositories are wrappers around the data store.
Via the repository, we can create, update, destroy and query
existing entries. A repository needs an adapter and credentials
to communicate to the database

	Ecto.Schema - schemas are used to map external data into Elixir
structs. We often use them to map database tables to Elixir data but
they have many other use cases

	Ecto.Query - written in Elixir syntax, queries are used to retrieve
information from a given repository. Ecto queries are secure and composable

	Ecto.Changeset - changesets provide a way to track and validate changes
before they are applied to the data

In summary:
	Ecto.Repo - where the data is
	Ecto.Schema - what the data is
	Ecto.Query - how to read the data
	Ecto.Changeset - how to change the data

Besides the four components above, most developers use Ecto to interact
with SQL databases, such as PostgreSQL and MySQL via the
ecto_sql project. ecto_sql provides many
conveniences for working with SQL databases as well as the ability to version
how your database changes through time via
database migrations.
If you want to quickly check a sample application using Ecto, please check
the getting started guide and
the accompanying sample application. Ecto's README
also links to other resources.
In the following sections, we will provide an overview of those components and
how they interact with each other. Feel free to access their respective module
documentation for more specific examples, options and configuration.
Repositories
Ecto.Repo is a wrapper around the database. We can define a
repository as follows:
defmodule Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres
end
Where the configuration for the Repo must be in your application
environment, usually defined in your config/config.exs:
config :my_app, Repo,
 database: "ecto_simple",
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 # OR use a URL to connect instead
 url: "postgres://postgres:postgres@localhost/ecto_simple"
Each repository in Ecto defines a start_link/0 function that needs to be invoked
before using the repository. In general, this function is not called directly,
but is used as part of your application supervision tree.
If your application was generated with a supervisor (by passing --sup to mix new)
you will have a lib/my_app/application.ex file containing the application start
callback that defines and starts your supervisor. You just need to edit the start/2
function to start the repo as a supervisor on your application's supervisor:
def start(_type, _args) do
 children = [
 MyApp.Repo,
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
end
Schema
Schemas allow developers to define the shape of their data.
Let's see an example:
defmodule Weather do
 use Ecto.Schema

 # weather is the DB table
 schema "weather" do
 field :city, :string
 field :temp_lo, :integer
 field :temp_hi, :integer
 field :prcp, :float, default: 0.0
 end
end
By defining a schema, Ecto automatically defines a struct with
the schema fields:
iex> weather = %Weather{temp_lo: 30}
iex> weather.temp_lo
30
The schema also allows us to interact with a repository:
iex> weather = %Weather{temp_lo: 0, temp_hi: 23}
iex> Repo.insert!(weather)
%Weather{...}
After persisting weather to the database, it will return a new copy of
%Weather{} with the primary key (the id) set. We can use this value
to read a struct back from the repository:
Get the struct back
iex> weather = Repo.get Weather, 1
%Weather{id: 1, ...}

Delete it
iex> Repo.delete!(weather)
%Weather{...}
NOTE: by using Ecto.Schema, an :id field with type :id (:id means :integer) is
generated by default, which is the primary key of the schema. If you want
to use a different primary key, you can declare custom @primary_key
before the schema/2 call. Consult the Ecto.Schema documentation
for more information.

Notice how the storage (repository) and the data are decoupled. This provides
two main benefits:
	By having structs as data, we guarantee they are light-weight,
serializable structures. In many languages, the data is often represented
by large, complex objects, with entwined state transactions, which makes
serialization, maintenance and understanding hard;

	You do not need to define schemas in order to interact with repositories,
operations like all, insert_all and so on allow developers to directly
access and modify the data, keeping the database at your fingertips when
necessary;

Changesets
Although in the example above we have directly inserted and deleted the
struct in the repository, operations on top of schemas are done through
changesets so Ecto can efficiently track changes.
Changesets allow developers to filter, cast, and validate changes before
we apply them to the data. Imagine the given schema:
defmodule User do
 use Ecto.Schema

 import Ecto.Changeset

 schema "users" do
 field :name
 field :email
 field :age, :integer
 end

 def changeset(user, params \\ %{}) do
 user
 |> cast(params, [:name, :email, :age])
 |> validate_required([:name, :email])
 |> validate_format(:email, ~r/@/)
 |> validate_inclusion(:age, 18..100)
 end
end
The changeset/2 function first invokes Ecto.Changeset.cast/4 with
the struct, the parameters and a list of allowed fields; this returns a changeset.
The parameters is a map with binary keys and values that will be cast based
on the type defined by the schema.
Any parameter that was not explicitly listed in the fields list will be ignored.
After casting, the changeset is given to many Ecto.Changeset.validate_*
functions that validate only the changed fields. In other words:
if a field was not given as a parameter, it won't be validated at all.
For example, if the params map contain only the "name" and "email" keys,
the "age" validation won't run.
Once a changeset is built, it can be given to functions like insert and
update in the repository that will return an :ok or :error tuple:
case Repo.update(changeset) do
 {:ok, user} ->
 # user updated
 {:error, changeset} ->
 # an error occurred
end
The benefit of having explicit changesets is that we can easily provide
different changesets for different use cases. For example, one
could easily provide specific changesets for registering and updating
users:
def registration_changeset(user, params) do
 # Changeset on create
end

def update_changeset(user, params) do
 # Changeset on update
end
Changesets are also capable of transforming database constraints,
like unique indexes and foreign key checks, into errors. Allowing
developers to keep their database consistent while still providing
proper feedback to end users. Check Ecto.Changeset.unique_constraint/3
for some examples as well as the other _constraint functions.
Query
Last but not least, Ecto allows you to write queries in Elixir and send
them to the repository, which translates them to the underlying database.
Let's see an example:
import Ecto.Query, only: [from: 2]

query = from u in User,
 where: u.age > 18 or is_nil(u.email),
 select: u

Returns %User{} structs matching the query
Repo.all(query)
In the example above we relied on our schema but queries can also be
made directly against a table by giving the table name as a string. In
such cases, the data to be fetched must be explicitly outlined:
query = from u in "users",
 where: u.age > 18 or is_nil(u.email),
 select: %{name: u.name, age: u.age}

Returns maps as defined in select
Repo.all(query)
Queries are defined and extended with the from macro. The supported
keywords are:
	:distinct
	:where
	:order_by
	:offset
	:limit
	:lock
	:group_by
	:having
	:join
	:select
	:preload

Examples and detailed documentation for each of those are available
in the Ecto.Query module. Functions supported in queries are listed
in Ecto.Query.API.
When writing a query, you are inside Ecto's query syntax. In order to
access params values or invoke Elixir functions, you need to use the ^
operator, which is overloaded by Ecto:
def min_age(min) do
 from u in User, where: u.age > ^min
end
Besides Repo.all/1 which returns all entries, repositories
also provide Repo.one/1 which returns one entry or nil,
Repo.one!/1) which returns one entry or raises,
Repo.get/2 which fetches entries for a particular ID and more.
Finally, if you need an escape hatch, Ecto provides fragments
(see Ecto.Query.API.fragment/1) to inject SQL (and non-SQL)
fragments into queries. Also, most adapters provide direct
APIs for queries, like Ecto.Adapters.SQL.query/4, allowing
developers to completely bypass Ecto queries.
Other topics
Associations
Ecto supports defining associations on schemas:
defmodule Post do
 use Ecto.Schema

 schema "posts" do
 has_many :comments, Comment
 end
end

defmodule Comment do
 use Ecto.Schema

 schema "comments" do
 field :title, :string
 belongs_to :post, Post
 end
end
When an association is defined, Ecto also defines a field in the schema
with the association name. By default, associations are not loaded into
this field:
iex> post = Repo.get(Post, 42)
iex> post.comments
#Ecto.Association.NotLoaded<...>
However, developers can use the preload functionality in queries to
automatically pre-populate the field:
Repo.all from p in Post, preload: [:comments]
Preloading can also be done with a pre-defined join value:
Repo.all from p in Post,
 join: c in assoc(p, :comments),
 where: c.votes > p.votes,
 preload: [comments: c]
Finally, for the simple cases, preloading can also be done after
a collection was fetched:
posts = Repo.all(Post) |> Repo.preload(:comments)
The Ecto module also provides conveniences for working
with associations. For example, Ecto.assoc/3 returns a query
with all associated data to a given struct:
import Ecto

Get all comments for the given post
Repo.all assoc(post, :comments)

Or build a query on top of the associated comments
query = from c in assoc(post, :comments), where: not is_nil(c.title)
Repo.all(query)
Another function in Ecto is build_assoc/3, which allows
someone to build an associated struct with the proper fields:
Repo.transact(fn ->
 post = Repo.insert!(%Post{title: "Hello", body: "world"})

 # Build a comment from post
 comment = Ecto.build_assoc(post, :comments, body: "Excellent!")

 Repo.insert!(comment)
end)
In the example above, Ecto.build_assoc/3 is equivalent to:
%Comment{post_id: post.id, body: "Excellent!"}
You can find more information about defining associations and each
respective association module in Ecto.Schema docs.
NOTE: Ecto does not lazy load associations. While lazily loading
associations may sound convenient at first, in the long run it
becomes a source of confusion and performance issues.

Embeds
Ecto also supports embeds. While associations keep parent and child
entries in different tables, embeds stores the child along side the
parent.
Databases like MongoDB have native support for embeds. Databases
like PostgreSQL uses a mixture of JSONB (embeds_one/3) and ARRAY
columns to provide this functionality.
Check Ecto.Schema.embeds_one/3 and Ecto.Schema.embeds_many/3
for more information.
Mix tasks and generators
Ecto provides many tasks to help your workflow as well as code generators.
You can find all available tasks by typing mix help inside a project
with Ecto listed as a dependency.
Ecto generators will automatically open the generated files if you have
ECTO_EDITOR set in your environment variable.
Repo resolution
Ecto requires developers to specify the key :ecto_repos in their
application configuration before using tasks like ecto.create and
ecto.migrate. For example:
config :my_app, :ecto_repos, [MyApp.Repo]

config :my_app, MyApp.Repo,
 database: "ecto_simple",
 username: "postgres",
 password: "postgres",
 hostname: "localhost"

 Summary

 Functions

 assoc(struct_or_structs, assocs, opts \\ [])

 Builds a query for the association in the given struct or structs.

 assoc_loaded?(list)

 Checks if an association is loaded.

 build_assoc(struct, assoc, attributes \\ %{})

 Builds a struct from the given assoc in struct.

 embedded_dump(data, format)

 Dumps the given struct defined by an embedded schema.

 embedded_load(schema_or_types, data, format)

 Loads previously dumped data in the given format into a schema.

 get_meta(struct, atom)

 Gets the metadata from the given struct.

 primary_key(struct)

 Returns the schema primary keys as a keyword list.

 primary_key!(struct)

 Returns the schema primary keys as a keyword list.

 put_meta(struct, opts)

 Returns a new struct with updated metadata.

 reset_fields(struct, fields)

 Resets fields in a struct to their default values.

 Functions

 assoc(struct_or_structs, assocs, opts \\ [])

Builds a query for the association in the given struct or structs.
Examples
In the example below, we get all comments associated to the given
post:
post = Repo.get Post, 1
Repo.all Ecto.assoc(post, :comments)
assoc/3 can also receive a list of posts, as long as the posts are
not empty:
posts = Repo.all from p in Post, where: is_nil(p.published_at)
Repo.all Ecto.assoc(posts, :comments)
This function can also be used to dynamically load through associations
by giving it a list. For example, to get all authors for all comments for
the given posts, do:
posts = Repo.all from p in Post, where: is_nil(p.published_at)
Repo.all Ecto.assoc(posts, [:comments, :author])
Options
	:prefix - the prefix to fetch assocs from. By default, queries
will use the same prefix as the first struct in the given collection.
This option allows the prefix to be changed.

 assoc_loaded?(list)

Checks if an association is loaded.
Examples
iex> post = Repo.get(Post, 1)
iex> Ecto.assoc_loaded?(post.comments)
false
iex> post = post |> Repo.preload(:comments)
iex> Ecto.assoc_loaded?(post.comments)
true

 build_assoc(struct, assoc, attributes \\ %{})

Builds a struct from the given assoc in struct.
Examples
If the relationship is a has_one or has_many and
the primary key is set in the parent struct, the key will
automatically be set in the built association:
iex> post = Repo.get(Post, 13)
%Post{id: 13}
iex> build_assoc(post, :comments)
%Comment{id: nil, post_id: 13}
Note though it doesn't happen with belongs_to cases, as the
key is often the primary key and such is usually generated
dynamically:
iex> comment = Repo.get(Comment, 13)
%Comment{id: 13, post_id: 25}
iex> build_assoc(comment, :post)
%Post{id: nil}
You can also pass the attributes, which can be a map or
a keyword list, to set the struct's fields except the
association key.
iex> build_assoc(post, :comments, text: "cool")
%Comment{id: nil, post_id: 13, text: "cool"}

iex> build_assoc(post, :comments, %{text: "cool"})
%Comment{id: nil, post_id: 13, text: "cool"}

iex> build_assoc(post, :comments, post_id: 1)
%Comment{id: nil, post_id: 13}
The given attributes are expected to be structured data.
If you want to build an association with external data,
such as a request parameters, you can use Ecto.Changeset.cast/3
after build_assoc/3:
parent
|> Ecto.build_assoc(:child)
|> Ecto.Changeset.cast(params, [:field1, :field2])

 embedded_dump(data, format)

 @spec embedded_dump(Ecto.Schema.t(), format :: atom()) :: map()

Dumps the given struct defined by an embedded schema.
This converts the given embedded schema to a map to be serialized
with the given format. For example:
iex> Ecto.embedded_dump(%Post{}, :json)
%{title: "hello"}

 embedded_load(schema_or_types, data, format)

 @spec embedded_load(
 module_or_map :: module() | map(),
 data :: map(),
 format :: atom()
) :: Ecto.Schema.t() | map()

Loads previously dumped data in the given format into a schema.
The first argument can be an embedded schema module, or a map (of types) and
determines the return value: a struct or a map, respectively.
The second argument data specifies fields and values that are to be loaded.
It can be a map, a keyword list, or a {fields, values} tuple. Fields can be
atoms or strings.
The third argument format is the format the data has been dumped as. For
example, databases may dump embedded to :json, this function allows such
dumped data to be put back into the schemas. If custom types are used,
Ecto will invoke the Ecto.Type.embed_as/1 callback to decide if the data
should be loaded using cast or load.
Fields that are not present in the schema (or types map) are ignored.
If any of the values has invalid type, an error is raised.
Note that if you want to load data into a non-embedded schema that was
directly persisted into a given repository, then use Ecto.Repo.load/2.
Examples
iex> result = Ecto.Adapters.SQL.query!(MyRepo, "SELECT users.settings FROM users", [])
iex> Enum.map(result.rows, fn [settings] -> Ecto.embedded_load(Setting, Jason.decode!(settings), :json) end)
[%Setting{...}, ...]

 get_meta(struct, atom)

Gets the metadata from the given struct.
For example, to check whether it has been persisted:
iex> Ecto.get_meta(changeset.data, :state)
:built
See Ecto.Schema.Metadata.

 primary_key(struct)

 @spec primary_key(Ecto.Schema.t()) :: Keyword.t()

Returns the schema primary keys as a keyword list.

 primary_key!(struct)

 @spec primary_key!(Ecto.Schema.t()) :: Keyword.t()

Returns the schema primary keys as a keyword list.
Raises Ecto.NoPrimaryKeyFieldError if the schema has no
primary key field.

 put_meta(struct, opts)

 @spec put_meta(Ecto.Schema.schema(), meta) :: Ecto.Schema.schema()
when meta: [
 source: Ecto.Schema.source(),
 prefix: Ecto.Schema.prefix(),
 context: Ecto.Schema.Metadata.context(),
 state: Ecto.Schema.Metadata.state()
]

Returns a new struct with updated metadata.
It is possible to set:
	:source - changes the struct query source
	:prefix - changes the struct query prefix
	:context - changes the struct meta context
	:state - changes the struct state

See Ecto.Schema.Metadata.

 reset_fields(struct, fields)

 @spec reset_fields(Ecto.Schema.t(), list()) :: Ecto.Schema.t()

Resets fields in a struct to their default values.
Examples
iex> post = post |> Repo.preload(:author)
%Post{title: "hello world", author: %Author{}}
iex> Ecto.reset_fields(post, [:title, :author])
%Post{
 title: "default title",
 author: #Ecto.Association.NotLoaded<association :author is not loaded>
}

Ecto.Changeset

Changesets allow filtering, type casting, validation, and
constraints when manipulating structs, usually in preparation
for inserting and updating entries into a database.
Let's break down what those features mean. Imagine the common
scenario where you want to receive data from a user submitted
web form to create or update entries in the database. Once you
receive this data on the server, changesets will help you perform
the following actions:
	filtering - because you are receiving external data from
a third-party, you must explicitly list which data you accept.
For example, you most likely don't want to allow a user to set
its own "is_admin" field to true

	type casting - a web form sends most of its data as strings.
When the user types the number "100", Ecto will receive it as
the string "100", which must then be converted to 100.
Changesets are responsible for converting these values to the
types defined in your Ecto.Schema, support even complex types
such as datetimes

	validations - the data the user submits may not correct.
For example, the user may type an invalid email address, with
a trailing dot. Or say the date for a future meeting would
happen in the last year. You must validate the data and give
feedback to the user

	constraints - some validations can only happen with the
help of the database. For example, in order to know if a user
email is already taken or not, you must query the database.
Constraints help you do that in a way that respects data
integrity

Although we have used a web form as an example, changesets can be used
for APIs and many other scenarios. Changesets may also be used to work
with data even if it won't be written to a database. We will cover
these scenarios in the documentation below. There is also an introductory
example of working with changesets and how it relates to schemas and
repositories in the Ecto module.
In a nutshell, there are two main functions for creating a changeset.
The cast/4 function is used to receive external parameters from a
form, API or command line, and convert them to the types defined in
your Ecto.Schema. change/2 is used to modify data directly from
your application, assuming the data given is valid and matches the
existing types. The remaining functions in this module, such as
validations, constraints, association handling, are about manipulating
changesets.
External vs internal data
Changesets allow working with two kinds of data:
	external to the application - for example user input from
a form that needs to be type-converted and properly validated. This
use case is primarily covered by the cast/4 function.

	internal to the application - for example programmatically generated,
or coming from other subsystems. This use case is primarily covered
by the change/2 and put_change/3 functions.

When working with external data, the data is typically provided
as maps with string keys (also known as parameters). On the other hand,
when working with internal data, you typically have maps of atom keys
or structs. This duality allows you to track the nature of your data:
if you have structs or maps with atom keys, it means the data has been
parsed/validated.
If you have external data or you have maps that may have either
string or atom keys, consider using cast/4 to create a changeset.
The changeset will parse and validate these parameters and provide APIs
to safely manipulate and change the data accordingly.
Validations and constraints
Ecto changesets provide both validations and constraints which
are ultimately turned into errors in case something goes wrong.
The difference between them is that most validations can be
executed without a need to interact with the database and, therefore,
are always executed before attempting to insert or update the entry
in the database. Validations run immediately when a validation function
is called on the data that is contained in the changeset at that time.
Some validations may happen against the database but
they are inherently unsafe. Those validations start with a unsafe_
prefix, such as unsafe_validate_unique/4.
On the other hand, constraints rely on the database and are always safe.
As a consequence, validations are always checked before constraints.
Constraints won't even be checked in case validations failed.
Let's see an example:
defmodule User do
 use Ecto.Schema
 import Ecto.Changeset

 schema "users" do
 field :name
 field :email
 field :age, :integer
 end

 def changeset(user, params \\ %{}) do
 user
 |> cast(params, [:name, :email, :age])
 |> validate_required([:name, :email])
 |> validate_format(:email, ~r/@/)
 |> validate_inclusion(:age, 18..100)
 |> unique_constraint(:email)
 end
end
In the changeset/2 function above, we define three validations.
They check that name and email fields are present in the
changeset, the e-mail is of the specified format, and the age is
between 18 and 100 - as well as a unique constraint in the email
field.
Let's suppose the e-mail is given but the age is invalid. The
changeset would have the following errors:
changeset = User.changeset(%User{}, %{age: 0, email: "mary@example.com"})
{:error, changeset} = Repo.insert(changeset)
changeset.errors #=> [age: {"is invalid", []}, name: {"can't be blank", []}]
In this case, we haven't checked the unique constraint in the
e-mail field because the data did not validate. Let's fix the
age and the name, and assume that the e-mail already exists in the
database:
changeset = User.changeset(%User{}, %{age: 42, name: "Mary", email: "mary@example.com"})
{:error, changeset} = Repo.insert(changeset)
changeset.errors #=> [email: {"has already been taken", []}]
Validations and constraints define an explicit boundary when the check
happens. By moving constraints to the database, we also provide a safe,
correct and data-race free means of checking the user input.
Deferred constraints
Some databases support deferred constraints, i.e., constraints which are
checked at the end of the transaction rather than at the end of each statement.
Changesets do not support this type of constraints. When working with deferred
constraints, a violation while invoking Ecto.Repo.insert/2 or Ecto.Repo.update/2 won't
return {:error, changeset}, but rather raise an error at the end of the
transaction.
Empty values
Many times, the data given on cast needs to be further pruned, specially
regarding empty values. For example, if you are gathering data to be
cast from the command line or through an HTML form or any other text-based
format, it is likely those means cannot express nil values. For
those reasons, changesets include the concept of empty values.
When applying changes using cast/4, an empty value will be automatically
converted to the field's default value. If the field is an array type, any
empty value inside the array will be removed. When a plain map is used in
the data portion of a schemaless changeset, every field's default value is
considered to be nil. For example:
iex> data = %{name: "Bob"}
iex> types = %{name: :string}
iex> params = %{name: ""}
iex> changeset = Ecto.Changeset.cast({data, types}, params, Map.keys(types))
iex> changeset.changes
%{name: nil}
Empty values are stored as a list in the changeset's :empty_values field.
The list contains elements of type empty_value/0. Those are either values,
which will be considered empty if they
match, or a function that must return a boolean if the value is empty or
not. By default, Ecto uses Ecto.Changeset.empty_values/0 which will mark
a field as empty if it is a string made only of whitespace characters.
You can also pass the :empty_values option to cast/4 in case you want
to change how a particular cast/4 work.
Associations, embeds, and on replace
Using changesets you can work with associations as well as with
embedded structs. There are two primary APIs:
	cast_assoc/3 and cast_embed/3 - those functions are used when
working with external data. In particular, they allow you to change
associations and embeds alongside the parent struct, all at once.

	put_assoc/4 and put_embed/4 - it allows you to replace the
association or embed as a whole. This can be used to move associated
data from one entry to another, to completely remove or replace
existing entries.

These functions are opinionated on how it works with associations.
If you need different behaviour or explicit control over the associated
data, you can skip this functionality and use Ecto.Multi to encode how
several database operations will happen on several schemas and changesets
at once.
You can learn more about working with associations in our documentation,
including cheatsheets and practical examples. Check out:
	The docs for cast_assoc/3 and put_assoc/3
	The associations cheatsheet
	The Constraints and Upserts guide
	The Polymorphic associations with many to many guide

The :on_replace option
When using any of those APIs, you may run into situations where Ecto sees
data is being replaced. For example, imagine a Post has many Comments where
the comments have IDs 1, 2 and 3. If you call cast_assoc/3 passing only
the IDs 1 and 2, Ecto will consider 3 is being "replaced" and it will raise
by default. Such behaviour can be changed when defining the relation by
setting :on_replace option when defining your association/embed according
to the values below:
	:raise (default) - do not allow removing association or embedded
data via parent changesets
	:mark_as_invalid - if attempting to remove the association or
embedded data via parent changeset - an error will be added to the parent
changeset, and it will be marked as invalid
	:nilify - sets owner reference column to nil (available only for
associations). Use this on a belongs_to column to allow the association
to be cleared out so that it can be set to a new value. Will set action
on associated changesets to :replace
	:update - updates the association, available only for has_one, belongs_to
and embeds_one. This option will update all the fields given to the changeset
including the id for the association
	:delete - removes the association or related data from the database.
This option has to be used carefully (see below). Will set action on associated
changesets to :replace
	:delete_if_exists - like :delete except that it ignores any stale entry
error. For instance, if you set on_replace: :delete but the replaced
resource was already deleted by a separate request, it will raise a
Ecto.StaleEntryError. :delete_if_exists makes it so it will only delete
if the entry still exists

The :delete and :delete_if_exists options must be used carefully as they allow
users to delete any associated data by simply setting it to nil or an empty list.
If you need deletion, it is often preferred to add a separate boolean virtual field
in the schema and manually mark the changeset for deletion if the :delete field is
set in the params, as in the example below. Note that we don't call cast/4 in this
case because we don't want to prevent deletion if a change is invalid (changes are
irrelevant if the entity needs to be deleted).
defmodule Comment do
 use Ecto.Schema
 import Ecto.Changeset

 schema "comments" do
 field :body, :string
 field :delete, :boolean, virtual: true
 end

 def changeset(comment, %{"delete" => "true"}) do
 %{Ecto.Changeset.change(comment, delete: true) | action: :delete}
 end

 def changeset(comment, params) do
 cast(comment, params, [:body])
 end
end
Schemaless changesets
In the changeset examples so far, we have always used changesets to validate
and cast data contained in a struct defined by an Ecto schema, such as the %User{}
struct defined by the User module.
However, changesets can also be used with "regular" structs too by passing a tuple
with the data and its types:
user = %User{}
types = %{name: :string, email: :string, age: :integer}
params = %{name: "Callum", email: "callum@example.com", age: 27}
changeset =
 {user, types}
 |> Ecto.Changeset.cast(params, Map.keys(types))
 |> Ecto.Changeset.validate_required(...)
 |> Ecto.Changeset.validate_length(...)
where the user struct refers to the definition in the following module:
defmodule User do
 defstruct [:name, :email, :age]
end
Changesets can also be used with data in a plain map, by following the same API:
data = %{}
types = %{name: :string, email: :string, age: :integer}
params = %{name: "Callum", email: "callum@example.com", age: 27}
changeset =
 {data, types}
 |> Ecto.Changeset.cast(params, Map.keys(types))
 |> Ecto.Changeset.validate_required(...)
 |> Ecto.Changeset.validate_length(...)
Besides the basic types which are mentioned above, such as :boolean and :string,
parameterized types can also be used in schemaless changesets. They implement
the Ecto.ParameterizedType behaviour and we can create the necessary type info by
calling the init/2 function.
For example, to use Ecto.Enum in a schemaless changeset:
types = %{
 name: :string,
 role: Ecto.ParameterizedType.init(Ecto.Enum, values: [:reader, :editor, :admin])
}

data = %{}
params = %{name: "Callum", role: "reader"}

changeset =
 {data, types}
 |> Ecto.Changeset.cast(params, Map.keys(types))
 |> Ecto.Changeset.validate_required(...)
 |> Ecto.Changeset.validate_length(...)
Schemaless changesets make Ecto extremely useful to cast, validate and prune data even
if it is not meant to be persisted to the database.
Changeset actions
Changesets have an action field which is usually set by Ecto.Repo
whenever one of the operations such as insert or update is called:
changeset = User.changeset(%User{}, %{age: 42, email: "mary@example.com"})
{:error, changeset} = Repo.insert(changeset)
changeset.action
#=> :insert
This means that when working with changesets that are not meant to be
persisted to the database, such as schemaless changesets, you may need
to explicitly set the action to one specific value. Frameworks such as
Phoenix use the action value to define how HTML forms should
act.
Instead of setting the action manually, you may use apply_action/2 that
emulates operations such as c:Ecto.Repo.insert. apply_action/2 will return
{:ok, changes} if the changeset is valid or {:error, changeset}, with
the given action set in the changeset in case of errors.
The Ecto.Changeset struct
The public fields are:
	valid? - Stores if the changeset is valid
	data - The changeset source data, for example, a struct
	params - The parameters as given on changeset creation
	changes - The changes from parameters that were approved in casting
	errors - All errors from validations
	required - All required fields as a list of atoms
	action - The action to be performed with the changeset
	types - Cache of the data's field types
	empty_values - A list of values to be considered empty
	repo - The repository applying the changeset (only set after a Repo function is called)
	repo_opts - A keyword list of options given to the underlying repository operation

The following fields are private and must not be accessed directly.
	validations
	constraints
	filters
	prepare

Redacting fields in inspect
To hide a field's value from the inspect protocol of Ecto.Changeset, mark
the field as redact: true in the schema, and it will display with the
value **redacted**.

 Summary

 Types

 action()

 constraint()

 data()

 empty_value()

 A possible value that you can pass to the :empty_values option.

 error()

 t()

 t(data_type)

 traverse_result()

 types()

 validation()

 Functions

 add_error(changeset, key, message, keys \\ [])

 Adds an error to the changeset.

 apply_action(changeset, action)

 Applies the changeset action only if the changes are valid.

 apply_action!(changeset, action)

 Applies the changeset action if the changes are valid or raises an error.

 apply_changes(changeset)

 Applies the changeset changes to the changeset data.

 assoc_constraint(changeset, assoc, opts \\ [])

 Checks the associated field exists.

 cast(data, params, permitted, opts \\ [])

 Applies the given params as changes on the data according to
the set of permitted keys. Returns a changeset.

 cast_assoc(changeset, name, opts \\ [])

 Casts the given association with the changeset parameters.

 cast_embed(changeset, name, opts \\ [])

 Casts the given embed with the changeset parameters.

 change(data, changes \\ %{})

 Wraps the given data in a changeset or adds changes to a changeset.

 changed?(changeset, field, opts \\ [])

 Returns true if a field was changed in a changeset.

 check_constraint(changeset, field, opts \\ [])

 Checks for a check constraint in the given field.

 constraints(changeset)

 Returns all constraints in a changeset.

 delete_change(changeset, key)

 Deletes a change with the given key.

 empty_values()

 Returns the default empty values used by Ecto.Changeset.

 exclusion_constraint(changeset, field, opts \\ [])

 Checks for an exclusion constraint in the given field.

 fetch_change(changeset, key)

 Fetches a change from the given changeset.

 fetch_change!(changeset, key)

 Same as fetch_change/2 but returns the value or raises if the given key was not found.

 fetch_field(changeset, key)

 Fetches the given field from changes or from the data.

 fetch_field!(changeset, key)

 Same as fetch_field/2 but returns the value or raises if the given key was not found.

 field_missing?(changeset, field)

 Determines whether a field is missing in a changeset.

 force_change(changeset, key, value)

 Forces a change on the given key with value.

 foreign_key_constraint(changeset, field, opts \\ [])

 Checks for foreign key constraint in the given field.

 get_assoc(changeset, name, as \\ :changeset)

 Gets the association entry or entries from changes or from the data.

 get_change(changeset, key, default \\ nil)

 Gets a change or returns a default value.

 get_embed(changeset, name, as \\ :changeset)

 Gets the embedded entry or entries from changes or from the data.

 get_field(changeset, key, default \\ nil)

 Gets a field from changes or from the data.

 merge(changeset1, changeset2)

 Merges two changesets.

 no_assoc_constraint(changeset, assoc, opts \\ [])

 Checks the associated field does not exist.

 optimistic_lock(data_or_changeset, field, incrementer \\ &increment_with_rollover/1)

 Applies optimistic locking to the changeset.

 prepare_changes(changeset, function)

 Provides a function executed by the repository on insert/update/delete.

 put_assoc(changeset, name, value, opts \\ [])

 Puts the given association entry or entries as a change in the changeset.

 put_change(changeset, key, value)

 Puts a change on the given key with value.

 put_embed(changeset, name, value, opts \\ [])

 Puts the given embed entry or entries as a change in the changeset.

 traverse_errors(changeset, msg_func)

 Traverses changeset errors and applies the given function to error messages.

 traverse_validations(changeset, msg_func)

 Traverses changeset validations and applies the given function to validations.

 unique_constraint(changeset, field_or_fields, opts \\ [])

 Checks for a unique constraint in the given field or list of fields.

 unsafe_validate_unique(changeset, fields, repo, opts \\ [])

 Validates that no existing record with a different primary key
has the same values for these fields.

 update_change(changeset, key, function)

 Updates a change.

 validate_acceptance(changeset, field, opts \\ [])

 Validates the given parameter is true.

 validate_change(changeset, field, validator)

 Validates the given field change.

 validate_change(changeset, field, metadata, validator)

 Stores the validation metadata and validates the given field change.

 validate_confirmation(changeset, field, opts \\ [])

 Validates that the given parameter matches its confirmation.

 validate_exclusion(changeset, field, data, opts \\ [])

 Validates a change is not included in the given enumerable.

 validate_format(changeset, field, format, opts \\ [])

 Validates a change has the given format.

 validate_inclusion(changeset, field, data, opts \\ [])

 Validates a change is included in the given enumerable.

 validate_length(changeset, field, opts)

 Validates a change is a string or list of the given length.

 validate_number(changeset, field, opts)

 Validates the properties of a number.

 validate_required(changeset, fields, opts \\ [])

 Validates that one or more fields are present in the changeset.

 validate_subset(changeset, field, data, opts \\ [])

 Validates a change, of type enum, is a subset of the given enumerable.

 validations(changeset)

 Returns a keyword list of the validations for this changeset.

 Types

 action()

 @type action() :: nil | :insert | :update | :delete | :replace | :ignore | atom()

 constraint()

 @type constraint() :: %{
 type: :check | :exclusion | :foreign_key | :unique,
 constraint: String.t() | Regex.t(),
 match: :exact | :suffix | :prefix,
 field: atom(),
 error_message: String.t(),
 error_type: atom()
}

 data()

 @type data() :: map()

 empty_value()

 (since 3.11.0)

 @type empty_value() :: (term() -> boolean()) | binary() | list() | map() | tuple()

A possible value that you can pass to the :empty_values option.
See empty_values/0 and the Empty values section in
the module documentation for more information.

 error()

 @type error() :: {String.t(), Keyword.t()}

 t()

 @type t() :: t(Ecto.Schema.t() | map() | nil)

 t(data_type)

 @type t(data_type) :: %Ecto.Changeset{
 action: action(),
 changes: %{optional(atom()) => term()},
 constraints: [constraint()],
 data: data_type,
 empty_values: term(),
 errors: [{atom(), error()}],
 filters: %{optional(atom()) => term()},
 params: %{optional(String.t()) => term()} | nil,
 prepare: [(t() -> t())],
 repo: atom() | nil,
 repo_opts: Keyword.t(),
 required: [atom()],
 types: types(),
 valid?: boolean(),
 validations: [validation()]
}

 traverse_result()

 @type traverse_result() :: %{required(atom()) => [term()] | traverse_result()}

 types()

 @type types() :: %{
 required(atom()) => Ecto.Type.t() | {:assoc, term()} | {:embed, term()}
}

 validation()

 @type validation() :: {atom(), term()}

 Functions

 add_error(changeset, key, message, keys \\ [])

 @spec add_error(t(), atom(), String.t(), Keyword.t()) :: t()

Adds an error to the changeset.
An additional keyword list keys can be passed to provide additional
contextual information for the error. This is useful when using
traverse_errors/2 and when translating errors with Gettext
Examples
iex> changeset = change(%Post{}, %{title: ""})
iex> changeset = add_error(changeset, :title, "empty")
iex> changeset.errors
[title: {"empty", []}]
iex> changeset.valid?
false

iex> changeset = change(%Post{}, %{title: ""})
iex> changeset = add_error(changeset, :title, "empty", additional: "info")
iex> changeset.errors
[title: {"empty", [additional: "info"]}]
iex> changeset.valid?
false

iex> changeset = change(%Post{}, %{tags: ["ecto", "elixir", "x"]})
iex> changeset = add_error(changeset, :tags, "tag '%{val}' is too short", val: "x")
iex> changeset.errors
[tags: {"tag '%{val}' is too short", [val: "x"]}]
iex> changeset.valid?
false

 apply_action(changeset, action)

 @spec apply_action(t(), action()) :: {:ok, Ecto.Schema.t() | data()} | {:error, t()}

Applies the changeset action only if the changes are valid.
If the changes are valid, all changes are applied to the changeset data.
If the changes are invalid, no changes are applied, and an error tuple
is returned with the changeset containing the action that was attempted
to be applied.
The action may be any atom.
Examples
iex> {:ok, data} = apply_action(changeset, :update)

iex> {:ok, data} = apply_action(changeset, :my_action)

iex> {:error, changeset} = apply_action(changeset, :update)
%Ecto.Changeset{action: :update}

 apply_action!(changeset, action)

 @spec apply_action!(t(), action()) :: Ecto.Schema.t() | data()

Applies the changeset action if the changes are valid or raises an error.
Examples
iex> changeset = change(%Post{author: "bar"}, %{title: "foo"})
iex> apply_action!(changeset, :update)
%Post{author: "bar", title: "foo"}

iex> changeset = change(%Post{author: "bar"}, %{title: :bad})
iex> apply_action!(changeset, :update)
** (Ecto.InvalidChangesetError) could not perform update because changeset is invalid.
See apply_action/2 for more information.

 apply_changes(changeset)

 @spec apply_changes(t()) :: Ecto.Schema.t() | data()

Applies the changeset changes to the changeset data.
This operation will return the underlying data with changes
regardless if the changeset is valid or not. See apply_action/2
for a similar function that ensures the changeset is valid.
Examples
iex> changeset = change(%Post{author: "bar"}, %{title: "foo"})
iex> apply_changes(changeset)
%Post{author: "bar", title: "foo"}

 assoc_constraint(changeset, assoc, opts \\ [])

 @spec assoc_constraint(t(), atom(), Keyword.t()) :: t()

Checks the associated field exists.
This is similar to foreign_key_constraint/3 except that the
field is inferred from the association definition. This is useful
to guarantee that a child will only be created if the parent exists
in the database too. Therefore, it only applies to belongs_to
associations.
As the name says, a constraint is required in the database for
this function to work. Such constraint is often added as a
reference to the child table:
create table(:comments) do
 add :post_id, references(:posts)
end
Now, when inserting a comment, it is possible to forbid any
comment to be added if the associated post does not exist:
comment
|> Ecto.Changeset.cast(params, [:post_id])
|> Ecto.Changeset.assoc_constraint(:post)
|> Repo.insert
Options
	:message - the message in case the constraint check fails,
defaults to "does not exist"
	:name - the constraint name. By default, the constraint
name is inferred from the table + field. If this option is given,
the field argument only indicates the field the error will be
added to. May be required explicitly for complex cases
	:match - how the changeset constraint name is matched against the
repo constraint, may be :exact, :suffix or :prefix. Defaults to
:exact. :suffix matches any repo constraint which ends_with? :name
to this changeset constraint. :prefix matches any repo constraint which
starts_with? :name to this changeset constraint.

 cast(data, params, permitted, opts \\ [])

 @spec cast(
 Ecto.Schema.t() | t() | {data(), types()},
 %{required(binary()) => term()} | %{required(atom()) => term()} | :invalid,
 [atom()],
 Keyword.t()
) :: t()

Applies the given params as changes on the data according to
the set of permitted keys. Returns a changeset.
data may be either a changeset, a schema struct or a {data, types}
tuple. The second argument is a map of params that are cast according
to the type information from data. params is a map with string keys
or a map with atom keys, containing potentially invalid data. Mixed keys
are not allowed.
During casting, all permitted parameters whose values match the specified
type information will have their key name converted to an atom and stored
together with the value as a change in the :changes field of the changeset.
If the cast value matches the current value for the field, it will not be
included in :changes unless the force_changes: true option is
provided. All parameters that are not explicitly permitted are ignored.
If casting of all fields is successful, the changeset is returned as valid.
Note that cast/4 validates the types in the params, but not in the given
data.
Options
	:empty_values - a list containing elements of type empty_value/0. Those are
either values, which will be considered empty if they match, or a function that must
return a boolean if the value is empty or not. 1-arity functions will receive the value
being casted and 2-arity functions will receive the value being casted and its field type.
Empty values are always replaced by the default value of the respective field.
If the field is an array type, any empty value inside of the array will be removed.
To set this option while keeping the current default, use empty_values/0 and add
your additional empty values

	:force_changes - a boolean indicating whether to include values that don't alter
the current data in :changes. See force_change/3 for more information, Defaults
to false

	:message - a function of arity 2 that is used to create the error message when
casting fails. It is called for every field that cannot be casted and receives the
field name as the first argument and the error metadata as the second argument. It
must return a string or nil. If a string is returned it will be used as the error
message. If nil is returned the default error message will be used. The field type
is given under the :type key in the metadata

Examples
iex> changeset = cast(post, params, [:title])
iex> if changeset.valid? do
...> Repo.update!(changeset)
...> end
Passing a changeset as the first argument:
iex> changeset = cast(post, %{title: "Hello"}, [:title])
iex> new_changeset = cast(changeset, %{title: "Foo", body: "World"}, [:body])
iex> new_changeset.params
%{"title" => "Hello", "body" => "World"}
Or creating a changeset from a simple map with types:
iex> data = %{title: "hello"}
iex> types = %{title: :string}
iex> changeset = cast({data, types}, %{title: "world"}, [:title])
iex> apply_changes(changeset)
%{title: "world"}
You can use empty values (and even cast multiple times) to change
what is considered an empty value:
Using default
iex> params = %{title: "", topics: []}
iex> changeset = cast(%Post{}, params, [:title, :topics])
iex> changeset.changes
%{topics: []}

Changing default
iex> params = %{title: "", topics: []}
iex> changeset = cast(%Post{}, params, [:title, :topics], empty_values: [[], nil])
iex> changeset.changes
%{title: ""}

Augmenting default
iex> params = %{title: "", topics: []}
iex> changeset =
...> cast(%Post{}, params, [:title, :topics], empty_values: [[], nil] ++ Ecto.Changeset.empty_values())
iex> changeset.changes
%{}
You can define a custom error message function.
Using field name
iex> params = %{title: 1, body: 2}
iex> custom_errors = [title: "must be a string"]
iex> msg_func = fn field, _meta -> custom_errors[field] end
iex> changeset = cast(post, params, [:title, :body], message: msg_func)
iex> changeset.errors
[
 title: {"must be a string", [type: :string, validation: :cast]},
 body: {"is_invalid", [type: :string, validation: :cast]}
]

Using field type
iex> params = %{title: 1, body: 2}
iex> custom_errors = [string: "must be a string"]
iex> msg_func = fn _field, meta ->
... type = meta[:type]
... custom_errors[type]
... end
iex> changeset = cast(post, params, [:title, :body], message: msg_func)
iex> changeset.errors
[
 title: {"must be a string", [type: :string, validation: :cast]},
 body: {"must be a string", [type: :string, validation: :cast]}
]
Composing casts
cast/4 also accepts a changeset as its first argument. In such cases, all
the effects caused by the call to cast/4 (additional errors and changes)
are simply added to the ones already present in the argument changeset.
Parameters are merged (not deep-merged) and the ones passed to cast/4
take precedence over the ones already in the changeset.

 cast_assoc(changeset, name, opts \\ [])

 @spec cast_assoc(t(), atom(), Keyword.t()) :: t()

Casts the given association with the changeset parameters.
This function should be used when working with the entire association at
once (and not a single element of a many-style association) and receiving
data external to the application.
cast_assoc/3 matches the records extracted from the database
and compares it with the parameters received from an external source.
Therefore, it is expected that the data in the changeset has explicitly
preloaded the association being cast and that all of the IDs exist and
are unique.
For example, imagine a user has many addresses relationship where
post data is sent as follows
%{"name" => "john doe", "addresses" => [
 %{"street" => "somewhere", "country" => "brazil", "id" => 1},
 %{"street" => "elsewhere", "country" => "poland"},
]}
and then
User
|> Repo.get!(id)
|> Repo.preload(:addresses) # Only required when updating data
|> Ecto.Changeset.cast(params, [])
|> Ecto.Changeset.cast_assoc(:addresses, with: &MyApp.Address.changeset/2)
The parameters for the given association will be retrieved
from changeset.params. Those parameters are expected to be
a map with attributes, similar to the ones passed to cast/4.
Once parameters are retrieved, cast_assoc/3 will match those
parameters with the associations already in the changeset data.
Once cast_assoc/3 is called, Ecto will compare each parameter
with the user's already preloaded addresses and act as follows:
	If the parameter does not contain an ID, the parameter data
will be passed to MyApp.Address.changeset/2 with a new struct
and become an insert operation. We only consider the ID as not
given if there is no "id" key or if its value is strictly nil

	If the parameter contains an ID and there is no associated child
with such ID, the parameter data will be passed to
MyApp.Address.changeset/2 with a new struct and become an insert
operation

	If the parameter contains an ID and there is an associated child
with such ID, the parameter data will be passed to
MyApp.Address.changeset/2 with the existing struct and become an
update operation

	If there is an associated child with an ID and its ID is not given
as parameter, the :on_replace callback for that association will
be invoked (see the "On replace" section
on the module documentation)

If two or more addresses have the same IDs, Ecto will consider that an
error and add an error to the changeset saying that there are duplicate
entries.
Every time the MyApp.Address.changeset/2 function is invoked, it must
return a changeset. This changeset will always be included under changes
of the parent changeset, even if there are no changes. This is done for
reflection purposes, allowing developers to introspect validations and
other metadata from the association. Once the parent changeset is given
to an Ecto.Repo function, all entries will be inserted/updated/deleted
within the same transaction.
As you see above, this function is opinionated on how it works. If you
need different behaviour or if you need explicit control over the associated
data, you can either use put_assoc/4 or use Ecto.Multi to encode how
several database operations will happen on several schemas and changesets
at once.
Custom actions
Developers are allowed to explicitly set the :action field of a
changeset to instruct Ecto how to act in certain situations. Let's suppose
that, if one of the associations has only empty fields, you want to ignore
the entry altogether instead of showing an error. The changeset function could
be written like this:
def changeset(struct, params) do
 struct
 |> cast(params, [:title, :body])
 |> validate_required([:title, :body])
 |> case do
 %{valid?: false, changes: changes} = changeset when changes == %{} ->
 # If the changeset is invalid and has no changes, it is
 # because all required fields are missing, so we ignore it.
 %{changeset | action: :ignore}
 changeset ->
 changeset
 end
end
You can also set it to delete if you want data to be deleted based on the
received parameters (such as a checkbox or any other indicator).
Partial changes for many-style associations
By preloading an association using a custom query you can confine the behavior
of cast_assoc/3. This opens up the possibility to work on a subset of the data,
instead of all associations in the database.
Taking the initial example of users having addresses, imagine those addresses
are set up to belong to a country. If you want to allow users to bulk edit all
addresses that belong to a single country, you can do so by changing the preload
query:
query = from MyApp.Address, where: [country: ^edit_country]

User
|> Repo.get!(id)
|> Repo.preload(addresses: query)
|> Ecto.Changeset.cast(params, [])
|> Ecto.Changeset.cast_assoc(:addresses)
This will allow you to cast and update only the association for the given country.
The important point for partial changes is that any addresses, which were not
preloaded won't be changed.
Sorting and deleting from -many collections
In earlier examples, we passed a -many style association as a list:
%{"name" => "john doe", "addresses" => [
 %{"street" => "somewhere", "country" => "brazil", "id" => 1},
 %{"street" => "elsewhere", "country" => "poland"},
]}
However, it is also common to pass the addresses as a map, where each
key is an integer representing its position:
%{"name" => "john doe", "addresses" => %{
 0 => %{"street" => "somewhere", "country" => "brazil", "id" => 1},
 1 => %{"street" => "elsewhere", "country" => "poland"}
}}
Using indexes becomes specially useful with two supporting options:
:sort_param and :drop_param. These options tell the indexes should
be reordered or deleted from the data. For example, if you did:
cast_embed(changeset, :addresses,
 sort_param: :addresses_sort,
 drop_param: :addresses_drop)
You can now submit this:
%{"name" => "john doe", "addresses" => %{...}, "addresses_drop" => [0]}
And now the entry with index 0 will be dropped from the params before casting.
Note this requires setting the relevant :on_replace option on your
associations/embeds definition.
Similar, for sorting, you could do:
%{"name" => "john doe", "addresses" => %{...}, "addresses_sort" => [1, 0]}
And that will internally sort the elements so 1 comes before 0. Note that
any index not present in "addresses_sort" will come before any of the
sorted indexes. If an index is not found, an empty entry is added in its
place.
For embeds, this guarantees the embeds will be rewritten in the given order.
However, for associations, this is not enough. You will have to add a
field :position, :integer to the schema and add a with function of arity 3
to add the position to your children changeset. For example, you could implement:
defp child_changeset(child, _changes, position) do
 child
 |> change(position: position)
end
And by passing it to :with, it will be called with the final position of the
item:
changeset
|> cast_assoc(:children, sort_param: ..., with: &child_changeset/3)
These parameters can be powerful in certain UIs as it allows you to decouple
the sorting and replacement of the data from its representation.
More resources
You can learn more about working with associations in our documentation,
including cheatsheets and practical examples. Check out:
	The docs for put_assoc/3
	The associations cheatsheet
	The Constraints and Upserts guide
	The Polymorphic associations with many to many guide

Options
	:required - if the association is a required field. For associations of cardinality
one, a non-nil value satisfies this validation. For associations with many entries,
a non-empty list is satisfactory.

	:required_message - the message on failure, defaults to "can't be blank"

	:invalid_message - the message on failure, defaults to "is invalid"

	:force_update_on_change - force the parent record to be updated in the
repository if there is a change, defaults to true

	:with - the function to build the changeset from params. Defaults to the
changeset/2 function of the associated module. It can be an anonymous
function that expects two arguments: the associated struct to be cast and its
parameters. It must return a changeset. For associations with cardinality :many,
functions with arity 3 are accepted, and the third argument will be the position
of the associated element in the list, or nil, if the association is being replaced.

	:drop_param - the parameter name which keeps a list of indexes to drop
from the relation parameters

	:sort_param - the parameter name which keeps a list of indexes to sort
from the relation parameters. Unknown indexes are considered to be new
entries. Non-listed indexes will come before any sorted ones. See
cast_assoc/3 for more information

 cast_embed(changeset, name, opts \\ [])

 @spec cast_embed(t(), atom(), Keyword.t()) :: t()

Casts the given embed with the changeset parameters.
The parameters for the given embed will be retrieved
from changeset.params. Those parameters are expected to be
a map with attributes, similar to the ones passed to cast/4.
Once parameters are retrieved, cast_embed/3 will match those
parameters with the embeds already in the changeset record.
See cast_assoc/3 for an example of working with casts and
associations which would also apply for embeds.
The changeset must have been previously cast using
cast/4 before this function is invoked.
Options
	:required - if the embed is a required field. For embeds of cardinality
one, a non-nil value satisfies this validation. For embeds with many entries,
a non-empty list is satisfactory.

	:required_message - the message on failure, defaults to "can't be blank"

	:invalid_message - the message on failure, defaults to "is invalid"

	:force_update_on_change - force the parent record to be updated in the
repository if there is a change, defaults to true

	:with - the function to build the changeset from params. Defaults to the
changeset/2 function of the associated module. It must be an anonymous
function that expects two arguments: the embedded struct to be cast and its
parameters. It must return a changeset. For embeds with cardinality :many,
functions with arity 3 are accepted, and the third argument will be the position
of the associated element in the list, or nil, if the embed is being replaced.

	:drop_param - the parameter name which keeps a list of indexes to drop
from the relation parameters

	:sort_param - the parameter name which keeps a list of indexes to sort
from the relation parameters. Unknown indexes are considered to be new
entries. Non-listed indexes will come before any sorted ones. See
cast_assoc/3 for more information

 change(data, changes \\ %{})

 @spec change(
 Ecto.Schema.t() | t() | {data(), types()},
 %{required(atom()) => term()} | Keyword.t()
) ::
 t()

Wraps the given data in a changeset or adds changes to a changeset.
changes is a map or keyword where the key is an atom representing a
field, association or embed and the value is a term. Note the value is
directly stored in the changeset with no validation whatsoever. For this
reason, this function is meant for working with data internal to the
application.
When changing embeds and associations, see put_assoc/4 for a complete
reference on the accepted values.
This function is useful for:
	wrapping a struct inside a changeset
	directly changing a struct without performing castings nor validations
	directly bulk-adding changes to a changeset

Changed attributes will only be added if the change does not have the
same value as the field in the data.
When a changeset is passed as the first argument, the changes passed as the
second argument are merged over the changes already in the changeset if they
differ from the values in the struct.
When a {data, types} is passed as the first argument, a changeset is
created with the given data and types and marked as valid.
See cast/4 if you'd prefer to cast and validate external parameters.
Examples
iex> changeset = change(%Post{})
%Ecto.Changeset{...}
iex> changeset.valid?
true
iex> changeset.changes
%{}

iex> changeset = change(%Post{author: "bar"}, title: "title")
iex> changeset.changes
%{title: "title"}

iex> changeset = change(%Post{title: "title"}, title: "title")
iex> changeset.changes
%{}

iex> changeset = change(changeset, %{title: "new title", body: "body"})
iex> changeset.changes.title
"new title"
iex> changeset.changes.body
"body"

 changed?(changeset, field, opts \\ [])

 @spec changed?(t(), atom(), Keyword.t()) :: boolean()

Returns true if a field was changed in a changeset.
This function can check associations and embeds, but doesn't support the :to
and :from options for such fields.
Options
	:to - Check if the field was changed to a specific value
	:from - Check if the field was changed from a specific value

Examples
iex> post = %Post{title: "Foo", body: "Old"}
iex> changeset = change(post, %{title: "New title", body: "Old"})

iex> changed?(changeset, :body)
false

iex> changed?(changeset, :title)
true

iex> changed?(changeset, :title, to: "NEW TITLE")
false

 check_constraint(changeset, field, opts \\ [])

 @spec check_constraint(t(), atom(), Keyword.t()) :: t()

Checks for a check constraint in the given field.
The check constraint works by relying on the database to check
if the check constraint has been violated or not and, if so,
Ecto converts it into a changeset error.
In order to use the check constraint, the first step is
to define the check constraint in a migration:
create constraint("users", :age_must_be_positive, check: "age > 0")
Now that a constraint exists, when modifying users, we could
annotate the changeset with a check constraint so Ecto knows
how to convert it into an error message:
cast(user, params, [:age])
|> check_constraint(:age, name: :age_must_be_positive)
Now, when invoking Ecto.Repo.insert/2 or Ecto.Repo.update/2,
if the age is not positive, the underlying operation will fail
but Ecto will convert the database exception into a changeset error
and return an {:error, changeset} tuple. Note that the error will
occur only after hitting the database, so it will not be visible
until all other validations pass. If the constraint fails inside a
transaction, the transaction will be marked as aborted.
Options
	:message - the message in case the constraint check fails.
Defaults to "is invalid"
	:name - the constraint name. By default, the constraint
name is inferred from the table + field. If this option is given,
the field argument only indicates the field the error will be
added to. May be required explicitly for complex cases
	:match - how the changeset constraint name is matched against the
repo constraint, may be :exact, :suffix or :prefix. Defaults to
:exact. :suffix matches any repo constraint which ends_with? :name
to this changeset constraint. :prefix matches any repo constraint which
starts_with? :name to this changeset constraint.

 constraints(changeset)

 @spec constraints(t()) :: [constraint()]

Returns all constraints in a changeset.
A constraint is a map with the following fields:
	:type - the type of the constraint that will be checked in the database,
such as :check, :unique, etc
	:constraint - the database constraint name as a string or Regex. The constraint at
the database level will be checked against this according to :match type
	:match - the type of match Ecto will perform on a violated constraint
against the :constraint value. It is :exact, :suffix or :prefix
	:field - the field a violated constraint will apply the error to
	:error_message - the error message in case of violated constraints
	:error_type - the type of error that identifies the error message

 delete_change(changeset, key)

 @spec delete_change(t(), atom()) :: t()

Deletes a change with the given key.
Examples
iex> changeset = change(%Post{}, %{title: "foo"})
iex> changeset = delete_change(changeset, :title)
iex> get_change(changeset, :title)
nil

 empty_values()

 (since 3.10.0)

 @spec empty_values() :: [empty_value()]

Returns the default empty values used by Ecto.Changeset.
By default, Ecto marks a field as empty if it is a string made
only of whitespace characters. If you want to provide your
additional empty values on top of the default, such as an empty
list, you can write:
@empty_values [[]] ++ Ecto.Changeset.empty_values()
Then, you can pass empty_values: @empty_values on cast/3.
See also the Empty values section for more
information.

 exclusion_constraint(changeset, field, opts \\ [])

Checks for an exclusion constraint in the given field.
The exclusion constraint works by relying on the database to check
if the exclusion constraint has been violated or not and, if so,
Ecto converts it into a changeset error.
Options
	:message - the message in case the constraint check fails,
defaults to "violates an exclusion constraint"
	:name - the constraint name. By default, the constraint
name is inferred from the table + field. If this option is given,
the field argument only indicates the field the error will be
added to. May be required explicitly for complex cases
	:match - how the changeset constraint name is matched against the
repo constraint, may be :exact, :suffix or :prefix. Defaults to
:exact. :suffix matches any repo constraint which ends_with? :name
to this changeset constraint. :prefix matches any repo constraint which
starts_with? :name to this changeset constraint.

 fetch_change(changeset, key)

 @spec fetch_change(t(), atom()) :: {:ok, term()} | :error

Fetches a change from the given changeset.
This function only looks at the :changes field of the given changeset and
returns {:ok, value} if the change is present or :error if it's not.
Examples
iex> changeset = change(%Post{body: "foo"}, %{title: "bar"})
iex> fetch_change(changeset, :title)
{:ok, "bar"}
iex> fetch_change(changeset, :body)
:error

 fetch_change!(changeset, key)

 @spec fetch_change!(t(), atom()) :: term()

Same as fetch_change/2 but returns the value or raises if the given key was not found.
Examples
iex> changeset = change(%Post{body: "foo"}, %{title: "bar"})
iex> fetch_change!(changeset, :title)
"bar"
iex> fetch_change!(changeset, :body)
** (KeyError) key :body not found in: %{title: "bar"}

 fetch_field(changeset, key)

 @spec fetch_field(t(), atom()) :: {:changes, term()} | {:data, term()} | :error

Fetches the given field from changes or from the data.
While fetch_change/2 only looks at the current changes
to retrieve a value, this function looks at the changes and
then falls back on the data, finally returning :error if
no value is available.
For relations, these functions will return the changeset
original data with changes applied. To retrieve raw changesets,
please use fetch_change/2.
Examples
iex> post = %Post{title: "Foo", body: "Bar baz bong"}
iex> changeset = change(post, %{title: "New title"})
iex> fetch_field(changeset, :title)
{:changes, "New title"}
iex> fetch_field(changeset, :body)
{:data, "Bar baz bong"}
iex> fetch_field(changeset, :not_a_field)
:error

 fetch_field!(changeset, key)

 @spec fetch_field!(t(), atom()) :: term()

Same as fetch_field/2 but returns the value or raises if the given key was not found.
Examples
iex> post = %Post{title: "Foo", body: "Bar baz bong"}
iex> changeset = change(post, %{title: "New title"})
iex> fetch_field!(changeset, :title)
"New title"
iex> fetch_field!(changeset, :other)
** (KeyError) key :other not found in: %Post{...}

 field_missing?(changeset, field)

 @spec field_missing?(t(), atom()) :: boolean()

Determines whether a field is missing in a changeset.
The field passed into this function will have its presence evaluated
according to the same rules as validate_required/3.
This is useful when performing complex validations that are not possible with
validate_required/3. For example, evaluating whether at least one field
from a list is present or evaluating that exactly one field from a list is
present.
Examples
iex> changeset = cast(%Post{}, %{color: "Red"}, [:color])
iex> missing_fields = Enum.filter([:title, :body], &field_missing?(changeset, &1))
iex> changeset =
...> case missing_fields do
...> [_, _] -> add_error(changeset, :title, "at least one of `:title` or `:body` must be present")
...> _ -> changeset
...> end
...> changeset.errors
[title: {"at least one of `:title` or `:body` must be present", []}]

 force_change(changeset, key, value)

 @spec force_change(t(), atom(), term()) :: t()

Forces a change on the given key with value.
If the change is already present, it is overridden with
the new value. If the value is later modified via
put_change/3 and update_change/3, reverting back to
its original value, the change will be reverted unless
force_change/3 is called once again.
Examples
iex> changeset = change(%Post{author: "bar"}, %{title: "foo"})
iex> changeset = force_change(changeset, :title, "bar")
iex> changeset.changes
%{title: "bar"}

iex> changeset = force_change(changeset, :author, "bar")
iex> changeset.changes
%{title: "bar", author: "bar"}

 foreign_key_constraint(changeset, field, opts \\ [])

 @spec foreign_key_constraint(t(), atom(), Keyword.t()) :: t()

Checks for foreign key constraint in the given field.
The foreign key constraint works by relying on the database to
check if the associated data exists or not. This is useful to
guarantee that a child will only be created if the parent exists
in the database too.
In order to use the foreign key constraint the first step is
to define the foreign key in a migration. This is often done
with references. For example, imagine you are creating a
comments table that belongs to posts. One would have:
create table(:comments) do
 add :post_id, references(:posts)
end
By default, Ecto will generate a foreign key constraint with
name "comments_post_id_fkey" (the name is configurable).
Now that a constraint exists, when creating comments, we could
annotate the changeset with foreign key constraint so Ecto knows
how to convert it into an error message:
cast(comment, params, [:post_id])
|> foreign_key_constraint(:post_id)
Now, when invoking Ecto.Repo.insert/2 or Ecto.Repo.update/2,
if the associated post does not exist, the underlying operation will
fail but Ecto will convert the database exception into a changeset
error and return an {:error, changeset} tuple. Note that the error
will occur only after hitting the database, so it will not be visible
until all other validations pass. If the constraint fails inside a
transaction, the transaction will be marked as aborted.
Options
	:message - the message in case the constraint check fails,
defaults to "does not exist"
	:name - the constraint name. By default, the constraint
name is inferred from the table + field. If this option is given,
the field argument only indicates the field the error will be
added to. May be required explicitly for complex cases
	:match - how the changeset constraint name is matched against the
repo constraint, may be :exact, :suffix or :prefix. Defaults to
:exact. :suffix matches any repo constraint which ends_with? :name
to this changeset constraint. :prefix matches any repo constraint which
starts_with? :name to this changeset constraint.

 get_assoc(changeset, name, as \\ :changeset)

 @spec get_assoc(t(), atom(), :changeset | :struct) ::
 [t() | Ecto.Schema.t()] | t() | Ecto.Schema.t() | nil

Gets the association entry or entries from changes or from the data.
Returned data is normalized to changesets by default. Pass the :struct
flag to retrieve the data as structs with changes applied, similar to get_field/2.
Examples
iex> %Author{posts: [%Post{id: 1, title: "hello"}]}
...> |> change()
...> |> get_assoc(:posts)
[%Ecto.Changeset{data: %Post{id: 1, title: "hello"}, changes: %{}}]

iex> %Author{posts: [%Post{id: 1, title: "hello"}]}
...> |> cast(%{posts: [%{id: 1, title: "world"}]}, [])
...> |> cast_assoc(:posts)
...> |> get_assoc(:posts, :changeset)
[%Ecto.Changeset{data: %Post{id: 1, title: "hello"}, changes: %{title: "world"}}]

iex> %Author{posts: [%Post{id: 1, title: "hello"}]}
...> |> cast(%{posts: [%{id: 1, title: "world"}]}, [])
...> |> cast_assoc(:posts)
...> |> get_assoc(:posts, :struct)
[%Post{id: 1, title: "world"}]

 get_change(changeset, key, default \\ nil)

 @spec get_change(t(), atom(), term()) :: term()

Gets a change or returns a default value.
For associations and embeds, this function always returns
nil, a changeset, or a list of changesets.
Examples
iex> changeset = change(%Post{body: "foo"}, %{title: "bar"})
iex> get_change(changeset, :title)
"bar"
iex> get_change(changeset, :body)
nil

 get_embed(changeset, name, as \\ :changeset)

Gets the embedded entry or entries from changes or from the data.
Returned data is normalized to changesets by default. Pass the :struct
flag to retrieve the data as structs with changes applied, similar to get_field/2.
Examples
iex> %Post{comments: [%Comment{id: 1, body: "hello"}]}
...> |> change()
...> |> get_embed(:comments)
[%Ecto.Changeset{data: %Comment{id: 1, body: "hello"}, changes: %{}}]

iex> %Post{comments: [%Comment{id: 1, body: "hello"}]}
...> |> cast(%{comments: [%{id: 1, body: "world"}]}, [])
...> |> cast_embed(:comments)
...> |> get_embed(:comments, :changeset)
[%Ecto.Changeset{data: %Comment{id: 1, body: "hello"}, changes: %{body: "world"}}]

iex> %Post{comments: [%Comment{id: 1, body: "hello"}]}
...> |> cast(%{comments: [%{id: 1, body: "world"}]}, [])
...> |> cast_embed(:comments)
...> |> get_embed(:comments, :struct)
[%Comment{id: 1, body: "world"}]

 get_field(changeset, key, default \\ nil)

 @spec get_field(t(), atom(), term()) :: term()

Gets a field from changes or from the data.
While get_change/3 only looks at the current changes
to retrieve a value, this function looks at the changes and
then falls back on the data, finally returning default if
no value is available.
For associations and embeds, this function always returns
nil, a struct, or a list of structs. In case of changes,
the changeset data will have all data applies. This guarantees
a consistent result regardless if changes have been applied
or not. Use get_change/2 or get_assoc/3/get_embed/3
if you want to retrieve the relations as changesets or
if you want more fine-grained control.
iex> post = %Post{title: "A title", body: "My body is a cage"}
iex> changeset = change(post, %{title: "A new title"})
iex> get_field(changeset, :title)
"A new title"
iex> get_field(changeset, :not_a_field, "Told you, not a field!")
"Told you, not a field!"

 merge(changeset1, changeset2)

 @spec merge(t(), t()) :: t()

Merges two changesets.
This function merges two changesets provided they have been applied to the
same data (their :data field is equal); if the data differs, an
ArgumentError exception is raised. If one of the changesets has a :repo
field which is not nil, then the value of that field is used as the :repo
field of the resulting changeset; if both changesets have a non-nil and
different :repo field, an ArgumentError exception is raised.
The other fields are merged with the following criteria:
	params - params are merged (not deep-merged) giving precedence to the
params of changeset2 in case of a conflict. If both changesets have their
:params fields set to nil, the resulting changeset will have its params
set to nil too.
	changes - changes are merged giving precedence to the changeset2
changes.
	errors and validations - they are simply concatenated.
	required - required fields are merged; all the fields that appear
in the required list of both changesets are moved to the required
list of the resulting changeset.

Examples
iex> changeset1 = cast(%Post{}, %{title: "Title"}, [:title])
iex> changeset2 = cast(%Post{}, %{title: "New title", body: "Body"}, [:title, :body])
iex> changeset = merge(changeset1, changeset2)
iex> changeset.changes
%{body: "Body", title: "New title"}

iex> changeset1 = cast(%Post{body: "Body"}, %{title: "Title"}, [:title])
iex> changeset2 = cast(%Post{}, %{title: "New title"}, [:title])
iex> merge(changeset1, changeset2)
** (ArgumentError) different :data when merging changesets

 no_assoc_constraint(changeset, assoc, opts \\ [])

 @spec no_assoc_constraint(t(), atom(), Keyword.t()) :: t()

Checks the associated field does not exist.
This is similar to foreign_key_constraint/3 except that the
field is inferred from the association definition. This is useful
to guarantee that parent can only be deleted (or have its primary
key changed) if no child exists in the database. Therefore, it only
applies to has_* associations.
As the name says, a constraint is required in the database for
this function to work. Such constraint is often added as a
reference to the child table:
create table(:comments) do
 add :post_id, references(:posts)
end
Now, when deleting the post, it is possible to forbid any post to
be deleted if they still have comments attached to it:
post
|> Ecto.Changeset.change
|> Ecto.Changeset.no_assoc_constraint(:comments)
|> Repo.delete
Options
	:message - the message in case the constraint check fails,
defaults to "is still associated with this entry" (for has_one)
and "are still associated with this entry" (for has_many)
	:name - the constraint name. By default, the constraint
name is inferred from the table + field. If this option is given,
the field argument only indicates the field the error will be
added to. May be required explicitly for complex cases
	:match - how the changeset constraint name is matched against the
repo constraint, may be :exact, :suffix or :prefix. Defaults to
:exact. :suffix matches any repo constraint which ends_with? :name
to this changeset constraint. :prefix matches any repo constraint which
starts_with? :name to this changeset constraint.

 optimistic_lock(data_or_changeset, field, incrementer \\ &increment_with_rollover/1)

 @spec optimistic_lock(Ecto.Schema.t() | t(), atom(), (term() -> term())) :: t()

Applies optimistic locking to the changeset.
Optimistic
locking (or
optimistic concurrency control) is a technique that allows concurrent edits
on a single record. While pessimistic locking works by locking a resource for
an entire transaction, optimistic locking only checks if the resource changed
before updating it.
This is done by regularly fetching the record from the database, then checking
whether another user has made changes to the record only when updating the
record. This behaviour is ideal in situations where the chances of concurrent
updates to the same record are low; if they're not, pessimistic locking or
other concurrency patterns may be more suited.
Usage
Optimistic locking works by keeping a "version" counter for each record; this
counter gets incremented each time a modification is made to a record. Hence,
in order to use optimistic locking, a field must exist in your schema for
versioning purpose. Such field is usually an integer but other types are
supported.
Examples
Assuming we have a Post schema (stored in the posts table), the first step
is to add a version column to the posts table:
alter table(:posts) do
 add :lock_version, :integer, default: 1
end
The column name is arbitrary and doesn't need to be :lock_version. Now add
a field to the schema too:
defmodule Post do
 use Ecto.Schema

 schema "posts" do
 field :title, :string
 field :lock_version, :integer, default: 1
 end

 def changeset(:update, struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:title])
 |> Ecto.Changeset.optimistic_lock(:lock_version)
 end
end
Now let's take optimistic locking for a spin:
iex> post = Repo.insert!(%Post{title: "foo"})
%Post{id: 1, title: "foo", lock_version: 1}
iex> valid_change = Post.changeset(:update, post, %{title: "bar"})
iex> stale_change = Post.changeset(:update, post, %{title: "baz"})
iex> Repo.update!(valid_change)
%Post{id: 1, title: "bar", lock_version: 2}
iex> Repo.update!(stale_change)
** (Ecto.StaleEntryError) attempted to update a stale entry:

%Post{id: 1, title: "baz", lock_version: 1}
When a conflict happens (a record which has been previously fetched is
being updated, but that same record has been modified since it was
fetched), an Ecto.StaleEntryError exception is raised.
Optimistic locking also works with delete operations. Just call the
optimistic_lock/3 function with the data before delete:
iex> changeset = Ecto.Changeset.optimistic_lock(post, :lock_version)
iex> Repo.delete(changeset)
optimistic_lock/3 by default assumes the field
being used as a lock is an integer. If you want to use another type,
you need to pass the third argument customizing how the next value
is generated:
iex> Ecto.Changeset.optimistic_lock(post, :lock_uuid, fn _ -> Ecto.UUID.generate end)

 prepare_changes(changeset, function)

 @spec prepare_changes(t(), (t() -> t())) :: t()

Provides a function executed by the repository on insert/update/delete.
If the changeset given to the repository is valid, the function given to
prepare_changes/2 will be called with the changeset and must return a
changeset, allowing developers to do final adjustments to the changeset or
to issue data consistency commands. The repository itself can be accessed
inside the function under the repo field in the changeset. If the
changeset given to the repository is invalid, the function will not be
invoked.
The given function is guaranteed to run inside the same transaction
as the changeset operation for databases that do support transactions.
Example
A common use case is updating a counter cache, in this case updating a post's
comment count when a comment is created:
def create_comment(comment, params) do
 comment
 |> cast(params, [:body, :post_id])
 |> prepare_changes(fn changeset ->
 if post_id = get_change(changeset, :post_id) do
 query = from Post, where: [id: ^post_id]
 changeset.repo.update_all(query, inc: [comment_count: 1])
 end
 changeset
 end)
end
We retrieve the repo from the comment changeset itself and use
update_all to update the counter cache in one query. Finally, the original
changeset must be returned.

 put_assoc(changeset, name, value, opts \\ [])

 @spec put_assoc(t(), atom(), term(), Keyword.t()) :: t()

Puts the given association entry or entries as a change in the changeset.
This function is used to work with associations as a whole. For example,
if a Post has many Comments, it allows you to add, remove or change all
comments at once, automatically computing inserts/updates/deletes by
comparing the data that you gave with the one already in the database.
If your goal is to manage individual resources, such as adding a new
comment to a post, or update post linked to a comment, then it is not
necessary to use this function. We will explore this later in the
"Example: Adding a comment to a post" section.
This function requires the associated data to have been preloaded, except
when the parent changeset has been newly built and not yet persisted.
Missing data will invoke the :on_replace behaviour defined on the
association.
For associations with cardinality one, nil can be used to remove the existing
entry. For associations with many entries, an empty list may be given instead.
If the association has no changes, it will be skipped. If the association is
invalid, the changeset will be marked as invalid. If the given value is not any
of values below, it will raise.
The associated data may be given in different formats:
	a map or a keyword list representing changes to be applied to the
associated data. A map or keyword list can be given to update the
associated data as long as they have matching primary keys.
For example, put_assoc(changeset, :comments, [%{id: 1, title: "changed"}])
will locate the comment with :id of 1 and update its title.
If no comment with such id exists, one is created on the fly.
Since only a single comment was given, any other associated comment
will be replaced. On all cases, it is expected the keys to be atoms.
Opposite to cast_assoc and embed_assoc, the given map (or struct)
is not validated in any way and will be inserted as is.
This API is mostly used in scripts and tests, to make it straight-
forward to create schemas with associations at once, such as:
Ecto.Changeset.change(
 %Post{},
 title: "foo",
 comments: [
 %{body: "first"},
 %{body: "second"}
]
)

	changesets - when changesets are given, they are treated as the canonical
data and the associated data currently stored in the association is either
updated or replaced. For example, if you call
put_assoc(post_changeset, :comments, [list_of_comments_changesets]),
all comments with matching IDs will be updated according to the changesets.
New comments or comments not associated to any post will be correctly
associated. Currently associated comments that do not have a matching ID
in the list of changesets will act according to the :on_replace association
configuration (you can chose to raise, ignore the operation, update or delete
them). If there are changes in any of the changesets, they will be
persisted too.

	structs - when structs are given, they are treated as the canonical data
and the associated data currently stored in the association is replaced.
For example, if you call
put_assoc(post_changeset, :comments, [list_of_comments_structs]),
all comments with matching IDs will be replaced by the new structs.
New comments or comments not associated to any post will be correctly
associated. Currently associated comments that do not have a matching ID
in the list of changesets will act according to the :on_replace
association configuration (you can chose to raise, ignore the operation,
update or delete them). Different to passing changesets, structs are not
change tracked in any fashion. In other words, if you change a comment
struct and give it to put_assoc/4, the updates in the struct won't be
persisted. You must use changesets, keyword lists, or maps instead. put_assoc/4 with structs
only takes care of guaranteeing that the comments and the parent data
are associated. This is extremely useful when associating existing data,
as we will see in the "Example: Adding tags to a post" section.

Once the parent changeset is given to an Ecto.Repo function, all entries
will be inserted/updated/deleted within the same transaction.
If you need different behaviour or explicit control over how this function
behaves, you can drop it altogether and use Ecto.Multi to encode how several
database operations will happen on several schemas and changesets at once.
Example: Adding a comment to a post
Imagine a relationship where Post has many comments and you want to add a
new comment to an existing post. While it is possible to use put_assoc/4
for this, it would be unnecessarily complex. Let's see an example.
First, let's fetch the post with all existing comments:
post = Post |> Repo.get!(1) |> Repo.preload(:comments)
The following approach is wrong:
post
|> Ecto.Changeset.change()
|> Ecto.Changeset.put_assoc(:comments, [%Comment{body: "bad example!"}])
|> Repo.update!()
The reason why the example above is wrong is because put_assoc/4 always
works with the full data. So the example above will effectively erase
all previous comments and only keep the comment you are currently adding.
Instead, you could try:
post
|> Ecto.Changeset.change()
|> Ecto.Changeset.put_assoc(:comments, [%Comment{body: "so-so example!"} | post.comments])
|> Repo.update!()
In this example, we prepend the new comment to the list of existing comments.
Ecto will diff the list of comments currently in post with the list of comments
given, and correctly insert the new comment to the database. Note, however,
Ecto is doing a lot of work just to figure out something we knew since the
beginning, which is that there is only one new comment.
In cases like above, when you want to work only on a single entry, it is
much easier to simply work on the association directly. For example, we
could instead set the post association in the comment:
%Comment{body: "better example"}
|> Ecto.Changeset.change()
|> Ecto.Changeset.put_assoc(:post, post)
|> Repo.insert!()
Alternatively, we can make sure that when we create a comment, it is already
associated to the post:
Ecto.build_assoc(post, :comments)
|> Ecto.Changeset.change(body: "great example!")
|> Repo.insert!()
Or we can simply set the post_id in the comment itself:
%Comment{body: "better example", post_id: post.id}
|> Repo.insert!()
In other words, when you find yourself wanting to work only with a subset
of the data, then using put_assoc/4 is most likely unnecessary. Instead,
you want to work on the other side of the association.
Let's see an example where using put_assoc/4 is a good fit.
Example: Adding tags to a post
Imagine you are receiving a set of tags you want to associate to a post.
Let's imagine that those tags exist upfront and are all persisted to the
database. Imagine we get the data in this format:
params = %{"title" => "new post", "tags" => ["learner"]}
Now, since the tags already exist, we will bring all of them from the
database and put them directly in the post:
tags = Repo.all(from t in Tag, where: t.name in ^params["tags"])

post
|> Repo.preload(:tags)
|> Ecto.Changeset.cast(params, [:title]) # No need to allow :tags as we put them directly
|> Ecto.Changeset.put_assoc(:tags, tags) # Explicitly set the tags
Since in this case we always require the user to pass all tags
directly, using put_assoc/4 is a great fit. It will automatically
remove any tag not given and properly associate all of the given
tags with the post.
Furthermore, since the tag information is given as structs read directly
from the database, Ecto will treat the data as correct and only do the
minimum necessary to guarantee that posts and tags are associated,
without trying to update or diff any of the fields in the tag struct.
Although it accepts an opts argument, there are no options currently
supported by put_assoc/4.
More resources
You can learn more about working with associations in our documentation,
including cheatsheets and practical examples. Check out:
	The docs for cast_assoc/3
	The associations cheatsheet
	The Constraints and Upserts guide
	The Polymorphic associations with many to many guide

 put_change(changeset, key, value)

 @spec put_change(t(), atom(), term()) :: t()

Puts a change on the given key with value.
key is an atom that represents any field, embed or
association in the changeset. Note the value is directly
stored in the changeset with no validation whatsoever.
For this reason, this function is meant for working with
data internal to the application.
If the change is already present, it is overridden with
the new value. If the change has the same value as in the
changeset data, no changes are added (and any existing
changes are removed).
When changing embeds and associations, see put_assoc/4
for a complete reference on the accepted values.
Examples
iex> changeset = change(%Post{}, %{title: "foo"})
iex> changeset = put_change(changeset, :title, "bar")
iex> changeset.changes
%{title: "bar"}

iex> changeset = change(%Post{title: "foo"})
iex> changeset = put_change(changeset, :title, "foo")
iex> changeset.changes
%{}

 put_embed(changeset, name, value, opts \\ [])

 @spec put_embed(t(), atom(), term(), Keyword.t()) :: t()

Puts the given embed entry or entries as a change in the changeset.
This function is used to work with embeds as a whole. For embeds with
cardinality one, nil can be used to remove the existing entry. For
embeds with many entries, an empty list may be given instead.
If the embed has no changes, it will be skipped. If the embed is
invalid, the changeset will be marked as invalid.
The list of supported values and their behaviour is described in
put_assoc/4. If the given value is not any of values listed there,
it will raise.
Although this function accepts an opts argument, there are no options
currently supported by put_embed/4.

 traverse_errors(changeset, msg_func)

 @spec traverse_errors(
 t(),
 (error() -> String.t()) | (t(), atom(), error() -> String.t())
) ::
 traverse_result()

Traverses changeset errors and applies the given function to error messages.
This function is particularly useful when associations and embeds
are cast in the changeset as it will traverse all associations and
embeds and place all errors in a series of nested maps.
A changeset is supplied along with a function to apply to each
error message as the changeset is traversed. The error message
function receives an error tuple {msg, opts}, for example:
{"should be at least %{count} characters", [count: 3, validation: :length, min: 3]}
Examples
iex> traverse_errors(changeset, fn {msg, opts} ->
...> Regex.replace(~r"%{(\w+)}", msg, fn _, key ->
...> opts |> Keyword.get(String.to_existing_atom(key), key) |> to_string()
...> end)
...> end)
%{title: ["should be at least 3 characters"]}
Optionally function can accept three arguments: changeset, field
and error tuple {msg, opts}. It is useful whenever you want to extract
validations rules from changeset.validations to build detailed error
description.

 traverse_validations(changeset, msg_func)

 @spec traverse_validations(
 t(),
 (validation() -> String.t()) | (t(), atom(), validation() -> String.t())
) :: traverse_result()

Traverses changeset validations and applies the given function to validations.
This behaves the same as traverse_errors/2, but operates on changeset
validations instead of errors.
Examples
iex> traverse_validations(changeset, &(&1))
%{title: [format: ~r/pattern/, length: [min: 1, max: 20]]}

iex> traverse_validations(changeset, fn
...> {:length, opts} -> {:length, "#{Keyword.get(opts, :min, 0)}-#{Keyword.get(opts, :max, 32)}"}
...> {:format, %Regex{source: source}} -> {:format, "/#{source}/"}
...> {other, opts} -> {other, inspect(opts)}
...> end)
%{title: [format: "/pattern/", length: "1-20"]}

 unique_constraint(changeset, field_or_fields, opts \\ [])

 @spec unique_constraint(t(), atom() | [atom(), ...], Keyword.t()) :: t()

Checks for a unique constraint in the given field or list of fields.
The unique constraint works by relying on the database to check
if the unique constraint has been violated or not and, if so,
Ecto converts it into a changeset error.
In order to use the uniqueness constraint, the first step is
to define the unique index in a migration:
create unique_index(:users, [:email])
Now that a constraint exists, when modifying users, we could
annotate the changeset with a unique constraint so Ecto knows
how to convert it into an error message:
cast(user, params, [:email])
|> unique_constraint(:email)
Now, when invoking Ecto.Repo.insert/2 or Ecto.Repo.update/2,
if the email already exists, the underlying operation will fail but
Ecto will convert the database exception into a changeset error and
return an {:error, changeset} tuple. Note that the error will occur
only after hitting the database, so it will not be visible until all
other validations pass. If the constraint fails inside a transaction,
the transaction will be marked as aborted.
Options
	:message - the message in case the constraint check fails,
defaults to "has already been taken"

	:name - the constraint name. By default, the constraint
name is inferred from the table + field. If this option is given,
the field argument only indicates the field the error will be
added to. May be required explicitly for complex cases

	:match - how the changeset constraint name is matched against the
repo constraint, may be :exact, :suffix or :prefix. Defaults to
:exact. :suffix matches any repo constraint which ends_with? :name
to this changeset constraint. :prefix matches any repo constraint which
starts_with? :name to this changeset constraint.

	:error_key - the key to which changeset error will be added when
check fails, defaults to the first field name of the given list of
fields.

Complex constraints
Because the constraint logic is in the database, we can leverage
all the database functionality when defining them. For example,
let's suppose the e-mails are scoped by company id:
In migration
create unique_index(:users, [:email, :company_id])

In the changeset function
cast(user, params, [:email])
|> unique_constraint([:email, :company_id])
The first field name, :email in this case, will be used as the error
key to the changeset errors keyword list. For example, the above
unique_constraint/3 would generate something like:
Repo.insert!(%User{email: "john@elixir.org", company_id: 1})
changeset = User.changeset(%User{}, %{email: "john@elixir.org", company_id: 1})
{:error, changeset} = Repo.insert(changeset)
changeset.errors #=> [email: {"has already been taken", []}]
In complex cases, instead of relying on name inference, it may be best
to set the constraint name explicitly:
In the migration
create unique_index(:users, [:email, :company_id], name: :users_email_company_id_index)

In the changeset function
cast(user, params, [:email])
|> unique_constraint(:email, name: :users_email_company_id_index)
Partitioning
If your table is partitioned, then your unique index might look different
per partition, e.g. Postgres adds p<number> to the middle of your key, like:
users_p0_email_key
users_p1_email_key
...
users_p99_email_key
In this case you can use the name and suffix options together to match on
these dynamic indexes, like:
cast(user, params, [:email])
|> unique_constraint(:email, name: :email_key, match: :suffix)
There are cases where the index has a number added both for table name and
index name, generating an index name such as:
user_p0_email_idx2
user_p1_email_idx3
...
user_p99_email_idx101
In that case, a Regex can be used to match:
cast(user, params, [:email])
|> unique_constraint(:email, name: ~r/user_p�+_email_idx�+/)
Case sensitivity
Unfortunately, different databases provide different guarantees
when it comes to case-sensitiveness. For example, in MySQL, comparisons
are case-insensitive by default. In Postgres, users can define case
insensitive column by using the :citext type/extension. In your migration:
execute "CREATE EXTENSION IF NOT EXISTS citext"
create table(:users) do
 ...
 add :email, :citext
 ...
end
If for some reason your database does not support case insensitive columns,
you can explicitly downcase values before inserting/updating them:
cast(data, params, [:email])
|> update_change(:email, &String.downcase/1)
|> unique_constraint(:email)

 unsafe_validate_unique(changeset, fields, repo, opts \\ [])

 @spec unsafe_validate_unique(t(), atom() | [atom(), ...], Ecto.Repo.t(), Keyword.t()) ::
 t()

Validates that no existing record with a different primary key
has the same values for these fields.
This function exists to provide quick feedback to users of your
application. It should not be relied on for any data guarantee as it
has race conditions and is inherently unsafe. For example, if this
check happens twice in the same time interval (because the user
submitted a form twice), both checks may pass and you may end-up with
duplicate entries in the database. Therefore, a unique_constraint/3
should also be used to ensure your data won't get corrupted.
However, because constraints are only checked if all validations
succeed, this function can be used as an early check to provide
early feedback to users, since most conflicting data will have been
inserted prior to the current validation phase.
When applying this validation to a schemas loaded from the database
this check will exclude rows having the same primary key as set on
the changeset, as those are supposed to be overwritten anyways.
Options
	:message - the message in case the constraint check fails,
defaults to "has already been taken". Can also be a {msg, opts} tuple,
to provide additional options when using traverse_errors/2.

	:error_key - the key to which changeset error will be added when
check fails, defaults to the first field name of the given list of
fields.

	:prefix - the prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). See Ecto.Repo documentation
for more information.

	:nulls_distinct - a boolean controlling whether different null values
are considered distinct (not equal). If false, nil values will have
their uniqueness checked. Otherwise, the check will not be performed. This
is only meaningful when paired with a unique index that treats nulls as equal,
such as Postgres 15's NULLS NOT DISTINCT option. Defaults to true

	:repo_opts - the options to pass to the Ecto.Repo call.

	:query - the base query to use for the check. Defaults to the schema of
the changeset. If the primary key is set, a clause will be added to exclude
the changeset row itself from the check.

Examples
unsafe_validate_unique(changeset, :city_name, repo)
unsafe_validate_unique(changeset, [:city_name, :state_name], repo)
unsafe_validate_unique(changeset, [:city_name, :state_name], repo, message: "city must be unique within state")
unsafe_validate_unique(changeset, [:city_name, :state_name], repo, prefix: "public")
unsafe_validate_unique(changeset, [:city_name, :state_name], repo, query: from(c in City, where: is_nil(c.deleted_at)))

 update_change(changeset, key, function)

 @spec update_change(t(), atom(), (term() -> term())) :: t()

Updates a change.
The given function is invoked with the change value only if there
is a change for key. Once the function is invoked, it behaves as
put_change/3.
Note that the value of the change can still be nil (unless the field
was marked as required on validate_required/3).
Examples
iex> changeset = change(%Post{}, %{impressions: 1})
iex> changeset = update_change(changeset, :impressions, &(&1 + 1))
iex> changeset.changes.impressions
2

 validate_acceptance(changeset, field, opts \\ [])

 @spec validate_acceptance(t(), atom(), Keyword.t()) :: t()

Validates the given parameter is true.
Note this validation only checks the parameter itself is true, never
the field in the schema. That's because acceptance parameters do not need
to be persisted, as by definition they would always be stored as true.
Options
	:message - the message on failure, defaults to "must be accepted".
Can also be a {msg, opts} tuple, to provide additional options
when using traverse_errors/2.

Examples
validate_acceptance(changeset, :terms_of_service)
validate_acceptance(changeset, :rules, message: "please accept rules")

 validate_change(changeset, field, validator)

 @spec validate_change(
 t(),
 atom(),
 (atom(), term() -> [{atom(), String.t()} | {atom(), error()}])
) :: t()

Validates the given field change.
It invokes the validator function to perform the validation
only if a change for the given field exists and the change
value is not nil. The function must return a list of errors
(with an empty list meaning no errors).
In case there's at least one error, the list of errors will be appended to the
:errors field of the changeset and the :valid? flag will be set to
false.
Examples
iex> changeset = change(%Post{}, %{title: "foo"})
iex> changeset = validate_change changeset, :title, fn :title, title ->
...> # Value must not be "foo"!
...> if title == "foo" do
...> [title: "cannot be foo"]
...> else
...> []
...> end
...> end
iex> changeset.errors
[title: {"cannot be foo", []}]

iex> changeset = change(%Post{}, %{title: "foo"})
iex> changeset = validate_change changeset, :title, fn :title, title ->
...> if title == "foo" do
...> [title: {"cannot be foo", additional: "info"}]
...> else
...> []
...> end
...> end
iex> changeset.errors
[title: {"cannot be foo", [additional: "info"]}]

 validate_change(changeset, field, metadata, validator)

 @spec validate_change(
 t(),
 atom(),
 term(),
 (atom(), term() -> [{atom(), String.t()} | {atom(), error()}])
) :: t()

Stores the validation metadata and validates the given field change.
Similar to validate_change/3 but stores the validation metadata
into the changeset validators. The validator metadata is often used
as a reflection mechanism, to automatically generate code based on
the available validations.
Examples
iex> changeset = change(%Post{}, %{title: "foo"})
iex> changeset = validate_change changeset, :title, :useless_validator, fn
...> _, _ -> []
...> end
iex> changeset.validations
[title: :useless_validator]

 validate_confirmation(changeset, field, opts \\ [])

 @spec validate_confirmation(t(), atom(), Keyword.t()) :: t()

Validates that the given parameter matches its confirmation.
By calling validate_confirmation(changeset, :email), this
validation will check if both "email" and "email_confirmation"
in the parameter map matches. Note this validation only looks
at the parameters themselves, never the fields in the schema.
As such as, the "email_confirmation" field does not need to be
added as a virtual field in your schema.
Note that if the confirmation field is missing, this does not
add a validation error. This is done on purpose as you do not
trigger confirmation validation in places where a confirmation
is not required (for example, in APIs). You can force the
confirmation parameter to be required in the options (see below).
Options
	:message - the message on failure, defaults to "does not match confirmation".
Can also be a {msg, opts} tuple, to provide additional options
when using traverse_errors/2.
	:required - boolean, sets whether existence of confirmation parameter
is required for addition of error. Defaults to false

Examples
validate_confirmation(changeset, :email)
validate_confirmation(changeset, :password, message: "does not match password")

cast(data, params, [:password])
|> validate_confirmation(:password, message: "does not match password")

 validate_exclusion(changeset, field, data, opts \\ [])

 @spec validate_exclusion(t(), atom(), Enum.t(), Keyword.t()) :: t()

Validates a change is not included in the given enumerable.
The validation only runs if a change for the given field exists and the
change value is not nil.
Options
	:message - the message on failure, defaults to "is reserved".
Can also be a {msg, opts} tuple, to provide additional options
when using traverse_errors/2.

Examples
validate_exclusion(changeset, :name, ~w(admin superadmin))

 validate_format(changeset, field, format, opts \\ [])

 @spec validate_format(t(), atom(), Regex.t(), Keyword.t()) :: t()

Validates a change has the given format.
The format has to be expressed as a regular expression.
The validation only runs if a change for the given field exists and the
change value is not nil.
Options
	:message - the message on failure, defaults to "has invalid format".
Can also be a {msg, opts} tuple, to provide additional options
when using traverse_errors/2.

Examples
validate_format(changeset, :email, ~r/@/)

 validate_inclusion(changeset, field, data, opts \\ [])

 @spec validate_inclusion(t(), atom(), Enum.t(), Keyword.t()) :: t()

Validates a change is included in the given enumerable.
The validation only runs if a change for the given field exists and the
change value is not nil.
Options
	:message - the message on failure, defaults to "is invalid".
Can also be a {msg, opts} tuple, to provide additional options
when using traverse_errors/2.

Examples
validate_inclusion(changeset, :cardinal_direction, ["north", "east", "south", "west"])
validate_inclusion(changeset, :age, 0..99)

 validate_length(changeset, field, opts)

 @spec validate_length(t(), atom(), Keyword.t()) :: t()

Validates a change is a string or list of the given length.
Note that the length of a string is counted in graphemes by default. If using
this validation to match a character limit of a database backend,
it's likely that the limit ignores graphemes and limits the number
of unicode characters. Then consider using the :count option to
limit the number of codepoints (:codepoints), or limit the number of bytes (:bytes).
The validation only runs if a change for the given field exists and the
change value is not nil.
Options
	:is - the length must be exactly this value
	:min - the length must be greater than or equal to this value
	:max - the length must be less than or equal to this value
	:count - what length to count for string, :graphemes (default), :codepoints or :bytes
	:message - the message on failure, depending on the validation, is one of:	for strings:	"should be %{count} character(s)"
	"should be at least %{count} character(s)"
	"should be at most %{count} character(s)"

	for binary:	"should be %{count} byte(s)"
	"should be at least %{count} byte(s)"
	"should be at most %{count} byte(s)"

	for lists and maps:	"should have %{count} item(s)"
	"should have at least %{count} item(s)"
	"should have at most %{count} item(s)"
Can also be a {msg, opts} tuple, to provide additional options
when using traverse_errors/2.

Examples
validate_length(changeset, :title, min: 3)
validate_length(changeset, :title, max: 100)
validate_length(changeset, :title, min: 3, max: 100)
validate_length(changeset, :code, is: 9)
validate_length(changeset, :topics, is: 2)
validate_length(changeset, :icon, count: :bytes, max: 1024 * 16)

 validate_number(changeset, field, opts)

 @spec validate_number(t(), atom(), Keyword.t()) :: t()

Validates the properties of a number.
The validation only runs if a change for the given field exists and the
change value is not nil.
Options
	:less_than
	:greater_than
	:less_than_or_equal_to
	:greater_than_or_equal_to
	:equal_to
	:not_equal_to
	:message - the message on failure, defaults to one of:	"must be less than %{number}"
	"must be greater than %{number}"
	"must be less than or equal to %{number}"
	"must be greater than or equal to %{number}"
	"must be equal to %{number}"
	"must be not equal to %{number}"
Can also be a {msg, opts} tuple, to provide additional options
when using traverse_errors/2.

Examples
validate_number(changeset, :count, less_than: 3)
validate_number(changeset, :pi, greater_than: 3, less_than: 4)
validate_number(changeset, :the_answer_to_life_the_universe_and_everything, equal_to: 42)

 validate_required(changeset, fields, opts \\ [])

 @spec validate_required(t(), list() | atom(), Keyword.t()) :: t()

Validates that one or more fields are present in the changeset.
You can pass a single field name or a list of field names that
are required.
If the value of a field is nil or a string made only of whitespace,
the changeset is marked as invalid, the field is removed from the
changeset's changes, and an error is added. An error won't be added if
the field already has an error.
If a field is given to validate_required/3 but it has not been passed
as parameter during cast/3 (i.e. it has not been changed), then
validate_required/3 will check for its current value in the data.
If the data contains a non-empty value for the field, then no error is
added. This allows developers to use validate_required/3 to perform
partial updates. For example, on insert all fields would be required,
because their default values on the data are all nil, but on update,
if you don't want to change a field that has been previously set,
you are not required to pass it as a parameter, since validate_required/3
won't add an error for missing changes as long as the value in the
data given to the changeset is not empty.
Do not use this function to validate associations that are required,
instead pass the :required option to cast_assoc/3 or cast_embed/3.
Opposite to other validations, calling this function does not store
the validation under the changeset.validations key. Instead, it
stores all required fields under changeset.required.
Options
	:message - the message on failure, defaults to "can't be blank".
Can also be a {msg, opts} tuple, to provide additional options
when using traverse_errors/2.

Examples
validate_required(changeset, :title)
validate_required(changeset, [:title, :body])

 validate_subset(changeset, field, data, opts \\ [])

 @spec validate_subset(t(), atom(), Enum.t(), Keyword.t()) :: t()

Validates a change, of type enum, is a subset of the given enumerable.
This validates if a list of values belongs to the given enumerable.
If you need to validate if a single value is inside the given enumerable,
you should use validate_inclusion/4 instead.
Type of the field must be array.
The validation only runs if a change for the given field exists and the
change value is not nil.
Options
	:message - the message on failure, defaults to "has an invalid entry".
Can also be a {msg, opts} tuple, to provide additional options
when using traverse_errors/2.

Examples
validate_subset(changeset, :pets, ["cat", "dog", "parrot"])
validate_subset(changeset, :lottery_numbers, 0..99)

 validations(changeset)

 @spec validations(t()) :: [{atom(), term()}]

Returns a keyword list of the validations for this changeset.
The keys in the list are the names of fields, and the values are a
validation associated with the field. A field may occur multiple
times in the list.
Example
%Post{}
|> change()
|> validate_format(:title, ~r/^\w+:\s/, message: "must start with a topic")
|> validate_length(:title, max: 100)
|> validations()
#=> [
 title: {:length, [max: 100]},
 title: {:format, ~r/^\w+:\s/}
]
The following validations may be included in the result. The list is
not necessarily exhaustive. For example, custom validations written
by the developer will also appear in our return value.
This first group contains validations that hold a keyword list of validators.
This list may also include a :message key.
	{:length, [option]}
	min: n
	max: n
	is: n
	count: :graphemes | :codepoints

	{:number, [option]}
	equal_to: n
	greater_than: n
	greater_than_or_equal_to: n
	less_than: n
	less_than_or_equal_to: n

The other validators simply take a value:
	{:exclusion, Enum.t}
	{:format, ~r/pattern/}
	{:inclusion, Enum.t}
	{:subset, Enum.t}

Note that calling validate_required/3 does not store the validation under the
changeset.validations key (and so won't be included in the result of this
function). The required fields are stored under the changeset.required key.

Ecto.Multi

Ecto.Multi is a data structure for grouping multiple Repo operations.
Ecto.Multi makes it possible to pack operations that should be
performed in a single database transaction and provides a way to introspect
the queued operations without actually performing them. Each operation
is given a name that is unique and will identify its result in case of
either success or failure.
If a Multi is valid (i.e. all the changesets in it are valid),
all operations will be executed in the order they were added.
The Ecto.Multi structure should be considered opaque. You can use
%Ecto.Multi{} to pattern match the type, but accessing fields or
directly modifying them is not advised.
Ecto.Multi.to_list/1 returns a canonical representation of the
structure that can be used for introspection.
When to use Ecto.Multi?
Ecto.Multi is particularly useful when the set of operations to perform
is dynamic. For most other use cases, using regular control flow within
Repo.transact(fun) and returning
{:ok, result} or {:error, reason} is more straightforward.
Changesets
If a Multi contains operations that accept changesets (like insert/4,
update/4 or delete/4), they will be checked before starting the
transaction. If any changeset has errors, the transaction will not be
started and the error will immediately be returned.
Note: insert/4, update/4, insert_or_update/4 and delete/4
variants that accept a function do not perform these checks since
the functions are executed after the transaction has started.
Run
Multi allows you to run arbitrary functions as part of your transaction
via run/3 and run/5. This is especially useful when an operation
depends on the value of a previous operation. For this reason, the
function given as a callback to run/3 and run/5 will receive the repo
as the first argument, and all changes performed by the Multi so far as a
map as the second argument.
The function given to run must return {:ok, value} or {:error, value}
as its result. Returning an error will abort any further operations
and make the Multi fail.
Example
Let's look at an example definition and usage: resetting a password. We need
to update the account with proper information, log the request and remove
all current sessions:
defmodule PasswordManager do
 alias Ecto.Multi

 def reset(account, params) do
 Multi.new()
 |> Multi.update(:account, Account.password_reset_changeset(account, params))
 |> Multi.insert(:log, Log.password_reset_changeset(account, params))
 |> Multi.delete_all(:sessions, Ecto.assoc(account, :sessions))
 end
end
We can later execute it in the integration layer using Repo:
Repo.transact(PasswordManager.reset(account, params))
By pattern matching on the result we can differentiate various conditions:
case result do
 {:ok, %{account: account, log: log, sessions: sessions}} ->
 # The Multi was successful. We can access results , which are as
 # we would get from running the corresponding Repo functions, under
 # keys we used for naming the operations.
 {:error, failed_operation, failed_value, changes_so_far} ->
 # One of the operations failed. We can access the operation's failure
 # value (such as a changeset for operations on changesets) to prepare a
 # proper response. We also get access to the results of any operations
 # that succeeded before the indicated operation failed. (However,
 # successful operations were rolled back.)
end
We can also easily unit test our transaction without actually running it.
Since changesets can use in-memory data, we can use an account that is
constructed in memory as well, without persisting it to the database:
test "dry run password reset" do
 account = %Account{password: "letmein"}
 multi = PasswordManager.reset(account, params)

 assert [
 {:account, {:update, account_changeset, []}},
 {:log, {:insert, log_changeset, []}},
 {:sessions, {:delete_all, query, []}}
] = Ecto.Multi.to_list(multi)

 # We can introspect changesets and query to see if everything
 # is as expected, for example:
 assert account_changeset.valid?
 assert log_changeset.valid?
 assert inspect(query) == "#Ecto.Query<from a in Session>"
end
The name of each operation does not have to be an atom. This can be particularly
useful when you wish to update a collection of changesets at once, and track their
errors individually:
accounts = [%Account{id: 1}, %Account{id: 2}]

Enum.reduce(accounts, Multi.new(), fn account, multi ->
 Multi.update(
 multi,
 {:account, account.id},
 Account.password_reset_changeset(account, params)
)
end)

 Summary

 Types

 changes()

 Map of changes made so far during the current transaction. For any Multi
which returns {:ok, result}, its name/0 is added as a key and its
result as the value.

 failure()

 Result of a failed transaction using a Multi.

 fun(result)

 merge()

 name()

 Name of an operation in the Multi. Can be any term, as long as it is unique
within the list of operations; for example, :insert_post or {:delete_post, 5}.

 run()

 t()

 Functions

 all(multi, name, queryable_or_fun, opts \\ [])

 Runs a query and stores all results in the Multi.

 append(lhs, rhs)

 Appends the second Multi to the first.

 delete(multi, name, changeset_or_struct_fun, opts \\ [])

 Adds a delete operation to the Multi.

 delete_all(multi, name, queryable_or_fun, opts \\ [])

 Adds a delete_all operation to the Multi.

 error(multi, name, value)

 Causes the Multi to fail with the given value.

 exists?(multi, name, queryable_or_fun, opts \\ [])

 Checks if an entry matching the given query exists and stores a boolean in the Multi.

 insert(multi, name, changeset_or_struct_or_fun, opts \\ [])

 Adds an insert operation to the Multi.

 insert_all(multi, name, schema_or_source, entries_or_query_or_fun, opts \\ [])

 Adds an insert_all operation to the Multi.

 insert_or_update(multi, name, changeset_or_fun, opts \\ [])

 Inserts or updates a changeset depending on whether or not the changeset was persisted.

 inspect(multi, opts \\ [])

 Inspects results from a Multi.

 merge(multi, merge)

 Merges a Multi returned dynamically by an anonymous function.

 merge(multi, mod, fun, args)

 Merges a Multi returned dynamically by calling module and function with args.

 new()

 Returns an empty Ecto.Multi struct.

 one(multi, name, queryable_or_fun, opts \\ [])

 Runs a query expecting one result and stores the result in the Multi.

 prepend(lhs, rhs)

 Prepends the second Multi to the first.

 put(multi, name, value)

 Adds a value to the changes so far under the given name.

 run(multi, name, run)

 Adds a function to run as part of the Multi.

 run(multi, name, mod, fun, args)

 Adds a function to run as part of the Multi.

 to_list(multi)

 Returns the list of operations stored in the Multi.

 update(multi, name, changeset_or_fun, opts \\ [])

 Adds an update operation to the Multi.

 update_all(multi, name, queryable_or_fun, updates, opts \\ [])

 Adds an update_all operation to the Multi.

 Types

 changes()

 @type changes() :: map()

Map of changes made so far during the current transaction. For any Multi
which returns {:ok, result}, its name/0 is added as a key and its
result as the value.

 failure()

 @type failure() ::
 {:error, failed_operation :: name(), failed_value :: any(),
 changes_so_far :: %{required(name()) => any()}}

Result of a failed transaction using a Multi.

 fun(result)

 @type fun(result) :: (changes() -> result)

 merge()

 @type merge() :: (changes() -> t()) | {module(), atom(), [any()]}

 name()

 @type name() :: any()

Name of an operation in the Multi. Can be any term, as long as it is unique
within the list of operations; for example, :insert_post or {:delete_post, 5}.

 run()

 @type run() :: (Ecto.Repo.t(), changes() -> {:ok | :error, any()})

 t()

 @type t() :: %Ecto.Multi{names: names(), operations: operations()}

 Functions

 all(multi, name, queryable_or_fun, opts \\ [])

 @spec all(
 t(),
 name(),
 queryable :: Ecto.Queryable.t() | (changes() -> Ecto.Queryable.t()),
 opts :: Keyword.t()
) :: t()

Runs a query and stores all results in the Multi.
The name must be unique within the Multi.
The remaining arguments and options are the same as in Ecto.Repo.all/2.
Example
Ecto.Multi.new()
|> Ecto.Multi.all(:all, Post)
|> MyApp.Repo.transact()

Ecto.Multi.new()
|> Ecto.Multi.all(:all, fn _changes -> Post end)
|> MyApp.Repo.transact()

 append(lhs, rhs)

 @spec append(t(), t()) :: t()

Appends the second Multi to the first.
All names must be unique within both structures.
Example
iex> lhs = Ecto.Multi.new() |> Ecto.Multi.run(:left, fn _, changes -> {:ok, changes} end)
iex> rhs = Ecto.Multi.new() |> Ecto.Multi.run(:right, fn _, changes -> {:error, changes} end)
iex> Ecto.Multi.append(lhs, rhs) |> Ecto.Multi.to_list |> Keyword.keys
[:left, :right]

 delete(multi, name, changeset_or_struct_fun, opts \\ [])

 @spec delete(
 t(),
 name(),
 Ecto.Changeset.t()
 | Ecto.Schema.t()
 | (changes() -> Ecto.Changeset.t() | Ecto.Schema.t()),
 Keyword.t()
) :: t()

Adds a delete operation to the Multi.
The name must be unique within the Multi.
The remaining arguments and options are the same as in Ecto.Repo.delete/2.
Example
post = MyApp.Repo.get!(Post, 1)
Ecto.Multi.new()
|> Ecto.Multi.delete(:delete, post)
|> MyApp.Repo.transact()

Ecto.Multi.new()
|> Ecto.Multi.run(:post, fn repo, _changes ->
 case repo.get(Post, 1) do
 nil -> {:error, :not_found}
 post -> {:ok, post}
 end
end)
|> Ecto.Multi.delete(:delete, fn %{post: post} ->
 # Others validations
 post
end)
|> MyApp.Repo.transact()

 delete_all(multi, name, queryable_or_fun, opts \\ [])

 @spec delete_all(
 t(),
 name(),
 Ecto.Queryable.t() | (changes() -> Ecto.Queryable.t()),
 Keyword.t()
) ::
 t()

Adds a delete_all operation to the Multi.
Accepts the same arguments and options as Ecto.Repo.delete_all/2.
Example
queryable = from(p in Post, where: p.id < 5)
Ecto.Multi.new()
|> Ecto.Multi.delete_all(:delete_all, queryable)
|> MyApp.Repo.transact()

Ecto.Multi.new()
|> Ecto.Multi.run(:post, fn repo, _changes ->
 case repo.get(Post, 1) do
 nil -> {:error, :not_found}
 post -> {:ok, post}
 end
end)
|> Ecto.Multi.delete_all(:delete_all, fn %{post: post} ->
 # Others validations
 from(c in Comment, where: c.post_id == ^post.id)
end)
|> MyApp.Repo.transact()

 error(multi, name, value)

 @spec error(t(), name(), error :: term()) :: t()

Causes the Multi to fail with the given value.
Running the Multi in a transaction will execute
no previous steps and return the value of the first
error added.

 exists?(multi, name, queryable_or_fun, opts \\ [])

 @spec exists?(
 t(),
 name(),
 queryable :: Ecto.Queryable.t() | (changes() -> Ecto.Queryable.t()),
 opts :: Keyword.t()
) :: t()

Checks if an entry matching the given query exists and stores a boolean in the Multi.
The name must be unique within the Multi.
The remaining arguments and options are the same as in Ecto.Repo.exists?/2.
Example
Ecto.Multi.new()
|> Ecto.Multi.exists?(:post, Post)
|> MyApp.Repo.transact()

Ecto.Multi.new()
|> Ecto.Multi.exists?(:post, fn _changes -> Post end)
|> MyApp.Repo.transact()

 insert(multi, name, changeset_or_struct_or_fun, opts \\ [])

 @spec insert(
 t(),
 name(),
 Ecto.Changeset.t()
 | Ecto.Schema.t()
 | (changes() -> Ecto.Changeset.t() | Ecto.Schema.t()),
 Keyword.t()
) :: t()

Adds an insert operation to the Multi.
The name must be unique within the Multi.
The remaining arguments and options are the same as in Ecto.Repo.insert/2.
Example
Ecto.Multi.new()
|> Ecto.Multi.insert(:insert, %Post{title: "first"})
|> MyApp.Repo.transact()

Ecto.Multi.new()
|> Ecto.Multi.insert(:post, %Post{title: "first"})
|> Ecto.Multi.insert(:comment, fn %{post: post} ->
 Ecto.build_assoc(post, :comments)
end)
|> MyApp.Repo.transact()

 insert_all(multi, name, schema_or_source, entries_or_query_or_fun, opts \\ [])

 @spec insert_all(
 t(),
 name(),
 schema_or_source(),
 entries_or_query_or_fun ::
 [map() | Keyword.t()]
 | (changes() -> [map() | Keyword.t()])
 | Ecto.Query.t(),
 Keyword.t()
) :: t()

Adds an insert_all operation to the Multi.
Accepts the same arguments and options as Ecto.Repo.insert_all/3.
Example
posts = [%{title: "My first post"}, %{title: "My second post"}]
Ecto.Multi.new()
|> Ecto.Multi.insert_all(:insert_all, Post, posts)
|> MyApp.Repo.transact()

Ecto.Multi.new()
|> Ecto.Multi.run(:post, fn repo, _changes ->
 case repo.get(Post, 1) do
 nil -> {:error, :not_found}
 post -> {:ok, post}
 end
end)
|> Ecto.Multi.insert_all(:insert_all, Comment, fn %{post: post} ->
 # Others validations

 entries
 |> Enum.map(fn comment ->
 Map.put(comment, :post_id, post.id)
 end)
end)
|> MyApp.Repo.transact()

 insert_or_update(multi, name, changeset_or_fun, opts \\ [])

 @spec insert_or_update(
 t(),
 name(),
 Ecto.Changeset.t() | (changes() -> Ecto.Changeset.t()),
 Keyword.t()
) ::
 t()

Inserts or updates a changeset depending on whether or not the changeset was persisted.
The name must be unique within the Multi.
The remaining arguments and options are the same as in Ecto.Repo.insert_or_update/2.
Example
changeset = Post.changeset(%Post{}, %{title: "New title"})
Ecto.Multi.new()
|> Ecto.Multi.insert_or_update(:insert_or_update, changeset)
|> MyApp.Repo.transact()

Ecto.Multi.new()
|> Ecto.Multi.run(:post, fn repo, _changes ->
 {:ok, repo.get(Post, 1) || %Post{}}
end)
|> Ecto.Multi.insert_or_update(:update, fn %{post: post} ->
 Ecto.Changeset.change(post, title: "New title")
end)
|> MyApp.Repo.transact()

 inspect(multi, opts \\ [])

 @spec inspect(t(), Keyword.t()) :: t()

Inspects results from a Multi.
By default, the name is shown as a label to the inspect. Custom labels are
supported through the IO.inspect/2 label option.
Options
All options for IO.inspect/2 are supported, as well as:
	:only - A field or a list of fields to inspect, will print the entire
map by default.

Examples
Ecto.Multi.new()
|> Ecto.Multi.insert(:person_a, changeset)
|> Ecto.Multi.insert(:person_b, changeset)
|> Ecto.Multi.inspect()
|> MyApp.Repo.transact()
Prints:
%{person_a: %Person{...}, person_b: %Person{...}}
We can use the :only option to limit which fields will be printed:
Ecto.Multi.new()
|> Ecto.Multi.insert(:person_a, changeset)
|> Ecto.Multi.insert(:person_b, changeset)
|> Ecto.Multi.inspect(only: :person_a)
|> MyApp.Repo.transact()
Prints:
%{person_a: %Person{...}}

 merge(multi, merge)

 @spec merge(t(), (changes() -> t())) :: t()

Merges a Multi returned dynamically by an anonymous function.
This function is useful when the Multi to be merged requires information
from the original Multi. The second argument is an anonymous function
that receives the Multi changes so far. The anonymous function must return
another Multi.
If you would prefer to simply merge two Multis together, see append/2 or
prepend/2.
Duplicated operations are not allowed.
Example
multi =
 Ecto.Multi.new()
 |> Ecto.Multi.insert(:post, %Post{title: "first"})

multi
|> Ecto.Multi.merge(fn %{post: post} ->
 Ecto.Multi.new()
 |> Ecto.Multi.insert(:comment, Ecto.build_assoc(post, :comments))
end)
|> MyApp.Repo.transact()

 merge(multi, mod, fun, args)

 @spec merge(t(), module(), function, args) :: t() when function: atom(), args: [any()]

Merges a Multi returned dynamically by calling module and function with args.
Similar to merge/2 but allows passing of module name, function and
arguments. The function should return an Ecto.Multi, and receives changes so far
as the first argument (prepended to those passed in the call to the function).
Duplicated operations are not allowed.

 new()

 @spec new() :: t()

Returns an empty Ecto.Multi struct.
Example
iex> Ecto.Multi.new() |> Ecto.Multi.to_list()
[]

 one(multi, name, queryable_or_fun, opts \\ [])

 @spec one(
 t(),
 name(),
 queryable :: Ecto.Queryable.t() | (changes() -> Ecto.Queryable.t()),
 opts :: Keyword.t()
) :: t()

Runs a query expecting one result and stores the result in the Multi.
The name must be unique within the Multi.
The remaining arguments and options are the same as in Ecto.Repo.one/2.
Example
Ecto.Multi.new()
|> Ecto.Multi.one(:post, Post)
|> Ecto.Multi.one(:author, fn %{post: post} ->
 from(a in Author, where: a.id == ^post.author_id)
end)
|> MyApp.Repo.transact()

 prepend(lhs, rhs)

 @spec prepend(t(), t()) :: t()

Prepends the second Multi to the first.
All names must be unique within both structures.
Example
iex> lhs = Ecto.Multi.new() |> Ecto.Multi.run(:left, fn _, changes -> {:ok, changes} end)
iex> rhs = Ecto.Multi.new() |> Ecto.Multi.run(:right, fn _, changes -> {:error, changes} end)
iex> Ecto.Multi.prepend(lhs, rhs) |> Ecto.Multi.to_list |> Keyword.keys
[:right, :left]

 put(multi, name, value)

 @spec put(t(), name(), any()) :: t()

Adds a value to the changes so far under the given name.
The given value is added to the Multi before the transaction starts.
If you would like to run arbitrary functions as part of your transaction,
see run/3 or run/5.
Example
Imagine there is an existing company schema that you retrieved from
the database. You can insert it as a change in the Multi using put/3:
Ecto.Multi.new()
|> Ecto.Multi.put(:company, company)
|> Ecto.Multi.insert(:user, fn changes -> User.changeset(changes.company) end)
|> Ecto.Multi.insert(:person, fn changes -> Person.changeset(changes.user, changes.company) end)
|> MyApp.Repo.transact()
In the example above, there isn't a significant benefit in putting
the company in the Multi because you could also access the
company variable directly inside the anonymous function.
However, the benefit of put/3 is seen when composing Ecto.Multis.
If the insert operations above were defined in another module,
you could use put(:company, company) to inject changes that
will be accessed by other functions down the chain, removing
the need to pass both multi and company values around.

 run(multi, name, run)

 @spec run(t(), name(), run()) :: t()

Adds a function to run as part of the Multi.
The function should return either {:ok, value} or {:error, value},
and receives the repo as the first argument and the changes so far
as the second argument.
Example
Ecto.Multi.run(multi, :write, fn _repo, %{image: image} ->
 with :ok <- File.write(image.name, image.contents) do
 {:ok, nil}
 end
end)

 run(multi, name, mod, fun, args)

 @spec run(t(), name(), module(), function, args) :: t()
when function: atom(), args: [any()]

Adds a function to run as part of the Multi.
Similar to run/3, but allows passing of module name, function and arguments.
The function should return either {:ok, value} or {:error, value}, and
receives the repo as the first argument and the changes so far as the
second argument (prepended to those passed in the call to the function).

 to_list(multi)

 @spec to_list(t()) :: [{name(), term()}]

Returns the list of operations stored in the Multi.
Always use this function when you need to access the operations you
have defined in Ecto.Multi. Inspecting the Ecto.Multi struct internals
directly is discouraged.

 update(multi, name, changeset_or_fun, opts \\ [])

 @spec update(
 t(),
 name(),
 Ecto.Changeset.t() | (changes() -> Ecto.Changeset.t()),
 Keyword.t()
) :: t()

Adds an update operation to the Multi.
The name must be unique within the Multi.
The remaining arguments and options are the same as in Ecto.Repo.update/2.
Example
post = MyApp.Repo.get!(Post, 1)
changeset = Ecto.Changeset.change(post, title: "New title")
Ecto.Multi.new()
|> Ecto.Multi.update(:update, changeset)
|> MyApp.Repo.transact()

Ecto.Multi.new()
|> Ecto.Multi.insert(:post, %Post{title: "first"})
|> Ecto.Multi.update(:fun, fn %{post: post} ->
 Ecto.Changeset.change(post, title: "New title")
end)
|> MyApp.Repo.transact()

 update_all(multi, name, queryable_or_fun, updates, opts \\ [])

 @spec update_all(
 t(),
 name(),
 Ecto.Queryable.t() | (changes() -> Ecto.Queryable.t()),
 Keyword.t(),
 Keyword.t()
) :: t()

Adds an update_all operation to the Multi.
Accepts the same arguments and options as Ecto.Repo.update_all/3.
Example
Ecto.Multi.new()
|> Ecto.Multi.update_all(:update_all, Post, set: [title: "New title"])
|> MyApp.Repo.transact()

Ecto.Multi.new()
|> Ecto.Multi.run(:post, fn repo, _changes ->
 case repo.get(Post, 1) do
 nil -> {:error, :not_found}
 post -> {:ok, post}
 end
end)
|> Ecto.Multi.update_all(:update_all, fn %{post: post} ->
 # Others validations
 from(c in Comment, where: c.post_id == ^post.id, update: [set: [title: "New title"]])
end, [])
|> MyApp.Repo.transact()

Ecto.Query

Provides the Query DSL.
Queries are used to retrieve and manipulate data from a repository
(see Ecto.Repo). Ecto queries come in two flavors: keyword-based
and macro-based. Most examples will use the keyword-based syntax,
the macro one will be explored in later sections.
Let's see a sample query:
Imports only from/2 of Ecto.Query
import Ecto.Query, only: [from: 2]

Create a query
query = from u in "users",
 where: u.age > 18,
 select: u.name

Send the query to the repository
Repo.all(query)
In the example above, we are directly querying the "users" table
from the database. Queries do not reach out to the data store until
they are passed as arguments to a function from Ecto.Repo.
Query expressions
Ecto allows a limited set of expressions inside queries. In the
query below, for example, we use u.age to access a field, the
> comparison operator and the literal 0:
query = from u in "users", where: u.age > 0, select: u.name
You can find the full list of operations in Ecto.Query.API.
Besides the operations listed there, the following literals are
supported in queries:
	Integers: 1, 2, 3
	Floats: 1.0, 2.0, 3.0
	Booleans: true, false
	Binaries: <<1, 2, 3>>
	Strings: "foo bar", ~s(this is a string)
	Atoms (other than booleans and nil): :foo, :bar
	Arrays: [1, 2, 3], ~w(interpolate words)

All other types and dynamic values must be passed as a parameter using
interpolation as explained below.
Interpolation and casting
External values and Elixir expressions can be injected into a query
expression with ^:
def with_minimum(age, height_ft) do
 from u in "users",
 where: u.age > ^age and u.height > ^(height_ft * 3.28),
 select: u.name
end

with_minimum(18, 5.0)
When interpolating values, you may want to explicitly tell Ecto
what is the expected type of the value being interpolated:
age = "18"
Repo.all(from u in "users",
 where: u.age > type(^age, :integer),
 select: u.name)
In the example above, Ecto will cast the age to type integer. When
a value cannot be cast, Ecto.Query.CastError is raised.
To avoid the repetition of always specifying the types, you may define
an Ecto.Schema. In such cases, Ecto will analyze your queries and
automatically cast the interpolated "age" when compared to the u.age
field, as long as the age field is defined with type :integer in
your schema:
age = "18"
Repo.all(from u in User, where: u.age > ^age, select: u.name)
Another advantage of using schemas is that we no longer need to specify
the select option in queries, as by default Ecto will retrieve all
fields specified in the schema:
age = "18"
Repo.all(from u in User, where: u.age > ^age)
For this reason, we will use schemas on the remaining examples but
remember Ecto does not require them in order to write queries.
nil comparison
nil comparison in filters, such as where and having, is forbidden
and it will raise an error:
Raises if age is nil
from u in User, where: u.age == ^age
This is done as a security measure to avoid attacks that attempt
to traverse entries with nil columns. To check that value is nil,
use is_nil/1 instead:
from u in User, where: is_nil(u.age)
Composition
Ecto queries are composable. For example, the query above can
actually be defined in two parts:
Create a query
query = from u in User, where: u.age > 18

Extend the query
query = from u in query, select: u.name
Composing queries uses the same syntax as creating a query.
The difference is that, instead of passing a schema like User
on the right-hand side of in, we passed the query itself.
Any value can be used on the right-hand side of in as long as it implements
the Ecto.Queryable protocol. For now, we know the protocol is
implemented for both atoms (like User) and strings (like "users").
In any case, regardless if a schema has been given or not, Ecto
queries are always composable thanks to its binding system.
Positional bindings
On the left-hand side of in we specify the query bindings. This is
done inside from and join clauses. In the query below u is a
binding and u.age is a field access using this binding.
query = from u in User, where: u.age > 18
Bindings are not exposed from the query. When composing queries, you
must specify bindings again for each refinement query. For example,
to further narrow down the above query, we again need to tell Ecto what
bindings to expect:
query = from u in query, select: u.city
Bindings in Ecto are positional, and the names do not have to be
consistent between input and refinement queries. For example, the
query above could also be written as:
query = from q in query, select: q.city
It would make no difference to Ecto. This is important because
it allows developers to compose queries without caring about
the bindings used in the initial query.
When using joins, the bindings should be matched in the order they
are specified:
Create a query
query = from p in Post,
 join: c in Comment, on: c.post_id == p.id

Extend the query
query = from [p, c] in query,
 select: {p.title, c.body}
You are not required to specify all bindings when composing.
For example, if we would like to order the results above by
post insertion date, we could further extend it as:
query = from q in query, order_by: q.inserted_at
The example above will work if the input query has 1 or 10
bindings. As long as the number of bindings is less than the
number of froms + joins, Ecto will match only what you have
specified. The first binding always matches the source given
in from.
Similarly, if you are interested only in the last binding
(or the last bindings) in a query, you can use ... to
specify "all bindings before" and match on the last one.
For instance, imagine you wrote:
posts_with_comments =
 from p in query, join: c in Comment, on: c.post_id == p.id
And now we want to make sure to return both the post title
and the comment body. Although we may not know how many
bindings there are in the query, we are sure posts is the
first binding and comments are the last one, so we can write:
from [p, ..., c] in posts_with_comments, select: {p.title, c.body}
In other words, ... will include all the bindings between the
first and the last, which may be one, many or no bindings at all.
Named bindings
Another option for flexibly building queries with joins are named
bindings. Coming back to the previous example, we can use the
as: :comment option to bind the comments join to a concrete name:
posts_with_comments =
 from p in Post,
 join: c in Comment, as: :comment, on: c.post_id == p.id
Now we can refer to it using the following form of a bindings list:
from [p, comment: c] in posts_with_comments, select: {p.title, c.body}
This approach lets us not worry about keeping track of the position
of the bindings when composing the query. The :as option can be
given both on joins and on from:
from p in Post, as: :post
Only atoms are accepted for binding names. Named binding references
must always be placed at the end of the bindings list:
[positional_binding_1, positional_binding_2, named_1: binding, named_2: binding]
Named bindings can also be used for late binding with the as/1
construct, allowing you to refer to a binding that has not been
defined yet:
from c in Comment, where: as(:posts).id == c.post_id
This is especially useful when working with subqueries, where you
may need to refer to a parent binding with parent_as, which is
not known when writing the subquery:
child_query = from c in Comment, where: parent_as(:posts).id == c.post_id
from p in Post, as: :posts, inner_lateral_join: c in subquery(child_query)
You can also match on a specific binding when building queries. For
example, let's suppose you want to create a generic sort function
that will order by a given field with a given as in query:
Knowing the name of the binding
def sort(query, as, field) do
 from [{^as, x}] in query, order_by: field(x, ^field)
end
Bindingless operations
Although bindings are extremely useful when working with joins,
they are not necessary when the query has only the from clause.
For such cases, Ecto supports a way for building queries
without specifying the binding:
from Post,
 where: [category: "fresh and new"],
 order_by: [desc: :published_at],
 select: [:id, :title, :body]
The query above will select all posts with category "fresh and new",
order by the most recently published, and return Post structs with
only the id, title and body fields set. It is equivalent to:
from p in Post,
 where: p.category == "fresh and new",
 order_by: [desc: p.published_at],
 select: struct(p, [:id, :title, :body])
One advantage of bindingless queries is that they are data-driven
and therefore useful for dynamically building queries. For example,
the query above could also be written as:
where = [category: "fresh and new"]
order_by = [desc: :published_at]
select = [:id, :title, :body]
from Post, where: ^where, order_by: ^order_by, select: ^select
This feature is very useful when queries need to be built based
on some user input, like web search forms, CLIs and so on.
Fragments
If you need an escape hatch, Ecto provides fragments
(see Ecto.Query.API.fragment/1) to inject SQL (and non-SQL)
fragments into queries.
For example, to get all posts while running the "lower(?)"
function in the database where p.title is interpolated
in place of ?, one can write:
from p in Post,
 where: is_nil(p.published_at) and
 fragment("lower(?)", p.title) == ^title
Also, most adapters provide direct APIs for queries, like
Ecto.Adapters.SQL.query/4, allowing developers to
completely bypass Ecto queries.
Macro API
In all examples so far we have used the keywords query syntax to
create a query:
import Ecto.Query
from u in "users", where: u.age > 18, select: u.name
Due to the prevalence of the pipe operator in Elixir, Ecto also supports
a pipe-based syntax:
"users"
|> where([u], u.age > 18)
|> select([u], u.name)
The keyword-based and pipe-based examples are equivalent. The downside
of using macros is that the binding must be specified for every operation.
However, since keyword-based and pipe-based examples are equivalent, the
bindingless syntax also works for macros. Please note that the following
example is not completely equivalent to the previous example,
as it does not return the name but rather the User struct:
"users"
|> where([u], u.age > 18)
|> select([:name])
Such a syntax allows developers to write queries using bindings only in more
complex query expressions.
This module documents each of those macros, providing examples in
both the keywords query and pipe expression formats.
Query prefix
It is possible to set a prefix for the queries. For Postgres users,
this will specify the schema where the table is located, while for
MySQL users this will specify the database where the table is
located. When no prefix is set, Postgres queries are assumed to be
in the public schema, while MySQL queries are assumed to be in the
database set in the config for the repo.
The query prefix may be set either for the whole query or on each
individual from and join expression. If a prefix is not given
to a from or a join, the prefix of the schema given to the from
or join is used. The query prefix is used only if none of the above
are declared.
Let's see some examples. To set the query prefix globally, the simplest
mechanism is to pass an option to the repository operation:
results = Repo.all(query, prefix: "accounts")
You may also set the prefix for the whole query by setting the prefix field:
results =
 query # May be User or an Ecto.Query itself
 |> Ecto.Query.put_query_prefix("accounts")
 |> Repo.all()
Setting the prefix in the query changes the default prefix of all from
and join expressions. You can override the query prefix by either setting
the @schema_prefix in your schema definitions or by passing the prefix
option:
from u in User,
 prefix: "accounts",
 join: p in assoc(u, :posts),
 prefix: "public"
Overall, here is the prefix lookup precedence:
	The :prefix option given to from/join has the highest precedence
	Then it falls back to the @schema_prefix attribute declared in the schema
given to from/join
	Then it falls back to the query prefix. The query prefix may be
set either on the query with put_query_prefix/2 or by passing
the :prefix option when calling the Repo module (where the
former wins if both methods are used)

The prefixes set in the query will be preserved when loading data.

 Summary

 Types

 dynamic_expr()

 t()

 Functions

 %Ecto.Query{}

 The Ecto.Query struct.

 distinct(query, binding \\ [], expr)

 A distinct query expression.

 dynamic(binding \\ [], expr)

 Builds a dynamic query expression.

 except(query, other_query)

 An except (set difference) query expression.

 except_all(query, other_query)

 An except (set difference) query expression.

 exclude(query, field)

 Resets a previously set field or fields on a query.

 first(queryable, order_by \\ nil)

 Restricts the query to return the first result ordered by primary key.

 from(expr, kw \\ [])

 Creates a query.

 group_by(query, binding \\ [], expr)

 A group by query expression.

 has_named_binding?(queryable, key)

 Returns true if the query has a binding with the given name, otherwise false.

 having(query, binding \\ [], expr)

 An AND having query expression.

 intersect(query, other_query)

 An intersect query expression.

 intersect_all(query, other_query)

 An intersect query expression.

 is_named_binding(query, name)

 The same as has_named_binding?/2 but allowed in guards.

 join(query, qual, binding \\ [], expr, opts \\ [])

 A join query expression.

 last(queryable, order_by \\ nil)

 Restricts the query to return the last result ordered by primary key.

 limit(query, binding \\ [], expr)

 A limit query expression.

 lock(query, binding \\ [], expr)

 A lock query expression.

 offset(query, binding \\ [], expr)

 An offset query expression.

 or_having(query, binding \\ [], expr)

 An OR having query expression.

 or_where(query, binding \\ [], expr)

 An OR where query expression.

 order_by(query, binding \\ [], expr)

 An order by query expression.

 preload(query, bindings \\ [], expr)

 Preloads the associations into the result set.

 prepend_order_by(query, binding \\ [], expr)

 An order by query expression that is prepended to existing ones.

 put_query_prefix(query, prefix)

 Puts the given prefix in a query.

 recursive_ctes(query, value)

 Enables or disables recursive mode for CTEs.

 reverse_order(query)

 Reverses the ordering of the query.

 select(query, binding \\ [], expr)

 A select query expression.

 select_merge(query, binding \\ [], expr)

 Mergeable select query expression.

 subquery(query, opts \\ [])

 Converts a query into a subquery.

 union(query, other_query)

 A union query expression.

 union_all(query, other_query)

 A union all query expression.

 update(query, binding \\ [], expr)

 An update query expression.

 where(query, binding \\ [], expr)

 An AND where query expression.

 windows(query, binding \\ [], expr)

 Defines windows which can be used with Ecto.Query.WindowAPI.

 with_cte(query, name, opts)

 A common table expression (CTE) also known as WITH expression.

 with_named_binding(query, key, fun)

 Applies a callback function to a query if it doesn't contain the given named binding.
Otherwise, returns the original query.

 with_ties(query, binding \\ [], expr)

 Enables or disables ties for limit expressions.

 Types

 dynamic_expr()

 @type dynamic_expr() :: %Ecto.Query.DynamicExpr{
 binding: term(),
 file: term(),
 fun: term(),
 line: term()
}

 t()

 @type t() :: %Ecto.Query{
 aliases: term(),
 assocs: term(),
 combinations: term(),
 distinct: term(),
 from: term(),
 group_bys: term(),
 havings: term(),
 joins: term(),
 limit: term(),
 lock: term(),
 offset: term(),
 order_bys: term(),
 prefix: term(),
 preloads: term(),
 select: term(),
 sources: term(),
 updates: term(),
 wheres: term(),
 windows: term(),
 with_ctes: term()
}

 Functions

 %Ecto.Query{}

 (struct)

The Ecto.Query struct.
Users of Ecto must consider this struct as opaque
and not access its field directly. Authors of adapters
may read its contents, but never modify them.

 distinct(query, binding \\ [], expr)

 (macro)

A distinct query expression.
When true, only keeps distinct values from the resulting
select expression.
If supported by your database, you can also pass query expressions
to distinct and it will generate a query with DISTINCT ON. In such
cases, distinct accepts exactly the same expressions as order_by
and any distinct expression will be automatically prepended to the
order_by expressions in case there is any order_by expression.
Keywords examples
Returns the list of different categories in the Post schema
from(p in Post, distinct: true, select: p.category)

If your database supports DISTINCT ON(),
you can pass expressions to distinct too
from(p in Post,
 distinct: p.category,
 order_by: [p.date])

The DISTINCT ON() also supports ordering similar to ORDER BY.
from(p in Post,
 distinct: [desc: p.category],
 order_by: [p.date])

Using atoms
from(p in Post, distinct: :category, order_by: :date)
Expressions example
Post
|> distinct(true)
|> order_by([p], [p.category, p.author])

 dynamic(binding \\ [], expr)

 (macro)

Builds a dynamic query expression.
Dynamic query expressions allow developers to compose query
expressions bit by bit, so that they can be interpolated into
parts of a query or another dynamic expression later on.
Examples
Imagine you have a set of conditions you want to build your query on:
conditions = false

conditions =
 if params["is_public"] do
 dynamic([p], p.is_public or ^conditions)
 else
 conditions
 end

conditions =
 if params["allow_reviewers"] do
 dynamic([p, a], a.reviewer == true or ^conditions)
 else
 conditions
 end

from query, where: ^conditions
In the example above, we were able to build the query expressions
bit by bit, using different bindings, and later interpolate it all
at once into the actual query.
A dynamic expression can always be interpolated inside another dynamic
expression and into the constructs described below.
where, having and a join's on
The dynamic macro can be interpolated at the root of a where,
having or a join's on.
For example, assuming the conditions variable defined in the
previous section, the following is forbidden because it is not
at the root of a where:
from q in query, where: q.some_condition and ^conditions
Fortunately that's easily solved by simply rewriting it to:
conditions = dynamic([q], q.some_condition and ^conditions)
from query, where: ^conditions
Dynamic boundaries
Type casting does not cross dynamic boundaries. When you write
a dynamic expression, such as dynamic([p], p.visits > ^param),
Ecto will automatically cast ^param to the type of p.visits.
However, if p.visits is in itself dynamic, as in the example
below, then Ecto won't be able to propagate its type to ^param:
field = dynamic([p], p.visits)
dynamic(^field > ^param)
order_by
Dynamics can be interpolated inside keyword lists at the root of
order_by. For example, you can write:
order_by = [
 asc: :some_field,
 desc: dynamic([p], fragment("?->>?", p.another_field, "json_key"))
]

from query, order_by: ^order_by
Dynamics are also supported in order_by/2 clauses inside windows/2.
As with where and friends, it is not possible to pass dynamics
outside of a root. For example, this won't work:
from query, order_by: [asc: ^dynamic(...)]
But this will:
from query, order_by: ^[asc: dynamic(...)]
group_by
Dynamics can be interpolated inside keyword lists at the root of
group_by. For example, you can write:
group_by = [
 :some_field,
 dynamic([p], fragment("?->>?", p.another_field, "json_key"))
]

from query, group_by: ^group_by
Dynamics are also supported in partition_by/2 clauses inside windows/2.
As with where and friends, it is not possible to pass dynamics
outside of a root. For example, this won't work:
from query, group_by: [:some_field, ^dynamic(...)]
But this will:
from query, group_by: ^[:some_field, dynamic(...)]
select and select_merge
Dynamics can be inside maps interpolated at the root of a
select or select_merge. For example, you can write:
fields = %{
 period: dynamic([p], p.month),
 metric: dynamic([p], p.distance)
}

from query, select: ^fields
As with where and friends, it is not possible to pass dynamics
outside of a root. For example, this won't work:
from query, select: %{field: ^dynamic(...)}
But this will:
from query, select: ^%{field: dynamic(...)}
Maps with dynamics can also be merged into existing select structures,
enabling a variety of possibilities for partially dynamic selects:
metric = dynamic([p], p.distance)

from query, select: [:period, :metric], select_merge: ^%{metric: metric}
Aliasing fields with selected_as/2 and referencing them with selected_as/1
is also allowed:
fields = %{
 period: dynamic([p], selected_as(p.month, :month)),
 metric: dynamic([p], p.distance)
}

order = dynamic(selected_as(:month))

from query, select: ^fields, order_by: ^order
update
A dynamic is also supported inside updates, for example:
updates = [
 set: [average: dynamic([p], p.sum / p.count)]
]

from query, update: ^updates
preload
Dynamics can be used with preload in order to dynamically
specify the binding for a joined association. For example, you can
write:
preloads = [
 :non_joined_assoc,
 joined_assoc: dynamic([joined: j], j)
]

from x in query,
 join: assoc(x, :joined_assoc),
 as: :joined,
 preload: ^preloads
While the example above uses a named binding (:joined),
positional bindings may also be used:
preloads = [
 :non_joined_assoc,
 joined_assoc: dynamic([_, j], j)
]

from x in query,
 join: assoc(x, :joined_assoc)
 preload: ^preloads
As with where and friends, it is not possible to pass dynamics
outside of an interpolated root. For example, this won't work:
from query, preload: [comments: ^dynamic(...)]
But this will:
from query, preload: ^[comments: dynamic(...)]
Dynamic expressions used in preload must evaluate to a single
binding. For instance, this won't work:
preloads = dynamic([comments: c, likes: l], [comments: {c, likes: l}])
But this will:
dynamic_comments = dynamic([comments: c], c)
dynamic_likes = dynamic([likes: l], l)

preloads = [
 comments: {dynamic_comments, likes: dynamic_likes}
]

 except(query, other_query)

 (macro)

An except (set difference) query expression.
Takes the difference of the result sets of multiple queries. The
select of each query must be exactly the same, with the same
types in the same order.
Except expression returns only unique rows as if each query returned
distinct results. This may cause a performance penalty. If you need
to take the difference of multiple result sets without
removing duplicate rows consider using except_all/2.
Combination behaviour
There are several behaviours of combination queries that must be taken
into account, otherwise you may unexpectedly return the wrong query result.
Order by, limit and offset
The order_by, limit and offset expressions of the parent query apply
to the result of the entire combination. order_by must be specified in one
of the following ways, since the combination of two or more queries is not
automatically aliased:
	Use Ecto.Query.API.fragment/1 to pass an order_by statement
that directly access the combination fields.
	Wrap the combination in a subquery and refer to the binding of the subquery.

Column selection ordering
The columns of each of the queries in the combination must be specified in
the exact same order. Otherwise, you may see the values of one column appearing
in another. This holds for all types of select expressions, including maps.
For example, the following query will interchange the values of the supplier's
name and city because that is the order the fields are specified in the customer
query.
supplier_query = from s in Supplier, select: %{city: s.city, name: s.name}
customer_query = from c in Customer, select: %{name: c.name, city: c.city}
except(supplier_query, ^customer_query)
Selecting literal atoms
When selecting a literal atom, its value must be the same across all queries.
Otherwise, the value from the parent query will be applied to all other queries.
This also holds true for selecting maps with atom keys.
Keywords examples
Unordered result
supplier_query = from s in Supplier, select: s.city
from c in Customer, select: c.city, except: ^supplier_query

Ordered result
supplier_query = from s in Supplier, select: s.city
except_query = from c in Customer, select: c.city, except: ^supplier_query
from s in subquery(except_query), order_by: s.city
Expressions examples
Unordered result
supplier_query = Supplier |> select([s], s.city)
Customer |> select([c], c.city) |> except(^supplier_query)

Ordered result
customer_query = Customer |> select([c], c.city) |> order_by(fragment("city"))
supplier_query = Supplier |> select([s], s.city)
except(customer_query, ^supplier_query)

 except_all(query, other_query)

 (macro)

An except (set difference) query expression.
Takes the difference of the result sets of multiple queries. The
select of each query must be exactly the same, with the same
types in the same order.
Combination behaviour
There are several behaviours of combination queries that must be taken
into account, otherwise you may unexpectedly return the wrong query result.
Order by, limit and offset
The order_by, limit and offset expressions of the parent query apply
to the result of the entire combination. order_by must be specified in one
of the following ways, since the combination of two or more queries is not
automatically aliased:
	Use Ecto.Query.API.fragment/1 to pass an order_by statement
that directly access the combination fields.
	Wrap the combination in a subquery and refer to the binding of the subquery.

Column selection ordering
The columns of each of the queries in the combination must be specified in
the exact same order. Otherwise, you may see the values of one column appearing
in another. This holds for all types of select expressions, including maps.
For example, the following query will interchange the values of the supplier's
name and city because that is the order the fields are specified in the customer
query.
supplier_query = from s in Supplier, select: %{city: s.city, name: s.name}
customer_query = from c in Customer, select: %{name: c.name, city: c.city}
except_all(supplier_query, ^customer_query)
Selecting literal atoms
When selecting a literal atom, its value must be the same across all queries.
Otherwise, the value from the parent query will be applied to all other queries.
This also holds true for selecting maps with atom keys.
Keywords examples
Unordered result
supplier_query = from s in Supplier, select: s.city
from c in Customer, select: c.city, except_all: ^supplier_query

Ordered result
supplier_query = from s in Supplier, select: s.city
except_all_query = from c in Customer, select: c.city, except_all: ^supplier_query
from s in subquery(except_all_query), order_by: s.city
Expressions examples
Unordered result
supplier_query = Supplier |> select([s], s.city)
Customer |> select([c], c.city) |> except_all(^supplier_query)

Ordered result
customer_query = Customer |> select([c], c.city) |> order_by(fragment("city"))
supplier_query = Supplier |> select([s], s.city)
except_all(customer_query, ^supplier_query)

 exclude(query, field)

Resets a previously set field or fields on a query.
It can reset many fields except the query source (from). When excluding
a :join, it will remove all types of joins. If you prefer to remove a
single type of join, please see paragraph below.
Examples
Ecto.Query.exclude(query, :join)
Ecto.Query.exclude(query, :where)
Ecto.Query.exclude(query, :order_by)
Ecto.Query.exclude(query, :group_by)
Ecto.Query.exclude(query, :having)
Ecto.Query.exclude(query, :distinct)
Ecto.Query.exclude(query, :select)
Ecto.Query.exclude(query, :combinations)
Ecto.Query.exclude(query, :with_ctes)
Ecto.Query.exclude(query, :limit)
Ecto.Query.exclude(query, :offset)
Ecto.Query.exclude(query, :lock)
Ecto.Query.exclude(query, :preload)
Ecto.Query.exclude(query, :update)
Ecto.Query.exclude(query, :windows)
You can remove multiple things at once by passing a list
Ecto.Query.exclude(query, [:join, :where])
Ecto.Query.exclude(query, [:limit, :offset])
You can remove specific joins such as left_join and inner_join:
Ecto.Query.exclude(query, :inner_join)
Ecto.Query.exclude(query, :cross_join)
Ecto.Query.exclude(query, :cross_lateral_join)
Ecto.Query.exclude(query, :left_join)
Ecto.Query.exclude(query, :right_join)
Ecto.Query.exclude(query, :full_join)
Ecto.Query.exclude(query, :inner_lateral_join)
Ecto.Query.exclude(query, :left_lateral_join)
However, keep in mind that if a join is removed and its bindings
were referenced elsewhere, the bindings won't be removed, leading
to a query that won't compile.
You can remove specific windows by name:
 Ecto.Query.exclude(query, {:windows, [name1, name2]})
If a window was referenced elsewhere, for example in select or order_by,
it won't be removed. You must recreate the expressions manually.

 first(queryable, order_by \\ nil)

Restricts the query to return the first result ordered by primary key.
The query will be automatically ordered by the primary key
unless order_by is given or order_by is set in the query.
Limit is always set to 1.
Examples
Post |> first |> Repo.one
query |> first(:inserted_at) |> Repo.one

 from(expr, kw \\ [])

 (macro)

Creates a query.
It can either be a keyword query or a query expression.
If it is a keyword query the first argument must be
either an in expression, a value that implements
the Ecto.Queryable protocol, or an Ecto.Query.API.fragment/1. If the query needs a
reference to the data source in any other part of the
expression, then an in must be used to create a reference
variable. The second argument should be a keyword query
where the keys are expression types and the values are
expressions.
If it is a query expression the first argument must be
a value that implements the Ecto.Queryable protocol
and the second argument the expression.
Hints
The hints keyword can be used to specify query hints:
from p in Post,
 hints: ["USE INDEX FOO"],
 where: p.title == "title"
It can also be used as a general mechanism for adding statements that
come after the from clause. For example, it can be used to enable
table sampling:
from p in Post,
 hints: "TABLESAMPLE SYSTEM(1)"
from hints must be a (list of) compile-time strings or unsafe fragments. An unsafe
fragment can be used to specify dynamic hints:
sample = "SYSTEM_ROWS(1)"

from p in Post,
 hints: ["TABLESAMPLE", unsafe_fragment(^sample)]
Unsafe Fragments
The output of unsafe_fragment/1 will be injected directly into the
resulting SQL statement without being escaped. For this reason, input
from uncontrolled sources, such as user input, should never be used.
Otherwise, it could lead to harmful SQL injection attacks.
Keywords examples
`in` expression
from(c in City, select: c)

Ecto.Queryable
from(City, limit: 1)

Fragment with user-defined function and predefined columns
from(f in fragment("my_table_valued_function(arg)"), select: f.x)

Fragment with built-in function and undefined columns
from(f in fragment("select generate_series(?::integer, ?::integer) as x", ^0, ^10), select: f.x)
Expressions examples
Schema
City |> select([c], c)

Source
"cities" |> select([c], c)

Source with schema
{"cities", Source} |> select([c], c)

Ecto.Query
from(c in City) |> select([c], c)
Examples
def paginate(query, page, size) do
 from query,
 limit: ^size,
 offset: ^((page-1) * size)
end
The example above does not use in because limit and offset
do not require a reference to the data source. However, extending
the query with a where expression would require the use of in:
def published(query) do
 from p in query, where: not(is_nil(p.published_at))
end
Notice we have created a p variable to reference the query's
original data source. This assumes that the original query
only had one source. When the given query has more than one source,
positional or named bindings may be used to access the additional sources.
def published_multi(query) do
 from [p,o] in query,
 where: not(is_nil(p.published_at)) and not(is_nil(o.published_at))
end
Note that the variables p and o can be named whatever you like
as they have no importance in the query sent to the database.

 group_by(query, binding \\ [], expr)

 (macro)

A group by query expression.
Groups together rows from the schema that have the same values in the given
fields. Using group_by "groups" the query giving it different semantics
in the select expression. If a query is grouped, only fields that were
referenced in the group_by can be used in the select or if the field
is given as an argument to an aggregate function.
group_by also accepts a list of atoms where each atom refers to
a field in source. For more complicated queries you can access fields
directly instead of atoms.
Keywords examples
Returns the number of posts in each category
from(p in Post,
 group_by: p.category,
 select: {p.category, count(p.id)})

Using atoms
from(p in Post, group_by: :category, select: {p.category, count(p.id)})

Using direct fields access
from(p in Post,
 join: c in assoc(p, :category),
 group_by: [p.id, c.name])
Expressions example
Post |> group_by([p], p.category) |> select([p], count(p.id))

 has_named_binding?(queryable, key)

Returns true if the query has a binding with the given name, otherwise false.
For more information on named bindings see "Named bindings"
in this module doc.

 having(query, binding \\ [], expr)

 (macro)

An AND having query expression.
Like where, having filters rows from the schema, but after the grouping is
performed giving it the same semantics as select for a grouped query
(see group_by/3). having groups the query even if the query has no
group_by expression.
Keywords example
Returns the number of posts in each category where the
average number of comments is above ten
from(p in Post,
 group_by: p.category,
 having: avg(p.num_comments) > 10,
 select: {p.category, count(p.id)})
Expressions example
Post
|> group_by([p], p.category)
|> having([p], avg(p.num_comments) > 10)
|> select([p], count(p.id))

 intersect(query, other_query)

 (macro)

An intersect query expression.
Takes the overlap of the result sets of multiple queries. The
select of each query must be exactly the same, with the same
types in the same order.
Intersect expression returns only unique rows as if each query returned
distinct results. This may cause a performance penalty. If you need
to take the intersection of multiple result sets without
removing duplicate rows consider using intersect_all/2.
Combination behaviour
There are several behaviours of combination queries that must be taken
into account, otherwise you may unexpectedly return the wrong query result.
Order by, limit and offset
The order_by, limit and offset expressions of the parent query apply
to the result of the entire combination. order_by must be specified in one
of the following ways, since the combination of two or more queries is not
automatically aliased:
	Use Ecto.Query.API.fragment/1 to pass an order_by statement
that directly access the combination fields.
	Wrap the combination in a subquery and refer to the binding of the subquery.

Column selection ordering
The columns of each of the queries in the combination must be specified in
the exact same order. Otherwise, you may see the values of one column appearing
in another. This holds for all types of select expressions, including maps.
For example, the following query will interchange the values of the supplier's
name and city because that is the order the fields are specified in the customer
query.
supplier_query = from s in Supplier, select: %{city: s.city, name: s.name}
customer_query = from c in Customer, select: %{name: c.name, city: c.city}
intersect(supplier_query, ^customer_query)
Selecting literal atoms
When selecting a literal atom, its value must be the same across all queries.
Otherwise, the value from the parent query will be applied to all other queries.
This also holds true for selecting maps with atom keys.
Keywords examples
Unordered result
supplier_query = from s in Supplier, select: s.city
from c in Customer, select: c.city, intersect: ^supplier_query

Ordered result
supplier_query = from s in Supplier, select: s.city
intersect_query = from c in Customer, select: c.city, intersect: ^supplier_query
from s in subquery(intersect_query), order_by: s.city
Expressions examples
Unordered result
supplier_query = Supplier |> select([s], s.city)
Customer |> select([c], c.city) |> intersect(^supplier_query)

Ordered result
customer_query = Customer |> select([c], c.city) |> order_by(fragment("city"))
supplier_query = Supplier |> select([s], s.city)
intersect(customer_query, ^supplier_query)

 intersect_all(query, other_query)

 (macro)

An intersect query expression.
Takes the overlap of the result sets of multiple queries. The
select of each query must be exactly the same, with the same
types in the same order.
Combination behaviour
There are several behaviours of combination queries that must be taken
into account, otherwise you may unexpectedly return the wrong query result.
Order by, limit and offset
The order_by, limit and offset expressions of the parent query apply
to the result of the entire combination. order_by must be specified in one
of the following ways, since the combination of two or more queries is not
automatically aliased:
	Use Ecto.Query.API.fragment/1 to pass an order_by statement
that directly access the combination fields.
	Wrap the combination in a subquery and refer to the binding of the subquery.

Column selection ordering
The columns of each of the queries in the combination must be specified in
the exact same order. Otherwise, you may see the values of one column appearing
in another. This holds for all types of select expressions, including maps.
For example, the following query will interchange the values of the supplier's
name and city because that is the order the fields are specified in the customer
query.
supplier_query = from s in Supplier, select: %{city: s.city, name: s.name}
customer_query = from c in Customer, select: %{name: c.name, city: c.city}
intersect_all(supplier_query, ^customer_query)
Selecting literal atoms
When selecting a literal atom, its value must be the same across all queries.
Otherwise, the value from the parent query will be applied to all other queries.
This also holds true for selecting maps with atom keys.
Keywords examples
Unordered result
supplier_query = from s in Supplier, select: s.city
from c in Customer, select: c.city, intersect_all: ^supplier_query

Ordered result
supplier_query = from s in Supplier, select: s.city
intersect_all_query = from c in Customer, select: c.city, intersect_all: ^supplier_query
from s in subquery(intersect_all_query), order_by: s.city
Expressions examples
Unordered result
supplier_query = Supplier |> select([s], s.city)
Customer |> select([c], c.city) |> intersect_all(^supplier_query)

Ordered result
customer_query = Customer |> select([c], c.city) |> order_by(fragment("city"))
supplier_query = Supplier |> select([s], s.city)
intersect_all(customer_query, ^supplier_query)

 is_named_binding(query, name)

 (macro)

The same as has_named_binding?/2 but allowed in guards.

 join(query, qual, binding \\ [], expr, opts \\ [])

 (macro)

A join query expression.
Receives a source that is to be joined to the query and a condition for
the join. The join condition can be any expression that evaluates
to a boolean value. The qualifier must be one of :inner, :left,
:right, :cross, :cross_lateral, :full, :inner_lateral or :left_lateral.
For a keyword query the :join keyword can be changed to :inner_join,
:left_join, :right_join, :cross_join, :cross_lateral_join, :full_join, :inner_lateral_join
or :left_lateral_join. :join is equivalent to :inner_join.
Currently it is possible to join on:
	an Ecto.Schema, such as p in Post
	an interpolated Ecto query with zero or more where clauses,
such as c in ^(from "posts", where: [public: true])
	an association, such as c in assoc(post, :comments)
	a subquery, such as c in subquery(another_query)
	a query fragment, such as c in fragment("SOME COMPLEX QUERY"),
see "Joining with fragments" below.

Options
Each join accepts the following options:
	:on - a query expression or keyword list to filter the join, defaults to true
	:as - a named binding for the join
	:prefix - the prefix to be used for the join when issuing a database query
	:hints - a string or a list of strings to be used as database hints

In the keyword query syntax, those options must be given immediately
after the join. In the expression syntax, the options are given as
the fifth argument.
Unspecified join condition
Leaving the :on option unspecified while performing a join
that is not a cross join will trigger a warning. This is to
help users avoid performing expensive cross joins when they don't
mean to. If the behaviour is desired, you may remove the warning by
changing to a cross join or explicitly setting on: true. If
the behaviour is not desired, you should specify the appropriate
join condition.
Keywords examples
from c in Comment,
 join: p in Post,
 on: p.id == c.post_id,
 select: {p.title, c.text}

from p in Post,
 left_join: c in assoc(p, :comments),
 select: {p, c}
Keywords can also be given or interpolated as part of on:
from c in Comment,
 join: p in Post,
 on: [id: c.post_id],
 select: {p.title, c.text}
Any key in on will apply to the currently joined expression.
It is also possible to interpolate an Ecto query on the right-hand side
of in. For example, the query above can also be written as:
posts = Post
from c in Comment,
 join: p in ^posts,
 on: [id: c.post_id],
 select: {p.title, c.text}
The above is specially useful to dynamically join on existing
queries, for example, to dynamically choose a source, or by
choosing between public posts or posts that have been recently
published:
posts =
 if params["drafts"] do
 from p in Post, where: [drafts: true]
 else
 from p in Post, where: [public: true]
 end

from c in Comment,
 join: p in ^posts, on: [id: c.post_id],
 select: {p.title, c.text}
Only simple queries with where expressions can be interpolated
in a join.
Expressions examples
Comment
|> join(:inner, [c], p in Post, on: c.post_id == p.id)
|> select([c, p], {p.title, c.text})

Post
|> join(:left, [p], c in assoc(p, :comments))
|> select([p, c], {p, c})

Post
|> join(:left, [p], c in Comment, on: c.post_id == p.id and c.is_visible == true)
|> select([p, c], {p, c})
Joining with fragments
When you need to join on a complex query, Ecto supports fragments in joins:
Comment
|> join(:inner, [c], p in fragment("SOME COMPLEX QUERY", c.id, ^some_param))
Note that the join does not automatically wrap the fragment in
parentheses, since some expressions require parens and others
require no parens. Therefore, in cases such as common table
expressions, you will have to explicitly wrap the fragment content
in parens.
Lateral Joins
Lateral joins require a subquery that refer to previous bindings. This can be achieved using
parent_as within the subquery function:
Game
|> from(as: :game)
|> join(
 :inner_lateral,
 [],
 subquery(
 GamesSold
 |> where([gs], gs.game_id == parent_as(:game).id)
 |> order_by([gs], gs.sold_on)
 |> limit(2)
),
 on: true
)
|> select([g, gs], {g.name, gs.sold_on})
Hints
join also supports table hints, as found in databases such as
MySQL,
MSSQL and
Clickhouse.
For example, a developer using MySQL may write:
from p in Post,
 join: c in Comment,
 hints: ["USE INDEX FOO", "USE INDEX BAR"],
 where: p.id == c.post_id,
 select: c
Keep in mind you want to use hints rarely, so don't forget to read the database
disclaimers about such functionality.
Join hints must be static compile-time strings when they are specified as (list of) strings.

 last(queryable, order_by \\ nil)

Restricts the query to return the last result ordered by primary key.
The query ordering will be automatically reversed, with ASC
columns becoming DESC columns (and vice-versa) and limit is set
to 1. If there is no ordering, the query will be automatically
ordered decreasingly by primary key.
Examples
Post |> last |> Repo.one
query |> last(:inserted_at) |> Repo.one

 limit(query, binding \\ [], expr)

 (macro)

A limit query expression.
Limits the number of rows returned from the result. Can be any expression but
has to evaluate to an integer value and it can't include any field.
If limit is given twice, it overrides the previous value.
Keywords example
from(u in User, where: u.id == ^current_user, limit: 1)
Expressions example
User |> where([u], u.id == ^current_user) |> limit(1)

 lock(query, binding \\ [], expr)

 (macro)

A lock query expression.
Provides support for row-level pessimistic locking using
SELECT ... FOR UPDATE or other, database-specific, locking clauses.
expr can be any expression but has to evaluate to a boolean value or to a
string and it can't include any fields.
If lock is used more than once, the last one used takes precedence.
Ecto also supports optimistic
locking but not
through queries. For more information on optimistic locking, have a look at
the Ecto.Changeset.optimistic_lock/3 function.
Keywords example
from(u in User, where: u.id == ^current_user, lock: "FOR SHARE NOWAIT")
Expressions example
User |> where([u], u.id == ^current_user) |> lock("FOR SHARE NOWAIT")

 offset(query, binding \\ [], expr)

 (macro)

An offset query expression.
Offsets the number of rows selected from the result. Can be any expression
but it must evaluate to an integer value and it can't include any field.
If offset is given twice, it overrides the previous value.
Keywords example
Get all posts on page 4
from(p in Post, limit: 10, offset: 30)
Expressions example
Post |> limit(10) |> offset(30)

 or_having(query, binding \\ [], expr)

 (macro)

An OR having query expression.
Like having but combines with the previous expression by using
OR. or_having behaves for having the same way or_where
behaves for where.
Keywords example
Augment a previous group_by with a having condition.
from(p in query, or_having: avg(p.num_comments) > 10)
Expressions example
Augment a previous group_by with a having condition.
Post |> or_having([p], avg(p.num_comments) > 10)

 or_where(query, binding \\ [], expr)

 (macro)

An OR where query expression.
Behaves exactly the same as where except it combines with any previous
expression by using an OR. All expressions have to evaluate to a boolean
value.
or_where also accepts a keyword list where each key is a field to be
compared with the given value. Each key-value pair will be combined
using AND, exactly as in where.
Keywords example
from(c in City, where: [country: "Sweden"], or_where: [country: "Brazil"])
If interpolating keyword lists, the keyword list entries are combined
using ANDs and joined to any existing expression with an OR:
filters = [country: "USA", name: "New York"]
from(c in City, where: [country: "Sweden"], or_where: ^filters)
is equivalent to:
from c in City, where: (c.country == "Sweden") or
 (c.country == "USA" and c.name == "New York")
The behaviour above is by design to keep the changes between where
and or_where minimal. Plus, if you have a keyword list and you
would like each pair to be combined using or, it can be easily done
with Enum.reduce/3:
filters = [country: "USA", is_tax_exempt: true]
Enum.reduce(filters, City, fn {key, value}, query ->
 from q in query, or_where: field(q, ^key) == ^value
end)
which will be equivalent to:
from c in City, or_where: (c.country == "USA"), or_where: c.is_tax_exempt == true
Expressions example
City |> where([c], c.country == "Sweden") |> or_where([c], c.country == "Brazil")

 order_by(query, binding \\ [], expr)

 (macro)

An order by query expression.
Orders the fields based on one or more fields. It accepts a single field
or a list of fields. The default direction is ascending (:asc) and can be
customized in a keyword list as one of the following:
	:asc
	:asc_nulls_last
	:asc_nulls_first
	:desc
	:desc_nulls_last
	:desc_nulls_first

The *_nulls_first and *_nulls_last variants are not supported by all
databases. While all databases default to ascending order, the choice of
"nulls first" or "nulls last" is specific to each database implementation.
order_by may be invoked or listed in a query many times. New expressions
are appended to the existing ones.
order_by also accepts a list of atoms where each atom refers to a field in
source or a keyword list where the direction is given as key and the field
to order as value.
Keywords examples
from(c in City, order_by: c.name, order_by: c.population)
from(c in City, order_by: [c.name, c.population])
from(c in City, order_by: [asc: c.name, desc: c.population])

from(c in City, order_by: [:name, :population])
from(c in City, order_by: [asc: :name, desc_nulls_first: :population])
A keyword list can also be interpolated:
values = [asc: :name, desc_nulls_first: :population]
from(c in City, order_by: ^values)
A fragment can also be used:
from c in City, order_by: [
 # A deterministic shuffled order
 fragment("? % ? DESC", c.id, ^modulus),
 desc: c.id,
]
It's also possible to order by an aliased or calculated column:
from(c in City,
 select: %{
 name: c.name,
 total_population:
 fragment(
 "COALESCE(?, ?) + ? AS total_population",
 c.animal_population,
 0,
 c.human_population
)
 },
 order_by: [
 # based on `AS total_population` in the previous fragment
 {:desc, fragment("total_population")}
]
)
Expressions examples
City |> order_by([c], asc: c.name, desc: c.population)
City |> order_by(asc: :name) # Sorts by the cities name
City |> order_by(^order_by_param) # Keyword list

 preload(query, bindings \\ [], expr)

 (macro)

Preloads the associations into the result set.
Imagine you have a schema Post with a has_many :comments
association and you execute the following query:
Repo.all from p in Post, preload: [:comments]
The example above will fetch all posts from the database and then do
a separate query returning all comments associated with the given posts.
The comments are then processed and associated to each returned post
under the comments field.
Often times, you may want posts and comments to be selected and
filtered in the same query. For such cases, you can explicitly tell
an existing join to be preloaded into the result set:
Repo.all from p in Post,
 join: c in assoc(p, :comments),
 where: c.published_at > p.updated_at,
 preload: [comments: c]
In the example above, instead of issuing a separate query to fetch
comments, Ecto will fetch posts and comments in a single query and
then do a separate pass associating each comment to its parent post.
Therefore, instead of returning number_of_posts * number_of_comments
results, like a join would, it returns only posts with the comments
fields properly filled in.
Nested associations can also be preloaded in both formats:
Repo.all from p in Post,
 preload: [:author, comments: :likes]

Repo.all from p in Post,
 join: c in assoc(p, :comments),
 join: l in assoc(c, :likes),
 where: l.inserted_at > c.updated_at,
 preload: [:author, comments: {c, likes: l}]
Choosing between preloading with joins vs. separate queries
Deciding between preloading associations via joins, a single large
query, (preload: [comments: c]) or separate smaller queries
(preload: [:comments]) depends on the specific use case.
Here are some factors to guide your decision:
	Joins reduce database round trips: By fetching data in a single
query, joins can minimize database round trips, potentially reducing
overall latency.
	Potential for data duplication: Joins may lead to duplicated
data in the result set, which requires more processing by Ecto
and consumes more bandwidth when transmitting the results.
	Parallelism with separate queries: When using separate queries
outside of a transaction, Ecto can parallelize the preload queries,
which can speed up the overall operation.

In general, a good default is to only use joins in preloads if you're
already joining the associations in the main query. For example,
in the last query in the section above, comments and likes are already
joined, so they are included in the preload.
However, the author is not joined in the main query, so it is preloaded
via a separate query.
Preload queries
Preload also allows queries to be given, allowing you to filter or
customize how the preloads are fetched:
comments_query = from c in Comment, order_by: c.published_at
Repo.all from p in Post, preload: [comments: ^comments_query]
The example above will issue two queries, one for loading posts and
then another for loading the comments associated with the posts.
Comments will be ordered by published_at.
When specifying a preload query, you can still nest preloads.
For instance, you could preload an author's published posts and
their comments as follows:
posts_query = from p in Post, where: p.state == :published
Repo.all from a in Author, preload: [posts: ^{posts_query, [:comments]}]
If you prefer, you can also add additional preloads directly in the
posts_query:
posts_query =
 from p in Post, where: p.state == :published, preload: :related_posts
Note: keep in mind operations like limit and offset in the preload
query will affect the whole result set and not each association. For
example, the query below:
comments_query = from c in Comment, order_by: c.popularity, limit: 5
Repo.all from p in Post, preload: [comments: ^comments_query]
won't bring the top of comments per post. Rather, it will only bring
the 5 top comments across all posts. Instead, you must use a window:
ranking_query =
 from c in Comment,
 select: %{id: c.id, row_number: over(row_number(), :posts_partition)},
 windows: [posts_partition: [partition_by: :post_id, order_by: :popularity]]

comments_query =
 from c in Comment,
 join: r in subquery(ranking_query),
 on: c.id == r.id and r.row_number <= 5

Repo.all from p in Post, preload: [comments: ^comments_query]
For :through associations, such as a post may have many comments_authors,
written as has_many :comments_authors, through: [:comments, :author]
the query given to preload customizes the relationship between comments and
authors, even if preloaded through posts. Another way to put it, in case of
:through associations, the query given to preload customizes the last join
of the association chain. This means order_by clauses on :through
associations affect only the direct relationship between comments and
authors, not between posts and comments.
Preload functions
Preload also allows functions to be given. If the function has an arity of 1,
it receives only the IDs of the parent association. If it has an arity of 2, it
receives the IDS of the parent association as the first argument and the association
metadata as the second argument. Both functions must return the associated data.
Ecto then will map this data and sort it by the relationship key:
comment_preloader = fn post_ids -> fetch_comments_by_post_ids(post_ids) end
Repo.all from p in Post, preload: [comments: ^comment_preloader]
This is useful when the whole dataset was already loaded or must be
explicitly fetched from elsewhere. The IDs received by the preloading
function and the result returned depends on the association type:
	For has_many and belongs_to - the function receives the IDs of
the parent association and it must return a list of maps or structs
with the associated entries. The associated map/struct must contain
the "foreign_key" field. For example, if a post has many comments,
when preloading the comments with a custom function, the function
will receive a list of "post_ids" as the argument and it must return
maps or structs representing the comments. The maps/structs must
include the :post_id field

	For has_many :through - it behaves similarly to a regular has_many
but note that the IDs received are of the last association. Imagine,
for example, a post has many comments and each comment has an author.
Therefore, a post may have many comments_authors, written as
has_many :comments_authors, through: [:comments, :author]. When
preloading authors with a custom function via :comments_authors,
the function will receive the IDs of the authors as the last step

	For many_to_many - the function receives the IDs of the parent
association and it must return a tuple with the parent id as the first
element and the association map or struct as the second. For example,
if a post has many tags, when preloading the tags with a custom
function, the function will receive a list of "post_ids" as the argument
and it must return a tuple in the format of {post_id, tag}

The 2-arity version of the function is especially useful if you would like to
build a general preloader that works across all associations. For example, if
you would like to build a preloader for lateral joins that finds the newest
associations you may do the following:
lateral_preloader = fn ids, assoc -> newest_records(ids, assoc, 5) end

def newest_records(parent_ids, assoc, n) do
 %{related_key: related_key, queryable: queryable} = assoc

 squery =
 from q in queryable,
 where: field(q, ^related_key) == parent_as(:parent_ids).id,
 order_by: {:desc, :created_at},
 limit: ^n

 query =
 from f in fragment("SELECT id from UNNEST(?::int[]) AS id", ^parent_ids), as: :parent_ids,
 inner_lateral_join: s in subquery(squery), on: true,
 select: s

 Repo.all(query)
end
For the list of available metadata, see the module documentation of the association types.
For example, see Ecto.Association.BelongsTo.
Dynamic preloads
Preloads can also be specified dynamically using the dynamic macro:
 preloads = [comments: dynamic([comments: c], c)]

 Repo.all from p in Post,
 join: c in assoc(p, :comments),
 as: :comments,
 where: c.published_at > p.updated_at,
 preload: ^preloads
See dynamic/2 for more information.
Keywords example
Returns all posts, their associated comments, and the associated
likes for those comments.
from(p in Post,
 preload: [comments: :likes],
 select: p
)
Expressions examples
Post |> preload(:comments) |> select([p], p)

Post
|> join(:left, [p], c in assoc(p, :comments))
|> preload([p, c], [:user, comments: c])
|> select([p], p)

 prepend_order_by(query, binding \\ [], expr)

 (macro)

An order by query expression that is prepended to existing ones.
Accepts the same input as order_by/3 except the expression will
come before any previously defined order by expression. This only
works with the macro-based query syntax and not the keyword-based
query syntax.
For example, the following will generate a query that orders by human_population
and then name:
City |> order_by([c], c.name) |> prepend_order_by([c], c.human_population)
The corresponding keyword-based syntax will raise an error:
from c in City, order_by: c.name, prepend_order_by: c.human_population

 put_query_prefix(query, prefix)

Puts the given prefix in a query.

 recursive_ctes(query, value)

Enables or disables recursive mode for CTEs.
According to the SQL standard it affects all CTEs in the query, not individual ones.
See with_cte/3 on example of how to build a query with a recursive CTE.

 reverse_order(query)

Reverses the ordering of the query.
ASC columns become DESC columns (and vice-versa). If the query
has no order_bys, it orders by the inverse of the primary key.
Examples
query |> reverse_order() |> Repo.one()
Post |> order_by(asc: :id) |> reverse_order() == Post |> order_by(desc: :id)

 select(query, binding \\ [], expr)

 (macro)

A select query expression.
Selects which fields will be selected from the schema and any transformations
that should be performed on the fields. Any expression that is accepted in a
query can be a select field.
Select also allows each expression to be wrapped in lists, tuples or maps as
shown in the examples below. A full schema can also be selected.
There can only be one select expression in a query, if the select expression
is omitted, the query will by default select the full schema. If select is
given more than once, an error is raised. Use exclude/2 if you would like
to remove a previous select for overriding or see select_merge/3 for a
limited version of select that is composable and can be called multiple
times.
select also accepts a list of atoms where each atom refers to a field in
the source to be selected.
Keywords examples
from(c in City, select: c) # returns the schema as a struct
from(c in City, select: {c.name, c.population})
from(c in City, select: [c.name, c.county])
from(c in City, select: %{n: c.name, answer: 42})
from(c in City, select: %{c | alternative_name: c.name})
from(c in City, select: %Data{name: c.name})
It is also possible to select a struct and limit the returned
fields at the same time:
from(City, select: [:name])
The syntax above is equivalent to:
from(city in City, select: struct(city, [:name]))
You can also write:
from(city in City, select: map(city, [:name]))
If you want a map with only the selected fields to be returned.
To select a struct but omit only given fields, you can
override them with nil or another default value:
from(city in City, select: %{city | geojson: nil, text: "<redacted>"})
For more information, read the docs for Ecto.Query.API.struct/2
and Ecto.Query.API.map/2.
Expressions examples
City |> select([c], c)
City |> select([c], {c.name, c.country})
City |> select([c], %{"name" => c.name})
City |> select([:name])
City |> select([c], struct(c, [:name]))
City |> select([c], map(c, [:name]))
City |> select([c], %{c | geojson: nil, text: "<redacted>"})
Dynamic parts
Dynamics can be part of a select as values in a map that must be interpolated
at the root level:
period = if monthly?, do: dynamic([p], p.month), else: dynamic([p], p.date)
metric = if distance?, do: dynamic([p], p.distance), else: dynamic([p], p.time)

from(c in City, select: ^%{period: period, metric: metric})

 select_merge(query, binding \\ [], expr)

 (macro)

Mergeable select query expression.
This macro is similar to select/3 except it may be specified
multiple times as long as every entry is a map. This is useful
for merging and composing selects. For example:
query = from p in Post, select: %{}

query =
 if include_title? do
 from p in query, select_merge: %{title: p.title}
 else
 query
 end

query =
 if include_visits? do
 from p in query, select_merge: %{visits: p.visits}
 else
 query
 end
In the example above, the query is built little by little by merging
into a final map. If both conditions above are true, the final query
would be equivalent to:
from p in Post, select: %{title: p.title, visits: p.visits}
If :select_merge is called and there is no value selected previously,
it will default to the source, p in the example above.
The argument given to :select_merge must always be a map. The value
being merged on must be a struct or a map. If it is a struct, the fields
merged later on must be part of the struct, otherwise an error is raised.
If the argument to :select_merge is a constructed struct
(Ecto.Query.API.struct/2) or map (Ecto.Query.API.map/2) where the source
to struct or map may be a nil value (as in an outer join), the source will
be returned unmodified.
query =
 Post
 |> join(:left, [p], t in Post.Translation,
 on: t.post_id == p.id and t.locale == ^"en"
)
 |> select_merge([_p, t], map(t, ^~w(title summary)a))
If there is no English translation for the post, the untranslated post
title will be returned and summary will be nil. If there is, both
title and summary will be the value from Post.Translation.
select_merge cannot be used to set fields in associations, as
associations are always loaded later, overriding any previous value.
Dynamics can be part of a select_merge as values in a map that must be
interpolated at the root level. The rules for merging detailed above apply.
This allows merging dynamic values into previously selected maps and structs.

 subquery(query, opts \\ [])

Converts a query into a subquery.
If a subquery is given, returns the subquery itself.
If any other value is given, it is converted to a query via
Ecto.Queryable and wrapped in the Ecto.SubQuery struct.
subquery is supported in:
	from,
	join,
	where, in the form p.x in subquery(q),
	select and select_merge, in the form of %{field: subquery(...)}.

Examples
Get the average salary of the top 10 highest salaries
query = from Employee, order_by: [desc: :salary], limit: 10
from e in subquery(query), select: avg(e.salary)
A prefix can be specified for a subquery, similar to standard repo operations:
query = from Employee, order_by: [desc: :salary], limit: 10
from e in subquery(query, prefix: "my_prefix"), select: avg(e.salary)
Subquery can also be used in a join expression.
UPDATE posts
 SET sync_started_at = $1
 WHERE id IN (
 SELECT id FROM posts
 WHERE synced = false AND (sync_started_at IS NULL OR sync_started_at < $1)
 LIMIT $2
)
We can write it as a join expression:
subset = from(p in Post,
 where: p.synced == false and
 (is_nil(p.sync_started_at) or p.sync_started_at < ^min_sync_started_at),
 limit: ^batch_size
)

Repo.update_all(
 from(p in Post, join: s in subquery(subset), on: s.id == p.id),
 set: [sync_started_at: NaiveDateTime.utc_now()]
)
Or as a where condition:
subset_ids = from(p in subset, select: p.id)
Repo.update_all(
 from(p in Post, where: p.id in subquery(subset_ids)),
 set: [sync_started_at: NaiveDateTime.utc_now()]
)
If you need to refer to a parent binding which is not known when writing the subquery,
you can use parent_as as shown in the examples under "Named bindings"
in this module doc.
You can also use subquery directly in select and select_merge:
comments_count = from(c in Comment, where: c.post_id == parent_as(:post).id, select: count())
from(p in Post, as: :post, select: %{id: p.id, comments: subquery(comments_count)})

 union(query, other_query)

 (macro)

A union query expression.
Combines result sets of multiple queries. The select of each query
must be exactly the same, with the same types in the same order.
Union expression returns only unique rows as if each query returned
distinct results. This may cause a performance penalty. If you need
to combine multiple result sets without removing duplicate rows
consider using union_all/2.
Combination behaviour
There are several behaviours of combination queries that must be taken
into account, otherwise you may unexpectedly return the wrong query result.
Order by, limit and offset
The order_by, limit and offset expressions of the parent query apply
to the result of the entire combination. order_by must be specified in one
of the following ways, since the combination of two or more queries is not
automatically aliased:
	Use Ecto.Query.API.fragment/1 to pass an order_by statement
that directly access the combination fields.
	Wrap the combination in a subquery and refer to the binding of the subquery.

Column selection ordering
The columns of each of the queries in the combination must be specified in
the exact same order. Otherwise, you may see the values of one column appearing
in another. This holds for all types of select expressions, including maps.
For example, the following query will interchange the values of the supplier's
name and city because that is the order the fields are specified in the customer
query.
supplier_query = from s in Supplier, select: %{city: s.city, name: s.name}
customer_query = from c in Customer, select: %{name: c.name, city: c.city}
union(supplier_query, ^customer_query)
Selecting literal atoms
When selecting a literal atom, its value must be the same across all queries.
Otherwise, the value from the parent query will be applied to all other queries.
This also holds true for selecting maps with atom keys.
Keywords examples
Unordered result
supplier_query = from s in Supplier, select: s.city
from c in Customer, select: c.city, union: ^supplier_query

Ordered result
supplier_query = from s in Supplier, select: s.city
union_query = from c in Customer, select: c.city, union: ^supplier_query
from s in subquery(union_query), order_by: s.city
Expressions examples
Unordered result
supplier_query = Supplier |> select([s], s.city)
Customer |> select([c], c.city) |> union(^supplier_query)

Ordered result
customer_query = Customer |> select([c], c.city) |> order_by(fragment("city"))
supplier_query = Supplier |> select([s], s.city)
union(customer_query, ^supplier_query)

 union_all(query, other_query)

 (macro)

A union all query expression.
Combines result sets of multiple queries. The select of each query
must be exactly the same, with the same types in the same order.
Combination behaviour
There are several behaviours of combination queries that must be taken
into account, otherwise you may unexpectedly return the wrong query result.
Order by, limit and offset
The order_by, limit and offset expressions of the parent query apply
to the result of the entire combination. order_by must be specified in one
of the following ways, since the combination of two or more queries is not
automatically aliased:
	Use Ecto.Query.API.fragment/1 to pass an order_by statement
that directly access the combination fields.
	Wrap the combination in a subquery and refer to the binding of the subquery.

Column selection ordering
The columns of each of the queries in the combination must be specified in
the exact same order. Otherwise, you may see the values of one column appearing
in another. This holds for all types of select expressions, including maps.
For example, the following query will interchange the values of the supplier's
name and city because that is the order the fields are specified in the customer
query.
supplier_query = from s in Supplier, select: %{city: s.city, name: s.name}
customer_query = from c in Customer, select: %{name: c.name, city: c.city}
union_all(supplier_query, ^customer_query)
Selecting literal atoms
When selecting a literal atom, its value must be the same across all queries.
Otherwise, the value from the parent query will be applied to all other queries.
This also holds true for selecting maps with atom keys.
Keywords examples
Unordered result
supplier_query = from s in Supplier, select: s.city
from c in Customer, select: c.city, union_all: ^supplier_query

Ordered result
supplier_query = from s in Supplier, select: s.city
union_all_query = from c in Customer, select: c.city, union_all: ^supplier_query
from s in subquery(union_all_query), order_by: s.city
Expressions examples
Unordered result
supplier_query = Supplier |> select([s], s.city)
Customer |> select([c], c.city) |> union_all(^supplier_query)

Ordered result
customer_query = Customer |> select([c], c.city) |> order_by(fragment("city"))
supplier_query = Supplier |> select([s], s.city)
union_all(customer_query, ^supplier_query)

 update(query, binding \\ [], expr)

 (macro)

An update query expression.
Updates are used to update the filtered entries. In order for
updates to be applied, Ecto.Repo.update_all/3 must be invoked.
Keywords example
from(u in User, update: [set: [name: "new name"]])
Expressions examples
User |> update([u], set: [name: "new name"])
User |> update(set: [name: "new name"])
Interpolation
new_name = "new name"
from(u in User, update: [set: [name: ^new_name]])

new_name = "new name"
from(u in User, update: [set: [name: fragment("upper(?)", ^new_name)]])
Operators
The update expression in Ecto supports the following operators:
	set - sets the given field in the table to the given value
from(u in User, update: [set: [name: "new name"]])

	inc - increments (or decrements if the value is negative) the given field in the table by the given value
from(u in User, update: [inc: [accesses: 1]])

	push - pushes (appends) the given value to the end of the array field
from(u in User, update: [push: [tags: "cool"]])

	pull - pulls (removes) the given value from the array field
from(u in User, update: [pull: [tags: "not cool"]])

Composable
Remember that all query expressions are composable, so you can use update
multiple times in the same query to merge the update expressions:
new_name = "new name"
User
|> update([u], set: [name: fragment("upper(?)", ^new_name)])
|> update([u], set: [age: 42])
This can be useful to compose updates from different functions
or when mixing interpolation, such as set: ^updates, with regular
query expressions, such as set: [age: u.age + 1].

 where(query, binding \\ [], expr)

 (macro)

An AND where query expression.
where expressions are used to filter the result set. If there is more
than one where expression, they are combined with an and operator. All
where expressions have to evaluate to a boolean value.
where also accepts a keyword list where the field given as key is going to
be compared with the given value. The fields will always refer to the source
given in from.
Keywords example
from(c in City, where: c.country == "Sweden")
from(c in City, where: [country: "Sweden"])
It is also possible to interpolate the whole keyword list, allowing you to
dynamically filter the source:
filters = [country: "Sweden"]
from(c in City, where: ^filters)
Expressions examples
City |> where([c], c.country == "Sweden")
City |> where(country: "Sweden")

 windows(query, binding \\ [], expr)

 (macro)

Defines windows which can be used with Ecto.Query.WindowAPI.
Receives a keyword list where keys are names of the windows
and values are a keyword list with window expressions.
Examples
Compare each employee's salary with the average salary in his or her department
from e in Employee,
 select: {e.depname, e.empno, e.salary, over(avg(e.salary), :department)},
 windows: [department: [partition_by: e.depname]]
In the example above, we get the average salary per department.
:department is the window name, partitioned by e.depname
and avg/1 is the window function. For more information
on windows functions, see Ecto.Query.WindowAPI.
Window expressions
The following keys are allowed when specifying a window.
:partition_by
A list of fields to partition the window by, for example:
windows: [department: [partition_by: e.depname]]
A list of atoms can also be interpolated for dynamic partitioning:
fields = [:depname, :year]
windows: [dynamic_window: [partition_by: ^fields]]
:order_by
A list of fields to order the window by, for example:
windows: [ordered_names: [order_by: e.name]]
It works exactly as the keyword query version of order_by/3.
:frame
A fragment which defines the frame for window functions.
Examples
Compare each employee's salary for each month with his average salary for previous 3 months
from p in Payroll,
 select: {p.empno, p.date, p.salary, over(avg(p.salary), :prev_months)},
 windows: [prev_months: [partition_by: p.empno, order_by: p.date, frame: fragment("ROWS 3 PRECEDING EXCLUDE CURRENT ROW")]]

 with_cte(query, name, opts)

 (macro)

A common table expression (CTE) also known as WITH expression.
name must be a compile-time literal string that is being used
as the table name to join the CTE in the main query or in the
recursive CTE.
IMPORTANT! Beware of using CTEs. In raw SQL, CTEs can be
used as a mechanism to organize queries, but said mechanism
has no purpose in Ecto since Ecto queries are composable by
definition. In other words, if you need to break a large query
into parts, use all of the functionality in Elixir and in this
module to structure your code. Furthermore, breaking a query
into CTEs can negatively impact performance, as the database
may not optimize efficiently across CTEs. The main use case
for CTEs in Ecto is to provide recursive definitions, which
we outline in the following section. Non-recursive CTEs can
often be written as joins or subqueries, which provide better
performance.
Options
	:as - the CTE query itself or a fragment
	:materialized - a boolean indicating whether the CTE should
be materialized. If blank, the database's default behaviour
will be used (only supported by Postgrex, for the built-in adapters)
	:operation - one of :all, :update_all, or :delete_all
indicating the operation type of the CTE query. If blank, it defaults to :all,
making the CTE query a SELECT query. (only supported by Postgres built-in adapter)

Recursive CTEs
Use recursive_ctes/2 to enable recursive mode for CTEs.
In the CTE query itself use the same table name to leverage
recursion that has been passed to the name argument. Make sure
to write a stop condition to avoid an infinite recursion loop.
Generally speaking, you should only use CTEs in Ecto for
writing recursive queries.
Expression examples
Products and their category names for breadcrumbs:
category_tree_initial_query =
 Category
 |> where([c], is_nil(c.parent_id))

category_tree_recursion_query =
 Category
 |> join(:inner, [c], ct in "category_tree", on: c.parent_id == ct.id)

category_tree_query =
 category_tree_initial_query
 |> union_all(^category_tree_recursion_query)

Product
|> recursive_ctes(true)
|> with_cte("category_tree", as: ^category_tree_query)
|> join(:left, [p], c in "category_tree", on: c.id == p.category_id)
|> group_by([p], p.id)
|> select([p, c], %{p | category_names: fragment("ARRAY_AGG(?)", c.name)})
It's also possible to pass a raw SQL fragment:
@raw_sql_category_tree """
SELECT * FROM categories WHERE c.parent_id IS NULL
UNION ALL
SELECT * FROM categories AS c, category_tree AS ct WHERE ct.id = c.parent_id
"""

Product
|> recursive_ctes(true)
|> with_cte("category_tree", as: fragment(@raw_sql_category_tree))
|> join(:inner, [p], c in "category_tree", on: c.id == p.category_id)
You can also query over the CTE table itself. In such cases, you can pass an
Ecto.Queryable module tuple with the CTE table name as the first element
and an Ecto schema as the second element. This will cast the result rows to Ecto
structs, as long as the Ecto schema maps over the same fields in the CTE table:
{"category_tree", Category}
|> recursive_ctes(true)
|> with_cte("category_tree", as: ^category_tree_query)
|> join(:left, [c], p in assoc(c, :products))
|> group_by([c], c.id)
|> select([c, p], %{c | products_count: count(p.id)})
Keep in mind that this will override the source table name to "category_tree" in the
resulting structs, which will also inherit all other properties from the Category schema,
including a @schema_prefix if any is set.
In such cases, you can disable those properties by setting them as options:
from(cte in {"category_tree", Category}, prefix: nil)
|> recursive_ctes(true)
|> with_cte("category_tree", as: ^category_tree_query)
or join the CTE's result to the original schema:
Category
|> recursive_ctes(true)
|> with_cte("category_tree", as: ^category_tree_query)
|> join(:inner, [c], tree in "category_tree", on: c.id == tree.id)
While this requires an additional join, it will allow you to use the structs in further
data-modifying operations throughout your application without the need to manually reset
the source table name.
For the Postgres built-in adapter, it is possible to define data-modifying CTE queries:
update_categories_query =
 Category
 |> where([c], is_nil(c.parent_id))
 |> update([c], set: [name: "Root category"])
 |> select([c], c)

{"update_categories", Category}
|> with_cte("update_categories", as: ^update_categories_query, operation: :update_all)
|> select([c], c)
Note: In order to retrieve the updates rows from a CTE query, the parent query
must select rows from the CTE table instead of the table referenced by the CTE query.
For example, "update_categories" will return updated rows for "category" table, but
selecting from "category" table directly will return unaffected rows.
For more details see Postgres documentation on data-modifying CTEs and how these work
with snapshots.
Keyword syntax is not supported for this feature.
Limitation: CTEs on schemas with source fields
Ecto allows developers to say that a table in their Ecto schema
maps to a different column in their database:
field :group_id, :integer, source: :iGroupId
At the moment, using a schema with source fields in CTE may emit
invalid queries. If you are running into such scenarios, your best
option is to use a fragment as your CTE.

 with_named_binding(query, key, fun)

Applies a callback function to a query if it doesn't contain the given named binding.
Otherwise, returns the original query.
The callback function must accept a queryable and return an Ecto.Query struct
that contains the provided named binding, otherwise an error is raised. It can also
accept second argument which is the atom representing the name of a binding.
For example, one might use this function as a convenience to conditionally add a new
named join to a query:
if has_named_binding?(query, :comments) do
 query
else
 join(query, :left, [p], c in assoc(p, :comments), as: :comments)
end
With this function it can be simplified to:
with_named_binding(query, :comments, fn query, binding ->
 join(query, :left, [p], a in assoc(p, ^binding), as: ^binding)
end)
For more information on named bindings see "Named bindings"
in this module doc or has_named_binding?/2.

 with_ties(query, binding \\ [], expr)

 (macro)

Enables or disables ties for limit expressions.
If there are multiple records tied for the last position in an ordered
limit result, setting this value to true will return all of the tied
records, even if the final result exceeds the specified limit.
Must be a boolean or evaluate to a boolean at runtime. Can only be applied
to queries with a limit expression or an error is raised. If limit
is redefined then with_ties must be reapplied.
Not all databases support this option and the ones that do might list it
under the FETCH command. Databases may require a corresponding order_by
statement to evaluate ties.
Keywords example
from(p in Post, where: p.author_id == ^current_user, order_by: [desc: p.visits], limit: 10, with_ties: true)
Expressions example
Post |> where([p], p.author_id == ^current_user) |> order_by([p], desc: p.visits) |> limit(10) |> with_ties(true)

Ecto.Repo behaviour

Defines a repository.
A repository maps to an underlying data store, controlled by the
adapter. For example, Ecto ships with a Postgres adapter that
stores data into a PostgreSQL database.
When used, the repository expects the :otp_app and :adapter as
option. The :otp_app should point to an OTP application that has
the repository configuration. For example, the repository:
defmodule Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres
end
Could be configured with:
config :my_app, Repo,
 database: "ecto_simple",
 username: "postgres",
 password: "postgres",
 hostname: "localhost"
Most of the configuration that goes into the config is specific
to the adapter. For this particular example, you can check
Ecto.Adapters.Postgres
for more information. In spite of this, the following configuration values
are common across all adapters:
	:name- The name of the Repo supervisor process. Notice that
it must be unique across all repo modules

	:priv - the directory where to keep repository data, like
migrations, schema and more. Defaults to "priv/YOUR_REPO".
It must always point to a subdirectory inside the priv directory

	:url - an URL that specifies storage information. Read below
for more information

	:log - the log level used when logging the query with Elixir's
Logger. Can be any of Logger.level/0 values or false. If false,
disables logging for that repository. Defaults to :debug

	:pool_size - the size of the pool used by the connection module.
Defaults to 10

	:pool_count - the number of pools to run concurrently,
increase this option when the pool itself may be under contention.
When running multiple pools, queries are randomly routed to different
pools, without taking into account how many connections are available
in each. So in some circumstances, you may be routed to a fully busy
pool while others have connections available. The overall number of
connections used will be pool_size * pool_count. Defaults to 1

	:telemetry_prefix - we recommend adapters to publish events
using the Telemetry library. By default, the telemetry prefix
is based on the module name, so if your module is called
MyApp.Repo, the prefix will be [:my_app, :repo]. See the
"Telemetry Events" section to see which events we recommend
adapters to publish. Note that if you have multiple databases, you
should keep the :telemetry_prefix consistent for each repo and
use the :repo property in the event metadata for distinguishing
between repos.

	:stacktrace- when true, publishes the stacktrace in telemetry events
and allows more advanced logging.

	:log_stacktrace_mfa - A {module, function, arguments} tuple that customizes
which part of the stacktrace is included in query logs. The specified function
must accept at least two arguments (stacktrace and metadata) and return
a filtered stacktrace. The metadata is a map with keys such as :repo and other
adapter specific information. Additional arguments can be passed in the third
element of the tuple. For Ecto.Adapters.SQL, defaults to
{Ecto.Adapters.SQL, :first_non_ecto_stacktrace, [1]}, which filters the
stacktrace to show only the first call originating from outside
Ecto's internal code. Only relevant when :stacktrace is true.

URLs
Repositories by default support URLs. For example, the configuration
above could be rewritten to:
config :my_app, Repo,
 url: "ecto://postgres:postgres@localhost/ecto_simple"
The schema can be of any value and the path represents the database name.
The URL will be used generate the relevant Repo configuration values, such
as :database, :username, :password, :hostname and :port. These
values take precedence over those already specified in the Repo's configuration.
URL can include query parameters to override shared and adapter-specific
options, like ssl, timeout and pool_size. The following example
shows how to pass these configuration values:
config :my_app, Repo,
 url: "ecto://postgres:postgres@localhost/ecto_simple?ssl=true&pool_size=10"
IPv6 support
If your database's host resolves to ipv6 address you should
add socket_options: [:inet6] to configuration block like below:
import Mix.Config

config :my_app, MyApp.Repo,
 hostname: "db12.dc0.comp.any",
 socket_options: [:inet6],
 ...
use options
When you use Ecto.Repo, the following options are supported:
	:otp_app (required) - the name of the Erlang/OTP application
to find your repository configuration (usually your Elixir app name)

	:adapter (required) - the module of the database adapter you want to use

	:read_only - when true, marks the repository as :read_only.
In such cases, none of the functions that perform write operations, such as
insert/2, insert_all/3, update_all/3, and friends are defined

Shared options
Almost all of the repository functions outlined in this module accept the following
options:
	:timeout - The time in milliseconds (as an integer) to wait for the query call to
finish. :infinity will wait indefinitely (default: 15_000)
	:log - Can be any of the Logger.level/0 values or false. If false,
logging is disabled. Defaults to the configured Repo logger level
	:telemetry_event - The telemetry event name to dispatch the event under.
See the next section for more information
	:telemetry_options - Extra options to attach to telemetry event name.
See the next section for more information

Adapter-Specific Errors
Many of the functions in this module may raise adapter-specific errors, such as PostgrexError.
This can happen, for example, when the underlying database cannot execute the specified query.
Telemetry events
There are two types of telemetry events. The ones emitted by Ecto and the
ones that are adapter specific.
Ecto telemetry events
The following events are emitted by all Ecto repositories:
	[:ecto, :repo, :init] - it is invoked whenever a repository starts.
The measurement is a single system_time entry in native unit. The
metadata is the :repo and all initialization options under :opts.

Adapter-specific events
We recommend adapters to publish certain Telemetry events listed below.
Those events will use the :telemetry_prefix outlined above which defaults
to [:my_app, :repo].
For instance, to receive all query events published by a repository called
MyApp.Repo, one would define a module:
defmodule MyApp.Telemetry do
 def handle_event([:my_app, :repo, :query], measurements, metadata, config) do
 IO.inspect binding()
 end
end
Then, in the Application.start/2 callback, attach the handler to this event using
a unique handler id:
:ok = :telemetry.attach("my-app-handler-id", [:my_app, :repo, :query], &MyApp.Telemetry.handle_event/4, %{})
For details, see the telemetry documentation.
Below we list all events developers should expect from Ecto. All examples
below consider a repository named MyApp.Repo:
[:my_app, :repo, :query]
This event should be invoked on every query sent to the adapter, including
queries that are related to the transaction management.
The :measurements map may include the following, all given in the
:native time unit:
	:idle_time - the time the connection spent waiting before being checked out for the query
	:queue_time - the time spent waiting to check out a database connection
	:query_time - the time spent executing the query
	:decode_time - the time spent decoding the data received from the database
	:total_time - the sum of (queue_time, query_time, and decode_time)️

All measurements are given in the :native time unit. You can read more
about it in the docs for System.convert_time_unit/3.
A telemetry :metadata map including the following fields. Each database
adapter may emit different information here. For Ecto.SQL databases, it
will look like this:
	:type - the type of the Ecto query. For example, for Ecto.SQL
databases, it would be :ecto_sql_query
	:repo - the Ecto repository
	:result - the query result
	:params - the dumped query parameters (formatted for database drivers like Postgrex)
	:cast_params - the casted query parameters (normalized before dumping)
	:query - the query sent to the database as a string
	:source - the source the query was made on (may be nil)
	:stacktrace - the stacktrace information, if enabled, or nil
	:options - extra options given to the repo operation under
:telemetry_options

 Summary

 Query API

 aggregate(queryable, aggregate, opts)

 Calculate the given aggregate.

 aggregate(queryable, aggregate, field, opts)

 Calculate the given aggregate over the given field.

 all(queryable, opts)

 Fetches all entries from the data store matching the given query.

 all_by(queryable, clauses, opts)

 Fetches all entries from the data store matching the given query and conditions.

 delete_all(queryable, opts)

 Deletes all entries matching the given query.

 exists?(queryable, opts)

 Checks if there exists an entry that matches the given queryable.

 get(queryable, id, opts)

 Fetches a single struct from the data store where the primary key matches the
given id.

 get!(queryable, id, opts)

 Similar to get/3 but raises Ecto.NoResultsError if no record was found.

 get_by(queryable, clauses, opts)

 Fetches a single result from the query.

 get_by!(queryable, clauses, opts)

 Similar to get_by/3 but raises Ecto.NoResultsError if no record was found.

 one(queryable, opts)

 Fetches a single result from the query.

 one!(queryable, opts)

 Similar to one/2 but raises Ecto.NoResultsError if no record was found.

 stream(queryable, opts)

 Returns a lazy enumerable that emits all entries from the data store
matching the given query.

 update_all(queryable, updates, opts)

 Updates all entries matching the given query with the given values.

 Schema API

 delete(struct_or_changeset, opts)

 Deletes a struct using its primary key.

 delete!(struct_or_changeset, opts)

 Same as delete/2 but returns the struct or raises if the changeset is invalid.

 insert(struct_or_changeset, opts)

 Inserts a struct defined via Ecto.Schema or a changeset.

 insert!(struct_or_changeset, opts)

 Same as insert/2 but returns the struct or raises if the changeset is invalid.

 insert_all(schema_or_source, entries_or_query, opts)

 Inserts all entries into the repository.

 insert_or_update(changeset, opts)

 Inserts or updates a changeset depending on whether the struct is persisted
or not.

 insert_or_update!(changeset, opts)

 Same as insert_or_update/2 but returns the struct or raises if the changeset
is invalid.

 load(schema_or_map, data)

 Loads data into a schema or a map.

 preload(structs_or_struct_or_nil, preloads, opts)

 Preloads all associations on the given struct or structs.

 reload(struct_or_structs, opts)

 Reloads a given schema or schema list from the database.

 reload!(struct_or_structs, opts)

 Similar to reload/2, but raises when something is not found.

 update(changeset, opts)

 Updates a changeset using its primary key.

 update!(changeset, opts)

 Same as update/2 but returns the struct or raises if the changeset is invalid.

 Transaction API

 checked_out?()

 Returns true if a connection has been checked out.

 checkout(function, opts)

 Checks out a connection for the duration of the function.

 in_transaction?()

 Returns true if the current process is inside a transaction.

 rollback(value)

 Rolls back the current transaction.

 transact(fun, opts)

 Runs the given function or Ecto.Multi inside a transaction.

 transaction(fun_or_multi, opts)

 deprecated

 Runs the given function or Ecto.Multi inside a transaction.

 Process API

 all_running()

 Returns all running Ecto repositories.

 get_dynamic_repo()

 Returns the atom name or pid of the current repository.

 put_dynamic_repo(name_or_pid)

 Sets the dynamic repository to be used in further interactions.

 start_link(opts)

 Starts the Repo supervision tree.

 stop(timeout)

 Shuts down the repository.

 Config API

 __adapter__()

 Returns the adapter tied to the repository.

 config()

 Returns the adapter configuration stored in the :otp_app environment.

 User callbacks

 default_options(operation)

 A user customizable callback invoked to retrieve default options
for operations.

 init(context, config)

 A callback executed when the repo starts or when configuration is read.

 prepare_query(operation, query, opts)

 A user customizable callback invoked for query-based operations.

 prepare_transaction(fun_or_multi, opts)

 A user-customizable callback invoked on transaction operations.

 Types

 t()

 Query API

Functions that operate on an Ecto.Query.

 aggregate(queryable, aggregate, opts)

 (optional)

 @callback aggregate(
 queryable :: Ecto.Queryable.t(),
 aggregate :: :count,
 opts :: Keyword.t()
) :: term() | nil

Calculate the given aggregate.
Any preload or select in the query will be ignored in favor of
the column being aggregated. However, if the query has a limit,
offset, distinct or combination set, it will be automatically
wrapped in a subquery in order to return the proper result,
which requires the select field to follows certain rules:
it must return a source, a field (such as source.field),
or a map with atom keys and scalars (integers, floats, and
strings) or simple expressions as values. Those rules are shared
across all subqueries in Ecto.
The aggregation will fail if any group_by field is set.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for more options.
Examples
Returns the number of blog posts
Repo.aggregate(Post, :count)

Returns the number of blog posts in the "private" schema path
(in Postgres) or database (in MySQL)
Repo.aggregate(Post, :count, prefix: "private")

 aggregate(queryable, aggregate, field, opts)

 (optional)

 @callback aggregate(
 queryable :: Ecto.Queryable.t(),
 aggregate :: :avg | :count | :max | :min | :sum,
 field :: atom(),
 opts :: Keyword.t()
) :: term() | nil

Calculate the given aggregate over the given field.
See aggregate/3 for general considerations and options.
Examples
Returns the sum of the number of visits for every blog post
Repo.aggregate(Post, :sum, :visits)

Returns the sum of the number of visits for every blog post in the
"private" schema path (in Postgres) or database (in MySQL)
Repo.aggregate(Post, :sum, :visits, prefix: "private")

Returns the average number of visits for the first 10 blog posts
query = from Post, limit: 10
Repo.aggregate(query, :avg, :visits)

 all(queryable, opts)

 (optional)

 @callback all(queryable :: Ecto.Queryable.t(), opts :: Keyword.t()) :: [
 Ecto.Schema.t() | term()
]

Fetches all entries from the data store matching the given query.
May raise Ecto.QueryError if query validation fails.
See also all_by/3, one/2, and get/3.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for more options.
Example
Fetch all post titles
query = from p in Post,
 select: p.title
MyRepo.all(query)

 all_by(queryable, clauses, opts)

 (optional)

 @callback all_by(
 queryable :: Ecto.Queryable.t(),
 clauses :: Keyword.t() | map(),
 opts :: Keyword.t()
) :: [Ecto.Schema.t() | term()]

Fetches all entries from the data store matching the given query and conditions.
May raise Ecto.QueryError if query validation fails.
This function is a shortcut for all/2 when adjusting the given query with simple conditions.
See also all/2 and get_by/3.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for more options.
Example
MyRepo.all_by(Post, author_id: 1)

query = from p in Post
MyRepo.all_by(query, author_id: 1)

 delete_all(queryable, opts)

 (optional)

 @callback delete_all(queryable :: Ecto.Queryable.t(), opts :: Keyword.t()) ::
 {non_neg_integer(), nil | [term()]}

Deletes all entries matching the given query.
It returns a tuple containing the number of entries and any returned
result as second element. The second element is nil by default
unless a select is supplied in the delete query. Note, however,
not all databases support returning data from DELETEs.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for remaining options.
Examples
MyRepo.delete_all(Post)

from(p in Post, where: p.id < 10) |> MyRepo.delete_all()

With returning results, if supported by the database.
{_count, posts} = from(p in Post, where: p.id < 10, select: p) |> MyRepo.delete_all()

 exists?(queryable, opts)

 (optional)

 @callback exists?(queryable :: Ecto.Queryable.t(), opts :: Keyword.t()) :: boolean()

Checks if there exists an entry that matches the given queryable.
Returns a boolean.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for more options.
Generated Query
Ecto will take the provided queryable and modify it to reduce its footprint
as much as possible. For example, by forcing SELECT 1 and LIMIT 1. Any
additional filtering must be provided directly on the queryable using expressions
such as where and having.
Examples
checks if any posts exist
Repo.exists?(Post)

checks if any posts exist in the "private" schema path (in Postgres) or
database (in MySQL)
Repo.exists?(Post, prefix: "private")

checks if any post with a like count greater than 10 exists
query = from p in Post, where: p.like_count > 10
Repo.exists?(query)

 get(queryable, id, opts)

 (optional)

 @callback get(queryable :: Ecto.Queryable.t(), id :: term(), opts :: Keyword.t()) ::
 Ecto.Schema.t() | term() | nil

Fetches a single struct from the data store where the primary key matches the
given id.
Returns nil if no result was found. If the struct in the queryable
has no or more than one primary key, it will raise an argument error.
See also get!/3, one/2, and all_by/3.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for more options.
Example
MyRepo.get(Post, 42)

MyRepo.get(Post, 42, prefix: "public")

 get!(queryable, id, opts)

 (optional)

 @callback get!(queryable :: Ecto.Queryable.t(), id :: term(), opts :: Keyword.t()) ::
 Ecto.Schema.t() | term()

Similar to get/3 but raises Ecto.NoResultsError if no record was found.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for more options.
Example
MyRepo.get!(Post, 42)

MyRepo.get!(Post, 42, prefix: "public")

 get_by(queryable, clauses, opts)

 (optional)

 @callback get_by(
 queryable :: Ecto.Queryable.t(),
 clauses :: Keyword.t() | map(),
 opts :: Keyword.t()
) :: Ecto.Schema.t() | term() | nil

Fetches a single result from the query.
Returns nil if no result was found. Raises if more than one entry.
See also get/3, one/2, and all_by/3.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for more options.
Example
MyRepo.get_by(Post, title: "My post")

MyRepo.get_by(Post, [title: "My post"], prefix: "public")

 get_by!(queryable, clauses, opts)

 (optional)

 @callback get_by!(
 queryable :: Ecto.Queryable.t(),
 clauses :: Keyword.t() | map(),
 opts :: Keyword.t()
) :: Ecto.Schema.t() | term()

Similar to get_by/3 but raises Ecto.NoResultsError if no record was found.
Raises if more than one entry.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for more options.
Example
MyRepo.get_by!(Post, title: "My post")

MyRepo.get_by!(Post, [title: "My post"], prefix: "public")

 one(queryable, opts)

 (optional)

 @callback one(queryable :: Ecto.Queryable.t(), opts :: Keyword.t()) ::
 Ecto.Schema.t() | term() | nil

Fetches a single result from the query.
Returns nil if no result was found. Raises if more than one entry.
See also one!/2, get/3, and all/2.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for more options.
Examples
Repo.one(from p in Post, join: c in assoc(p, :comments), where: p.id == ^post_id)

query = from p in Post, join: c in assoc(p, :comments), where: p.id == ^post_id
Repo.one(query, prefix: "private")

 one!(queryable, opts)

 (optional)

 @callback one!(queryable :: Ecto.Queryable.t(), opts :: Keyword.t()) ::
 Ecto.Schema.t() | term()

Similar to one/2 but raises Ecto.NoResultsError if no record was found.
Raises if more than one entry.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for more options.

 stream(queryable, opts)

 (optional)

 @callback stream(queryable :: Ecto.Queryable.t(), opts :: Keyword.t()) :: Enum.t()

Returns a lazy enumerable that emits all entries from the data store
matching the given query.
SQL adapters, such as Postgres and MySQL, can only enumerate a stream
inside a transaction.
May raise Ecto.QueryError if query validation fails.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

	:max_rows - The number of rows to load from the database as we stream.
It is supported at least by Postgres and MySQL and defaults to 500.

See the "Shared options" section at the module
documentation for more options.
Example
Fetch all post titles
query = from p in Post, select: p.title

stream = MyRepo.stream(query)

MyRepo.transact(fn ->
 Enum.to_list(stream)
end)

 update_all(queryable, updates, opts)

 (optional)

 @callback update_all(
 queryable :: Ecto.Queryable.t(),
 updates :: Keyword.t(),
 opts :: Keyword.t()
) :: {non_neg_integer(), nil | [term()]}

Updates all entries matching the given query with the given values.
It returns a tuple containing the number of entries and any returned
result as second element. The second element is nil by default
unless a select is supplied in the update query. Note, however,
not all databases support returning data from UPDATEs.
Keep in mind this update_all will not update autogenerated
fields like the updated_at columns.
See Ecto.Query.update/3 for update operations that can be
performed on fields.
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This will be applied to all from
and joins in the query that did not have a prefix previously given
either via the :prefix option on join/from or via @schema_prefix
in the schema. For more information see the "Query Prefix" section of the
Ecto.Query documentation.

See the "Shared options" section at the module
documentation for remaining options.
Examples
MyRepo.update_all(Post, set: [title: "New title"])

MyRepo.update_all(Post, inc: [visits: 1])

from(p in Post, where: p.id < 10, select: p.visits)
|> MyRepo.update_all(set: [title: "New title"])

from(p in Post, where: p.id < 10, update: [set: [title: "New title"]])
|> MyRepo.update_all([])

from(p in Post, where: p.id < 10, update: [set: [title: ^new_title]])
|> MyRepo.update_all([])

from(p in Post, where: p.id < 10, update: [set: [title: fragment("upper(?)", ^new_title)]])
|> MyRepo.update_all([])

from(p in Post, where: p.id < 10, update: [set: [visits: p.visits * 1000]])
|> MyRepo.update_all([])

 Schema API

Functions that operate on an Ecto.Schema or a Ecto.Changeset.

 delete(struct_or_changeset, opts)

 (optional)

 @callback delete(
 struct_or_changeset :: Ecto.Schema.t() | Ecto.Changeset.t(),
 opts :: Keyword.t()
) :: {:ok, Ecto.Schema.t()} | {:error, Ecto.Changeset.t()}

Deletes a struct using its primary key.
If the struct has no primary key, Ecto.NoPrimaryKeyFieldError
will be raised. If the struct has been removed prior to the call,
Ecto.StaleEntryError will be raised. If more than one database
operation is required, they're automatically wrapped in a transaction.
It returns {:ok, struct} if the struct has been successfully
deleted or {:error, changeset} if there was a validation
or a known constraint error. By default, constraint errors will
raise the Ecto.ConstraintError exception, unless a changeset is
given as the first argument with the relevant constraints declared
in it (see Ecto.Changeset).
Options
	:returning - selects which fields to return. It accepts a list
of fields to be returned from the database. When true, returns
all fields, including those marked as load_in_query: false. When
false, no extra fields are returned. It will always include all
fields in read_after_writes. Be aware that the fields returned
from the database overwrite what was supplied by the user. Any field
not returned by the database will be present with the original value
supplied by the user. Not all databases support this option.

	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This overrides the prefix set
in the query and any @schema_prefix set in the schema.

	:stale_error_field - The field where stale errors will be added in
the returning changeset. This option can be used to avoid raising
Ecto.StaleEntryError.

	:stale_error_message - The message to add to the configured
:stale_error_field when stale errors happen, defaults to "is stale".

	:allow_stale - Doesn't error if delete is stale. Defaults to false.
This may happen if the struct has been deleted from the database before
this deletion or if there is a rule or a trigger on the database that rejects
the delete operation.

See the "Shared options" section at the module
documentation for more options.
Example
post = MyRepo.get!(Post, 42)
case MyRepo.delete(post) do
 {:ok, struct} -> # Deleted with success
 {:error, changeset} -> # Something went wrong
end

 delete!(struct_or_changeset, opts)

 (optional)

 @callback delete!(
 struct_or_changeset :: Ecto.Schema.t() | Ecto.Changeset.t(),
 opts :: Keyword.t()
) :: Ecto.Schema.t()

Same as delete/2 but returns the struct or raises if the changeset is invalid.

 insert(struct_or_changeset, opts)

 (optional)

 @callback insert(
 struct_or_changeset :: Ecto.Schema.t() | Ecto.Changeset.t(),
 opts :: Keyword.t()
) :: {:ok, Ecto.Schema.t()} | {:error, Ecto.Changeset.t()}

Inserts a struct defined via Ecto.Schema or a changeset.
In case a struct is given, the struct is converted into a changeset
with all non-nil fields as part of the changeset.
In case a changeset is given, the changes in the changeset are
merged with the struct fields, and all of them are sent to the
database. If more than one database operation is required, they're
automatically wrapped in a transaction.
It returns {:ok, struct} if the struct has been successfully
inserted or {:error, changeset} if there was a validation
or a known constraint error.
Options
	:returning - selects which fields to return. It accepts a list
of fields to be returned from the database. When true, returns
all fields, including those marked as load_in_query: false. When
false, no extra fields are returned. It will always include all
fields in read_after_writes as well as any autogenerated id. Be
aware that the fields returned from the database overwrite what was
supplied by the user. Any field not returned by the database will be
present with the original value supplied by the user. Not all databases
support this option and it may not be available during upserts.
See the "Upserts" section for more information.

	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This overrides the prefix set
in the query and any @schema_prefix set on any schemas. Also, the
@schema_prefix for the parent record will override all default
@schema_prefixs set in any child schemas for associations.

	:on_conflict - It may be one of :raise (the default), :nothing,
:replace_all, {:replace_all_except, fields}, {:replace, fields},
a keyword list of update instructions or an Ecto.Query query for updates.
See the "Upserts" section for more information.

	:conflict_target - A list of column names to verify for conflicts.
It is expected those columns to have unique indexes on them that may conflict.
If none is specified, the conflict target is left up to the database.
It may also be {:unsafe_fragment, binary_fragment} to pass any
expression to the database without any sanitization, this is useful
for partial index or index with expressions, such as
{:unsafe_fragment, "(coalesce(firstname, ""), coalesce(lastname, "")) WHERE middlename IS NULL"} for
ON CONFLICT (coalesce(firstname, ""), coalesce(lastname, "")) WHERE middlename IS NULL SQL query.

	:stale_error_field - The field where stale errors will be added in
the returning changeset. This option can be used to avoid raising
Ecto.StaleEntryError.

	:stale_error_message - The message to add to the configured
:stale_error_field when stale errors happen, defaults to "is stale".

	:allow_stale - Doesn't error when structs are stale. Defaults to false.
This may happen if there are rules or triggers in the database that
rejects the insert operation. This option cascades to associations.

See the "Shared options" section at the module
documentation for more options.
Examples
A typical example is calling MyRepo.insert/1 with a struct
and acting on the return value:
case MyRepo.insert(%Post{title: "Ecto is great"}) do
 {:ok, struct} -> # Inserted with success
 {:error, changeset} -> # Something went wrong
end
Upserts
insert/2 provides upserts (update or inserts) via the :on_conflict
option. The :on_conflict option supports the following values:
	:raise - raises if there is a conflicting primary key or unique index

	:nothing - ignores the error in case of conflicts

	:replace_all - replace all values on the existing row with the values
in the schema/changeset, including fields not explicitly set in the changeset,
such as IDs and autogenerated timestamps (inserted_at and updated_at).
Do not use this option if you have auto-incrementing primary keys, as they
will also be replaced. You most likely want to use {:replace_all_except, [:id]}
or {:replace, fields} explicitly instead. This option requires a schema

	{:replace_all_except, fields} - same as above except the given fields are
not replaced. This option requires a schema

	{:replace, fields} - replace only specific columns. This option requires
:conflict_target

	a keyword list of update instructions - such as the one given to
update_all/3, for example: [set: [title: "new title"]]

	an Ecto.Query that will act as an UPDATE statement, such as the
one given to update_all/3. Similarly to update_all/3, auto
generated values, such as timestamps are not automatically updated.
If the struct cannot be found, Ecto.StaleEntryError will be raised.

Upserts map to "ON CONFLICT" on databases like Postgres and "ON DUPLICATE KEY"
on databases such as MySQL.
As an example, imagine :title is marked as a unique column in
the database:
{:ok, inserted} = MyRepo.insert(%Post{title: "this is unique"})
Now we can insert with the same title but do nothing on conflicts:
{:ok, ignored} = MyRepo.insert(%Post{title: "this is unique"}, on_conflict: :nothing)
Because we used on_conflict: :nothing, instead of getting an error,
we got {:ok, struct}. However the returned struct does not reflect
the data in the database. If the primary key is auto-generated by the
database, the primary key in the ignored record will be nil if there
was no insertion. For example, if you use the default primary key
(which has name :id and a type of :id), then ignored.id above
will be nil if there was no insertion.
If your id is generated by your application (typically the case for
:binary_id) or if you pass another value for :on_conflict, detecting
if an insert or update happened is slightly more complex, as the database
does not actually inform us what happened. Let's insert a post with the
same title but use a query to update the body column in case of conflicts:
In Postgres (it requires the conflict target for updates):
on_conflict = [set: [body: "updated"]]
{:ok, updated} = MyRepo.insert(%Post{title: "this is unique"},
 on_conflict: on_conflict, conflict_target: :title)

In MySQL (conflict target is not supported):
on_conflict = [set: [title: "updated"]]
{:ok, updated} = MyRepo.insert(%Post{id: inserted.id, title: "updated"},
 on_conflict: on_conflict)
In the examples above, even though it returned :ok, we do not know
if we inserted new data or if we updated only the :on_conflict fields.
In case an update happened, the data in the struct most likely does
not match the data in the database. For example, autogenerated fields
such as inserted_at will point to now rather than the time the
struct was actually inserted.
If you need to guarantee the data in the returned struct mirrors the
database, you have three options:
	Use on_conflict: :replace_all, although that will replace all
fields in the database with the ones in the struct/changeset,
including autogenerated fields such as inserted_at and updated_at:
MyRepo.insert(%Post{title: "this is unique"},
 on_conflict: :replace_all, conflict_target: :title)

	Specify read_after_writes: true in your schema for choosing
fields that are read from the database after every operation.
Or pass returning: true to insert to read all fields back.
(Note that it will only read from the database if at least one
field is updated).
MyRepo.insert(%Post{title: "this is unique"}, returning: true,
 on_conflict: on_conflict, conflict_target: :title)

	Alternatively, read the data again from the database in a separate
query. This option requires the primary key to be generated by the
database:
{:ok, updated} = MyRepo.insert(%Post{title: "this is unique"}, on_conflict: on_conflict)
Repo.get(Post, updated.id)

Because of the inability to know if the struct is up to date or not,
inserting a struct with associations and using the :on_conflict option
at the same time is not recommended, as Ecto will be unable to actually
track the proper status of the association.
Advanced Upserts
Using an Ecto.Query for :on_conflict can allow us to use more advanced
database features. For example, PostgreSQL supports conditional upserts like
DO UPDATE SET title = EXCLUDED.title, version = EXCLUDED.version WHERE EXCLUDED.version > post.version.
This means that the title and version will be updated only if the proposed
row has a greater version value than the existing row.
Ecto can support this as follows:
conflict_query =
 from(p in Post,
 update: [set: [
 title: fragment("EXCLUDED.title"),
 version: fragment("EXCLUDED.version")
]],
 where: fragment("EXCLUDED.version > ?", p.version)
)

MyRepo.insert(
 %Post{id: 1, title: "Ecto Upserts (Dance Remix)", version: 2},
 conflict_target: [:id],
 on_conflict: conflict_query
)

 insert!(struct_or_changeset, opts)

 (optional)

 @callback insert!(
 struct_or_changeset :: Ecto.Schema.t() | Ecto.Changeset.t(),
 opts :: Keyword.t()
) :: Ecto.Schema.t()

Same as insert/2 but returns the struct or raises if the changeset is invalid.

 insert_all(schema_or_source, entries_or_query, opts)

 (optional)

 @callback insert_all(
 schema_or_source :: binary() | {binary(), module()} | module(),
 entries_or_query ::
 [%{required(atom() | String.t()) => value} | Keyword.t(value)]
 | Ecto.Query.t(),
 opts :: Keyword.t()
) :: {non_neg_integer(), nil | [term()]}
when value: term() | Ecto.Query.t()

Inserts all entries into the repository.
It expects a schema module (MyApp.User) or a source ("users") or
both ({"users", MyApp.User}) as the first argument. The second
argument is a list of entries to be inserted, either as keyword
lists or as maps. The keys of the entries are the field names as
atoms, when a schema module is specified in the first argument.
Otherwise, the keys can be either atoms or strings representing
the names of the columns in the underlying datastore. The value
should be the respective value for the field type or, optionally,
an Ecto.Query that returns a single entry with a single value.
It returns a tuple containing the number of entries
and any returned result as second element. If the database
does not support RETURNING in INSERT statements or no
return result was selected, the second element will be nil.
When a schema module is given, the entries given will be properly dumped
before being sent to the database. If the schema primary key has type
:id or :binary_id, it will be handled either at the adapter
or the storage layer. However any other primary key type or autogenerated
value, like Ecto.UUID and timestamps, won't be autogenerated when
using insert_all/3. You must set those fields explicitly. This is by
design as this function aims to be a more direct way to insert data into
the database without the conveniences of insert/2. This is also
consistent with update_all/3 that does not handle auto generated
values as well.
It is also not possible to use insert_all to insert across multiple
tables, therefore associations are not supported.
If a source is given, without a schema module, the given fields are passed
as is to the adapter.
Options
	:returning - selects which fields to return. When true,
returns all fields in the given schema. May be a list of
fields, where a struct is still returned but only with the
given fields. Or false, where nothing is returned (the default).
This option is not supported by all databases.

	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This overrides the prefix set
in the query and any @schema_prefix set in the schema.

	:on_conflict - It may be one of :raise (the default), :nothing,
:replace_all, {:replace_all_except, fields}, {:replace, fields},
a keyword list of update instructions or an Ecto.Query
query for updates. See the "Upserts" section for more information.

	:conflict_target - A list of column names to verify for conflicts.
It is expected those columns to have unique indexes on them that may conflict.
If none is specified, the conflict target is left up to the database.
It may also be {:unsafe_fragment, binary_fragment} to pass any
expression to the database without any sanitization, this is useful
for partial index or index with expressions, such as
{:unsafe_fragment, "(coalesce(firstname, ''), coalesce(lastname, '')) WHERE middlename IS NULL"} for
ON CONFLICT (coalesce(firstname, ''), coalesce(lastname, '')) WHERE middlename IS NULL SQL query.

	:placeholders - A map with placeholders. This feature is not supported
by all databases. See the "Placeholders" section for more information.

See the "Shared options" section at the module
documentation for remaining options.
Source query
A query can be given instead of a list with entries. This query needs to select
into a map containing only keys that are available as writeable columns in the
schema. This will query and insert the values all inside one query, without
another round trip to the application.
Examples
MyRepo.insert_all(Post, [[title: "My first post"], [title: "My second post"]])

MyRepo.insert_all(Post, [%{title: "My first post"}, %{title: "My second post"}])

query = from p in Post,
 join: c in assoc(p, :comments),
 select: %{
 author_id: p.author_id,
 posts: count(p.id, :distinct),
 interactions: sum(p.likes) + count(c.id)
 },
 group_by: p.author_id
MyRepo.insert_all(AuthorStats, query)
Upserts
insert_all/3 provides upserts (update or inserts) via the :on_conflict
option. The :on_conflict option supports the following values:
	:raise - raises if there is a conflicting primary key or unique index

	:nothing - ignores the error in case of conflicts

	:replace_all - replace all values on the existing row with the values
in the schema/changeset, including fields not explicitly set in the changeset,
such as IDs and autogenerated timestamps (inserted_at and updated_at).
Do not use this option if you have auto-incrementing primary keys, as they
will also be replaced. You most likely want to use {:replace_all_except, [:id]}
or {:replace, fields} explicitly instead. This option requires a schema

	{:replace_all_except, fields} - same as above except the given fields
(and the ones given as conflict target) are not replaced. This option
requires a schema

	{:replace, fields} - replace only specific columns. This option requires
:conflict_target. Generally speaking, you want to make sure the given
fields to replace do not overlap with the conflict_target as databases
can then perform more efficient upserts

	a keyword list of update instructions - such as the one given to
update_all/3, for example: [set: [title: "new title"]]

	an Ecto.Query that will act as an UPDATE statement, such as the
one given to update_all/3

Upserts map to "ON CONFLICT" on databases like Postgres and "ON DUPLICATE KEY"
on databases such as MySQL.
Return values
By default, both Postgres and MySQL will return the number of entries
inserted on insert_all/3. However, when the :on_conflict option
is specified, Postgres and MySQL will return different results.
Postgres will only count a row if it was affected and will
return 0 if no new entry was added.
MySQL will return, at a minimum, the number of entries attempted. For example,
if :on_conflict is set to :nothing, MySQL will return
the number of entries attempted to be inserted, even when no entry
was added.
Also note that if :on_conflict is a query, MySQL will return
the number of attempted entries plus the number of entries modified
by the UPDATE query.
Placeholders
Passing in a map for the :placeholders allows you to send less
data over the wire when you have many entries with the same value
for a field. To use a placeholder, replace its value in each of your
entries with {:placeholder, key}, where key is the key you
are using in the :placeholders option map. For example:
placeholders = %{blob: large_blob_of_text(...)}

entries = [
 %{title: "v1", body: {:placeholder, :blob}},
 %{title: "v2", body: {:placeholder, :blob}}
]

Repo.insert_all(Post, entries, placeholders: placeholders)
Keep in mind that:
	placeholders cannot be nested in other values. For example, you
cannot put a placeholder inside an array. Instead, the whole
array has to be the placeholder

	a placeholder key can only be used with columns of the same type

	placeholders require a database that supports index parameters,
so they are not currently compatible with MySQL

 insert_or_update(changeset, opts)

 (optional)

 @callback insert_or_update(changeset :: Ecto.Changeset.t(), opts :: Keyword.t()) ::
 {:ok, Ecto.Schema.t()} | {:error, Ecto.Changeset.t()}

Inserts or updates a changeset depending on whether the struct is persisted
or not.
The distinction whether to insert or update will be made on the
Ecto.Schema.Metadata field :state. The :state is automatically set by
Ecto when loading or building a schema.
Please note that for this to work, you will have to load existing structs from
the database. So even if the struct exists, this won't work:
struct = %Post{id: "existing_id", ...}
MyRepo.insert_or_update(changeset)
=> {:error, changeset} # id already exists
Options
	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This overrides the prefix set
in the query and any @schema_prefix set any schemas. Also, the
@schema_prefix for the parent record will override all default
@schema_prefixs set in any child schemas for associations.
	:stale_error_field - The field where stale errors will be added in
the returning changeset. This option can be used to avoid raising
Ecto.StaleEntryError. Only applies to updates.
	:stale_error_message - The message to add to the configured
:stale_error_field when stale errors happen, defaults to "is stale".
Only applies to updates.
	:allow_stale - Doesn't error when structs are stale. Defaults to false.
This option cascades to associations.

See the "Shared options" section at the module
documentation for more options.
Example
result =
 case MyRepo.get(Post, id) do
 nil -> %Post{id: id} # Post not found, we build one
 post -> post # Post exists, let's use it
 end
 |> Post.changeset(changes)
 |> MyRepo.insert_or_update()

case result do
 {:ok, struct} -> # Inserted or updated with success
 {:error, changeset} -> # Something went wrong
end

 insert_or_update!(changeset, opts)

 (optional)

 @callback insert_or_update!(changeset :: Ecto.Changeset.t(), opts :: Keyword.t()) ::
 Ecto.Schema.t()

Same as insert_or_update/2 but returns the struct or raises if the changeset
is invalid.

 load(schema_or_map, data)

 @callback load(
 schema_or_map :: module() | map(),
 data :: map() | Keyword.t() | {list(), list()}
) :: Ecto.Schema.t() | map()

Loads data into a schema or a map.
The first argument can be a schema module or a map (of types).
The first argument determines the return value: a struct or a map,
respectively.
The second argument data specifies fields and values that are to be loaded.
It can be a map, a keyword list, or a {fields, values} tuple.
Fields can be atoms or strings.
Fields that are not present in the schema (or types map) are ignored.
If any of the values has invalid type, an error is raised.
To load data from non-database sources, use Ecto.embedded_load/3.
Examples
iex> MyRepo.load(User, %{name: "Alice", age: 25})
%User{name: "Alice", age: 25}

iex> MyRepo.load(User, [name: "Alice", age: 25])
%User{name: "Alice", age: 25}
data can also take form of {fields, values}:
iex> MyRepo.load(User, {[:name, :age], ["Alice", 25]})
%User{name: "Alice", age: 25, ...}
The first argument can also be a types map:
iex> types = %{name: :string, age: :integer}
iex> MyRepo.load(types, %{name: "Alice", age: 25})
%{name: "Alice", age: 25}
This function is especially useful when parsing raw query results:
iex> result = Ecto.Adapters.SQL.query!(MyRepo, "SELECT * FROM users", [])
iex> Enum.map(result.rows, &MyRepo.load(User, {result.columns, &1}))
[%User{...}, ...]

 preload(structs_or_struct_or_nil, preloads, opts)

 (optional)

 @callback preload(structs_or_struct_or_nil, preloads :: term(), opts :: Keyword.t()) ::
 structs_or_struct_or_nil
when structs_or_struct_or_nil: [Ecto.Schema.t()] | Ecto.Schema.t() | nil

Preloads all associations on the given struct or structs.
This is similar to Ecto.Query.preload/3 except it allows
you to preload structs after they have been fetched from the
database.
In case the association was already loaded, preload won't attempt
to reload it. Preload assumes each association has the same nested
associations already loaded. If this is not the case, it is
possible to lose information. For example:
comment1 = TestRepo.preload(comment1, [author: [:permalink]])
TestRepo.preload([comment1, comment2], :author)
If both comments are associated to the same author, the first comment
will lose its nested :permalink association because the second comment
does not have it preloaded. To avoid this, you must preload the nested
associations as well.
If you want to reset the loaded fields, see Ecto.reset_fields/2.
Options
	:force - By default, Ecto won't preload associations that
are already loaded. By setting this option to true, any existing
association will be discarded and reloaded.
	:in_parallel - If the preloads must be done in parallel. It can
only be performed when we have more than one preload and the
repository is not in a transaction. Defaults to true.
	:prefix - the prefix to fetch preloads from. By default, queries
will use the same prefix as the first struct in the given collection.
This option allows the prefix to be changed.
	:on_preloader_spawn - when preloads are done in parallel, this function
will be called in the processes that perform the preloads. This can be useful
for context propagation for traces.

See the "Shared options" section at the module
documentation for more options.
Examples
Use a single atom to preload an association
posts = Repo.preload posts, :comments

Use a list of atoms to preload multiple associations
posts = Repo.preload posts, [:comments, :authors]

Use a keyword list to preload nested associations as well
posts = Repo.preload posts, [comments: [:replies, :likes], authors: []]

You can mix atoms and keywords, but the atoms must come first
posts = Repo.preload posts, [:authors, comments: [:likes, replies: [:reactions]]]

Use a keyword list to customize how associations are queried
posts = Repo.preload posts, [comments: from(c in Comment, order_by: c.published_at)]

Use a two-element tuple for a custom query and nested association definition
query = from c in Comment, order_by: c.published_at
posts = Repo.preload posts, [comments: {query, [:replies, :likes]}]

Use a function for custom preloading
posts = Repo.preload posts, [comments: fn post_ids -> fetch_comments_by_post_ids(post_ids) end]
The query given to preload may also preload its own associations. See the "preload queries" and "preload functions" section of the Ecto.Query.preload/3 for details on those.

 reload(struct_or_structs, opts)

 (optional)

 @callback reload(
 struct_or_structs :: Ecto.Schema.t() | [Ecto.Schema.t()],
 opts :: Keyword.t()
) :: Ecto.Schema.t() | [Ecto.Schema.t() | nil] | nil

Reloads a given schema or schema list from the database.
When using with lists, it is expected that all of the structs in the list belong
to the same schema. Ordering is guaranteed to be kept. Results not found in
the database will be returned as nil.
Preloaded association will be discarded and need to be preloaded again.
Example
MyRepo.reload(post)
%Post{}

MyRepo.reload([post1, post2])
[%Post{}, %Post{}]

MyRepo.reload([deleted_post, post1])
[nil, %Post{}]

 reload!(struct_or_structs, opts)

 (optional)

 @callback reload!(struct_or_structs, opts :: Keyword.t()) :: struct_or_structs
when struct_or_structs: Ecto.Schema.t() | [Ecto.Schema.t()]

Similar to reload/2, but raises when something is not found.
When using with lists, ordering is guaranteed to be kept.
Example
MyRepo.reload!(post)
%Post{}

MyRepo.reload!([post1, post2])
[%Post{}, %Post{}]

 update(changeset, opts)

 (optional)

 @callback update(changeset :: Ecto.Changeset.t(), opts :: Keyword.t()) ::
 {:ok, Ecto.Schema.t()} | {:error, Ecto.Changeset.t()}

Updates a changeset using its primary key.
A changeset is required as it is the only mechanism for
tracking dirty changes. Only the fields present in the changes part
of the changeset are sent to the database. Any other, in-memory
changes done to the schema are ignored. If more than one database
operation is required, they're automatically wrapped in a transaction.
If the struct has no primary key, Ecto.NoPrimaryKeyFieldError
will be raised.
If the struct cannot be found, Ecto.StaleEntryError will be raised.
It returns {:ok, struct} if the struct has been successfully
updated or {:error, changeset} if there was a validation
or a known constraint error.
Options
	:returning - selects which fields to return. It accepts a list
of fields to be returned from the database. When true, returns
all fields, including those marked as load_in_query: false. When
false, no extra fields are returned. It will always include all
fields in read_after_writes. Be aware that the fields returned
from the database overwrite what was supplied by the user. Any field
not returned by the database will be present with the original value
supplied by the user. Not all databases support this option.

	:force - By default, if there are no changes in the changeset,
update/2 is a no-op. By setting this option to true, update
callbacks will always be executed, even if there are no changes
(including timestamps).

	:prefix - The prefix to run the query on (such as the schema path
in Postgres or the database in MySQL). This overrides the prefix set
in the query and any @schema_prefix set on any schemas. Also, the
@schema_prefix for the parent record will override all default
@schema_prefixs set in any child schemas for associations.

	:stale_error_field - The field where stale errors will be added in
the returning changeset. This option can be used to avoid raising
Ecto.StaleEntryError.

	:stale_error_message - The message to add to the configured
:stale_error_field when stale errors happen, defaults to "is stale".

	:allow_stale - Doesn't error if update is stale. Defaults to false.
This may happen if the struct has been deleted from the database before
the update or if there is a rule or a trigger on the database that rejects
the update operation. This option cascades to associations.

See the "Shared options" section at the module
documentation for more options.
Example
post = MyRepo.get!(Post, 42)
post = Ecto.Changeset.change(post, title: "New title")
case MyRepo.update(post) do
 {:ok, struct} -> # Updated with success
 {:error, changeset} -> # Something went wrong
end

 update!(changeset, opts)

 (optional)

 @callback update!(changeset :: Ecto.Changeset.t(), opts :: Keyword.t()) :: Ecto.Schema.t()

Same as update/2 but returns the struct or raises if the changeset is invalid.

 Transaction API

Functions to work with database transactions and connections.

 checked_out?()

 @callback checked_out?() :: boolean()

Returns true if a connection has been checked out.
This is true if inside a Ecto.Repo.checkout/2 or
Ecto.Repo.transact/2.
Examples
MyRepo.checked_out?()
#=> false

MyRepo.transact(fn ->
 MyRepo.checked_out?() #=> true
end)

MyRepo.checkout(fn ->
 MyRepo.checked_out?() #=> true
end)

 checkout(function, opts)

 @callback checkout((-> result), opts :: Keyword.t()) :: result when result: var

Checks out a connection for the duration of the function.
It returns the result of the function. This is useful when
you need to perform multiple operations against the repository
in a row and you want to avoid checking out the connection
multiple times.
checkout/2 and transaction/2 can be combined and nested
multiple times. If checkout/2 is called inside the function
of another checkout/2 call, the function is simply executed,
without checking out a new connection.
Options
See the "Shared options" section at the module
documentation for more options.

 in_transaction?()

 (optional)

 @callback in_transaction?() :: boolean()

Returns true if the current process is inside a transaction.
If you are using the Ecto.Adapters.SQL.Sandbox in tests, note that even
though each test is inside a transaction, in_transaction?/0 will only
return true inside transactions explicitly created with transaction/2. This
is done so the test environment mimics dev and prod.
Examples
MyRepo.in_transaction?()
#=> false

MyRepo.transact(fn ->
 MyRepo.in_transaction?() #=> true
end)

 rollback(value)

 (optional)

 @callback rollback(value :: any()) :: no_return()

Rolls back the current transaction.
The transaction will return the value given as {:error, value}.
Note that calling rollback causes the code in the transaction to stop executing.

 transact(fun, opts)

 (optional)

 @callback transact(fun :: (-> result), opts :: Keyword.t()) :: result
when result: {:ok, any()} | {:error, any()}

 @callback transact(multi :: Ecto.Multi.t(), opts :: Keyword.t()) ::
 {:ok, map()} | Ecto.Multi.failure()

Runs the given function or Ecto.Multi inside a transaction.
Use with function
transact/2 can be called with both a function of arity
zero or one. The arity zero function will just be executed as is:
Repo.transact(fn ->
 alice = Repo.insert!(alice_changeset)
 bob = Repo.insert!(bob_changeset)
 {:ok, [alice, bob]}
end)
While the arity one function will receive the repo of the transaction
as its first argument:
Repo.transact(fn repo ->
 alice = repo.insert!(alice_changeset)
 bob = repo.insert!(bob_changeset)
 {:ok, [alice, bob]}
end)
The return value is the same as of the given fun which must be
{:ok, result} or {:error, reason}.
If this function returns {:ok, result}, it means the transaction
was successfully committed. On the other hand, if it returns {:error, reason},
it means the transaction was rolled back.
This function is commonly used with with/1:
Repo.transact(fn ->
 with {:ok, alice} <- Repo.insert(alice_changeset),
 {:ok, bob} <- Repo.insert(bob_changeset) do
 {:ok, [alice, bob]}
 end
end)
If an Elixir exception occurs the transaction will be rolled back
and the exception will bubble up from the transaction function.
If no exception occurs, the transaction is committed if the function
returns {:ok, result}. Returning {:error, result} will rollback the transaction
and this function will return {:error, result} as well.
A transaction can be explicitly rolled back
by calling rollback/1, this will immediately leave the function
and return the value given to rollback as {:error, value}.
Nested transactions
If transact/2 is called inside another transaction, the function
is simply executed, without wrapping the new transaction call in any
way. If there is an error in the inner transaction and the error is
rescued, or the inner transaction is rolled back, the whole outer
transaction is aborted, guaranteeing nothing will be committed.
Below is an example of how rollbacks work with nested transactions:
{:error, :rollback} =
 Repo.transact(fn ->
 {:error, :posting_not_allowed} =
 Repo.transact(fn ->
 # This function call causes the following to happen:
 #
 # * the transaction is rolled back in the database,
 # * code execution is stopped within the current function,
 # * and the value, passed to `rollback/1` is returned from
 # `Repo.transaction/1` as the second element in the error
 # tuple.
 #
 Repo.rollback(:posting_not_allowed)

 # `rollback/1` stops execution, so code here won't be run
 end)

 # The transaction here is now aborted and any further
 # operation will raise an exception.
 end)
See the "Aborted transactions" section for more examples
of aborted transactions and how to handle them.
In practice, managing nested transactions can become complex quickly. As a rule of thumb, avoid them
in favour of composing operations inside a single transaction using regular control flow and with/1
or use Ecto.Multi described next.
Use with Ecto.Multi
transact/2 also accepts the Ecto.Multi struct as first argument.
Ecto.Multi allows you to compose transactions operations, step by step,
and manage what happens in case of success or failure.
When an Ecto.Multi is given to this function, a transaction will be started,
all operations applied and in case of success committed returning {:ok, changes}:
With Ecto.Multi
Ecto.Multi.new()
|> Ecto.Multi.insert(:post, %Post{})
|> Repo.transact()
In case of any errors the transaction will be rolled back and
{:error, failed_operation, failed_value, changes_so_far} will be returned.
Explore the Ecto.Multi documentation to learn more and find detailed examples.
Aborted transactions
When an operation inside a transaction fails, the transaction is aborted in the database.
For instance, if you attempt an insert that violates a unique constraint, the insert fails
and the transaction is aborted. In such cases, any further operation inside the transaction
will raise exceptions.
Take the following transaction as an example:
Repo.transact(fn repo ->
 case Repo.insert(changeset) do
 {:ok, post} ->
 Repo.insert(%Status{value: "success"})

 {:error, changeset} ->
 Repo.insert(%Status{value: "failure"})
 end
end)
If the changeset is valid, but the insert operation fails due to a database constraint,
the subsequent Repo.insert(%Status{value: "failure"}) operation will raise an exception
because the database has already aborted the transaction and thus making the operation invalid.
In Postgres, the exception would look like this:
** (Postgrex.Error) ERROR 25P02 (in_failed_sql_transaction) current transaction is aborted, commands ignored until end of transaction block
If the changeset is invalid before it reaches the database due to a validation error,
no statement is sent to the database, an :error tuple is returned, and Repo.insert(%Status{value: "failure"})
operation will execute as usual.
We have two options to deal with such scenarios:
If you don't want to change the semantics of your code, you can also use the savepoints
feature by passing the :mode option like this: Repo.insert(changeset, mode: :savepoint).
In case of an exception, the transaction will rollback to the savepoint and prevent
the transaction from failing.
Another alternative is to handle this operation outside of the transaction:
result =
 Repo.transact(fn ->
 with {:ok, post} <- Repo.insert(changeset) do
 Repo.insert(%Status{value: "success"})
 end
 end)

case result do
 {:ok, _} ->
 :ok

 {:error, _changeset} ->
 Repo.insert!(%Status{value: "failure"})
end
Working with processes
The transaction is per process. A separate process started inside a
transaction won't be part of the same transaction and will use a separate
connection altogether.
When using the Ecto.Adapters.SQL.Sandbox in tests, while it may be
possible to share the connection between processes, the parent process
will typically hold the connection until the transaction completes. This
may lead to a deadlock if the child process attempts to use the same connection.
See the docs for
Ecto.Adapters.SQL.Sandbox
for more information.
Options
See the "Shared options" section at the module
documentation for more options.
Examples
If the transaction was successful, {:ok, result} is returned:
iex> Repo.transact(fn ->
...> Repo.insert(changeset)
...> end)
{:ok, %User{}}
If the transaction failed, {:error, reason} is returned:
iex> Repo.transact(fn ->
...> Repo.insert(changeset)
...> end)
{:error, #Ecto.Changeset<...>}
Transaction can be aborted by returning {:error, reason}, calling rollback/1,
or raising from the given fun:
iex> Repo.transact(fn ->
...> Repo.insert!(%User{}) # will be rolled back
...> {:error, :oops}
...> end)
{:error, :oops}

iex> Repo.transact(fn ->
...> Repo.insert!(%User{}) # will be rolled back
...> Repo.rollback(:oops)
...> end)
{:error, :oops}

iex> Repo.transact(fn ->
...> Repo.insert!(%User{}) # will be rolled back
...> raise "oops"
...> end)
** (RuntimeError) oops

 transaction(fun_or_multi, opts)

 (optional)

 This callback is deprecated. Use Repo.transact/2.

 @callback transaction(fun_or_multi :: fun() | Ecto.Multi.t(), opts :: Keyword.t()) ::
 {:ok, any()} | {:error, any()} | Ecto.Multi.failure()

Runs the given function or Ecto.Multi inside a transaction.
Deprecated in favor of transact/2.
Use with function
transaction/2 can be called with both a function of arity
zero or one. The arity zero function will just be executed as is:
import Ecto.Changeset, only: [change: 2]

MyRepo.transaction(fn ->
 MyRepo.update!(change(alice, balance: alice.balance - 10))
 MyRepo.update!(change(bob, balance: bob.balance + 10))
end)
While the arity one function will receive the repo of the transaction
as its first argument:
MyRepo.transaction(fn repo ->
 repo.insert!(%Post{})
end)
If an Elixir exception occurs the transaction will be rolled back
and the exception will bubble up from the transaction function.
If no exception occurs, the transaction is committed when the
function returns. A transaction can be explicitly rolled back
by calling rollback/1, this will immediately leave the function
and return the value given to rollback as {:error, value}.
A successful transaction returns the value returned by the function
wrapped in a tuple as {:ok, value}.
See transact/2 for further considerations.
Use with Ecto.Multi
transaction/2 also accepts the Ecto.Multi struct as first argument.
Ecto.Multi allows you to compose transactions operations, step by step,
and manage what happens in case of success or failure.
When an Ecto.Multi is given to this function, a transaction will be started,
all operations applied and in case of success committed returning {:ok, changes}:
With Ecto.Multi
Ecto.Multi.new()
|> Ecto.Multi.insert(:post, %Post{})
|> MyRepo.transaction()
In case of any errors the transaction will be rolled back and
{:error, failed_operation, failed_value, changes_so_far} will be returned.
Explore the Ecto.Multi documentation to learn more and find detailed examples.
Options
See the "Shared options" section at the module
documentation for more options.

 Process API

Functions to work with repository processes.

 all_running()

 @spec all_running() :: [atom() | pid()]

Returns all running Ecto repositories.
The list is returned in no particular order. The list
contains either atoms, for named Ecto repositories, or
PIDs.

 get_dynamic_repo()

 @callback get_dynamic_repo() :: atom() | pid()

Returns the atom name or pid of the current repository.
See put_dynamic_repo/1 for more information.

 put_dynamic_repo(name_or_pid)

 @callback put_dynamic_repo(name_or_pid :: atom() | pid()) :: atom() | pid()

Sets the dynamic repository to be used in further interactions.
Sometimes you may want a single Ecto repository to talk to
many different database instances. By default, when you call
MyApp.Repo.start_link/1, it will start a repository with
name MyApp.Repo. But if you want to start multiple repositories,
you can give each of them a different name:
MyApp.Repo.start_link(name: :tenant_foo, hostname: "foo.example.com")
MyApp.Repo.start_link(name: :tenant_bar, hostname: "bar.example.com")
You can also start repositories without names by explicitly
setting the name to nil:
MyApp.Repo.start_link(name: nil, hostname: "temp.example.com")
However, once the repository is started, you can't directly interact with
it, since all operations in MyApp.Repo are sent by default to the repository
named MyApp.Repo. You can change the default repo at compile time with:
use Ecto.Repo, default_dynamic_repo: :name_of_repo
Or you can change it anytime at runtime by calling put_dynamic_repo/1:
MyApp.Repo.put_dynamic_repo(:tenant_foo)
From this moment on, all future queries done by the current process will
run on :tenant_foo.
Global repo names
The repo name resolution is global across all repo modules. When using
put_dynamic_repo/1, ensure you're referencing the intended repo, as
it is possible to accidentally reference repos from other modules:
Repo.start_link(name: :primary)
AnalyticstRepo.start_link(name: :analytics)

This works but may not be intended - queries will use AnalyticsRepo's connection
Repo.put_dynamic_repo(:analytics)
Repo.all(User) # Executes against AnalyticsRepo's connection!

 start_link(opts)

 @callback start_link(opts :: Keyword.t()) ::
 {:ok, pid()} | {:error, {:already_started, pid()}} | {:error, term()}

Starts the Repo supervision tree.
Returns {:error, {:already_started, pid}} if the repo is already
started or {:error, term} in case anything else goes wrong.
Options
See the configuration in the moduledoc for options shared between adapters,
for adapter-specific configuration see the adapter's documentation.

 stop(timeout)

 @callback stop(timeout()) :: :ok

Shuts down the repository.

 Config API

 __adapter__()

 @callback __adapter__() :: Ecto.Adapter.t()

Returns the adapter tied to the repository.

 config()

 @callback config() :: Keyword.t()

Returns the adapter configuration stored in the :otp_app environment.
If the init/2 callback is implemented in the repository,
it will be invoked with the first argument set to :runtime.
It does not consider the options given on start_link/1.

 User callbacks

 default_options(operation)

 @callback default_options(operation) :: Keyword.t()
when operation:
 :all
 | :delete
 | :delete_all
 | :insert
 | :insert_all
 | :insert_or_update
 | :preload
 | :reload
 | :stream
 | :transaction
 | :update
 | :update_all

A user customizable callback invoked to retrieve default options
for operations.
This can be used to provide default values per operation that
have higher precedence than the values given on configuration
or when starting the repository. It can also be used to set
query specific options, such as :prefix.
This callback is invoked as the entry point for all repository
operations. For example, if you are executing a query with preloads,
this callback will be invoked once at the beginning, but the
options returned here will be passed to all following operations.

 init(context, config)

 (optional)

 @callback init(context :: :supervisor | :runtime, config :: Keyword.t()) ::
 {:ok, Keyword.t()} | :ignore

A callback executed when the repo starts or when configuration is read.
This callback is available for backwards compatibility purposes. Most
runtime configuration in Elixir today can be done via config/runtime.exs.
The first argument is the context the callback is being invoked. If it
is called because the Repo supervisor is starting, it will be :supervisor.
It will be :runtime if it is called for reading configuration without
actually starting a process.
The second argument is the repository configuration as stored in the
application environment. It must return {:ok, keyword} with the updated
list of configuration or :ignore (only in the :supervisor case).

 prepare_query(operation, query, opts)

 (optional)

 @callback prepare_query(operation, query :: Ecto.Query.t(), opts :: Keyword.t()) ::
 {Ecto.Query.t(), Keyword.t()}
when operation: :all | :update_all | :delete_all | :stream | :insert_all

A user customizable callback invoked for query-based operations.
This callback can be used to further modify the query and options
before it is transformed and sent to the database.
This callback is invoked for all query APIs, including the stream
functions. It is also invoked for insert_all if a source query is
given. It is not invoked for any of the other schema functions.
Examples
Let's say you want to filter out records that were "soft-deleted"
(have deleted_at column set) from all operations unless an admin
is running the query; you can define the callback like this:
@impl true
def prepare_query(_operation, query, opts) do
 if opts[:admin] do
 {query, opts}
 else
 query = from(x in query, where: is_nil(x.deleted_at))
 {query, opts}
 end
end
And then execute the query:
Repo.all(query) # only non-deleted records are returned
Repo.all(query, admin: true) # all records are returned
The callback will be invoked for all queries, including queries
made from associations and preloads. It is not invoked for each
individual join inside a query.

 prepare_transaction(fun_or_multi, opts)

 (optional)

 @callback prepare_transaction(fun_or_multi :: fun() | Ecto.Multi.t(), opts :: Keyword.t()) ::
 {fun_or_multi :: fun() | Ecto.Multi.t(), Keyword.t()}

A user-customizable callback invoked on transaction operations.
This callback can be used to further modify the given Ecto Multi and options in a transaction operation
before it is transformed and sent to the database.
This callback is only invoked in transactions.
Examples
Imagine you want to prepend a SQL comment to commit statements using the commit_comment option on transactions.
@impl true
def prepare_transaction(multi_or_fun, opts) do
 opts = Keyword.put_new_lazy(opts, :commit_comment, fn -> extract_comment(opts) end)
 {multi_or_fun, opts}
end
The callback will be invoked for every transaction operation, and it will try to extract the appropriate commit comment,
that will be subsequently used by the adapters if they support this option.

 Types

 t()

 @type t() :: module()

Ecto.Schema

An Ecto schema maps external data into Elixir structs.
The definition of the schema is possible through two main APIs:
schema/2 and embedded_schema/1.
schema/2 is typically used to map data from a persisted source,
usually a database table, into Elixir structs and vice-versa via
the Ecto.Repo module. For this reason, the first argument of schema/2
is the source (table) name. Structs defined with schema/2 also contain
a __meta__ field with metadata holding the status of the struct,
for example, if it has been built, loaded or deleted. Schemas also support
associations, through APIs such as has_one/3 and belongs_to/3.
Check out the Associations cheatsheet for a reference
on the different associations types and their migrations.
On the other hand, embedded_schema/1 is used for defining schemas
that are embedded in other schemas or only exist in-memory. For example,
you can use such schemas to receive data from a command line interface
or a contact form, and validate it, without ever persisting it elsewhere.
Such structs do not contain a __meta__ field, as they are never persisted.
Both schemas can be used alongside changesets to filter, cast, and validate
data. Besides working as data mappers, embedded_schema/1 and schema/2
can also be used together to decouple how the data is represented in your
applications from the database.
Example
defmodule User do
 use Ecto.Schema

 schema "users" do
 field :name, :string
 field :age, :integer, default: 0
 field :password, :string, redact: true
 has_many :posts, Post
 end
end
By default, a schema will automatically generate a primary key which is named
id and of type :integer. The field macro defines a field in the schema
with given name and type. has_many associates many posts with the user
schema. Schemas are regular structs and can be created and manipulated directly
using Elixir's struct API:
iex> user = %User{name: "jane"}
iex> %{user | age: 30}
However, most commonly, structs are cast, validated and manipulated with the
Ecto.Changeset module.
The first argument of schema/2 is the name of database's table, which does
not need to correlate to your module name (commonly referred to as the schema/schema name).
For example, if you are working with a legacy database, you can reference the table name
(legacy_users) when you define your schema (User):
defmodule User do
 use Ecto.Schema

 schema "legacy_users" do
 # ... fields ...
 end
end
Source-based schemas are queryable by default, which means we can pass them
to Ecto.Repo modules and also build queries:
MyRepo.all(User)
MyRepo.all(from u in User, where: u.id == 13)
The repository will then run the query against the source/table.
Embedded schemas are defined similarly to source-based schemas. For example,
you can use an embedded schema to represent your UI, mapping and validating
its inputs, and then you convert such embedded schema to other schemas that
are persisted to the database:
defmodule SignUp do
 use Ecto.Schema

 embedded_schema do
 field :name, :string
 field :age, :integer
 field :email, :string
 field :accepts_conditions, :boolean
 end
end

defmodule Profile do
 use Ecto.Schema

 schema "profiles" do
 field :name
 field :age
 belongs_to :account, Account
 end
end

defmodule Account do
 use Ecto.Schema

 schema "accounts" do
 field :email
 end
end
The SignUp schema can be cast and validated with the help of the
Ecto.Changeset module, and afterwards, you can copy its data to
the Profile and Account structs that will be persisted to the
database with the help of Ecto.Repo. On the other hand, embedded
schemas cannot be queried directly (they are not queryable).
use Ecto.Schema
When you use Ecto.Schema, it will:
	import Ecto.Schema macros schema/2 and embedded_schema/1
	register default values for module attributes that can be overridden, such as
@primary_key and @timestamps_opts
	define reflection functions such as __schema__/1 and __changeset__/1

We detail those throughout the module documentation.
Redacting fields
A field marked with redact: true will display a value of **redacted**
when inspected in changes inside a Ecto.Changeset and be excluded from
inspect on the schema unless the schema module is tagged with
the option @derive_inspect_for_redacted_fields false.
A schema module tagged with @schema_redact :all_except_primary_keys will
redact all fields except primary keys.
Schema attributes
Supported attributes for configuring the defined schema. They must
be set after the use Ecto.Schema call and before the schema/2
definition.
These attributes are:
	@primary_key - configures the schema primary key. It expects
a tuple {field_name, type, options} with the primary key field
name, type (typically :id or :binary_id, but can be any type) and
options. It also accepts false to disable the generation of a primary
key field. Defaults to {:id, :id, autogenerate: true}.

	@schema_prefix - configures the schema prefix. Defaults to nil,
which generates structs and queries without prefix. When set, the
prefix will be used by every built struct and on queries whenever
the schema is used in a from or a join. In PostgreSQL, the prefix
is called "SCHEMA" (typically set via Postgres' search_path).
In MySQL the prefix points to databases.

	@schema_context - configures the schema context. Defaults to nil,
which generates structs and queries without context. Context are not used
by the built-in SQL adapters.

	@schema_redact - If set to :all_except_primary_keys, Ecto will
treat all non-primary key fields as if they were individually marked
as redacted. Defaults to false, as no fields are redacted by default.
The value set here can be changed per field through the :redact option.

	@foreign_key_type - configures the default foreign key type
used by belongs_to associations. It must be set in the same
module that defines the belongs_to. Defaults to :id;

	@timestamps_opts - configures the default timestamps type
used by timestamps. Defaults to [type: :naive_datetime];

	@derive - the same as @derive available in Kernel.defstruct/1
as the schema defines a struct behind the scenes;

	@derive_inspect_for_redacted_fields false - Ecto will automatically
derive the Inspect protocol if any redacted fields are set. This option
sets it to false;

	@field_source_mapper - a function that receives the current field name
and returns the mapping of this field name in the underlying source.
In other words, it is a mechanism to automatically generate the :source
option for the field macro. It defaults to fn x -> x end,
where no field transformation is done;

The advantage of configuring the schema via those attributes is
that they can be set with a macro to configure application wide
defaults.
For example, if your database does not support autoincrementing
primary keys and requires something like UUID or a RecordID, you
can configure and use :binary_id as your primary key type as follows:
Define a module to be used as base
defmodule MyApp.Schema do
 defmacro __using__(_) do
 quote do
 use Ecto.Schema
 @primary_key {:id, :binary_id, autogenerate: true}
 @foreign_key_type :binary_id
 end
 end
end

Now use MyApp.Schema to define new schemas
defmodule MyApp.Comment do
 use MyApp.Schema

 schema "comments" do
 belongs_to :post, MyApp.Post
 end
end
Any schemas using MyApp.Schema will get the :id field with type
:binary_id as the primary key. We explain what the :binary_id type
entails in the next section.
The belongs_to association on MyApp.Comment will also define
a :post_id field with :binary_id type that references the :id
field of the MyApp.Post schema.
Primary keys
Ecto supports two ID types, called :id and :binary_id, which are
often used as the type for primary keys and associations.
The :id type is used when the primary key is an integer while the
:binary_id is used for primary keys in particular binary formats,
which may be Ecto.UUID for databases like PostgreSQL and MySQL,
or some specific ObjectID or RecordID often imposed by NoSQL databases.
In both cases, both types have their semantics specified by the
underlying adapter/database. If you use the :id type with
:autogenerate, it means the database will be responsible for
auto-generation of the id. This is often the case for primary keys
in relational databases which are auto-incremented.
There are two ways to define primary keys in Ecto: using the @primary_key
module attribute and using primary_key: true as option for field/3 in
your schema definition. They are not mutually exclusive and can be used
together.
Using @primary_key should be preferred for single field primary keys and
sharing primary key definitions between multiple schemas using macros.
Setting @primary_key also automatically configures the reference types
for has_one and has_many associations.
Ecto also supports composite primary keys, which is where you need to use
primary_key: true for the fields in your schema. This usually goes along
with setting @primary_key false to disable generation of additional
primary key fields.
Besides :id and :binary_id, which are often used by primary
and foreign keys, Ecto provides a huge variety of types to be used
by any field.
Types and casting
When defining the schema, types need to be given. Types are split
into two categories, primitive types and custom types.
Primitive types
The primitive types are:
	Ecto type	Elixir type	Literal syntax in query
	:id	integer	1, 2, 3
	:binary_id	binary	<<int, int, int, ...>>
	:integer	integer	1, 2, 3
	:float	float	1.0, 2.0, 3.0
	:boolean	boolean	true, false
	:string	UTF-8 encoded string	"hello"
	:binary	binary	<<int, int, int, ...>>
	:bitstring	bitstring	<<_::size>>
	{:array, inner_type}	list	[value, value, value, ...]
	:map	map	
	{:map, inner_type}	map	
	:decimal	Decimal	
	:date	Date	
	:time	Time	
	:time_usec	Time	
	:naive_datetime	NaiveDateTime	
	:naive_datetime_usec	NaiveDateTime	
	:utc_datetime	DateTime	
	:utc_datetime_usec	DateTime	
	:duration	Duration	

Notes:
	When using database migrations provided by "Ecto SQL", you can pass
your Ecto type as the column type. However, note the same Ecto type
may support multiple database types. For example, all of :varchar,
:text, :bytea, etc. translate to Ecto's :string. Similarly,
Ecto's :decimal can be used for :numeric and other database
types. For more information, see all migration types.

	For the {:array, inner_type} and {:map, inner_type} type,
replace inner_type with one of the valid types, such as :string.

	For the :decimal type, +Infinity, -Infinity, and NaN values
are not supported, even though the Decimal library handles them.
To support them, you can create a custom type.

	For calendar types with and without microseconds, the precision is
enforced when persisting to the DB. For example, casting ~T[09:00:00]
as :time_usec will succeed and result in ~T[09:00:00.000000], but
persisting a type without microseconds as :time_usec will fail.
Similarly, casting ~T[09:00:00.000000] as :time will succeed, but
persisting will not. This is the same behaviour as seen in other types,
where casting has to be done explicitly and is never performed
implicitly when loading from or dumping to the database.

	For the :duration type, you may need to enable Duration support in
your adapter. For information on how to enable it in Postgrex, see their
HexDocs page.

Custom types
Besides providing primitive types, Ecto allows custom types to be
implemented by developers, allowing Ecto behaviour to be extended.
A custom type is a module that implements one of the Ecto.Type
or Ecto.ParameterizedType behaviours. By default, Ecto provides
the following custom types:
	Custom type	Database type	Elixir type
	Ecto.UUID	:uuid (as a binary)	string() (as a UUID)
	Ecto.Enum	:string	atom()

Finally, schemas can also have virtual fields by passing the
virtual: true option. These fields are not persisted to the database
and can optionally not be type checked by declaring type :any.
The datetime types
Four different datetime primitive types are available:
	naive_datetime - has a precision of seconds and casts values
to Elixir's NaiveDateTime struct which has no timezone information.

	naive_datetime_usec - has a default precision of microseconds and
also casts values to NaiveDateTime with no timezone information.

	utc_datetime - has a precision of seconds and casts values to
Elixir's DateTime struct and expects the time zone to be set to UTC.

	utc_datetime_usec has a default precision of microseconds and also
casts values to DateTime expecting the time zone be set to UTC.

All of those types are represented by the same timestamp/datetime in the
underlying data storage, the difference are in their precision and how the
data is loaded into Elixir.
Having different precisions allows developers to choose a type that will
be compatible with the database and your project's precision requirements.
For example, some older versions of MySQL do not support microseconds in
datetime fields.
When choosing what datetime type to work with, keep in mind that Elixir
functions like NaiveDateTime.utc_now/0 have a default precision of 6.
Casting a value with a precision greater than 0 to a non-usec type will
truncate all microseconds and set the precision to 0.
The map type
The map type allows developers to store an Elixir map directly
in the database:
In your migration
create table(:users) do
 add :data, :map
end

In your schema
field :data, :map

Now in your code
user = Repo.insert! %User{data: %{"foo" => "bar"}}
Keep in mind that we advise the map keys to be strings or integers
instead of atoms. Atoms may be accepted depending on how maps are
serialized but the database will always convert atom keys to strings
due to security reasons.
In order to support maps, different databases may employ different
techniques. For example, PostgreSQL will store those values in jsonb
fields, allowing you to just query parts of it. MSSQL, on
the other hand, does not yet provide a JSON type, so the value will be
stored in a text field.
For maps to work in such databases, Ecto will need a JSON library.
By default Ecto will use Jason
which needs to be added to your deps in mix.exs:
{:jason, "~> 1.0"}
You can however configure the adapter to use another library. For example,
if using Postgres:
config :postgrex, :json_library, YourLibraryOfChoice
Or if using MySQL:
config :myxql, :json_library, YourLibraryOfChoice
If changing the JSON library, remember to recompile the adapter afterwards
by cleaning the current build:
mix deps.clean --build postgrex
Casting
When directly manipulating the struct, it is the responsibility of
the developer to ensure the field values have the proper type. For
example, you can create a user struct with an invalid value
for age:
iex> user = %User{age: "0"}
iex> user.age
"0"
However, if you attempt to persist the struct above, an error will
be raised since Ecto validates the types when sending them to the
adapter/database.
Therefore, when working with and manipulating external data, it is
recommended to use Ecto.Changeset's that are able to filter
and properly cast external data:
changeset = Ecto.Changeset.cast(%User{}, %{"age" => "0"}, [:age])
user = Repo.insert!(changeset)
You can use Ecto schemas and changesets to cast and validate any kind
of data, regardless if the data will be persisted to an Ecto repository
or not.
Reflection
Any schema module will generate the __schema__ function that can be
used for runtime introspection of the schema:
	__schema__(:source) - Returns the source as given to schema/2;

	__schema__(:prefix) - Returns optional prefix for source provided by
@schema_prefix schema attribute;

	__schema__(:primary_key) - Returns a list of primary key fields (empty if there is none);

	__schema__(:fields) - Returns a list of all non-virtual field names;

	__schema__(:virtual_fields) - Returns a list of all virtual field names;

	__schema__(:field_source, field) - Returns the alias of the given field;

	__schema__(:type, field) - Returns the type of the given non-virtual field;

	__schema__(:virtual_type, field) - Returns the type of the given virtual field;

	__schema__(:associations) - Returns a list of all association field names;

	__schema__(:association, assoc) - Returns the association reflection of the given assoc;

	__schema__(:embeds) - Returns a list of all embedded field names;

	__schema__(:embed, embed) - Returns the embedding reflection of the given embed;

	__schema__(:read_after_writes) - Non-virtual fields that must be read back
from the database after every write (insert, update, and delete);

	__schema__(:autogenerate_id) - Primary key that is auto generated on insert;

	__schema__(:autogenerate_fields) - Returns a list of fields names that are auto
generated on insert, except for the primary key;

	__schema__(:redact_fields) - Returns a list of redacted field names;

Furthermore, both __struct__ and __changeset__ functions are
defined so structs and changeset functionalities are available.
The __schema__ function may accept other values, but those values
are not part of the public API. Any values that are not in the list
above may change at any time without notice.
Working with typespecs
Generating typespecs for schemas is out of the scope of Ecto.Schema.
In order to be able to use types such as User.t(), t/0 has to be defined manually:
defmodule User do
 use Ecto.Schema

 @type t :: %__MODULE__{
 name: String.t(),
 age: non_neg_integer()
 }

 # ... schema ...
end
Defining the type of each field is not mandatory, but it is preferable.

 Summary

 Types

 belongs_to(t)

 embedded_schema()

 embeds_many(t)

 embeds_one(t)

 has_many(t)

 has_one(t)

 many_to_many(t)

 prefix()

 schema()

 source()

 t()

 Functions

 belongs_to(name, schema, opts \\ [])

 Indicates a one-to-one or many-to-one association with another schema.

 embedded_schema(list)

 Defines an embedded schema with the given field definitions.

 embeds_many(name, schema, opts \\ [])

 Indicates an embedding of many schemas.

 embeds_many(name, schema, opts, list)

 Indicates an embedding of many schemas.

 embeds_one(name, schema, opts \\ [])

 Indicates an embedding of a schema.

 embeds_one(name, schema, opts, list)

 Indicates an embedding of a schema.

 field(name, type \\ :string, opts \\ [])

 Defines a field on the schema with given name and type.

 has_many(name, schema, opts \\ [])

 Indicates a one-to-many association with another schema.

 has_one(name, schema, opts \\ [])

 Indicates a one-to-one association with another schema.

 many_to_many(name, schema, opts \\ [])

 Indicates a many-to-many association with another schema.

 schema(source, list)

 Defines a schema struct with a source name and field definitions.

 timestamps(opts \\ [])

 Generates :inserted_at and :updated_at timestamp fields.

 Types

 belongs_to(t)

 @type belongs_to(t) :: t | Ecto.Association.NotLoaded.t()

 embedded_schema()

 @type embedded_schema() :: %{optional(atom()) => any(), __struct__: atom()}

 embeds_many(t)

 @type embeds_many(t) :: [t]

 embeds_one(t)

 @type embeds_one(t) :: t

 has_many(t)

 @type has_many(t) :: [t] | Ecto.Association.NotLoaded.t()

 has_one(t)

 @type has_one(t) :: t | Ecto.Association.NotLoaded.t()

 many_to_many(t)

 @type many_to_many(t) :: [t] | Ecto.Association.NotLoaded.t()

 prefix()

 @type prefix() :: any()

 schema()

 @type schema() :: %{
 optional(atom()) => any(),
 __struct__: atom(),
 __meta__: Ecto.Schema.Metadata.t()
}

 source()

 @type source() :: String.t()

 t()

 @type t() :: schema() | embedded_schema()

 Functions

 belongs_to(name, schema, opts \\ [])

 (macro)

Indicates a one-to-one or many-to-one association with another schema.
The current schema belongs to zero or one records of the other schema. The other
schema often has a has_one or a has_many field with the reverse association.
You should use belongs_to in the table that contains the foreign key. Imagine
a company <-> employee relationship. If the employee contains the company_id in
the underlying database table, we say the employee belongs to company.
In fact, when you invoke this macro, a field with the name of foreign key is
automatically defined in the schema for you.
Options
	:foreign_key - Sets the foreign key field name, defaults to the name
of the association suffixed by _id. For example, belongs_to :company
will define foreign key of :company_id. The associated has_one or has_many
field in the other schema should also have its :foreign_key option set
with the same value.

	:references - Sets the key on the other schema to be used for the
association, defaults to: :id

	:define_field - When false, does not automatically define a :foreign_key
field, implying the user is defining the field manually elsewhere

	:type - Sets the type of automatically defined :foreign_key.
Defaults to: :integer and can be set per schema via @foreign_key_type

	:on_replace - The action taken on associations when the record is
replaced when casting or manipulating parent changeset. May be
:raise (default), :mark_as_invalid, :nilify, :update, or :delete.
See Ecto.Changeset's section on related data for more info.

	:defaults - Default values to use when building the association.
It may be a keyword list of options that override the association schema
or an atom/{module, function, args} that receives the association struct
and the owner struct as arguments. For example, if you set
Comment.belongs_to :post, defaults: [public: true],
then when using Ecto.build_assoc(comment, :post), the post will have
post.public == true. Alternatively, you can set it to
Comment.belongs_to :post, defaults: :update_post, which will invoke
Comment.update_post(post, comment), or set it to a MFA tuple such as
{Mod, fun, [arg3, arg4]}, which will invoke Mod.fun(post, comment, arg3, arg4)

	:primary_key - If the underlying belongs_to field is a primary key

	:source - Defines the name that is to be used in database for this field

	:where - A filter for the association. See "Filtering associations"
in has_many/3.

Examples
defmodule Comment do
 use Ecto.Schema

 schema "comments" do
 belongs_to :post, Post
 end
end

The post can come preloaded on the comment record
[comment] = Repo.all(from(c in Comment, where: c.id == 42, preload: :post))
comment.post #=> %Post{...}
If you need custom options on the underlying field, you can define the
field explicitly and then pass define_field: false to belongs_to:
defmodule Comment do
 use Ecto.Schema

 schema "comments" do
 field :post_id, :integer, ... # custom options
 belongs_to :post, Post, define_field: false
 end
end
If using EctoSQL, the comments table
should have a post_id column that references the posts table.
In your migrations, this can be done as:
add :post_id,
 references(:posts, on_delete: :delete_all),
 null: false
See the Associations cheatsheet for more examples.
Polymorphic associations
One common use case for belongs to associations is to handle
polymorphism. For example, imagine you have defined a Comment
schema and you wish to use it for commenting on both tasks and
posts.
Some abstractions would force you to define some sort of
polymorphic association with two fields in your database:
* commentable_type
* commentable_id
The problem with this approach is that it breaks references in
the database. You can't use foreign keys and it is very inefficient,
both in terms of query time and storage.
In Ecto, we have three ways to solve this issue. The simplest
is to define multiple fields in the Comment schema, one for each
association:
* task_id
* post_id
Unless you have dozens of columns, this is simpler for the developer,
more DB friendly and more efficient in all aspects.
Alternatively, because Ecto does not tie a schema to a given table,
we can use separate tables for each association. Let's start over
and define a new Comment schema:
defmodule Comment do
 use Ecto.Schema

 schema "abstract table: comments" do
 # This will be used by associations on each "concrete" table
 field :assoc_id, :integer
 end
end
Notice we have changed the table name to "abstract table: comments".
You can choose whatever name you want, the point here is that this
particular table will never exist.
Now in your Post and Task schemas:
defmodule Post do
 use Ecto.Schema

 schema "posts" do
 has_many :comments, {"posts_comments", Comment}, foreign_key: :assoc_id
 end
end

defmodule Task do
 use Ecto.Schema

 schema "tasks" do
 has_many :comments, {"tasks_comments", Comment}, foreign_key: :assoc_id
 end
end
Now each association uses its own specific table, "posts_comments"
and "tasks_comments", which must be created on migrations. The
advantage of this approach is that we never store unrelated data
together, also ensuring we keep database references fast and correct.
When using this technique, the only limitation is that you cannot
build comments directly. For example, the command below
Repo.insert!(%Comment{})
will attempt to use the abstract table. Instead, one should use
Repo.insert!(build_assoc(post, :comments))
leveraging the Ecto.build_assoc/3 function. You can also
use Ecto.assoc/2 or pass a tuple in the query syntax
to easily retrieve associated comments to a given post or
task:
Fetch all comments associated with the given task
Repo.all(Ecto.assoc(task, :comments))
Or all comments in a given table:
Repo.all from(c in {"posts_comments", Comment}), ...)
The third and final option is to use many_to_many/3 to
define the relationships between the resources. In this case,
the comments table won't have the foreign key, instead there
is an intermediary table responsible for associating the entries:
defmodule Comment do
 use Ecto.Schema
 schema "comments" do
 # ...
 end
end
In your posts and tasks:
defmodule Post do
 use Ecto.Schema

 schema "posts" do
 many_to_many :comments, Comment, join_through: "posts_comments"
 end
end

defmodule Task do
 use Ecto.Schema

 schema "tasks" do
 many_to_many :comments, Comment, join_through: "tasks_comments"
 end
end
See many_to_many/3 for more information on this particular approach.

 embedded_schema(list)

 (macro)

Defines an embedded schema with the given field definitions.
An embedded schema is either embedded into another
schema or kept exclusively in memory. For this reason,
an embedded schema does not require a source name and
it does not include a metadata field.
Embedded schemas by default set the primary key type
to :binary_id but such can be configured with the
@primary_key attribute.
belongs_to/3 associations may be defined inside of
embedded schemas. However, any association nested inside
of an embedded schema won't be persisted to the database
when calling Ecto.Repo.insert/2 or Ecto.Repo.update/2.

 embeds_many(name, schema, opts \\ [])

 (macro)

Indicates an embedding of many schemas.
The current schema has zero or more records of the other schema embedded
inside of it. Embeds have all the things regular schemas have.
It is recommended to declare your embeds_many/3 field with type :map
in your migrations, instead of using {:array, :map}. Ecto can work with
both maps and arrays as the container for embeds (and in most databases
maps are represented as JSON which allows Ecto to choose what works best).
The embedded may or may not have a primary key. Ecto uses the primary keys
to detect if an embed is being updated or not. If a primary key is not
present and you still want the list of embeds to be updated, :on_replace
must be set to :delete, forcing all current embeds to be deleted and
replaced by new ones whenever a new list of embeds is set.
For encoding and decoding of embeds, please read the docs for
embeds_one/3.
Options
	:on_replace - The action taken on associations when the embed is
replaced when casting or manipulating parent changeset. May be
:raise (default), :mark_as_invalid, or :delete.
See Ecto.Changeset's section on related data for more info.

	:source - Defines the name that is to be used in database for this field.
This is useful when attaching to an existing database. The value should be
an atom.

	:load_in_query - When false, the field will not be loaded when
selecting the whole struct in a query, such as from p in Post, select: p.
Defaults to true.

Examples
defmodule Order do
 use Ecto.Schema

 schema "orders" do
 embeds_many :items, Item
 end
end

defmodule Item do
 use Ecto.Schema

 embedded_schema do
 field :title
 end
end

The items are loaded with the order
order = Repo.get!(Order, 42)
order.items #=> [%Item{...}, ...]
Adding and removal of embeds can only be done via the Ecto.Changeset
API so Ecto can properly track the embed life-cycle:
Order has no items
order = Repo.get!(Order, 42)
order.items
=> []

items = [%Item{title: "Soap"}]

Generate a changeset
changeset = Ecto.Changeset.change(order)

Put a one or more new items
changeset = Ecto.Changeset.put_embed(changeset, :items, items)

Update the order and fetch items
items = Repo.update!(changeset).items

Items are generated with a unique identification
items
=> [%Item{id: "20a97d94-f79b-4e63-a875-85deed7719b7", title: "Soap"}]
Updating of embeds must be done using a changeset for each changed embed.
Order has an existing items
order = Repo.get!(Order, 42)
order.items
=> [%Item{id: "20a97d94-f79b-4e63-a875-85deed7719b7", title: "Soap"}]

Generate a changeset
changeset = Ecto.Changeset.change(order)

Put the updated item as a changeset
current_item = List.first(order.items)
item_changeset = Ecto.Changeset.change(current_item, title: "Mujju's Soap")
order_changeset = Ecto.Changeset.put_embed(changeset, :items, [item_changeset])

Update the order and fetch items
items = Repo.update!(order_changeset).items

Item has the updated title
items
=> [%Item{id: "20a97d94-f79b-4e63-a875-85deed7719b7", title: "Mujju's Soap"}]
Inline embedded schema
The schema module can be defined inline in the parent schema in simple
cases:
defmodule Parent do
 use Ecto.Schema

 schema "parents" do
 field :name, :string

 embeds_many :children, Child do
 field :name, :string
 field :age, :integer
 end
 end
end
Primary keys are automatically set up for embedded schemas as well,
defaulting to {:id, :binary_id, autogenerate: true}. You can
customize it by passing a :primary_key option with the same arguments
as @primary_key (see the Schema attributes
section for more info).
Defining embedded schema in such a way will define a Parent.Child module
with the appropriate struct. In order to properly cast the embedded schema.
When casting the inline-defined embedded schemas you need to use the :with
option of cast_embed/3 to provide the proper function to do the casting.
For example:
def changeset(schema, params) do
 schema
 |> cast(params, [:name])
 |> cast_embed(:children, with: &child_changeset/2)
end

defp child_changeset(schema, params) do
 schema
 |> cast(params, [:name, :age])
end

 embeds_many(name, schema, opts, list)

 (macro)

Indicates an embedding of many schemas.
For options and examples see documentation of embeds_many/3.

 embeds_one(name, schema, opts \\ [])

 (macro)

Indicates an embedding of a schema.
The current schema has zero or one records of the other schema embedded
inside of it. It uses a field similar to the :map type for storage,
but allows embeds to have all the things regular schema can.
You must declare your embeds_one/3 field with type :map at the
database level.
The embedded may or may not have a primary key. Ecto uses the primary keys
to detect if an embed is being updated or not. If a primary key is not present,
:on_replace should be set to either :update or :delete if there is a
desire to either update or delete the current embed when a new one is set.
Options
	:primary_key - The :primary_key option can be used with the same arguments
as @primary_key (see the Schema attributes
section for more info). Primary keys are automatically set up for embedded
schemas as well, defaulting to {:id, :binary_id, autogenerate: true}.
Note :primary_keys are not automatically read back on insert/2,
unless one of autogenerate: true or read_after_writes: true is set.

	:on_replace - The action taken on associations when the embed is
replaced when casting or manipulating parent changeset. May be
:raise (default), :mark_as_invalid, :update, or :delete.
See Ecto.Changeset's section on related data for more info.

	:source - Defines the name that is to be used in database for this field.
This is useful when attaching to an existing database. The value should be
an atom.

	:load_in_query - When false, the field will not be loaded when
selecting the whole struct in a query, such as from p in Post, select: p.
Defaults to true.

	:defaults_to_struct - When true, the field will default to the initialized
struct instead of nil, the same you would get from something like %Order.Item{}.
One important thing is that if the underlying data is explicitly nil when loading
the schema, it will still be loaded as nil, similar to how :default works in fields.
Defaults to false.

Examples
defmodule Order do
 use Ecto.Schema

 schema "orders" do
 embeds_one :item, Item
 end
end

defmodule Item do
 use Ecto.Schema

 embedded_schema do
 field :title
 end
end

The item is loaded with the order
order = Repo.get!(Order, 42)
order.item #=> %Item{...}
Adding and removal of embeds can only be done via the Ecto.Changeset
API so Ecto can properly track the embed life-cycle:
order = Repo.get!(Order, 42)
item = %Item{title: "Soap"}

Generate a changeset
changeset = Ecto.Changeset.change(order)

Put a new embed to the changeset
changeset = Ecto.Changeset.put_embed(changeset, :item, item)

Update the order, and fetch the item
item = Repo.update!(changeset).item

Item is generated with a unique identification
item
=> %Item{id: "20a97d94-f79b-4e63-a875-85deed7719b7", title: "Soap"}
Inline embedded schema
The schema module can be defined inline in the parent schema in simple
cases:
defmodule Parent do
 use Ecto.Schema

 schema "parents" do
 field :name, :string

 embeds_one :child, Child do
 field :name, :string
 field :age, :integer
 end
 end
end
Options should be passed before the do block like this:
embeds_one :child, Child, on_replace: :delete, primary_key: false do
 field :name, :string
 field :age, :integer
end
Defining embedded schema in such a way will define a Parent.Child module
with the appropriate struct. In order to properly cast the embedded schema.
When casting the inline-defined embedded schemas you need to use the :with
option of Ecto.Changeset.cast_embed/3 to provide the proper function to do the casting.
For example:
def changeset(schema, params) do
 schema
 |> cast(params, [:name])
 |> cast_embed(:child, with: &child_changeset/2)
end

defp child_changeset(schema, params) do
 schema
 |> cast(params, [:name, :age])
end
Encoding and decoding
Because many databases do not support direct encoding and decoding
of embeds, it is often emulated by Ecto by using specific encoding
and decoding rules.
For example, PostgreSQL will store embeds on top of JSONB columns,
which means types in embedded schemas won't go through the usual
dump->DB->load cycle but rather encode->DB->decode->cast. This means
that, when using embedded schemas with databases like PG or MySQL,
make sure all of your types can be JSON encoded/decoded correctly.
Ecto provides this guarantee for all built-in types.
When decoding, if a key exists in the database not defined in the
schema, it'll be ignored. If a field exists in the schema that's not
in the database, it's value will be nil.

 embeds_one(name, schema, opts, list)

 (macro)

Indicates an embedding of a schema.
For options and examples see documentation of embeds_one/3.

 field(name, type \\ :string, opts \\ [])

 (macro)

Defines a field on the schema with given name and type.
The field name will be used as is to read and write to the database
by all of the built-in adapters unless overridden with the :source
option.
Options
	:default - Sets the default value on the schema and the struct.
The default value is calculated at compilation time, so don't use
expressions like DateTime.utc_now or Ecto.UUID.generate as
they would then be the same for all records: in this scenario you can use
the :autogenerate option to generate at insertion time.
The default value is validated against the field's type at compilation time
and it will raise an ArgumentError if there is a type mismatch. If you cannot
infer the field's type at compilation time, you can use the
:skip_default_validation option on the field to skip validations.
Once a default value is set, if you send changes to the changeset that
contains the same value defined as default, validations will not be performed
since there are no changes after all.

	:source - Defines the name that is to be used in the database for this field.
This is useful when attaching to an existing database. The value should be
an atom. This is a last minute translation before the query goes to the database.
All references within your Elixir code must still be to the field name,
such as in association foreign keys.

	:autogenerate - a {module, function, args} tuple for a function
to call to generate the field value before insertion if value is not set.
A shorthand value of true is equivalent to {type, :autogenerate, []}.

	:read_after_writes - When true, the field is always read back
from the database after inserts, updates, and deletes.
For relational databases, this means the RETURNING option of those
statements is used. For this reason, MySQL does not support this
option and will raise an error if a schema is inserted/updated with
read after writes fields.

	:virtual - When true, the field is not persisted to the database.
Notice virtual fields do not support :autogenerate nor
:read_after_writes.

	:primary_key - When true, the field is used as part of the
composite primary key.

	:load_in_query - When false, the field will not be loaded when
selecting the whole struct in a query, such as from p in Post, select: p.
Defaults to true.

	:redact - When true, it will display a value of **redacted**
when inspected in changes inside a Ecto.Changeset and be excluded
from inspect on the schema. Defaults to false.

	:skip_default_validation - When true, it will skip the type validation
step at compile time.

	:writable - Defines when a field is allowed to be modified. Must be one of
:always, :insert, or :never. If set to :always, the field can be modified
by any repo operation. If set to :insert, the field can be inserted but cannot
be further modified, even in an upsert. If set to :never, the field becomes
read only. Defaults to :always.

 has_many(name, schema, opts \\ [])

 (macro)

Indicates a one-to-many association with another schema.
The current schema has zero or more records of the other schema. The other
schema often has a belongs_to field with the reverse association.
Options
	:foreign_key - Sets the foreign key, this should map to a field on the
other schema, defaults to the underscored name of the current schema
suffixed by _id

	:references - Sets the key on the current schema to be used for the
association, defaults to the primary key on the schema

	:through - Allow this association to be defined in terms of existing
associations. Read the section on :through associations
for more info

	:on_delete - The action taken on associations when parent record
is deleted. May be :nothing (default), :nilify_all and :delete_all.
Using this option is DISCOURAGED for most relational databases. Instead,
in your migration, set references(:parent_id, on_delete: :delete_all).
Opposite to the migration option, this option cannot guarantee integrity
and it is only triggered for Ecto.Repo.delete/2 (and not on
Ecto.Repo.delete_all/2) and it never cascades. If posts has many comments,
which has many tags, and you delete a post, only comments will be deleted.
If your database does not support references, cascading can be manually
implemented by using Ecto.Multi or Ecto.Changeset.prepare_changes/2.

	:on_replace - The action taken on associations when the record is
replaced when casting or manipulating parent changeset. May be
:raise (default), :mark_as_invalid, :nilify, :delete or
:delete_if_exists. See Ecto.Changeset's section about :on_replace for
more info.

	:defaults - Default values to use when building the association.
It may be a keyword list of options that override the association schema
or an atom/{module, function, args} that receives the association struct
and the owner struct as arguments. For example, if you set
Post.has_many :comments, defaults: [public: true],
then when using Ecto.build_assoc(post, :comments), the comment will have
comment.public == true. Alternatively, you can set it to
Post.has_many :comments, defaults: :update_comment, which will invoke
Post.update_comment(comment, post), or set it to a MFA tuple such as
{Mod, fun, [arg3, arg4]}, which will invoke Mod.fun(comment, post, arg3, arg4)

	:where - A filter for the association. See "Filtering associations" below.
It does not apply to :through associations.

	:preload_order - Sets the default order_by when preloading the association.
It may be a keyword list/list of fields or an MFA tuple, such as {Mod, fun, []}.
Both cases must resolve to a valid order_by expression.
For example, if you set Post.has_many :comments, preload_order: [asc: :content],
whenever the :comments associations is preloaded,
the comments will be ordered by the :content field.
See Ecto.Query.order_by/3 to learn more about ordering expressions.

Examples
defmodule Post do
 use Ecto.Schema
 schema "posts" do
 has_many :comments, Comment
 end
end

Get all comments for a given post
post = Repo.get(Post, 42)
comments = Repo.all assoc(post, :comments)

The comments can come preloaded on the post struct
[post] = Repo.all(from(p in Post, where: p.id == 42, preload: :comments))
post.comments #=> [%Comment{...}, ...]
If using EctoSQL, the foreign key should be
defined in the comments table, as shown in belongs_to/3 examples.
You may also see the Associations cheatsheet
for more examples.
has_many can be used to define hierarchical relationships within a single
schema, for example threaded comments.
defmodule Comment do
 use Ecto.Schema
 schema "comments" do
 field :content, :string
 field :parent_id, :integer
 belongs_to :parent, Comment, foreign_key: :parent_id, references: :id, define_field: false
 has_many :children, Comment, foreign_key: :parent_id, references: :id
 end
end
Filtering associations
It is possible to specify a :where option that will filter the records
returned by the association. Querying, joining or preloading the association
will use the given conditions as shown next:
defmodule Post do
 use Ecto.Schema

 schema "posts" do
 has_many :public_comments, Comment,
 where: [public: true]
 end
end
The :where option expects a keyword list where the key is an atom
representing the field and the value is either:
	nil - which specifies the field must be nil
	{:not, nil} - which specifies the field must not be nil
	{:in, list} - which specifies the field must be one of the values in a list
	{:fragment, expr} - which specifies a fragment string as the filter
(see Ecto.Query.API.fragment/1) with the field's value given to it
as the only argument
	or any other value which the field is compared directly against

Note the values above are distinctly different from the values you
would pass to where when building a query. For example, if you
attempt to build a query such as
from Post, where: [id: nil]
it will emit an error. This is because queries can be built dynamically,
and therefore passing nil can lead to security errors. However, the
:where values for an association are given at compile-time, which is
less dynamic and cannot leverage the full power of Ecto queries, which
explains why they have different APIs.
Important! Please use this feature only when strictly necessary,
otherwise it is very easy to end-up with large schemas with dozens of
different associations polluting your schema and affecting your
application performance. For instance, if you are using associations
only for different querying purposes, then it is preferable to build
and compose queries. For instance, instead of having two associations,
one for comments and another for deleted comments, you might have
a single comments association and filter it instead:
posts
|> Ecto.assoc(:comments)
|> Comment.deleted()
Or when preloading:
from posts, preload: [comments: ^Comment.deleted()]
has_many/has_one :through
Ecto also supports defining associations in terms of other associations
via the :through option. Let's see an example:
defmodule Post do
 use Ecto.Schema

 schema "posts" do
 has_many :comments, Comment
 has_one :permalink, Permalink

 # In the has_many :through example below, the `:comments`
 # in the list [:comments, :author] refers to the
 # `has_many :comments` in the Post own schema and the
 # `:author` refers to the `belongs_to :author` of the
 # Comment's schema (the module below).
 # (see the description below for more details)
 has_many :comments_authors, through: [:comments, :author]

 # Specify the association with custom source
 has_many :tags, {"posts_tags", Tag}
 end
end

defmodule Comment do
 use Ecto.Schema

 schema "comments" do
 belongs_to :author, Author
 belongs_to :post, Post
 has_one :post_permalink, through: [:post, :permalink]
 end
end
In the example above, we have defined a has_many :through association
named :comments_authors. A :through association always expects a list
and the first element of the list must be a previously defined association
in the current module. For example, :comments_authors first points to
:comments in the same module (Post), which then points to :author in
the next schema, Comment.
This :through association will return all authors for all comments
that belongs to that post:
Get all comments authors for a given post
post = Repo.get(Post, 42)
authors = Repo.all assoc(post, :comments_authors)
:through associations can also be preloaded. In such cases, not only
the :through association is preloaded but all intermediate steps are
preloaded too:
[post] = Repo.all(from(p in Post, where: p.id == 42, preload: :comments_authors))
post.comments_authors #=> [%Author{...}, ...]

The comments for each post will be preloaded too
post.comments #=> [%Comment{...}, ...]

And the author for each comment too
hd(post.comments).author #=> %Author{...}
When the :through association is expected to return one or zero items,
has_one :through should be used instead, as in the example at the beginning
of this section:
How we defined the association above in Comments
has_one :post_permalink, through: [:post, :permalink]

Get a preloaded comment
[comment] = Repo.all(Comment) |> Repo.preload(:post_permalink)
comment.post_permalink #=> %Permalink{...}
If possible, Ecto will avoid traversing intermediate associations in
queries. For example, in the example above, Comment has a post_id
column (defined by belongs_to :post) and it is expected for
Permalink to have the same. Therefore, when preloading the permalinks,
Ecto may avoid traversing the "posts" table altogether. Of course, this
assumes your database guarantees those references are valid, which can
be done by defining foreign key constraints and references your database
(often done via EctoSQL migrations).
Note :through associations are read-only. For example, you cannot use
Ecto.Changeset.cast_assoc/3 to modify through associations.

 has_one(name, schema, opts \\ [])

 (macro)

Indicates a one-to-one association with another schema.
The current schema has zero or one records of the other schema. The other
schema often has a belongs_to field with the reverse association.
Options
	:foreign_key - Sets the foreign key, this should map to a field on the
other schema, defaults to the underscored name of the current module
suffixed by _id

	:references - Sets the key on the current schema to be used for the
association, defaults to the primary key on the schema

	:through - If this association must be defined in terms of existing
associations. Read the section in has_many/3 for more information

	:on_delete - The action taken on associations when parent record
is deleted. May be :nothing (default), :nilify_all and :delete_all.
Using this option is DISCOURAGED for most relational databases. Instead,
in your migration, set references(:parent_id, on_delete: :delete_all).
Opposite to the migration option, this option cannot guarantee integrity
and it is only triggered for Ecto.Repo.delete/2 (and not on
Ecto.Repo.delete_all/2) and it never cascades. If posts has many comments,
which has many tags, and you delete a post, only comments will be deleted.
If your database does not support references, cascading can be manually
implemented by using Ecto.Multi or Ecto.Changeset.prepare_changes/2

	:on_replace - The action taken on associations when the record is
replaced when casting or manipulating parent changeset. May be
:raise (default), :mark_as_invalid, :nilify, :update, or
:delete. See Ecto.Changeset's section on related data for more info.

	:defaults - Default values to use when building the association.
It may be a keyword list of options that override the association schema
or an atom/{module, function, args} that receives the association struct
and the owner struct as arguments. For example, if you set
Post.has_one :banner, defaults: [public: true],
then when using Ecto.build_assoc(post, :banner), the banner will have
banner.public == true. Alternatively, you can set it to
Post.has_one :banner, defaults: :update_banner, which will invoke
Post.update_banner(banner, post), or set it to a MFA tuple such as
{Mod, fun, [arg3, arg4]}, which will invoke Mod.fun(banner, post, arg3, arg4)

	:where - A filter for the association. When loading has_one associations,
Ecto emits a query with LIMIT set to one. If your association may return
multiple entries, you can use this option to guarantee it returns a single
unique result. See "Filtering associations" in has_many/3. It does not
apply to :through associations.

Examples
defmodule Post do
 use Ecto.Schema

 schema "posts" do
 has_one :permalink, Permalink

 # Specify the association with custom source
 has_one :category, {"posts_categories", Category}
 end
end

The permalink can come preloaded on the post struct
[post] = Repo.all(from(p in Post, where: p.id == 42, preload: :permalink))
post.permalink #=> %Permalink{...}
If using EctoSQL, a foreign key must be defined
in the permalinks and categories tables, as shown in belongs_to/3
examples. You may also see the Associations cheatsheet
for more examples.

 many_to_many(name, schema, opts \\ [])

 (macro)

Indicates a many-to-many association with another schema.
The association happens through a join schema or source, containing
foreign keys to the associated schemas. For example, the association
below:
from MyApp.Post
many_to_many :tags, MyApp.Tag, join_through: "posts_tags"
is backed by relational databases through a join table as follows:
[Post] <-> [posts_tags] <-> [Tag]
 id <-- post_id
 tag_id --> id
More information on the migration for creating such a schema is shown
below.
Options
	:join_through - Specifies the source of the associated data.
It may be a string, like "posts_tags", representing the
underlying storage table or an atom, like MyApp.PostTag,
representing a schema. This option is required.

	:join_keys - Specifies how the schemas are associated. It
expects a keyword list with two entries, the first being how
the join table should reach the current schema and the second
how the join table should reach the associated schema. In the
example above, it defaults to: [post_id: :id, tag_id: :id].
The keys are inflected from the schema names.

	:on_delete - The action taken on associations when the parent record
is deleted. May be :nothing (default) or :delete_all.
Using this option is DISCOURAGED for most relational databases. Instead,
in your migration, set references(:parent_id, on_delete: :delete_all).
Opposite to the migration option, this option cannot guarantee integrity
and it is only triggered for Ecto.Repo.delete/2 (and not on
Ecto.Repo.delete_all/2). This option can only remove data from the
join source, never the associated records, and it never cascades.

	:on_replace - The action taken on associations when the record is
replaced when casting or manipulating parent changeset. May be
:raise (default), :mark_as_invalid, or :delete.
:delete will only remove data from the join source, never the
associated records. See Ecto.Changeset's section on related data
for more info.

	:defaults - Default values to use when building the association.
It may be a keyword list of options that override the association schema
or an atom/{module, function, args} that receives the association struct
and the owner struct as arguments. For example, if you set
Post.many_to_many :tags, defaults: [public: true],
then when using Ecto.build_assoc(post, :tags), the tag will have
tag.public == true. Alternatively, you can set it to
Post.many_to_many :tags, defaults: :update_tag, which will invoke
Post.update_tag(tag, post), or set it to a MFA tuple such as
{Mod, fun, [arg3, arg4]}, which will invoke Mod.fun(tag, post, arg3, arg4)

	:join_defaults - The same as :defaults but it applies to the join schema
instead. This option will raise if it is given and the :join_through value
is not a schema.

	:unique - When true, checks if the associated entries are unique
whenever the association is cast or changed via the parent record.
For instance, it would verify that a given tag cannot be attached to
the same post more than once. This exists mostly as a quick check
for user feedback, as it does not guarantee uniqueness at the database
level. Therefore, you should also set a unique index in the database
join table, such as: create unique_index(:posts_tags, [:post_id, :tag_id])

	:where - A filter for the association. See "Filtering associations"
in has_many/3

	:join_where - A filter for the join table. See "Filtering associations"
in has_many/3

	:preload_order - Sets the default order_by when preloading the association.
It may be a keyword list/list of fields or an MFA tuple, such as {Mod, fun, []}.
Both cases must resolve to a valid order_by expression. See Ecto.Query.order_by/3
to learn more about ordering expressions.
See the preload order section below to learn how
this option can be utilized

Using Ecto.assoc/2
One of the benefits of using many_to_many is that Ecto will avoid
loading the intermediate whenever possible, making your queries more
efficient. For this reason, developers should not refer to the join
table of many_to_many in queries. The join table is accessible in
few occasions, such as in Ecto.assoc/2. For example, if you do this:
post
|> Ecto.assoc(:tags)
|> where([t, _pt, p], p.public == t.public)
It may not work as expected because the posts_tags table may not be
included in the query. You can address this problem in multiple ways.
One option is to use ...:
post
|> Ecto.assoc(:tags)
|> where([t, ..., p], p.public == t.public)
Another and preferred option is to rewrite to an explicit join, which
leaves out the intermediate bindings as they are resolved only later on:
keyword syntax
from t in Tag,
 join: p in assoc(t, :post), on: p.id == ^post.id

pipe syntax
Tag
|> join(:inner, [t], p in assoc(t, :post), on: p.id == ^post.id)
If you need to access the join table, then you likely want to use
has_many/3 with the :through option instead.
Removing data
If you attempt to remove associated many_to_many data, Ecto will
always remove data from the join schema and never from the target
associations be it by setting :on_replace to :delete, :on_delete
to :delete_all or by using changeset functions such as
Ecto.Changeset.put_assoc/3. For example, if a Post has a many to many
relationship with Tag, setting :on_delete to :delete_all will
only delete entries from the "posts_tags" table in case Post is
deleted.
Migration
How your migration should be structured depends on the value you pass
in :join_through. If :join_through is simply a string, representing
a table, you may define a table without primary keys and you must not
include any further columns, as those values won't be set by Ecto:
create table(:posts_tags, primary_key: false) do
 add :post_id, references(:posts, on_delete: :delete_all), null: false
 add :tag_id, references(:tags, on_delete: :delete_all), null: false
end
However, if your :join_through is a schema, like MyApp.PostTag, your
join table may be structured as any other table in your codebase,
including timestamps:
create table(:posts_tags) do
 add :post_id, references(:posts, on_delete: :delete_all), null: false
 add :tag_id, references(:tags, on_delete: :delete_all), null: false
 timestamps()
end
Because :join_through contains a schema, in such cases, autogenerated
values and primary keys will be automatically handled by Ecto.
Preload Order
The :preload_order option may be used to return the preloaded structs
in a deterministic order. It accepts either a compile-time keyword list/list
or an MFA tuple, such as {Mod, fun, []}. The MFA tuple will be used to
generate the order_by expression at runtime.
When specifying a compile-time keyword list/list, the ordering applies to the
association's table and not the join table. Ordering by the join table can be
achieved by specifying an MFA tuple that utilizes Ecto.Query.dynamic/2.
For example, say we have an association Assoc being joined through the table
join_through. The default preload query generated by Ecto is roughly:
from a in Assoc, join: jt in "join_through", on: ...
If :preload_order is given as [asc: :field] then the preload query will be
changed to the following:
from a in Assoc, join: jt in "join_through", on: ..., order_by: [asc: a.field]
Similarly, any compile-time keyword list/list will have its fields interpreted
as belonging to the association's table. To order by a field from the join table,
an MFA tuple can be specified that utilizes Ecto.Query.dynamic/2.
For example, if :preload_order is given as {Mod, fun, []}, corresponding to
the following function:
defmodule Mod do
 def fun() do
 [desc: dynamic([assoc, join], join.field)]
 end
end
then the preload query will be changed to the following:
from a in Assoc, join: jt in "join_through", on: ..., order_by: [desc: jt.field]
Note the ordering of the bindings. The join table always comes last.
Examples
defmodule Post do
 use Ecto.Schema
 schema "posts" do
 many_to_many :tags, Tag, join_through: "posts_tags"
 end
end

Let's create a post and a tag
post = Repo.insert!(%Post{})
tag = Repo.insert!(%Tag{name: "introduction"})

We can associate at any time post and tags together using changesets
post
|> Repo.preload(:tags) # Load existing data
|> Ecto.Changeset.change() # Build the changeset
|> Ecto.Changeset.put_assoc(:tags, [tag]) # Set the association
|> Repo.update!

In a later moment, we may get all tags for a given post
post = Repo.get(Post, 42)
tags = Repo.all(assoc(post, :tags))

The tags may also be preloaded on the post struct for reading
[post] = Repo.all(from(p in Post, where: p.id == 42, preload: :tags))
post.tags #=> [%Tag{...}, ...]
Join Schema Example
You may prefer to use a join schema to handle many_to_many associations. The
decoupled nature of Ecto allows us to create a "join" struct which
belongs_to both sides of the many to many association.
In our example, a User has and belongs to many Organizations:
defmodule MyApp.Repo.Migrations.CreateUserOrganization do
 use Ecto.Migration

 def change do
 create table(:users_organizations) do
 add :user_id, references(:users)
 add :organization_id, references(:organizations)

 timestamps()
 end
 end
end

defmodule UserOrganization do
 use Ecto.Schema

 @primary_key false
 schema "users_organizations" do
 belongs_to :user, User
 belongs_to :organization, Organization
 timestamps() # Added bonus, a join schema will also allow you to set timestamps
 end

 def changeset(struct, params \\ %{}) do
 struct
 |> Ecto.Changeset.cast(params, [:user_id, :organization_id])
 |> Ecto.Changeset.validate_required([:user_id, :organization_id])
 # Maybe do some counter caching here!
 end
end

defmodule User do
 use Ecto.Schema

 schema "users" do
 many_to_many :organizations, Organization, join_through: UserOrganization
 end
end

defmodule Organization do
 use Ecto.Schema

 schema "organizations" do
 many_to_many :users, User, join_through: UserOrganization
 end
end
To create the association, pass in the IDs of an existing User and
Organization to UserOrganization.changeset/2:
changeset = UserOrganization.changeset(%UserOrganization{}, %{user_id: id, organization_id: id})

case Repo.insert(changeset) do
 {:ok, assoc} -> # Assoc was created!
 {:error, changeset} -> # Handle the error
end

 schema(source, list)

 (macro)

Defines a schema struct with a source name and field definitions.
An additional field called __meta__ is added to the struct for storing
internal Ecto state. This field always has a Ecto.Schema.Metadata struct
as value and can be manipulated with the Ecto.put_meta/2 function.

 timestamps(opts \\ [])

 (macro)

Generates :inserted_at and :updated_at timestamp fields.
The fields generated by this macro will automatically be set to
the current time when inserting and updating values in a repository.
Options
	:inserted_at - the Ecto schema name of the field for insertion times or false
	:updated_at - the Ecto schema name of the field for update times or false
	:inserted_at_source - the name of the database column for insertion times or false
	:updated_at_source - the name of the database column for update times or false
	:type - the timestamps type, defaults to :naive_datetime.
	:autogenerate - a module-function-args tuple used for generating
both inserted_at and updated_at timestamps

All options can be pre-configured by setting @timestamps_opts.

Ecto.Schema.Metadata

Stores metadata of a struct.
State
The state of the schema is stored in the :state field and allows
following values:
	:built - the struct was constructed in memory and is not persisted
to database yet;
	:loaded - the struct was loaded from database and represents
persisted data;
	:deleted - the struct was deleted and no longer represents persisted
data.

Source
The :source tracks the (table or collection) where the struct is or should
be persisted to.
Prefix
Tracks the source prefix in the data storage.
Context
The :context field represents additional state some databases require
for proper updates of data. It is not used by the built-in adapters of
Ecto.Adapters.Postgres and Ecto.Adapters.MySQL.
Schema
The :schema field refers the module name for the schema this metadata belongs to.

 Summary

 Types

 context()

 state()

 t()

 t(schema)

 Types

 context()

 @type context() :: any()

 state()

 @type state() :: :built | :loaded | :deleted

 t()

 @type t() :: t(module())

 t(schema)

 @type t(schema) :: %Ecto.Schema.Metadata{
 context: context(),
 prefix: Ecto.Schema.prefix(),
 schema: schema,
 source: Ecto.Schema.source(),
 state: state()
}

Mix.Ecto

Conveniences for writing Ecto related Mix tasks.

 Summary

 Functions

 ensure_implements(module, behaviour, message)

 Returns true if module implements behaviour.

 ensure_repo(repo, args)

 Ensures the given module is an Ecto.Repo.

 no_umbrella!(task)

 Gets a path relative to the application path.

 open?(file, line \\ 1)

 Asks if the user wants to open a file based on ECTO_EDITOR.

 parse_repo(args)

 Parses the repository option from the given command line args list.

 Functions

 ensure_implements(module, behaviour, message)

Returns true if module implements behaviour.

 ensure_repo(repo, args)

 @spec ensure_repo(module(), list()) :: Ecto.Repo.t()

Ensures the given module is an Ecto.Repo.

 no_umbrella!(task)

Gets a path relative to the application path.
Raises on umbrella application.

 open?(file, line \\ 1)

 @spec open?(binary(), non_neg_integer()) :: boolean()

Asks if the user wants to open a file based on ECTO_EDITOR.
By default, it attempts to open the file and line using the
file:line notation. For example, if your editor is called
subl, it will open the file as:
subl path/to/file:line
It is important that you choose an editor command that does
not block nor that attempts to run an editor directly in the
terminal. Command-line based editors likely need extra
configuration so they open up the given file and line in a
separate window.
Custom editors are supported by using the __FILE__ and
__LINE__ notations, for example:
ECTO_EDITOR="my_editor +__LINE__ __FILE__"
and Elixir will properly interpolate values.

 parse_repo(args)

 @spec parse_repo([term()]) :: [Ecto.Repo.t()]

Parses the repository option from the given command line args list.
If no repo option is given, it is retrieved from the application environment.

Ecto.Enum

A custom type that maps atoms to strings or integers.
Ecto.Enum must be used whenever you want to keep atom values in a field.
Since atoms cannot be persisted to the database, Ecto.Enum converts them
to strings or integers when writing to the database and converts them back
to atoms when loading data. It can be used in your schemas as follows:
Stored as strings
field :status, Ecto.Enum, values: [:foo, :bar, :baz]
or
Stored as integers
field :status, Ecto.Enum, values: [foo: 1, bar: 2, baz: 5]
Therefore, the type to be used in your migrations for enum fields depends
on the choice above. For the cases above, one would do, respectively:
add :status, :string
or
add :status, :integer
Some databases also support enum types, which you could use in combination
with the above.
Composite types, such as :array, are also supported which allow selecting
multiple values per record:
field :roles, {:array, Ecto.Enum}, values: [:author, :editor, :admin]
Overall, :values must be a list of atoms or a keyword list. Values will be
cast to atoms safely and only if the atom exists in the list (otherwise an
error will be raised). Attempting to load any string/integer not represented
by an atom in the list will be invalid.
The helper function mappings/2 returns the mappings for a given schema and
field, which can be used in places like form drop-downs. See mappings/2 for
examples.
If you want the values only, you can use values/2, and if you want
the "dump-able" values only, you can use dump_values/2.
Embeds
Ecto.Enum allows to customize how fields are dumped within embeds through the
:embed_as option. Two alternatives are supported: :values, which will save
the enum keys (and not their respective mapping), and :dumped, which will save
the dumped value. The default is :values. For example, assuming the following
schema:
defmodule EnumSchema do
 use Ecto.Schema

 schema "my_schema" do
 embeds_one :embed, Embed do
 field :embed_as_values, Ecto.Enum, values: [foo: 1, bar: 2], embed_as: :values
 field :embed_as_dump, Ecto.Enum, values: [foo: 1, bar: 2], embed_as: :dumped
 end
 end
end
The :embed_as_values field value will save :foo or :bar, while the
:embed_as_dump field value will save 1 or 2.

 Summary

 Functions

 cast_value(schema_or_types, field, value)

 Casts a value from the given schema and field.

 dump_values(schema_or_types, field)

 Returns the possible dump values for a given schema or types map and field

 mappings(schema_or_types, field)

 Returns the mappings between values and dumped values.

 values(schema_or_types, field)

 Returns the possible values for a given schema or types map and field.

 Functions

 cast_value(schema_or_types, field, value)

 @spec cast_value(module() | map(), atom(), binary() | atom() | integer()) ::
 {:ok, atom()} | :error

Casts a value from the given schema and field.
Examples
Assuming this schema:
defmodule MySchema do
 use Ecto.Schema

 schema "my_schema" do
 field :my_string_enum, Ecto.Enum, values: [:foo, :bar, :baz]
 field :my_integer_enum, Ecto.Enum, values: [foo: 1, bar: 2, baz: 5]
 end
end
Then:
Ecto.Enum.cast_value(MySchema, :my_string_enum, "foo")
#=> {:ok, :foo}

Ecto.Enum.cast_value(MySchema, :my_string_enum, :foo)
#=> {:ok, :foo}

Ecto.Enum.cast_value(MySchema, :my_string_enum, "qux")
#=> :error

Ecto.Enum.cast_value(MySchema, :my_integer_enum, 1)
#=> {:ok, :foo}

Ecto.Enum.cast_value(MySchema, :my_integer_enum, :foo)
#=> {:ok, :foo}

Ecto.Enum.cast_value(MySchema, :my_integer_enum, 6)
#=> :error
schema_or_types can also be a types map. See mappings/2 for more information.

 dump_values(schema_or_types, field)

 @spec dump_values(module() | map(), atom()) :: [String.t()] | [integer()]

Returns the possible dump values for a given schema or types map and field
"Dump values" are the values that can be dumped in the database. For enums stored
as strings, these are the strings that will be dumped in the database. For enums
stored as integers, these are the integers that will be dumped in the database.
Examples
Assuming this schema:
defmodule MySchema do
 use Ecto.Schema

 schema "my_schema" do
 field :my_string_enum, Ecto.Enum, values: [:foo, :bar, :baz]
 field :my_integer_enum, Ecto.Enum, values: [foo: 1, bar: 2, baz: 5]
 end
end
Then:
Ecto.Enum.dump_values(MySchema, :my_string_enum)
#=> ["foo", "bar", "baz"]

Ecto.Enum.dump_values(MySchema, :my_integer_enum)
#=> [1, 2, 5]
schema_or_types can also be a types map. See mappings/2 for more information.

 mappings(schema_or_types, field)

 @spec mappings(module() | map(), atom()) :: keyword(String.t() | integer())

Returns the mappings between values and dumped values.
Examples
Assuming this schema:
defmodule MySchema do
 use Ecto.Schema

 schema "my_schema" do
 field :my_string_enum, Ecto.Enum, values: [:foo, :bar, :baz]
 field :my_integer_enum, Ecto.Enum, values: [foo: 1, bar: 2, baz: 5]
 end
end
Here are some examples of using mappings/2 with it:
Ecto.Enum.mappings(MySchema, :my_string_enum)
#=> [foo: "foo", bar: "bar", baz: "baz"]

Ecto.Enum.mappings(MySchema, :my_integer_enum)
#=> [foo: 1, bar: 2, baz: 5]
Examples of calling mappings/2 with a types map:
schemaless_types = %{
 my_enum: Ecto.ParameterizedType.init(Ecto.Enum, values: [:foo, :bar, :baz]),
 my_integer_enum: Ecto.ParameterizedType.init(Ecto.Enum, values: [foo: 1, bar: 2, baz: 5])
}

Ecto.Enum.mappings(schemaless_types, :my_enum)
#=> [foo: "foo", bar: "bar", baz: "baz"]
Ecto.Enum.mappings(schemaless_types, :my_integer_enum)
#=> [foo: 1, bar: 2, baz: 5]

 values(schema_or_types, field)

 @spec values(module() | map(), atom()) :: [atom()]

Returns the possible values for a given schema or types map and field.
These values are the atoms that represent the different possible values
of the field.
Examples
Assuming this schema:
defmodule MySchema do
 use Ecto.Schema

 schema "my_schema" do
 field :my_string_enum, Ecto.Enum, values: [:foo, :bar, :baz]
 field :my_integer_enum, Ecto.Enum, values: [foo: 1, bar: 2, baz: 5]
 end
end
Then:
Ecto.Enum.values(MySchema, :my_string_enum)
#=> [:foo, :bar, :baz]

Ecto.Enum.values(MySchema, :my_integer_enum)
#=> [:foo, :bar, :baz]

Ecto.ParameterizedType behaviour

Parameterized types are Ecto types that can be customized per field.
Parameterized types allow a set of options to be specified in the schema
which are initialized on compilation and passed to the callback functions
as the last argument.
For example, field :foo, :string behaves the same for every field.
On the other hand, field :foo, Ecto.Enum, values: [:foo, :bar, :baz]
will likely have a different set of values per field.
Note that options are specified as a keyword, but it is idiomatic to
convert them to maps inside init/1 for easier pattern matching in
other callbacks.
Parameterized types are a superset of regular types. In other words,
with parameterized types you can do everything a regular type does,
and more. For example, parameterized types can handle nil values
in both load and dump callbacks, they can customize cast behavior
per query and per changeset, and also control how values are embedded.
However, parameterized types are also more complex. Therefore, if
everything you need to achieve can be done with basic types, they
should be preferred to parameterized ones.
Examples
To create a parameterized type, create a module as shown below:
defmodule MyApp.MyType do
 use Ecto.ParameterizedType

 def type(_params), do: :string

 def init(opts) do
 validate_opts(opts)
 Enum.into(opts, %{})
 end

 def cast(data, params) do
 ...
 {:ok, cast_data}
 end

 def load(data, _loader, params) do
 ...
 {:ok, loaded_data}
 end

 def dump(data, dumper, params) do
 ...
 {:ok, dumped_data}
 end

 def equal?(a, b, _params) do
 a == b
 end
end
To use this type in a schema field, specify the type and parameters like this:
schema "foo" do
 field :bar, MyApp.MyType, opt1: :baz, opt2: :boo
end
To use this type in a schema field with a composite type, specify the type in a tuple
and opts afterwards.
schema "foo" do
 field :bars, {:array, MyApp.MyType}, opt1: :baz, opt2: :boo
end
To use this type in places where you need it to be initialized (for example,
schemaless changesets), you can use init/2.
use Ecto.ParameterizedType
When you use Ecto.ParameterizedType, it will set
@behaviour Ecto.ParameterizedType and define default, overridable
implementations for embed_as/2 and equal?/3.

 Summary

 Types

 opts()

 The keyword options passed from the Schema's field macro into init/1

 params()

 The parameters for the ParameterizedType

 Callbacks

 autogenerate(params)

 Generates a loaded version of the data.

 cast(data, params)

 Casts the given input to the ParameterizedType with the given parameters.

 dump(value, dumper, params)

 Dumps the given term into an Ecto native type.

 embed_as(format, params)

 Dictates how the type should be treated inside embeds.

 equal?(value1, value2, params)

 Checks if two terms are semantically equal.

 format(params)

 Formats output when a ParameterizedType is printed in exceptions and
other logs.

 init(opts)

 Callback to convert the options specified in the field macro into parameters
to be used in other callbacks.

 load(value, loader, params)

 Loads the given term into a ParameterizedType.

 type(params)

 Returns the underlying schema type for the ParameterizedType.

 Functions

 init(type, opts)

 Inits a parameterized type given by type with opts.

 Types

 opts()

 @type opts() :: keyword()

The keyword options passed from the Schema's field macro into init/1

 params()

 @type params() :: term()

The parameters for the ParameterizedType
This is the value passed back from init/1 and subsequently passed
as the last argument to all callbacks. Idiomatically it is a map.

 Callbacks

 autogenerate(params)

 (optional)

 @callback autogenerate(params()) :: term()

Generates a loaded version of the data.
This callback is invoked when a parameterized type is given
to field with the :autogenerate flag.

 cast(data, params)

 @callback cast(data :: term(), params()) :: {:ok, term()} | :error | {:error, keyword()}

Casts the given input to the ParameterizedType with the given parameters.
If the parameterized type is also a composite type,
the inner type can be cast by calling Ecto.Type.cast/2
directly.
For more information on casting, see Ecto.Type.cast/1.

 dump(value, dumper, params)

 @callback dump(value :: any(), dumper :: function(), params()) ::
 {:ok, value :: any()} | :error

Dumps the given term into an Ecto native type.
It receives a dumper function in case the parameterized
type is also a composite type. In order to dump the inner
type, the dumper must be called with the inner type and
the inner value as argument.
For more information on dumping, see Ecto.Type.dump/1.
Note that this callback will be called when dumping a nil
value, unlike Ecto.Type.dump/1.

 embed_as(format, params)

 @callback embed_as(format :: atom(), params()) :: :self | :dump

Dictates how the type should be treated inside embeds.
For more information on embedding, see Ecto.Type.embed_as/1

 equal?(value1, value2, params)

 @callback equal?(value1 :: any(), value2 :: any(), params()) :: boolean()

Checks if two terms are semantically equal.

 format(params)

 (optional)

 @callback format(params()) :: String.t()

Formats output when a ParameterizedType is printed in exceptions and
other logs.
Note this callback is not used when constructing Ecto.Changeset validation
errors. See the :message option of most Ecto.Changeset validation
functions for how to customize error messaging on a per Ecto.Changeset basis.

 init(opts)

 @callback init(opts :: opts()) :: params()

Callback to convert the options specified in the field macro into parameters
to be used in other callbacks.
This function is called at compile time, and should raise if invalid values are
specified. It is idiomatic that the parameters returned from this are a map.
field and schema will be injected into the options automatically.
For example, this schema specification
schema "my_table" do
 field :my_field, MyParameterizedType, opt1: :foo, opt2: nil
end
will result in the call:
MyParameterizedType.init([schema: "my_table", field: :my_field, opt1: :foo, opt2: nil])

 load(value, loader, params)

 @callback load(value :: any(), loader :: function(), params()) ::
 {:ok, value :: any()} | :error

Loads the given term into a ParameterizedType.
It receives a loader function in case the parameterized
type is also a composite type. In order to load the inner
type, the loader must be called with the inner type and
the inner value as argument.
For more information on loading, see Ecto.Type.load/1.
Note that this callback will be called when loading a nil
value, unlike Ecto.Type.load/1.

 type(params)

 @callback type(params()) :: Ecto.Type.t()

Returns the underlying schema type for the ParameterizedType.
For more information on schema types, see Ecto.Type.type/0

 Functions

 init(type, opts)

Inits a parameterized type given by type with opts.
Useful when manually initializing a type for schemaless changesets.

Ecto.Type behaviour

Defines functions and the Ecto.Type behaviour for implementing
basic custom types.
Ecto provides two types of custom types: basic types and
parameterized types. Basic types are simple, requiring only four
callbacks to be implemented, and are enough for most occasions.
Parameterized types can be customized on the field definition and
provide a wide variety of callbacks.
The definition of basic custom types and all of their callbacks are
available in this module. You can learn more about parameterized
types in Ecto.ParameterizedType. If in doubt, prefer to use
basic custom types and rely on parameterized types if you need
the extra functionality.
External vs internal vs database representation
The core functionality of a custom type is the mapping between
external, internal and database representations of a value belonging
to the type.
For a definition of external and internal data take a look at the
related section
in the changeset documentation.
stateDiagram-v2
 external: External Data
 internal: Internal Data
 database: Database Data
 external --> internal: cast/1
 external --> database: dump/1
 internal --> database: dump/1
 database --> internal: load/1
Example
Imagine you want to store a URI struct as part of a schema in a
url-shortening service. There isn't an Ecto field type to support
that value at runtime therefore a custom one is needed.
You also want to query not only by the full url, but for example
by specific ports used. This is possible by putting the URI data
into a map field instead of just storing the plain
string representation.
from s in ShortUrl,
 where: fragment("?->>? ILIKE ?", s.original_url, "port", "443")
So the custom type does need to handle the conversion from
external data to runtime data (cast/1) as well as
transforming that runtime data into the :map Ecto native type and
back (dump/1 and load/1).
defmodule EctoURI do
 use Ecto.Type
 def type, do: :map

 # Provide custom casting rules.
 # Cast strings into the URI struct to be used at runtime
 def cast(uri) when is_binary(uri) do
 {:ok, URI.parse(uri)}
 end

 # Accept casting of URI structs as well
 def cast(%URI{} = uri), do: {:ok, uri}

 # Everything else is a failure though
 def cast(_), do: :error

 # When loading data from the database, as long as it's a map,
 # we just put the data back into a URI struct to be stored in
 # the loaded schema struct.
 def load(data) when is_map(data) do
 data =
 for {key, val} <- data do
 {String.to_existing_atom(key), val}
 end
 {:ok, struct!(URI, data)}
 end

 # When dumping data to the database, we *expect* a URI struct
 # but any value could be inserted into the schema struct at runtime,
 # so we need to guard against them.
 def dump(%URI{} = uri), do: {:ok, Map.from_struct(uri)}
 def dump(_), do: :error
end
Now we can use our new field type above in our schemas:
defmodule ShortUrl do
 use Ecto.Schema

 schema "posts" do
 field :original_url, EctoURI
 end
end
Note: nil values are always bypassed and cannot be handled by
custom types.
use Ecto.Type
When you use Ecto.Type, it will set @behaviour Ecto.Type and define
default, overridable implementations for embed_as/1 and equal?/2.
You must implement your own embed_as/1 function if you want
your dump/1 to be called when exporting from Ecto.
Custom types and primary keys
Remember that, if you change the type of your primary keys,
you will also need to change the type of all associations that
point to said primary key.
Imagine you want to encode the ID so they cannot enumerate the
content in your application. An Ecto type could handle the conversion
between the encoded version of the id and its representation in the
database. For the sake of simplicity, we'll use base64 encoding in
this example:
defmodule EncodedId do
 use Ecto.Type

 def type, do: :id

 def cast(id) when is_integer(id) do
 {:ok, encode_id(id)}
 end
 def cast(_), do: :error

 def dump(id) when is_binary(id) do
 {:ok, id_decoded} = Base.decode64(id)
 {:ok, String.to_integer(id_decoded)}
 end

 def load(id) when is_integer(id) do
 {:ok, encode_id(id)}
 end

 defp encode_id(id) do
 id
 |> Integer.to_string()
 |> Base.encode64()
 end
end
To use it as the type for the id in our schema, we can use the
@primary_key module attribute:
defmodule BlogPost do
 use Ecto.Schema

 @primary_key {:id, EncodedId, autogenerate: true}
 schema "posts" do
 belongs_to :author, Author, type: EncodedId
 field :content, :string
 end
end

defmodule Author do
 use Ecto.Schema

 @primary_key {:id, EncodedId, autogenerate: true}
 schema "authors" do
 field :name, :string
 has_many :posts, BlogPost
 end
end
The @primary_key attribute will tell ecto which type to
use for the id.
Note the type: EncodedId option given to belongs_to in
the BlogPost schema. By default, Ecto will treat
associations as if their keys were :integers. Our primary
keys are a custom type, so when Ecto tries to cast those
ids, it will fail.
Alternatively, you can set @foreign_key_type EncodedId
after @primary_key to automatically configure the type
of all belongs_to fields.

 Summary

 Types

 base()

 composite()

 custom()

 Custom types are represented by user-defined modules.

 primitive()

 Primitive Ecto types (handled by Ecto).

 t()

 An Ecto type, primitive or custom.

 Callbacks

 autogenerate()

 Generates a loaded version of the data.

 cast(term)

 Casts the given input to the custom type.

 dump(term)

 Dumps the given term into an Ecto native type.

 embed_as(format)

 Dictates how the type should be treated inside embeds.

 equal?(term, term)

 Checks if two terms are semantically equal.

 load(term)

 Loads the given term into a custom type.

 type()

 Returns the underlying schema type for the custom type.

 Functions

 base?(atom)

 Checks if the given atom can be used as base type.

 cast(type, value)

 Casts a value to the given type.

 cast!(type, value)

 Casts a value to the given type or raises an error.

 composite?(atom)

 Checks if the given atom can be used as composite type.

 dump(type, value, dumper \\ &dump/2)

 Dumps a value to the given type.

 embed_as(base, format)

 Gets how the type is treated inside embeds for the given format.

 embedded_dump(type, value, format)

 Dumps the value for type considering it will be embedded in format.

 embedded_load(type, value, format)

 Loads the value for type considering it was embedded in format.

 equal?(type, term1, term2)

 Checks if two terms are equal.

 format(type)

 Format type for error messaging and logs.

 include?(type, term, collection)

 Checks if collection includes a term.

 load(type, value, loader \\ &load/2)

 Loads a value with the given type.

 match?(schema_type, query_type)

 Checks if a given type matches with a primitive type
that can be found in queries.

 parameterized?(arg1, module)

 Checks if the given type is parameterized by the given module.

 primitive?(base)

 Checks if we have a primitive type.

 type(type)

 Retrieves the underlying schema type for the given, possibly custom, type.

 Types

 base()

 @type base() ::
 :integer
 | :float
 | :boolean
 | :string
 | :bitstring
 | :map
 | :binary
 | :decimal
 | :id
 | :binary_id
 | :utc_datetime
 | :naive_datetime
 | :date
 | :time
 | :any
 | :utc_datetime_usec
 | :naive_datetime_usec
 | :time_usec
 | :duration

 composite()

 @type composite() :: {:array, t()} | {:map, t()} | private_composite()

 custom()

 @type custom() :: module() | {:parameterized, {module(), term()}}

Custom types are represented by user-defined modules.

 primitive()

 @type primitive() :: base() | composite()

Primitive Ecto types (handled by Ecto).

 t()

 @type t() :: primitive() | custom()

An Ecto type, primitive or custom.

 Callbacks

 autogenerate()

 (optional)

 @callback autogenerate() :: term()

Generates a loaded version of the data.
This is callback is invoked when a custom type is given
to field with the :autogenerate flag.

 cast(term)

 @callback cast(term()) :: {:ok, term()} | :error | {:error, keyword()}

Casts the given input to the custom type.
This callback is called on external input and can return any type,
as long as the dump/1 function is able to convert the returned
value into an Ecto native type. There are two situations where
this callback is called:
	When casting values by Ecto.Changeset
	When passing arguments to Ecto.Query

You can return :error if the given term cannot be cast.
A default error message of "is invalid" will be added to the
changeset.
You may also return {:error, keyword()} to customize the
changeset error message and its metadata. Passing a :message
key, will override the default message. It is not possible to
override the :type key.
For {:array, CustomType} or {:map, CustomType} the returned
keyword list will be erased and the default error will be shown.

 dump(term)

 @callback dump(term()) :: {:ok, term()} | :error

Dumps the given term into an Ecto native type.
This callback is called with any term that was stored in the struct
and it needs to validate them and convert it to an Ecto native type.

 embed_as(format)

 @callback embed_as(format :: atom()) :: :self | :dump

Dictates how the type should be treated inside embeds.
By default, the type is sent as itself, without calling
dumping to keep the higher level representation. But
it can be set to :dump so that it is dumped before
being encoded.

 equal?(term, term)

 @callback equal?(term(), term()) :: boolean()

Checks if two terms are semantically equal.
This callback is used for determining equality of types in
Ecto.Changeset.
By default the terms are compared with the equal operator ==/2.

 load(term)

 @callback load(term()) :: {:ok, term()} | :error

Loads the given term into a custom type.
This callback is called when loading data from the database and
receives an Ecto native type. It can return any type, as long as
the dump/1 function is able to convert the returned value back
into an Ecto native type.

 type()

 @callback type() :: t()

Returns the underlying schema type for the custom type.
For example, if you want to provide your own date
structures, the type function should return :date.
Note this function is not required to return Ecto primitive
types, the type is only required to be known by the adapter.

 Functions

 base?(atom)

 @spec base?(atom()) :: boolean()

Checks if the given atom can be used as base type.
iex> base?(:string)
true
iex> base?(:array)
false
iex> base?(Custom)
false

 cast(type, value)

 @spec cast(t(), term()) :: {:ok, term()} | {:error, keyword()} | :error

Casts a value to the given type.
cast/2 is used by the finder queries and changesets to cast outside values to
specific types.
Note that nil can be cast to all primitive types as data stores allow nil to be
set on any column.
NaN and infinite decimals are not supported, use custom types instead.
iex> cast(:any, "whatever")
{:ok, "whatever"}

iex> cast(:any, nil)
{:ok, nil}
iex> cast(:string, nil)
{:ok, nil}

iex> cast(:integer, 1)
{:ok, 1}
iex> cast(:integer, "1")
{:ok, 1}
iex> cast(:integer, "1.0")
:error

iex> cast(:id, 1)
{:ok, 1}
iex> cast(:id, "1")
{:ok, 1}
iex> cast(:id, "1.0")
:error

iex> cast(:float, 1.0)
{:ok, 1.0}
iex> cast(:float, 1)
{:ok, 1.0}
iex> cast(:float, "1")
{:ok, 1.0}
iex> cast(:float, "1.0")
{:ok, 1.0}
iex> cast(:float, "1-foo")
:error

iex> cast(:boolean, true)
{:ok, true}
iex> cast(:boolean, false)
{:ok, false}
iex> cast(:boolean, "1")
{:ok, true}
iex> cast(:boolean, "0")
{:ok, false}
iex> cast(:boolean, "whatever")
:error

iex> cast(:string, "beef")
{:ok, "beef"}
iex> cast(:binary, "beef")
{:ok, "beef"}

iex> cast(:decimal, Decimal.new("1.0"))
{:ok, Decimal.new("1.0")}
iex> cast(:decimal, "1.0bad")
:error

iex> cast({:array, :integer}, [1, 2, 3])
{:ok, [1, 2, 3]}
iex> cast({:array, :integer}, ["1", "2", "3"])
{:ok, [1, 2, 3]}
iex> cast({:array, :string}, [1, 2, 3])
:error
iex> cast(:string, [1, 2, 3])
:error

iex> cast(:utc_datetime, "2014-04-17T14:00:00Z")
{:ok, ~U[2014-04-17 14:00:00Z]}
iex> cast(:utc_datetime, "2014-04-17T14:00:00.030Z")
{:ok, ~U[2014-04-17 14:00:00Z]}
iex> cast(:utc_datetime, "2014-04-17T12:00:00-02:00")
{:ok, ~U[2014-04-17 14:00:00Z]}

 cast!(type, value)

Casts a value to the given type or raises an error.
See cast/2 for more information.
Examples
iex> Ecto.Type.cast!(:integer, "1")
1
iex> Ecto.Type.cast!(:integer, 1)
1
iex> Ecto.Type.cast!(:integer, nil)
nil

iex> Ecto.Type.cast!(:integer, 1.0)
** (Ecto.CastError) cannot cast 1.0 to :integer

 composite?(atom)

 @spec composite?(atom()) :: boolean()

Checks if the given atom can be used as composite type.
iex> composite?(:array)
true
iex> composite?(:string)
false

 dump(type, value, dumper \\ &dump/2)

 @spec dump(t(), term(), (t(), term() -> {:ok, term()} | :error)) ::
 {:ok, term()} | :error

Dumps a value to the given type.
Opposite to casting, dumping requires the returned value
to be a valid Ecto type, as it will be sent to the
underlying data store.
iex> dump(:string, nil)
{:ok, nil}
iex> dump(:string, "foo")
{:ok, "foo"}

iex> dump(:integer, 1)
{:ok, 1}
iex> dump(:integer, "10")
:error

iex> dump(:binary, "foo")
{:ok, "foo"}
iex> dump(:binary, 1)
:error

iex> dump({:array, :integer}, [1, 2, 3])
{:ok, [1, 2, 3]}
iex> dump({:array, :integer}, [1, "2", 3])
:error
iex> dump({:array, :binary}, ["1", "2", "3"])
{:ok, ["1", "2", "3"]}

 embed_as(base, format)

Gets how the type is treated inside embeds for the given format.
See embed_as/1.

 embedded_dump(type, value, format)

Dumps the value for type considering it will be embedded in format.
Examples
iex> Ecto.Type.embedded_dump(:decimal, Decimal.new("1"), :json)
{:ok, Decimal.new("1")}

 embedded_load(type, value, format)

Loads the value for type considering it was embedded in format.
Examples
iex> Ecto.Type.embedded_load(:decimal, "1", :json)
{:ok, Decimal.new("1")}

 equal?(type, term1, term2)

 @spec equal?(t(), term(), term()) :: boolean()

Checks if two terms are equal.
Depending on the given type performs a structural or semantical comparison.
Examples
iex> equal?(:integer, 1, 1)
true
iex> equal?(:decimal, Decimal.new("1"), Decimal.new("1.00"))
true

 format(type)

Format type for error messaging and logs.

 include?(type, term, collection)

 @spec include?(t(), term(), Enum.t()) :: boolean()

Checks if collection includes a term.
Depending on the given type performs a structural or semantical comparison.
Examples
iex> include?(:integer, 1, 1..3)
true
iex> include?(:decimal, Decimal.new("1"), [Decimal.new("1.00"), Decimal.new("2.00")])
true

 load(type, value, loader \\ &load/2)

 @spec load(t(), term(), (t(), term() -> {:ok, term()} | :error)) ::
 {:ok, term()} | :error

Loads a value with the given type.
iex> load(:string, nil)
{:ok, nil}
iex> load(:string, "foo")
{:ok, "foo"}

iex> load(:integer, 1)
{:ok, 1}
iex> load(:integer, "10")
:error

 match?(schema_type, query_type)

 @spec match?(t(), primitive()) :: boolean()

Checks if a given type matches with a primitive type
that can be found in queries.
iex> match?(:string, :any)
true
iex> match?(:any, :string)
true
iex> match?(:string, :string)
true

iex> match?({:array, :string}, {:array, :any})
true

iex> match?(Ecto.UUID, :uuid)
true
iex> match?(Ecto.UUID, :string)
false

 parameterized?(arg1, module)

 @spec parameterized?(t(), module()) :: boolean()

Checks if the given type is parameterized by the given module.
iex> type = Ecto.ParameterizedType.init(Ecto.Enum, values: [a: 1])
iex> Ecto.Type.parameterized?(type, Ecto.Enum)
true
iex> Ecto.Type.parameterized?(type, MyEnum)
false

 primitive?(base)

 @spec primitive?(t()) :: boolean()

Checks if we have a primitive type.
iex> primitive?(:string)
true
iex> primitive?(Another)
false

iex> primitive?({:array, :string})
true
iex> primitive?({:array, Another})
true

 type(type)

 @spec type(t()) :: t()

Retrieves the underlying schema type for the given, possibly custom, type.
iex> type(:string)
:string
iex> type(Ecto.UUID)
:uuid

iex> type({:array, :string})
{:array, :string}
iex> type({:array, Ecto.UUID})
{:array, :uuid}

iex> type({:map, Ecto.UUID})
{:map, :uuid}

Ecto.UUID

An Ecto type for UUID strings.

 Summary

 Types

 raw()

 A raw binary representation of a UUID.

 t()

 A hex-encoded UUID string.

 Functions

 bingenerate()

 Generates a random, version 4 UUID in the binary format.

 cast(uuid)

 Casts either a string in the canonical, human-readable UUID format or a
16-byte binary to a UUID in its canonical, human-readable UUID format.

 cast!(uuid)

 Same as cast/1 but raises Ecto.CastError on invalid arguments.

 dump(uuid_string)

 Converts a string representing a UUID into a raw binary.

 dump!(uuid)

 Same as dump/1 but raises Ecto.ArgumentError on invalid arguments.

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 generate()

 Generates a random, version 4 UUID.

 load(raw_uuid)

 Converts a binary UUID into a string.

 load!(value)

 Same as load/1 but raises Ecto.ArgumentError on invalid arguments.

 Types

 raw()

 @type raw() :: <<_::128>>

A raw binary representation of a UUID.

 t()

 @type t() :: <<_::288>>

A hex-encoded UUID string.

 Functions

 bingenerate()

 @spec bingenerate() :: raw()

Generates a random, version 4 UUID in the binary format.

 cast(uuid)

 @spec cast(t() | raw() | any()) :: {:ok, t()} | :error

Casts either a string in the canonical, human-readable UUID format or a
16-byte binary to a UUID in its canonical, human-readable UUID format.
If uuid is neither of these, :error will be returned.
Since both binaries and strings are represented as binaries, this means some
strings you may not expect are actually also valid UUIDs in their binary form
and so will be casted into their string form.
If you need further-restricted behavior or validation, you should define your
own custom Ecto.Type. There is also Ecto.UUID.load/1 if you only want to
process raw UUIDs, which may be a more suitable reverse operation to
Ecto.UUID.dump/1.
Examples
iex> Ecto.UUID.cast(<<0x60, 0x1D, 0x74, 0xE4, 0xA8, 0xD3, 0x4B, 0x6E,
...> 0x83, 0x65, 0xED, 0xDB, 0x4C, 0x89, 0x33, 0x27>>)
{:ok, "601d74e4-a8d3-4b6e-8365-eddb4c893327"}

iex> Ecto.UUID.cast("601d74e4-a8d3-4b6e-8365-eddb4c893327")
{:ok, "601d74e4-a8d3-4b6e-8365-eddb4c893327"}

iex> Ecto.UUID.cast("warehouse worker")
{:ok, "77617265-686f-7573-6520-776f726b6572"}

 cast!(uuid)

 @spec cast!(t() | raw() | any()) :: t()

Same as cast/1 but raises Ecto.CastError on invalid arguments.

 dump(uuid_string)

 @spec dump(uuid_string :: t() | any()) :: {:ok, raw()} | :error

Converts a string representing a UUID into a raw binary.

 dump!(uuid)

 @spec dump!(t() | any()) :: raw()

Same as dump/1 but raises Ecto.ArgumentError on invalid arguments.

 embed_as(_)

Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

Callback implementation for Ecto.Type.equal?/2.

 generate()

 @spec generate() :: t()

Generates a random, version 4 UUID.

 load(raw_uuid)

 @spec load(raw() | any()) :: {:ok, t()} | :error

Converts a binary UUID into a string.

 load!(value)

 @spec load!(raw() | any()) :: t()

Same as load/1 but raises Ecto.ArgumentError on invalid arguments.

Ecto.Query.API

Lists all functions allowed in the query API.
	Comparison operators: ==, !=, <=, >=, <, >
	Arithmetic operators: +, -, *, /
	Boolean operators: and, or, not
	Inclusion operator: in/2
	Subquery operators: any, all and exists
	Search functions: like/2 and ilike/2
	Null check functions: is_nil/1
	Aggregates: count/0, count/1, avg/1, sum/1, min/1, max/1
	Date/time intervals: datetime_add/3, date_add/3, from_now/2, ago/2
	Inside select: struct/2, map/2, merge/2, selected_as/2 and literals (map, tuples, lists, etc)
	General: fragment/1, field/2, type/2, as/1, parent_as/1, selected_as/1

Note the functions in this module exist for documentation
purposes and one should never need to invoke them directly.
Furthermore, it is possible to define your own macros and
use them in Ecto queries (see docs for fragment/1).
Intervals
Ecto supports following values for interval option: "year", "month",
"week", "day", "hour", "minute", "second", "millisecond", and
"microsecond".
Date/Time functions like datetime_add/3, date_add/3, from_now/2,
ago/2 take interval as an argument.
Window API
Ecto also supports many of the windows functions found
in SQL databases. See Ecto.Query.WindowAPI for more
information.
About the arithmetic operators
The Ecto implementation of these operators provide only
a thin layer above the adapters. So if your adapter allows you
to use them in a certain way (like adding a date and an
interval in PostgreSQL), it should work just fine in Ecto
queries.

 Summary

 Functions

 left * right

 Binary * operation.

 left + right

 Binary + operation.

 left - right

 Binary - operation.

 left / right

 Binary / operation.

 left != right

 Binary != operation.

 left < right

 Binary < operation.

 left <= right

 Binary <= operation.

 left == right

 Binary == operation.

 left > right

 Binary > operation.

 left >= right

 Binary >= operation.

 ago(count, interval)

 Subtracts the given interval from the current time in UTC.

 all(subquery)

 Evaluates whether all values returned from the provided subquery match in a comparison operation.

 left and right

 Binary and operation.

 any(subquery)

 Tests whether one or more values returned from the provided subquery match in a comparison operation.

 as(binding)

 Refer to a named atom binding.

 avg(value)

 Calculates the average for the given entry.

 coalesce(value, expr)

 Takes the first value which is not null, or null if they both are.

 constant(value)

 Allows a dynamic string or number to be injected into a fragment

 count()

 Counts the entries in the table.

 count(value)

 Counts the given entry.

 count(value, atom)

 Counts the distinct values in given entry.

 date_add(date, count, interval)

 Adds a given interval to a date.

 datetime_add(datetime, count, interval)

 Adds a given interval to a datetime.

 exists(subquery)

 Evaluates to true if the provided subquery returns 1 or more rows.

 field(source, field)

 Allows a field to be dynamically accessed.

 filter(value, filter)

 Applies the given expression as a FILTER clause against an
aggregate. This is currently only supported by Postgres.

 fragment(fragments)

 Send fragments directly to the database.

 from_now(count, interval)

 Adds the given interval to the current time in UTC.

 identifier(binary)

 Allows a dynamic identifier to be injected into a fragment

 ilike(string, search)

 Searches for search in string in a case insensitive fashion.

 left in right

 Checks if the left-value is included in the right one.

 is_nil(value)

 Checks if the given value is nil.

 json_extract_path(json_field, path)

 Returns value from the json_field pointed to by path.

 like(string, search)

 Searches for search in string.

 map(source, fields)

 Used in select to specify which fields should be returned as a map.

 max(value)

 Calculates the maximum for the given entry.

 merge(left_map, right_map)

 Merges the map on the right over the map on the left.

 min(value)

 Calculates the minimum for the given entry.

 not value

 Unary not operation.

 left or right

 Binary or operation.

 parent_as(binding)

 Refer to a named atom binding in the parent query.

 selected_as(name)

 Refer to an alias of a selected value.

 selected_as(selected_value, name)

 Creates an alias for the given selected value.

 splice(list)

 Allows a list argument to be spliced into a fragment.

 struct(source, fields)

 Used in select to specify which struct fields should be returned.

 sum(value)

 Calculates the sum for the given entry.

 type(interpolated_value, type)

 Casts the given value to the given type at the database level.

 values(values, types)

 Creates a values list/constant table.

 Functions

 left * right

Binary * operation.

 left + right

Binary + operation.

 left - right

Binary - operation.

 left / right

Binary / operation.

 left != right

Binary != operation.

 left < right

Binary < operation.

 left <= right

Binary <= operation.

 left == right

Binary == operation.

 left > right

Binary > operation.

 left >= right

Binary >= operation.

 ago(count, interval)

Subtracts the given interval from the current time in UTC.
The current time in UTC is retrieved from Elixir and
not from the database.
See Intervals for supported interval values.
Examples
from p in Post, where: p.published_at > ago(3, "month")

 all(subquery)

Evaluates whether all values returned from the provided subquery match in a comparison operation.
from p in Post, where: p.visits >= all(
 from(p in Post, select: avg(p.visits), group_by: [p.category_id])
)
For a post to match in the above example it must be visited at least as much as the average post in all categories.
from p in Post, where: p.visits == all(
 from(p in Post, select: max(p.visits))
)
The above example matches all the posts which are tied for being the most visited.
Both any and all must be given a subquery as an argument, and they must be used on the right hand side of a comparison.
Both can be used with every comparison operator: ==, !=, >, >=, <, <=.

 left and right

Binary and operation.

 any(subquery)

Tests whether one or more values returned from the provided subquery match in a comparison operation.
from p in Product, where: p.id == any(
 from(li in LineItem, select: [li.product_id], where: li.created_at > ^since and li.qty >= 10)
)
A product matches in the above example if a line item was created since the provided date where the customer purchased
at least 10 units.
Both any and all must be given a subquery as an argument, and they must be used on the right hand side of a comparison.
Both can be used with every comparison operator: ==, !=, >, >=, <, <=.

 as(binding)

Refer to a named atom binding.
See Named Bindings for more information.

 avg(value)

Calculates the average for the given entry.
from p in Payment, select: avg(p.value)

 coalesce(value, expr)

Takes the first value which is not null, or null if they both are.
In SQL, COALESCE takes any number of arguments, but in ecto
it only takes two, so it must be chained to achieve the same
effect.
from p in Payment, select: p.value |> coalesce(p.backup_value) |> coalesce(0)

 constant(value)

Allows a dynamic string or number to be injected into a fragment:
limit = 10
"posts" |> select([p], p.title) |> limit(fragment("?", constant(^limit)))
The example above will inject the value of limit directly
into the query instead of treating it as a query parameter. It will
generate a query such as SELECT p0.title FROM "posts" AS p0 LIMIT 1
as opposed to SELECT p0.title FROM "posts" AS p0 LIMIT $1.
Note that each different value of limit will emit a different query,
which will be independently prepared and cached.

 count()

Counts the entries in the table.
from p in Post, select: count()

 count(value)

Counts the given entry.
from p in Post, select: count(p.id)

 count(value, atom)

Counts the distinct values in given entry.
from p in Post, select: count(p.id, :distinct)

 date_add(date, count, interval)

Adds a given interval to a date.
See datetime_add/3 for more information.
See Intervals for supported interval values.

 datetime_add(datetime, count, interval)

Adds a given interval to a datetime.
The first argument is a datetime, the second one is the count
for the interval, which may be either positive or negative and
the interval value:
Get all items published since the last month
from p in Post, where: p.published_at >
 datetime_add(^NaiveDateTime.utc_now(), -1, "month")
In the example above, we used datetime_add/3 to subtract one month
from the current datetime and compared it with the p.published_at.
If you want to perform operations on date, date_add/3 could be used.
See Intervals for supported interval values.

 exists(subquery)

Evaluates to true if the provided subquery returns 1 or more rows.
from p in Post,
 as: :post,
 where:
 exists(
 from(
 c in Comment,
 where: parent_as(:post).id == c.post_id and c.replies_count > 5,
 select: 1
)
)
This is best used in conjunction with parent_as/1 to correlate the subquery
with the parent query to test some condition on related rows in a different table.
In the above example the query returns posts which have at least one comment that
has more than 5 replies.

 field(source, field)

Allows a field to be dynamically accessed.
The source name can be a binding (p in from p in Post) or a named binding
using as/1 or parent_as/1. The named binding maybe a literal atom or an
interpolation.
The field name can be given as either an atom or a string. In a schemaless
query, the two types of names behave the same. However, when referencing
a field from a schema the behaviours are different.
Using an atom to reference a schema field will inherit all the properties from
the schema. For example, the field name will be changed to the value of :source
before generating the final query and its type behaviour will be dictated by the
one specified in the schema.
Using a string to reference a schema field is equivalent to bypassing all of the
above and accessing the field directly from the source (i.e. the underlying table).
This means the name will not be changed to the value of :source and the type
behaviour will be dictated by the underlying driver (e.g. Postgrex or MyXQL).
Take the following schema and query:
defmodule Car do
 use Ecto.Schema

 schema "cars" do
 field :doors, source: :num_doors
 field :tires, source: :num_tires
 end
end

def at_least_four(doors_or_tires) do
 from c in Car,
 where: field(c, ^doors_or_tires) >= 4
end

def at_least_four(query, doors_or_tires) do
 from q in query,
 where: field(as(:car), ^doors_or_tires) >= 4
end

def at_least_four(query, binding, doors_or_tires) do
 from q in query,
 where: field(as(^binding), ^doors_or_tires) >= 4
end
In the example above, at_least_four(:doors) and at_least_four("num_doors")
would be valid ways to return the set of cars having at least 4 doors.
String names can be particularly useful when your application is dynamically
generating many schemaless queries at runtime and you want to avoid creating
a large number of atoms.

 filter(value, filter)

Applies the given expression as a FILTER clause against an
aggregate. This is currently only supported by Postgres.
from p in Payment, select: filter(avg(p.value), p.value > 0 and p.value < 100)

from p in Payment, select: avg(p.value) |> filter(p.value < 0)

 fragment(fragments)

Send fragments directly to the database.
It is not possible to represent all possible database queries using
Ecto's query syntax. When such is required, it is possible to use
fragments to send any expression to the database:
def unpublished_by_title(title) do
 from p in Post,
 where: is_nil(p.published_at) and
 fragment("lower(?)", p.title) == ^title
end
Every occurrence of the ? character will be interpreted as a place
for parameters, which must be given as additional arguments to
fragment. If the literal character ? is required as part of the
fragment, it can be escaped with \\? (one escape for strings,
another for fragment).
In the example above, we are using the lower procedure in the
database to downcase the title column.
It is very important to keep in mind that Ecto is unable to do any
type casting when fragments are used. Therefore it may be necessary
to explicitly cast parameters via type/2:
fragment("lower(?)", p.title) == type(^title, :string)
Identifiers and Constants
Sometimes you need to interpolate an identifier or a constant value into a fragment,
instead of a query parameter. The latter can happen if your database does not allow
parameterizing certain clauses. For example:
collation = "es_ES"
fragment("? COLLATE ?", ^name, ^collation)

limit = "10"
"posts" |> select([p], p.title) |> limit(fragment("?", ^limit))
The first example above won't work because collation needs to be quoted as an identifier.
The second example won't work on databases that do not allow passing query parameters
as part of limit.
You can address this by telling Ecto to treat these values differently than a query parameter:
fragment("? COLLATE ?", ^name, identifier(^collation))
"posts" |> select([p], p.title) |> limit(fragment("?", ^constant(limit))
Ecto will make these values directly part of the query, handling quoting and escaping where necessary.
Query caching
Because identifiers and constants are made part of the query, each different
value will generate a separate query, with its own cache.
Splicing
Sometimes you may need to interpolate a variable number of arguments
into the same fragment. For example, when overriding Ecto's default
where behaviour for Postgres:
from p in Post, where: fragment("? in (?, ?)", p.id, val1, val2)
The example above will only work if you know the number of arguments
upfront. If it can vary, the above will not work.
You can address this by telling Ecto to splice a list argument into
the fragment:
from p in Post, where: fragment("? in (?)", p.id, splice(^val_list))
This will let Ecto know it should expand the values of the list into
separate fragment arguments. For example:
from p in Post, where: fragment("? in (?)", p.id, splice(^[1, 2, 3]))
would be expanded into
from p in Post, where: fragment("? in (?,?,?)", p.id, ^1, ^2, ^3)
Defining custom functions using macros and fragment
You can add a custom Ecto query function using macros. For example
to expose SQL's coalesce function you can define this macro:
defmodule CustomFunctions do
 defmacro coalesce(left, right) do
 quote do
 fragment("coalesce(?, ?)", unquote(left), unquote(right))
 end
 end
end
To have coalesce/2 available, just import the module that defines it.
import CustomFunctions
The only downside is that it will show up as a fragment when
inspecting the Elixir query. Other than that, it should be
equivalent to a built-in Ecto query function.
Keyword fragments
In order to support databases that do not have string-based
queries, like MongoDB, fragments also allow keywords to be given:
from p in Post,
 where: fragment(title: ["$eq": ^some_value])

 from_now(count, interval)

Adds the given interval to the current time in UTC.
The current time in UTC is retrieved from Elixir and
not from the database.
See Intervals for supported interval values.
Examples
from a in Account, where: a.expires_at < from_now(3, "month")

 identifier(binary)

Allows a dynamic identifier to be injected into a fragment:
collation = "es_ES"
select("posts", [p], fragment("? COLLATE ?", p.title, identifier(^collation)))
The example above will inject the value of collation directly
into the query instead of treating it as a query parameter. It will
generate a query such as SELECT p0.title COLLATE "es_ES" FROM "posts" AS p0
as opposed to SELECT p0.title COLLATE $1 FROM "posts" AS p0.
Note that each different value of collation will emit a different query,
which will be independently prepared and cached.

 ilike(string, search)

Searches for search in string in a case insensitive fashion.
from p in Post, where: ilike(p.body, "Chapter%")
Translates to the underlying SQL ILIKE query. This operation is
only available on PostgreSQL.

 left in right

Checks if the left-value is included in the right one.
from p in Post, where: p.id in [1, 2, 3]
The right side may either be a literal list, an interpolated list,
any struct that implements the Enumerable protocol, or even a
column in the database with array type:
from p in Post, where: "elixir" in p.tags
Additionally, the right side may also be a subquery, which should return
a single column:
from c in Comment, where: c.post_id in subquery(
 from(p in Post, where: p.created_at > ^since, select: p.id)
)

 is_nil(value)

Checks if the given value is nil.
from p in Post, where: is_nil(p.published_at)
To check if a given value is not nil use:
from p in Post, where: not is_nil(p.published_at)

 json_extract_path(json_field, path)

Returns value from the json_field pointed to by path.
from(post in Post, select: json_extract_path(post.meta, ["author", "name"]))
The path can be dynamic:
path = ["author", "name"]
from(post in Post, select: json_extract_path(post.meta, ^path))
And the field can also be dynamic in combination with it:
path = ["author", "name"]
from(post in Post, select: json_extract_path(field(post, :meta), ^path))
The query can be also rewritten as:
from(post in Post, select: post.meta["author"]["name"])
Path elements can be integers to access values in JSON arrays:
from(post in Post, select: post.meta["tags"][0]["name"])
Some adapters allow path elements to be references to query source fields
from(post in Post, select: post.meta[p.title])
from(p in Post, join: u in User, on: p.user_id == u.id, select: p.meta[u.name])
Any element of the path can be dynamic:
field = "name"
from(post in Post, select: post.meta["author"][^field])

source_field = :source_column
from(post in Post, select: post.meta["author"][field(p, ^source_field)])
Warning: indexes on PostgreSQL
PostgreSQL supports indexing on jsonb columns via GIN indexes.
Whenever comparing the value of a jsonb field against a string
or integer, Ecto will use the containment operator @> which
is optimized. You can even use the more efficient jsonb_path_ops
GIN index variant. For more information, consult PostgreSQL's docs
on JSON indexing.
Warning: return types
The underlying data in the JSON column is returned without any
additional decoding. This means "null" JSON values are not the
same as SQL's "null". For example, the Repo.all operation below
returns an empty list because p.meta["author"] returns JSON's
null and therefore is_nil does not succeed:
Repo.insert!(%Post{meta: %{author: nil}})
Repo.all(from(post in Post, where: is_nil(p.meta["author"])))
Similarly, other types, such as datetimes, are returned as strings.
This means conditions like post.meta["published_at"] > from_now(-1, "day")
may return incorrect results or fail as the underlying database
tries to compare incompatible types. You can, however, use type/2
to force the types on the database level.

 like(string, search)

Searches for search in string.
from p in Post, where: like(p.body, "Chapter%")
Translates to the underlying SQL LIKE query, therefore
its behaviour is dependent on the database. In particular,
PostgreSQL will do a case-sensitive operation, while the
majority of other databases will be case-insensitive. For
performing a case-insensitive like in PostgreSQL, see ilike/2.
You should be very careful when allowing user sent data to be used
as part of LIKE query, since they allow to perform
LIKE-injections.

 map(source, fields)

Used in select to specify which fields should be returned as a map.
For example, if you don't need all fields to be returned or
neither need a struct, you can use map/2 to achieve both:
from p in Post,
 select: map(p, [:title, :body])
map/2 can also be used to dynamically select fields:
fields = [:title, :body]
from p in Post, select: map(p, ^fields)
If the same source is selected multiple times with a map,
the fields are merged in order to avoid fetching multiple copies
from the database. In other words, the expression below:
from(city in City, preload: :country,
 select: {map(city, [:country_id]), map(city, [:name])})
is expanded to:
from(city in City, preload: :country,
 select: {map(city, [:country_id, :name]), map(city, [:country_id, :name])})
For preloads, the selected fields may be specified from the parent:
from(city in City, preload: :country,
 select: map(city, [:country_id, :name, country: [:id, :population]]))
 It's also possible to select a struct from one source but only a subset of
 fields from one of its associations:
from(city in City, preload: :country,
 select: %{city | country: map(country: [:id, :population])})
IMPORTANT: When filtering fields for associations, you
MUST include the foreign keys used in the relationship,
otherwise Ecto will be unable to find associated records.

 max(value)

Calculates the maximum for the given entry.
from p in Payment, select: max(p.value)

 merge(left_map, right_map)

Merges the map on the right over the map on the left.
If the map on the left side is a struct, Ecto will check
all of the field on the right previously exist on the left
before merging.
from(city in City, select: merge(city, %{virtual_field: "some_value"}))
This function is primarily used by Ecto.Query.select_merge/3
to merge different select clauses.

 min(value)

Calculates the minimum for the given entry.
from p in Payment, select: min(p.value)

 not value

Unary not operation.
It is used to negate values in :where. It is also used to match
the assert the opposite of in/2, is_nil/1, and exists/1.
For example:
from p in Post, where: p.id not in [1, 2, 3]

from p in Post, where: not is_nil(p.title)

Retrieve all the posts that doesn't have comments.
from p in Post,
 as: :post,
 where:
 not exists(
 from(
 c in Comment,
 where: parent_as(:post).id == c.post_id
)
)

 left or right

Binary or operation.

 parent_as(binding)

Refer to a named atom binding in the parent query.
This is available only inside subqueries.
See Named Bindings for more information.

 selected_as(name)

Refer to an alias of a selected value.
This can be used to refer to aliases created using selected_as/2. If
the alias hasn't been created using selected_as/2, an error will be raised.
Each database has its own rules governing which clauses can reference these aliases.
If an error is raised mentioning an unknown column, most likely the alias is being
referenced somewhere that is not allowed. Consult the documentation for the database
to ensure the alias is being referenced correctly.

 selected_as(selected_value, name)

Creates an alias for the given selected value.
When working with calculated values, an alias can be used to simplify
the query. Otherwise, the entire expression would need to be copied when
referencing it outside of select statements.
This comes in handy when, for instance, you would like to use the calculated
value in Ecto.Query.group_by/3 or Ecto.Query.order_by/3:
from p in Post,
 select: %{
 posted: selected_as(p.posted, :date),
 sum_visits: p.visits |> coalesce(0) |> sum() |> selected_as(:sum_visits)
 },
 group_by: selected_as(:date),
 order_by: selected_as(:sum_visits)
The name of the alias must be an atom and it can only be used in the outer most
select expression, otherwise an error is raised. Please note that the alias name
does not have to match the key when select returns a map, struct or keyword list.
Using this in conjunction with selected_as/1 is recommended to ensure only defined aliases
are referenced.
Subqueries and CTEs
Subqueries and CTEs automatically alias the selected fields, for example, one can write:
Subquery
s = from p in Post, select: %{visits: coalesce(p.visits, 0)}
from(s in subquery(s), select: s.visits)

CTE
cte_query = from p in Post, select: %{visits: coalesce(p.visits, 0)}
Post |> with_cte("cte", as: ^cte_query) |> join(:inner, [p], c in "cte") |> select([p, c], c.visits)
However, one can also use selected_as to override the default naming:
Subquery
s = from p in Post, select: %{visits: coalesce(p.visits, 0) |> selected_as(:num_visits)}
from(s in subquery(s), select: s.num_visits)

CTE
cte_query = from p in Post, select: %{visits: coalesce(p.visits, 0) |> selected_as(:num_visits)}
Post |> with_cte("cte", as: ^cte_query) |> join(:inner, [p], c in "cte") |> select([p, c], c.num_visits)
The name given to selected_as/2 can also be referenced in selected_as/1,
as in regular queries.

 splice(list)

Allows a list argument to be spliced into a fragment.
from p in Post, where: fragment("? in (?)", p.id, splice(^[1, 2, 3]))
The example above will be transformed at runtime into the following:
from p in Post, where: fragment("? in (?,?,?)", p.id, ^1, ^2, ^3)
You may only splice runtime values. For example, this would not work because
query bindings are compile-time constructs:
from p in Post, where: fragment("concat(?)", splice(^[p.count, " ", "count"]))

 struct(source, fields)

Used in select to specify which struct fields should be returned.
For example, if you don't need all fields to be returned
as part of a struct, you can filter it to include only certain
fields by using struct/2:
from p in Post,
 select: struct(p, [:title, :body])
struct/2 can also be used to dynamically select fields:
fields = [:title, :body]
from p in Post, select: struct(p, ^fields)
As a convenience, select allows developers to take fields
without an explicit call to struct/2:
from p in Post, select: [:title, :body]
Or even dynamically:
fields = [:title, :body]
from p in Post, select: ^fields
For preloads, the selected fields may be specified from the parent:
from(city in City, preload: :country,
 select: struct(city, [:country_id, :name, country: [:id, :population]]))
If the same source is selected multiple times with a struct,
the fields are merged in order to avoid fetching multiple copies
from the database. In other words, the expression below:
from(city in City, preload: :country,
 select: {struct(city, [:country_id]), struct(city, [:name])})
is expanded to:
from(city in City, preload: :country,
 select: {struct(city, [:country_id, :name]), struct(city, [:country_id, :name])})
IMPORTANT: When filtering fields for associations, you
MUST include the foreign keys used in the relationship,
otherwise Ecto will be unable to find associated records.

 sum(value)

Calculates the sum for the given entry.
from p in Payment, select: sum(p.value)

 type(interpolated_value, type)

Casts the given value to the given type at the database level.
Most of the times, Ecto is able to proper cast interpolated
values due to its type checking mechanism. In some situations
though, you may want to tell Ecto that a parameter has some
particular type:
type(^title, :string)
It is also possible to say the type must match the same of a column:
type(^title, p.title)
Or a parameterized type, which must be previously initialized
with Ecto.ParameterizedType.init/2:
@my_enum Ecto.ParameterizedType.init(Ecto.Enum, values: [:foo, :bar, :baz])
type(^title, ^@my_enum)
Ecto will ensure ^title is cast to the given type and enforce such
type at the database level. If the value is returned in a select,
Ecto will also enforce the proper type throughout.
When performing arithmetic operations, type/2 can be used to cast
all the parameters in the operation to the same type:
from p in Post,
 select: type(p.visits + ^a_float + ^a_integer, :decimal)
Inside select, type/2 can also be used to cast fragments:
type(fragment("NOW"), :naive_datetime)
Or to type fields from schemaless queries:
from p in "posts", select: type(p.cost, :decimal)
Or to type aggregation results:
from p in Post, select: type(avg(p.cost), :integer)
from p in Post, select: type(filter(avg(p.cost), p.cost > 0), :integer)
Or to type comparison expression results:
from p in Post, select: type(coalesce(p.cost, 0), :integer)
Or to type fields from a parent query using parent_as/1:
child = from c in Comment, where: type(parent_as(:posts).id, :string) == c.text
from Post, as: :posts, inner_lateral_join: c in subquery(child), select: c.text
type vs fragment
type/2 is all about Ecto types. Therefore, you can perform type(expr, :string)
but not type(expr, :text), because :text is not an actual Ecto type. If you want
to perform casting exclusively at the database level, you can use fragment. For example,
in PostgreSQL, you might do fragment("?::text", p.column).

 values(values, types)

Creates a values list/constant table.
A values list can be used as a source in a query, both in Ecto.Query.from/2
and Ecto.Query.join/5.
The first argument is a list of maps representing the values of the constant table.
An error is raised if the list is empty or if every map does not have exactly the
same fields.
The second argument is either a map of types or an Ecto schema containing all the
fields in the first argument.
Each field must be given a type or an error is raised. Any type that can be specified in
a schema may be used.
Queries using a values list are not cacheable by Ecto.
Select with map types example
values = [%{id: 1, text: "abc"}, %{id: 2, text: "xyz"}]
types = %{id: :integer, text: :string}

query =
 from v1 in values(values, types),
 join: v2 in values(values, types),
 on: v1.id == v2.id

Repo.all(query)
Select with schema types example
values = [%{id: 1, text: "abc"}, %{id: 2, text: "xyz"}]
types = ValuesSchema

query =
 from v1 in values(values, types),
 join: v2 in values(values, types),
 on: v1.id == v2.id

Repo.all(query)
Delete example
values = [%{id: 1, text: "abc"}, %{id: 2, text: "xyz"}]
types = %{id: :integer, text: :string}

query =
 from p in Post,
 join: v in values(values, types),
 on: p.id == v.id,
 where: p.counter == ^0

Repo.delete_all(query)
Update example
values = [%{id: 1, text: "abc"}, %{id: 2, text: "xyz"}]
types = %{id: :integer, text: :string}

query =
 from p in Post,
 join: v in values(values, types),
 on: p.id == v.id,
 update: [set: [text: v.text]]

Repo.update_all(query, [])

Ecto.Query.WindowAPI

Lists all windows functions.
Windows functions must always be used as the first argument
of over/2 where the second argument is the name of a window:
from e in Employee,
 select: {e.depname, e.empno, e.salary, over(avg(e.salary), :department)},
 windows: [department: [partition_by: e.depname]]
In the example above, we get the average salary per department.
:department is the window name, partitioned by e.depname
and avg/1 is the window function.
However, note that defining a window is not necessary, as the
window definition can be given as the second argument to over:
from e in Employee,
 select: {e.depname, e.empno, e.salary, over(avg(e.salary), partition_by: e.depname)}
Both queries are equivalent. However, if you are using the same
partitioning over and over again, defining a window will reduce
the query size. See Ecto.Query.windows/3 for all possible window
expressions, such as :partition_by and :order_by.

 Summary

 Functions

 avg(value)

 Calculates the average for the given entry.

 count()

 Counts the entries in the table.

 count(value)

 Counts the given entry.

 cume_dist()

 Returns relative rank of the current row:
(number of rows preceding or peer with current row) / (total rows).

 dense_rank()

 Returns rank of the current row without gaps; this function counts peer groups.

 filter(value, filter)

 Applies the given expression as a FILTER clause against an
aggregate. This is currently only supported by Postgres.

 first_value(value)

 Returns value evaluated at the row that is the first row of the window frame.

 lag(value, offset \\ 1, default \\ nil)

 Returns value evaluated at the row that is offset rows before
the current row within the partition.

 last_value(value)

 Returns value evaluated at the row that is the last row of the window frame.

 lead(value, offset \\ 1, default \\ nil)

 Returns value evaluated at the row that is offset rows after
the current row within the partition.

 max(value)

 Calculates the maximum for the given entry.

 min(value)

 Calculates the minimum for the given entry.

 nth_value(value, nth)

 Returns value evaluated at the row that is the nth row of the window
frame (counting from 1); nil if no such row.

 ntile(num_buckets)

 Returns integer ranging from 1 to the argument value, dividing the partition as equally as possible.

 over(window_function, window_name)

 Defines a value based on the function and the window. See moduledoc for more information.

 percent_rank()

 Returns relative rank of the current row: (rank - 1) / (total rows - 1).

 rank()

 Returns rank of the current row with gaps; same as row_number/0 of its first peer.

 row_number()

 Returns number of the current row within its partition, counting from 1.

 sum(value)

 Calculates the sum for the given entry.

 Functions

 avg(value)

Calculates the average for the given entry.
from p in Payment, select: avg(p.value)

 count()

Counts the entries in the table.
from p in Post, select: count()

 count(value)

Counts the given entry.
from p in Post, select: count(p.id)

 cume_dist()

Returns relative rank of the current row:
(number of rows preceding or peer with current row) / (total rows).
from p in Post,
 select: cume_dist() |> over(partition_by: p.category_id, order_by: p.date)
Note that this function must be invoked using window function syntax.

 dense_rank()

Returns rank of the current row without gaps; this function counts peer groups.
from p in Post,
 select: dense_rank() |> over(partition_by: p.category_id, order_by: p.date)
Note that this function must be invoked using window function syntax.

 filter(value, filter)

Applies the given expression as a FILTER clause against an
aggregate. This is currently only supported by Postgres.
from p in Post,
 select: avg(p.value)
 |> filter(p.value > 0 and p.value < 100)
 |> over(partition_by: p.category_id, order_by: p.date)

 first_value(value)

Returns value evaluated at the row that is the first row of the window frame.
from p in Post,
 select: first_value(p.id) |> over(partition_by: p.category_id, order_by: p.date)
Note that this function must be invoked using window function syntax.

 lag(value, offset \\ 1, default \\ nil)

Returns value evaluated at the row that is offset rows before
the current row within the partition.
If there is no such row, instead return default (which must be of the
same type as value). Both offset and default are evaluated with respect
to the current row. If omitted, offset defaults to 1 and default to nil.
from e in Events,
 windows: [w: [partition_by: e.name, order_by: e.tick]],
 select: {
 e.tick,
 e.action,
 e.name,
 lag(e.action) |> over(:w), # previous_action
 lead(e.action) |> over(:w) # next_action
 }
Note that this function must be invoked using window function syntax.

 last_value(value)

Returns value evaluated at the row that is the last row of the window frame.
from p in Post,
 select: last_value(p.id) |> over(partition_by: p.category_id, order_by: p.date)
Note that this function must be invoked using window function syntax.

 lead(value, offset \\ 1, default \\ nil)

Returns value evaluated at the row that is offset rows after
the current row within the partition.
If there is no such row, instead return default (which must be of the
same type as value). Both offset and default are evaluated with respect
to the current row. If omitted, offset defaults to 1 and default to nil.
from e in Events,
 windows: [w: [partition_by: e.name, order_by: e.tick]],
 select: {
 e.tick,
 e.action,
 e.name,
 lag(e.action) |> over(:w), # previous_action
 lead(e.action) |> over(:w) # next_action
 }
Note that this function must be invoked using window function syntax.

 max(value)

Calculates the maximum for the given entry.
from p in Payment, select: max(p.value)

 min(value)

Calculates the minimum for the given entry.
from p in Payment, select: min(p.value)

 nth_value(value, nth)

Returns value evaluated at the row that is the nth row of the window
frame (counting from 1); nil if no such row.
from p in Post,
 select: nth_value(p.id, 4) |> over(partition_by: p.category_id, order_by: p.date)
Note that this function must be invoked using window function syntax.

 ntile(num_buckets)

Returns integer ranging from 1 to the argument value, dividing the partition as equally as possible.
from p in Post,
 select: ntile(10) |> over(partition_by: p.category_id, order_by: p.date)
Note that this function must be invoked using window function syntax.

 over(window_function, window_name)

Defines a value based on the function and the window. See moduledoc for more information.
from e in Employee, select: over(avg(e.salary), partition_by: e.depname)

 percent_rank()

Returns relative rank of the current row: (rank - 1) / (total rows - 1).
from p in Post,
 select: percent_rank() |> over(partition_by: p.category_id, order_by: p.date)
Note that this function must be invoked using window function syntax.

 rank()

Returns rank of the current row with gaps; same as row_number/0 of its first peer.
from p in Post,
 select: rank() |> over(partition_by: p.category_id, order_by: p.date)
Note that this function must be invoked using window function syntax.

 row_number()

Returns number of the current row within its partition, counting from 1.
from p in Post,
 select: row_number() |> over(partition_by: p.category_id, order_by: p.date)
Note that this function must be invoked using window function syntax.

 sum(value)

Calculates the sum for the given entry.
from p in Payment, select: sum(p.value)

Ecto.Queryable protocol

Converts a data structure into an Ecto.Query.
This is used by Ecto.Repo and also by the from macro.
For example, Repo.all
expects any queryable as argument, which is why you can do Repo.all(MySchema)
or Repo.all(query). Furthermore, when you write from ALIAS in QUERYABLE,
QUERYABLE accepts any data structure that implements Ecto.Queryable.
This module defines a few default implementations so let us go over each and
how to use them.
Atom
The most common use case for this protocol is to convert atoms representing
an Ecto.Schema module into a query. This is what happens when you write:
query = from(p in Person)
Or when you directly pass a schema to a repository:
Repo.all(Person)
In case you did not know, Elixir modules are just atoms. This implementation
takes the provided module name and then tries to load the associated schema.
If no schema exists, it will raise Protocol.UndefinedError.
BitString
This implementation allows you to directly specify a table that you would like
to query from:
from(
 p in "people",
 select: {p.first_name, p.last_name}
)
Or:
Repo.delete_all("people")
While this is quite simple to use, some repository operations, such as
Repo.all, require a select clause. When you query a schema, the
select is automatically defined for you based on the schema fields,
but when you pass a table directly, you need to explicitly list them.
This limitation now brings us to our next implementation!
Tuple
Similar to the BitString implementation, this allows you to specify the
underlying table that you would like to query; however, this additionally
allows you to specify the schema you would like to use:
from(p in {"filtered_people", Person})
This can be particularly useful if you have database views that filter or
aggregate the underlying data of a table but share the same schema. This means
that you can reuse the same schema while specifying a separate "source" for
the data.
Ecto.Query
This is a simple pass through. After all, all Ecto.Query instances
can be converted into Ecto.Query:
Repo.all(from u in User, where: u.active)
This also enables Ecto queries to compose, since we can pass one query
as the source of another:
active_users = from u in User, where: u.active
ordered_active_users = from u in active_users, order_by: u.created_at
Ecto.SubQuery
Ecto also allows you to compose queries using subqueries. Imagine you
have a table of "people". Now imagine that you want to do something with
people with the most common last names. To get that list, you could write
something like:
sub = from(
 p in Person,
 group_by: p.last_name,
 having: count(p.last_name) > 1,
 select: %{last_name: p.last_name, count: count(p.last_name)}
)
Now if you want to do something else with this data, perhaps join on
additional tables and perform some calculations, you can do that as so:
from(
 p in subquery(sub),
 # other filtering etc here
)
Please note that the Ecto.Query.subquery/2 is needed here to convert the
Ecto.Query into an instance of Ecto.SubQuery. This protocol then wraps
it into an Ecto.Query, but using the provided subquery in the FROM clause.
Please see Ecto.Query.subquery/2 for more information.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 to_query(data)

 Converts the given data into an Ecto.Query.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 to_query(data)

Converts the given data into an Ecto.Query.

Ecto.SubQuery

A struct representing subqueries.
Users of Ecto must consider this struct as opaque
and not access its fields. Authors of adapters may
read its contents, but never modify them.
See Ecto.Query.subquery/2 for more information.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Ecto.SubQuery{
 cache: term(),
 params: term(),
 query: term(),
 select: term()
}

Ecto.Adapter behaviour

Specifies the minimal API required from adapters.

 Summary

 Types

 adapter_meta()

 The metadata returned by the adapter init/1.

 t()

 Callbacks

 __before_compile__(env)

 The callback invoked in case the adapter needs to inject code.

 checked_out?(adapter_meta)

 Returns true if a connection has been checked out.

 checkout(adapter_meta, config, function)

 Checks out a connection for the duration of the given function.

 dumpers(primitive_type, ecto_type)

 Returns the dumpers for a given type.

 ensure_all_started(config, type)

 Ensure all applications necessary to run the adapter are started.

 init(config)

 Initializes the adapter supervision tree by returning the children and adapter metadata.

 loaders(primitive_type, ecto_type)

 Returns the loaders for a given type.

 Functions

 lookup_meta(repo_name_or_pid)

 Returns the adapter metadata from its init/1 callback.

 Types

 adapter_meta()

 @type adapter_meta() :: %{
 optional(:stacktrace) => boolean(),
 optional(any()) => any()
}

The metadata returned by the adapter init/1.
It must be a map and Ecto itself will always inject
two keys into the meta:
	the :cache key, which as ETS table that can be used as a cache (if available)
	the :pid key, which is the PID returned by the child spec returned in init/1

 t()

 @type t() :: module()

 Callbacks

 __before_compile__(env)

 @macrocallback __before_compile__(env :: Macro.Env.t()) :: Macro.t()

The callback invoked in case the adapter needs to inject code.

 checked_out?(adapter_meta)

 @callback checked_out?(adapter_meta()) :: boolean()

Returns true if a connection has been checked out.

 checkout(adapter_meta, config, function)

 @callback checkout(adapter_meta(), config :: Keyword.t(), (-> result)) :: result
when result: var

Checks out a connection for the duration of the given function.
In case the adapter provides a pool, this guarantees all of the code
inside the given fun runs against the same connection, which
might improve performance by for instance allowing multiple related
calls to the datastore to share cache information:
Repo.checkout(fn ->
 for _ <- 1..100 do
 Repo.insert!(%Post{})
 end
end)
If the adapter does not provide a pool, just calling the passed function
and returning its result are enough.
If the adapter provides a pool, it is supposed to "check out" one of the
pool connections for the duration of the function call. Which connection
is checked out is not passed to the calling function, so it should be done
using a stateful method like using the current process' dictionary, process
tracking, or some kind of other lookup method. Make sure that this stored
connection is then used in the other callbacks implementations, such as
Ecto.Adapter.Queryable and Ecto.Adapter.Schema.

 dumpers(primitive_type, ecto_type)

 @callback dumpers(primitive_type :: Ecto.Type.primitive(), ecto_type :: Ecto.Type.t()) ::
 [
 (term() -> {:ok, term()} | :error) | Ecto.Type.t()
]

Returns the dumpers for a given type.
It receives the primitive type and the Ecto type (which may be
primitive as well). It returns a list of dumpers with the given
type usually at the beginning.
This allows developers to properly translate values coming from
the Ecto into adapter ones. For example, if the database does not
support booleans but instead returns 0 and 1 for them, you could
add:
def dumpers(:boolean, type), do: [type, &bool_encode/1]
def dumpers(_primitive, type), do: [type]

defp bool_encode(false), do: {:ok, 0}
defp bool_encode(true), do: {:ok, 1}
All adapters are required to implement a clause for :binary_id types,
since they are adapter specific. If your adapter does not provide
binary ids, you may simply use Ecto.UUID:
def dumpers(:binary_id, type), do: [type, Ecto.UUID]
def dumpers(_primitive, type), do: [type]

 ensure_all_started(config, type)

 @callback ensure_all_started(
 config :: Keyword.t(),
 type :: :permanent | :transient | :temporary
) :: {:ok, [atom()]} | {:error, atom()}

Ensure all applications necessary to run the adapter are started.

 init(config)

 @callback init(config :: Keyword.t()) :: {:ok, :supervisor.child_spec(), adapter_meta()}

Initializes the adapter supervision tree by returning the children and adapter metadata.

 loaders(primitive_type, ecto_type)

 @callback loaders(primitive_type :: Ecto.Type.primitive(), ecto_type :: Ecto.Type.t()) ::
 [
 (term() -> {:ok, term()} | :error) | Ecto.Type.t()
]

Returns the loaders for a given type.
It receives the primitive type and the Ecto type (which may be
primitive as well). It returns a list of loaders with the given
type usually at the end.
This allows developers to properly translate values coming from
the adapters into Ecto ones. For example, if the database does not
support booleans but instead returns 0 and 1 for them, you could
add:
def loaders(:boolean, type), do: [&bool_decode/1, type]
def loaders(_primitive, type), do: [type]

defp bool_decode(0), do: {:ok, false}
defp bool_decode(1), do: {:ok, true}
All adapters are required to implement a clause for :binary_id types,
since they are adapter specific. If your adapter does not provide binary
ids, you may simply use Ecto.UUID:
def loaders(:binary_id, type), do: [Ecto.UUID, type]
def loaders(_primitive, type), do: [type]

 Functions

 lookup_meta(repo_name_or_pid)

Returns the adapter metadata from its init/1 callback.
It expects a process name of a repository. The name is either
an atom or a PID. For a given repository, you often want to
call this function based on the repository dynamic repo:
Ecto.Adapter.lookup_meta(repo.get_dynamic_repo())

Ecto.Adapter.Queryable behaviour

Specifies the query API required from adapters.
If your adapter is only able to respond to one or a couple of the query functions,
add custom implementations of those functions directly to the Repo
by using Ecto.Adapter.__before_compile__/1 instead.

 Summary

 Types

 adapter_meta()

 Proxy type to the adapter meta

 cached()

 options()

 prepared()

 query_cache()

 Cache query metadata that is passed to execute/5.

 query_meta()

 Ecto.Query metadata fields (stored in cache)

 selected()

 Callbacks

 execute(adapter_meta, query_meta, query_cache, params, options)

 Executes a previously prepared query.

 prepare(atom, query)

 Commands invoked to prepare a query.

 stream(adapter_meta, query_meta, query_cache, params, options)

 Streams a previously prepared query.

 Functions

 plan_query(operation, adapter, queryable)

 Plans a query using the given adapter.

 prepare_query(operation, repo_name_or_pid, queryable)

 Plans and prepares a query for the given repo, leveraging its query cache.

 Types

 adapter_meta()

 @type adapter_meta() :: Ecto.Adapter.adapter_meta()

Proxy type to the adapter meta

 cached()

 @type cached() :: term()

 options()

 @type options() :: Keyword.t()

 prepared()

 @type prepared() :: term()

 query_cache()

 @type query_cache() ::
 {:nocache, prepared()}
 | {:cache, cache_function :: (cached() -> :ok), prepared()}
 | {:cached, update_function :: (cached() -> :ok),
 reset_function :: (prepared() -> :ok), cached()}

Cache query metadata that is passed to execute/5.
The cache can be in 3 states, documented below.
If {:nocache, prepared} is given, it means the query was
not and cannot be cached. The prepared value is the value
returned by prepare/2.
If {:cache, cache_function, prepared} is given, it means
the query can be cached and it must be cached by calling
the cache_function function with the cache entry of your
choice. Once cache_function is called, the next time the
same query is given to execute/5, it will receive the
:cached tuple.
If {:cached, update_function, reset_function, cached} is
given, it means the query has been cached. You may call
update_function/1 if you want to update the cached result.
Or you may call reset_function/1, with a new prepared query,
to force the query to be cached again. If reset_function/1
is called, the next time the same query is given to
execute/5, it will receive the :cache tuple.

 query_meta()

 @type query_meta() :: %{sources: tuple(), preloads: term(), select: map()}

Ecto.Query metadata fields (stored in cache)

 selected()

 @type selected() :: term()

 Callbacks

 execute(adapter_meta, query_meta, query_cache, params, options)

 @callback execute(
 adapter_meta(),
 query_meta(),
 query_cache(),
 params :: list(),
 options()
) ::
 {non_neg_integer(), [[selected()]] | nil}

Executes a previously prepared query.
The query_meta field is a map containing some of the fields
found in the Ecto.Query struct, after they have been normalized.
For example, the values selected by the query, which then have
to be returned, can be found in query_meta.
The query_cache and its state is documented in query_cache/0.
The params is the list of query parameters. For example, for
a query such as from Post, where: [id: ^123], params will be
[123].
Finally, options is a keyword list of options given to the
Repo operation that triggered the adapter call. Any option is
allowed, as this is a mechanism to allow users of Ecto to customize
how the adapter behaves per operation.
It must return a tuple containing the number of entries and
the result set as a list of lists. The entries in the actual
list will depend on what has been selected by the query. The
result set may also be nil, if no value is being selected.

 prepare(atom, query)

 @callback prepare(atom :: :all | :update_all | :delete_all, query :: Ecto.Query.t()) ::
 {:cache, prepared()} | {:nocache, prepared()}

Commands invoked to prepare a query.
It is used on Ecto.Repo.all/2, Ecto.Repo.update_all/3,
and Ecto.Repo.delete_all/2. It returns a tuple, indicating if
this query can be cached or not, and the prepared query.
The prepared query is any term that will be passed to the
adapter's execute/5.

 stream(adapter_meta, query_meta, query_cache, params, options)

 @callback stream(adapter_meta(), query_meta(), query_cache(), params :: list(), options()) ::
 Enumerable.t()

Streams a previously prepared query.
See execute/5 for a description of arguments.
It returns a stream of values.

 Functions

 plan_query(operation, adapter, queryable)

Plans a query using the given adapter.
This does not expect the repository and therefore does not leverage the cache.

 prepare_query(operation, repo_name_or_pid, queryable)

Plans and prepares a query for the given repo, leveraging its query cache.
This operation uses the query cache if one is available.

Ecto.Adapter.Schema behaviour

Specifies the schema API required from adapters.

 Summary

 Types

 adapter_meta()

 Proxy type to the adapter meta

 constraints()

 fields()

 filters()

 on_conflict()

 options()

 placeholders()

 returning()

 schema_meta()

 Ecto.Schema metadata fields

 Callbacks

 autogenerate(field_type)

 Called to autogenerate a value for id/embed_id/binary_id.

 delete(adapter_meta, schema_meta, filters, returning, options)

 Deletes a single struct with the given filters.

 insert(adapter_meta, schema_meta, fields, on_conflict, returning, options)

 Inserts a single new struct in the data store.

 insert_all(adapter_meta, schema_meta, header, list, on_conflict, returning, placeholders, options)

 Inserts multiple entries into the data store.

 update(adapter_meta, schema_meta, fields, filters, returning, options)

 Updates a single struct with the given filters.

 Types

 adapter_meta()

 @type adapter_meta() :: Ecto.Adapter.adapter_meta()

Proxy type to the adapter meta

 constraints()

 @type constraints() :: Keyword.t()

 fields()

 @type fields() :: Keyword.t()

 filters()

 @type filters() :: Keyword.t()

 on_conflict()

 @type on_conflict() ::
 {:raise, list(), []}
 | {:nothing, list(), [atom()]}
 | {[atom()], list(), [atom()]}
 | {Ecto.Query.t(), list(), [atom()]}

 options()

 @type options() :: Keyword.t()

 placeholders()

 @type placeholders() :: [term()]

 returning()

 @type returning() :: [atom()]

 schema_meta()

 @type schema_meta() :: %{
 autogenerate_id:
 {schema_field :: atom(), source_field :: atom(), Ecto.Type.t()},
 context: term(),
 prefix: binary() | nil,
 schema: atom(),
 source: binary()
}

Ecto.Schema metadata fields

 Callbacks

 autogenerate(field_type)

 @callback autogenerate(field_type :: :id | :binary_id | :embed_id) :: term() | nil

Called to autogenerate a value for id/embed_id/binary_id.
Returns the autogenerated value, or nil if it must be
autogenerated inside the storage or raise if not supported.

 delete(adapter_meta, schema_meta, filters, returning, options)

 @callback delete(adapter_meta(), schema_meta(), filters(), returning(), options()) ::
 {:ok, fields()} | {:invalid, constraints()} | {:error, :stale}

Deletes a single struct with the given filters.
While filters can be any record column, it is expected that
at least the primary key (or any other key that uniquely
identifies an existing record) be given as a filter. Therefore,
in case there is no record matching the given filters,
{:error, :stale} is returned.

 insert(adapter_meta, schema_meta, fields, on_conflict, returning, options)

 @callback insert(
 adapter_meta(),
 schema_meta(),
 fields(),
 on_conflict(),
 returning(),
 options()
) ::
 {:ok, fields()} | {:invalid, constraints()}

Inserts a single new struct in the data store.
Autogenerate
The primary key will be automatically included in returning if the
field has type :id or :binary_id and no value was set by the
developer or none was autogenerated by the adapter.

 insert_all(adapter_meta, schema_meta, header, list, on_conflict, returning, placeholders, options)

 @callback insert_all(
 adapter_meta(),
 schema_meta(),
 header :: [atom()],
 [[{atom(), term() | {Ecto.Query.t(), list()}}]],
 on_conflict(),
 returning(),
 placeholders(),
 options()
) :: {non_neg_integer(), [[term()]] | nil}

Inserts multiple entries into the data store.
In case an Ecto.Query given as any of the field values by the user,
it will be sent to the adapter as a tuple with in the shape of
{query, params}.

 update(adapter_meta, schema_meta, fields, filters, returning, options)

 @callback update(
 adapter_meta(),
 schema_meta(),
 fields(),
 filters(),
 returning(),
 options()
) ::
 {:ok, fields()} | {:invalid, constraints()} | {:error, :stale}

Updates a single struct with the given filters.
While filters can be any record column, it is expected that
at least the primary key (or any other key that uniquely
identifies an existing record) be given as a filter. Therefore,
in case there is no record matching the given filters,
{:error, :stale} is returned.

Ecto.Adapter.Storage behaviour

Specifies the adapter storage API.

 Summary

 Callbacks

 storage_down(options)

 Drops the storage given by options.

 storage_status(options)

 Returns the status of a storage given by options.

 storage_up(options)

 Creates the storage given by options.

 Callbacks

 storage_down(options)

 @callback storage_down(options :: Keyword.t()) ::
 :ok | {:error, :already_down} | {:error, term()}

Drops the storage given by options.
Returns :ok if it was dropped successfully.
Returns {:error, :already_down} if the storage has already been dropped or
{:error, term} in case anything else goes wrong.
Examples
storage_down(username: "postgres",
 database: "ecto_test",
 hostname: "localhost")

 storage_status(options)

 @callback storage_status(options :: Keyword.t()) :: :up | :down | {:error, term()}

Returns the status of a storage given by options.
Can return :up, :down or {:error, term} in case anything goes wrong.
Examples
storage_status(username: "postgres",
 database: "ecto_test",
 hostname: "localhost")

 storage_up(options)

 @callback storage_up(options :: Keyword.t()) ::
 :ok | {:error, :already_up} | {:error, term()}

Creates the storage given by options.
Returns :ok if it was created successfully.
Returns {:error, :already_up} if the storage has already been created or
{:error, term} in case anything else goes wrong.
Examples
storage_up(username: "postgres",
 database: "ecto_test",
 hostname: "localhost")

Ecto.Adapter.Transaction behaviour

Specifies the adapter transactions API.

 Summary

 Types

 adapter_meta()

 Callbacks

 in_transaction?(adapter_meta)

 Returns true if the given process is inside a transaction.

 rollback(adapter_meta, value)

 Rolls back the current transaction.

 transaction(adapter_meta, options, function)

 Runs the given function inside a transaction.

 Types

 adapter_meta()

 @type adapter_meta() :: Ecto.Adapter.adapter_meta()

 Callbacks

 in_transaction?(adapter_meta)

 @callback in_transaction?(adapter_meta()) :: boolean()

Returns true if the given process is inside a transaction.

 rollback(adapter_meta, value)

 @callback rollback(adapter_meta(), value :: any()) :: no_return()

Rolls back the current transaction.
The transaction will return the value given as {:error, value}.
See Ecto.Repo.rollback/1.

 transaction(adapter_meta, options, function)

 @callback transaction(adapter_meta(), options :: Keyword.t(), function :: fun()) ::
 {:ok, any()} | {:error, any()}

Runs the given function inside a transaction.
Returns {:ok, value} if the transaction was successful where value
is the value returned by the function or {:error, value} if the transaction
was rolled back where value is the value given to rollback/1.

Ecto.Association.BelongsTo

The association struct for a belongs_to association.
Its fields are:
	cardinality - The association cardinality
	field - The name of the association field on the schema
	owner - The schema where the association was defined
	owner_key - The key on the owner schema used for the association
	related - The schema that is associated
	related_key - The key on the related schema used for the association
	queryable - The real query to use for querying association
	defaults - Default fields used when building the association
	relationship - The relationship to the specified schema, default :parent
	on_replace - The action taken on associations when schema is replaced

Ecto.Association.Has

The association struct for has_one and has_many associations.
Its fields are:
	cardinality - The association cardinality
	field - The name of the association field on the schema
	owner - The schema where the association was defined
	related - The schema that is associated
	owner_key - The key on the owner schema used for the association
	related_key - The key on the related schema used for the association
	queryable - The real query to use for querying association
	on_delete - The action taken on associations when schema is deleted
	on_replace - The action taken on associations when schema is replaced
	defaults - Default fields used when building the association
	relationship - The relationship to the specified schema, default is :child
	preload_order - Default order_by of the association, used only by preload

Ecto.Association.HasThrough

The association struct for has_one and has_many through associations.
Its fields are:
	cardinality - The association cardinality
	field - The name of the association field on the schema
	owner - The schema where the association was defined
	owner_key - The key on the owner schema used for the association
	through - The through associations
	relationship - The relationship to the specified schema, default :child

Ecto.Association.ManyToMany

The association struct for many_to_many associations.
Its fields are:
	cardinality - The association cardinality
	field - The name of the association field on the schema
	owner - The schema where the association was defined
	related - The schema that is associated
	owner_key - The key on the owner schema used for the association
	queryable - The real query to use for querying association
	on_delete - The action taken on associations when schema is deleted
	on_replace - The action taken on associations when schema is replaced
	defaults - Default fields used when building the association
	relationship - The relationship to the specified schema, default :child
	join_keys - The keyword list with many to many join keys
	join_through - Atom (representing a schema) or a string (representing a table)
for many to many associations
	join_defaults - A list of defaults for join associations
	preload_order - Default order_by of the association, used only by preload

 Summary

 Functions

 assoc_query(refl, values)

 Functions

 assoc_query(refl, values)

Ecto.Association.NotLoaded

Struct returned by associations when they are not loaded.
The fields are:
	__field__ - the association field in owner
	__owner__ - the schema that owns the association
	__cardinality__ - the cardinality of the association

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Ecto.Association.NotLoaded{
 __cardinality__: atom(),
 __field__: atom(),
 __owner__: any()
}

Ecto.Embedded

The embedding struct for embeds_one and embeds_many.
Its fields are:
	cardinality - The association cardinality
	field - The name of the association field on the schema
	owner - The schema where the association was defined
	related - The schema that is embedded
	on_cast - Function name to call by default when casting embeds
	on_replace - The action taken on associations when schema is replaced

 Summary

 Functions

 preload_info(embed)

 Functions

 preload_info(embed)

Ecto.CastError exception

Raised when a changeset can't cast a value.

Ecto.ChangeError exception

Ecto.ConstraintError exception

Ecto.InvalidChangesetError exception

Raised when we cannot perform an action because the
changeset is invalid.

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 message(map)

Callback implementation for Exception.message/1.

Ecto.InvalidURLError exception

Ecto.MigrationError exception

Ecto.MultiplePrimaryKeyError exception

Ecto.MultipleResultsError exception

Ecto.NoPrimaryKeyFieldError exception

Raised at runtime when an operation that requires a primary key is invoked
with a schema that does not define a primary key by using @primary_key false

Ecto.NoPrimaryKeyValueError exception

Raised at runtime when an operation that requires a primary key is invoked
with a schema missing value for its primary key

Ecto.NoResultsError exception

Ecto.Query.CastError exception

Raised at runtime when a value cannot be cast.

Ecto.Query.CompileError exception

Raised at compilation time when the query cannot be compiled.

Ecto.QueryError exception

Raised at runtime when the query is invalid.

Ecto.StaleEntryError exception

Ecto.SubQueryError exception

Raised at runtime when a subquery is invalid.

mix ecto

Prints Ecto tasks and their information.
$ mix ecto

mix ecto.create

Create the storage for the given repository.
The repositories to create are the ones specified under the
:ecto_repos option in the current app configuration. However,
if the -r option is given, it replaces the :ecto_repos config.
Since Ecto tasks can only be executed once, if you need to create
multiple repositories, set :ecto_repos accordingly or pass the -r
flag multiple times.
Examples
$ mix ecto.create
$ mix ecto.create -r Custom.Repo

Command line options
	-r, --repo - the repo to create
	--quiet - do not log output
	--no-compile - do not compile before creating
	--no-deps-check - do not compile before creating

mix ecto.drop

Drop the storage for the given repository.
The repositories to drop are the ones specified under the
:ecto_repos option in the current app configuration. However,
if the -r option is given, it replaces the :ecto_repos config.
Since Ecto tasks can only be executed once, if you need to drop
multiple repositories, set :ecto_repos accordingly or pass the -r
flag multiple times.
Examples
$ mix ecto.drop
$ mix ecto.drop -r Custom.Repo

Command line options
	-r, --repo - the repo to drop
	-q, --quiet - run the command quietly
	-f, --force - do not ask for confirmation when dropping the database.
Configuration is asked only when :start_permanent is set to true
(typically in production)
	--force-drop - force the database to be dropped even
if it has connections to it (requires PostgreSQL 13+)
	--no-compile - do not compile before dropping
	--no-deps-check - do not compile before dropping

mix ecto.gen.repo

Generates a new repository.
The repository will be placed in the lib directory.
Examples
$ mix ecto.gen.repo -r Custom.Repo

This generator will automatically open the config/config.exs
after generation if you have ECTO_EDITOR set in your environment
variable.
Command line options
	-r, --repo - the repo to generate

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

